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Preface

The 7th International Conference on Typed Lambda Calculi and Applications
(TLCA 2005) was held in Nara (Japan) from 21 to 23 April 2005, as part of the
Joint Conference on Rewriting, Deduction and Programming (RDP 2005). This
book contains the contributed papers, and extended abstracts of two invited
talks, given by Thierry Coquand and Susumu Hayashi. A short abstract of the
joint RDP invited lecture by Amy Felty is also included.

The 27 contributed papers were selected from 61 submissions of generally
very high quality, and the Program Committee had a hard time making the
selection. The editor would like to thank everyone who submitted a paper and
to express his regret that many interesting works could not be included.

The editor also wishes to thank the invited speakers, the members of the
Program and Organizing Committees, the Publicity Chair, and the referees for
their joint effort towards the success of the conference. The support from the
Nara Convention Bureau is gratefully acknowledged.

The typed lambda calculus continues to be an important tool in logic and
theoretical computer science. Since 1993, the research progress in this area has
been documented by the TLCA proceedings. The present volume contributes to
this tradition.

February 2005 Pawel Urzyczyn
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Completeness Theorems and A-Calculus

Thierry Coquand

Institutionen for Datavetenskap,
Chalmers Tekniska Hogskola, Goteborg, Sweden
coquand@cs.chalmers.se

Abstract. The purpose of this note is to present a variation of Hind-
ley’s completeness theorem for simply typed A-calculus based on Kripke
model. This variation was obtained indirectly by simplifying an analysis
of a fragment of polymorphic A-calculus [2].

1 Introduction

One the most important problem in proof theory is the status of impredicative
definitions. Since the sharp criticism of Poincaré [15] one of the goal of Hilbert’s
program was precisely to show that such “circular” definitions cannot lead to
contradictions. A typical example of impredicative definition is Leibnitz defini-
tion of equality, which defines “a is equal to b” by the formula

VX.X(a) — X(b) (%)

Here X (x) ranges over all possible properties. In particular it could be the prop-
erty P(x)
P(z) <>y x is equal to b

and there is an apparent circularity. If we have a logic with a given equality =,
it is clear that () is equivalent to a = b: we have indeed that a = b and ¢(a)
implies ¢(b), and conversely, if P(a) implies P(b) for any propery P(x) we can
take P(x) <>4ey @ = = and we get a = b since a = a. In this case, an apparent
impredicative definition is equivalent to a predicative one'. The intuitions of
Poincaré have been confirmed by several works [3], which show that impredica-
tive definitions are proof theoretically very strong. According to Godel [5], it is
precisely the use of impredicative definitions that separates classical mathemat-
ics from intuitionistic mathematics, much more than the use of excluded middle
(and a similar view is now taken by Martin-Lof).

One breakthrough was accomplished in the 60s by G. Takeuti [18], who
showed that the first level of impredicative definitions, so called II{ compre-
hension, can be reduced to a strong form of inductive definitions. G. Takeuti

! The purpose of the “reducibility axiom” [16] is precisely to postulate that one can
always replace an impredicative definition by a predicative one. Theorems 2 and 5
are instances where a priori impredicative definitions can be replaced by predicative
ones.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 1-9, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 T. Coquand

introduces a stratification of IT{ comprehension, and the first level, which we
shall call strict quantification, is obtained by limiting the quantification over
predicate VX.¢(X) to formulae ¢(X) which contain only first order quantifica-
tion. In order to interpret this fragment we need only inductive definitions in a
form already considered by Brouwer and thus Takeuti’s result shows that strict
IT}-quantification can be understood intuitionistically?. It is quite remarkable
that most use of impredicative definitions are done at this level. For instance,
Leibnitz equality explained above uses only a strict quantification. Another ex-
ample is provided by the greatest lower bound of a collection of reals. We repre-
sent a real as a Dedekind cut, i.e. a set of rational numbers which is downward
closed. If the collection of real numbers is represented by a formula ¢(X), the
greatest lower bound, as a set of rationals, is the intersection of all properties
satisfying ¢(X). It can thus be represented by the formula P(q) defined by

P(q) “aes VX.0(X) — X(q)

Takeuti’s reduction was quite indirect: it was based first on ordinal analysis,
and then an intuitionistic proof that the corresponding ordinal system is well-
founded. It has been greatly simplified by W. Buchholz [4], by using the £2-rule.
One main intuition can be found in Lorenzen [8]: it is possible to explain the
classical truth of a statement

VX.0(X)

where ¢ does not have any quantification on predicates, by saying that ¢(X) is
provable, where X is a variable. The key point is that we know how to express
classical provability of such formulae using inductive definitions. Indeed the rules
of w-logic provides an intuitionistic way of explaining the truth of arithmetical
formulae such as ¢(X), which contains free variables ranging over predicates
[13,9,10].

For instance, it can be seen in this way that VX.X(5) — X(5) is valid,
without having to consider the notion of an arbitrary subset of N, by checking
instead that the formula X (5) — X(5) is provable. This idea of replacing a
quantification over an arbitrary subset by a syntactical quantification over a free
predicate variable will play an important réle in this note.

In a previous work [2] we used the idea of the f2-rule to analyse the system
Fy, which is a natural restriction of system F', with only strict I1{-quantification.
This corresponds closely to the system analysed in [17]. We showed that, for this
fragment, normalisation could be proved in Peano arithmetic. We learnt since
then that a similar analysis had been done by I. Takeuti [18], following however
the method of ordinal analysis of G. Takeuti, and showing that an upper-bound
for the restricted system F is €y. The argument of [2] was simplified by Buchholz.
In this version, we have to use a Kripke semantics where worlds are contexts of
simply typed A-calculus.

2 The corresponding system of inductive definition is called ID;. Stronger forms of
inductive definitions are needed to interpret ITi-comprehension in general, and the
intuitionistic status of these stronger forms is not clear.
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A natural question on this simplification was to understand if the use of
Kripke model is necessary in this argument. It turned out that this question
had been answered already by R. Hindley [6]. It is thus possible to use instead
Hindley’s completeness theorem and we obtain in this way an alternative simple
way to analyse the system Fj.

This note is organised as follow. We first motivate the use of the {2-rule to
analyse impredicative quantifications on two examples. We then present a sim-
plification of the argument presented in [2], which explains how to interpret the
system Fj in Peano arithmetic. We end by showing how Hindley’s completeness
theorem [6] can be used instead to give an alternative proof of this result.

2 (2-Rule

In order to explain the use of the (2-rule, we present two examples where one
can interpret in a predicative way strict impredicative quantification. The first
example is for minimal propositional calculus, and the second example explains
how to give a predicative interpretation of second-order arithmetic with strict
II}-quantification.

2.1  Minimal Propositional Calculus

We show in this way that the introduction to strict universal quantification over
propositions is a conservative extension of the minimal logic, that is the logic
with only — and A. The axioms for these connectives are

[a< bAc—la<b A a<(] [and <c]<fa< b—(

Let H be the free Heyting algebra over variables x1, zo, . ... We can think of
the elements of H as finite expressions a(x1, ..., z,) built from finitely variables
with — and A. We consider now the Heyting algebra D of downward closed
subsets of H, with operations

XAY =XnY, X—Y={acH|VWbeX —arbeY}

Since H is free, any interpretation p(xz;) € D of the free variables z; € H extends
to a map a — p(a), H — D. The following lemma has a direct proof.

Lemma 1. If p(x;) =] x; then p(a) =] a for all a € H

Let i : H — D be the map i(a) =| a. We have clearly i(a) < i(b) in D if and
only if a < b in H. Let now p(x) be an arbitrary expression, containing only x
as a free variable. If u € D we can consider p(u) € D.

Lemma 2. We have i(a) < p(u) for all w € D if and only if a < p(z) in H for
x not free in a.

Proof. If we take u = i(z) we have p(u) = i(p(z)) and i(a) < p(u) implies
a < p(x). Conversely, assume a < p(z) in H with  not free in a and let u be
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an arbitrary element of D. Let p be defined by p(x;) = i(z;) for z; free in a and
p(x) = u. We have then p(a) < p(p(z)) and hence i(a) < p(u) in D.

Corollary 1. For any expression p(z) with only one free variable x there exists
v € D such that w < p(u) for all w € D if and only if w < wv.

Proof. We define v to be the subset of H of elements a € H such that a < p(z)
for x not free in a.

More generally, this shows how to interpret a proposition containing universal
quantification, such that Vz.((z — ) — z) — z as an element of D. In this case
this would be the set of expressions a such that a < ((z — z) — 2) — 2z for x
not free in a. In the Heyting algebra D we can interpret proposition of the form

Vz.p(z)3.

2.2  Interpretation of Strict IT}-Quantification

We consider now o-complete Heyting algebras, that is structures with — and
finite and countable conjunctions. The axiom for countable conjunction is

[a < Apby] < Vn.a <b,]

Since the work of Lorenzen [9], it is known how to build constructively the free
o-complete Heyting algebra (see also [11]). We let H(X7,...,X,,) be the free o-
complete Heyting algebra on propositions X;(p), ¢ <n, p € N and H the union
UnH(X1,...,X,). It is possible to interpret in H all arithmetical formulae built
with predicates variables X7, Xs,... and —, conjunction and universal quan-
tification on natural numbers. For instance, (Vx.X;(x)) — X1(5) is interpreted
by (AnX1(n)) — X71(5). A normalisation theorem for a related proof system is
proved in [11].

For interpreting strict quantification on predicates, we follow the same method
as in the previous section. We consider the o-complete Heyting algebra D of dow-
nard closed subsets of H. As before we have an embedding i : H — D such that
i(z) <i(y) if and only if < y, by defining i(x) =] x. It is possible to give a
semantics of strict universal quantification in D by interpreting VX.¢(X) as the
subset of all a € H such that a < ¢(X) for X not free in a.

One important point is that the construction of the o-complete algebra D
involves only inductive definitions provided by the system IDq, since proofs in
w-logic are represented as well-founded trees with countable branching. We get
in this way a quite simple proof of the following result.

Theorem 1. The strength of second-order arithmetic with strict I7{-compre-
hension is the same as the one of the system ID;.

3 A. Pitts had shown [14] that, quite surprisingly, if we have also disjunction, one can
already model in H these propositions, for instance Vz.(y — z) is y — 0.
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3 A Finitary Analysis of a Fragment of System F

3.1 A Completeness Theorem

The completeness theorem we present was obtained by analysing Buchholz sim-
plification of the argument of [2], following the method presented in the previous
section.

We let A be the set of all untyped, maybe open, A-terms, with (-conversion
as equality.

We consider types of the form

T = a|T->T
We use the notation Ty — Tp — T5 for Ty — (T2 — 7T3) and similarly
TN —Th—...>T,forTh — (T — (... = Ty)).
Let L, M range over contexts, that is finite sets of the form xq : Ty, ..., zg : Tk
with z; # x; if ¢ # j. We let H be the set of downward closed subsets of the
set of contexts, where the order is reversed inclusion. H is thought of as a set of

generalised truth-values.
We define C'r : A — H by

Crt)={LeS|LFt:T}
If A,B € H we define A = B € H by
A=B={L|VM2LMeA— M€ B}
and for X,Y : A — H we define X - Y : A — H by
(X = Y)(t) =Ny X(u) = Y(tu)

We introduce the following typing rule for deriving L + ¢ : T, which defines
the system TAg, system analysed in the references [6, 7].

Izt “TEEk
Lixz:TkHt:U Ltru:V—->T LkFkv:V
LM t:T—U Ltuv:T

L-t:T t=gu

Ltu:T

Simple properties are:

Lemma 3. f LCMand L+¢:T then M+¢t:T.

Lemma 4. If L,x: T+F¢:T; and x is not free in ¢ then L +¢: T3.

By these two lemmas, we derive
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Lemma 5. We have Cr, — Cp, = Cr, 13,

Proof. It is indeed clear by Lemma 3 that if LE¢: Ty — To and M F w : T}
and M D L then M F ¢t u : Ty. Conversely if L € (Cp, — Crp,)(t) then for x
not free in ¢t we have L,z : Ty € Cp, () and hence L,z : Ty € Cr,(t x) and so
L,x: Ty Ftx:Ty. It follows from this that we have L,z : Ty -t : T7 — 15 and
hence by Lemma 4, L+t : Ty — Ts.

If T is a first-order type and we have an assignment p(«) : A — H defined for
at least all the free type variables « occuring in 7', we define the interpretation
T'p by induction as usual: ap = p(a) and (Th — T2)p = T1p — Tap.

Lemma 6. If z; : T1,...,2, : T,, b t : T then for any assigment p, we have in
H
Tip(ur) N ... NTypp(uy) € To(t(x) =u1,. .., Ty = Up))

Corollary 2. If M = 2 : T4,...,zp, : T, and M + ¢ : T(«a) and T(«) is a
first-order type using only a as a free type variable, which does not appear in
Ty,...,T, then M € T(a = X)(t) forany X : A — H.

Proof. We take p(3) = Cp for 3 free in 17, ..., T, and p(a) = X. By Lemma 5
we have T;p = Cp, and since M € Cr,(z;) we get by Lemma 6 M € Tp(t) that
is, M € T(a = X)(2).

Theorem 2. If T(«) is a first-order type using only « as a free type variable,

then
N T=x)0
x:A—H
is exactly {L | L+ T(8)} for g fresh w.r.t. L.

This show that the a priori impredicative intersection (., .4 T(a = X)(2)
has a predicative description.

3.2 A Fragment of System F

We apply Theorem 2 to give a finitary interpretation of the fragment Fjy of system
F which involves only strict IT{-quantification. We consider the following types

T 2= o|T—-T|[a)T

where in the quantification, T has to be built using only o and — .

Let us give some examples to illustrate the restriction on quantification. We
can have T = (IIa)[a — «] or (Ha)[a — (@ — a) — o] or even (ITa)[((a —
a) — a) — a] but a type such as (ITa)[[(II5)[a — S]] — ] is not allowed.

We have the following typing rules

Tro.7 “iTer
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I'bt:T t=gu

I'twu:T
Lx:THt:U I'ru:V—-T TI'kov:V
I'tXet: T—-U I'ruov:T
I'tt:(IIa)T r-t¢:T
I'+t:T[U] I't: (ITa)T

where I is a finite set of type declaration = : T, and in the last rule, @ does not
appear free in any type of I'.

We let N be the type (I{a)[o — (v — ) — . and ¢, be the lambda term
AxAf f™ x. We have b ¢, : N for each n. Our interpretation in H gives a finitary
proof of the following result.

Theorem 3. If -t : N — N then for each n there exists m such that ¢t ¢, « f =
f™ x for z, f variables.

Proof. Theorem 2 provides exactly a model of Fy, where types are interpreted
as functions A4 — H. In particular since - ¢ ¢, : N we should have L+t ¢, : a —
(d > a) —aforal Land,for L=z:¢, f:a—aweget LFtc,z f:ain
TAg, and hence t ¢,  f = f™ x for some n.

This gives a finitary interpretation of system Fj since our use of the notion of
subsets for building H is never done in an impredicative way. This implies that
our argument could be formalised in second-order arithmetic with only arith-
metical comprehension [3], and it is standard that second-order arithmetic with
arithmetic comprehension is conservative over Peano arithmetic. An application
of this is [2]:

Theorem 4. A function in N — N is representable by a term ¢ such that g,
t: N — N if and only if it is provably total in Peano arithmetic.

Had we consider instead the fragment F where the only quantified type
that we can form is the type N, it would have been quite easy to give a finitary
interpretation. This is because it is clear in this case that the subset () 4(X —
(X — X) — X) which has a description a priori impredicative, can also be
described in a finitary way as the set {c¢, | n € N}. Indeed, all terms ¢, are
clearly in this intersection, and conversely if a term ¢ is in this intersection we
can take for X the subset {f™ z | n € N} where x and f are free variables not
in ¢t. We should have t  f € X which implies that ¢t =g ¢,, for some n € N. The
next section shows that this idea actually extends to all types of the system Fj.

4 Hindley’s Completeness Theorem

In all interpretations of strict impredicative quantifications we have seen so far,
the use of some form of Kripke model has been essential. It is thus quite surprising
that for the analysis of Fy, this use is not essential, and we can instead rely on a
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direct set-theoretical semantics. A first-order type T'(«) is interpreted as a subset
of A in the following intended way

IIa]]a:X =X, [[Tl — T2]]a:X = {t e ‘ Yu.u € IITI]]oc:X —tué€ [[TZHQ:X}

Theorem 5. (Hindley) We have t € [T]a.=x for all X C A if and only if
Fe:T.

Proof. We refer to [6,7]. The proof is similar to the proof of theorem 2 but it
avoids the use of Kripke model by building first a suitable infinite context?.

For instance, for T'= o — (o — «) — « this gives another proof that

(X = (X —X)—X)
XCA

is the set of terms ¢,, n € N, since it can be shown directly that - ¢ : NV if
and only if ¢ = ¢, for some n € N. The surprising fact is that it gives a finitary
description of complicated sets such as

N(X—>X)—X)—>X
XCA

This is the set {t € A | Ft: ((a« — a) — a) — a}. This is remarkable since
it is difficult, contrary to the previous case, to have any clear intuition for the
meaning of this intersection.

The work [1] extends the result of [2] by giving constructive interpretations
of a hierarchy of stronger and stronger systems Fy C F; C .... For instance,
we obtain Fy by allowing types (ITa)T(a) where in T'(«) can appear also closed
types of Fy. Typically the type of constructive ordinals [12]

(a)le = (N — @) = a) — a

is a type of the system Fj. It is shown in [1] that the functions N — N repre-
sentable as terms of type N — N in the system F} are exactly the functions
provably total in the system ID;. This work is based on the use of the {2-rule,
and it might be interesting to analyse if one can give an alternative argument
by a suitable generalisation of Theorem 5.
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A Tutorial Example of the Semantic Approach
to Foundational Proof-Carrying Code: Abstract

Amy P. Felty
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Proof-carrying code provides a mechanism for insuring that a host, or code
consumer, can safely run code delivered by a code producer. The host specifies
a safety policy as a set of axioms and inference rules. In addition to a com-
piled program, the code producer delivers a formal proof of safety expressed in
terms of those rules that can be easily checked. Foundational proof-carrying code
(FPCC) provides increased security and greater flexibility in the construction of
proofs of safety. Proofs of safety are constructed from the smallest possible set
of axioms and inference rules. For example, typing rules are not included. In our
semantic approach to FPCC, we encode a semantics of types from first princi-
ples and the typing rules are proved as lemmas. In addition, we start from a
semantic definition of machine instructions and safety is defined directly from
this semantics.

Since FPCC starts from basic axioms and low-level definitions, it is neces-
sary to build up a library of lemmas and definitions so that reasoning about
particular programs can be carried out at a higher level, and ideally, also be
automated. I describe a high-level organization that allows Hoare-style reason-
ing about machine code programs. This organization will be presented using
a detailed example. The example, as well as illustrating the above mentioned
approach to organizing proofs, is designed to provide a tutorial introduction to
as many facets of our FPCC approach as possible. For example, it illustrates
how to prove safety of programs that traverse input data structures as well as
allocate new ones.

More information can be found in the full paper [1].
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Can Proofs Be Animated By Games?
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Abstract. Proof animation is a way of executing proofs to find errors in
the formalization of proofs. It is intended to be “testing in proof engineer-
ing”. Although the realizability interpretation as well as the functional
interpretation based on limit-computations were introduced as means for
proof animation, they were unrealistic as an architectural basis for ac-
tual proof animation tools. We have found game theoretical semantics
corresponding to these interpretations, which is likely to be the right
architectural basis for proof animation.

1 Introduction -Proof Animation

In this paper, we will discuss a possible application of game theoretic semantics
to proof animation. Proof animation is an application of an extended Curry-
Howard isomorphism. The notion of “proofs as programs” reads “if a program
is extracted from a checked proof, then it does not have bugs.” Proof animation
is its contrapositive, “if a program extracted from a proof has a bug, then the
proof is not correct.” The objects of proof animation are not correct programs
but formalized proofs.

By the late 80’s, many people had still believed that formally verified pro-
grams would not have bugs. But, this has been proved wrong. Now, many soft-
ware engineers have realized bugs in the formalization are far more serious than
the bugs in the implementation. You cannot formally prove that your formal
specifications correctly reflect your informal intentions or requirements in your
mind. It was believed that building a system according to detailed specifications
is more difficult than writing such a specification according to informal inten-
tions or requirements. Probably, this was the right attitude at the time. However,
the time has past and the environments for software engineering have changed.
Thanks to excellent tools and software engineering technologies, such as design
patterns, building systems correct to specifications has become much easier than
before. In the changeable modern business environments, specifications tend to
be changed even in the middle of a project. Requirement analysis, compliance
test and validation are thus becoming more difficult and important in software
development processes than verification.

* Partly supported by Monbushyo Kakenhi grant 1005-16650028. The address will
change soon. Consult Web page for the new address.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 11-22, 2005.
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The same will happen in formal proof developments. Although the proof
checkers and methodologies to use them are not powerful enough for everyday
usages in software developments, they are becoming ever more and more realis-
tic. When formal verification technologies become a reality technology, the last
problem left would be “how to show correctness of formalization.”

Let us illustrate this problem by an example used in [9]. Assume that we
are developing a formal theory of a metric ||z|| on the interval [m,n] of the set
of integers by the distance from n. For example, ||n|| is 0 and ||m|| is n — m.
A linear order is defined by means of the metric so that x is smaller than y iff
l|lz|] < |lyl|, i-e.,  is closer to n than y. We wish to prove a minimum number
principle for the ordering:

3Ny P n (f(2), £ (), (1)

where f is any function from the natural numbers to the interval and P, ,(x,y)
represent “x is less than or equals to y in the ordering”. It maintains that there is
some x such that f(z) is the minimum among f(0), f(1),..., namely, a minimum
number principle for the ordering Py, ».

The metric of x € [m,n] is formally defined by n — z. Thus, the formal
definition of Py, ,,(x,y) should be n—y > n—x. Suppose that our proof language
has the built-in predicate for > but not for <. Thus the >-sign was used instead
of <-sign. However, it is a confusing usage of the inequality. It is plausible that
we type n—x > n—y by a slip of fingers in the definition of P, ,(z,y). Suppose
this happened. Then, the order is defined by its reverse. Can we find this error
by developing the fully formalized proof of the minimum number principle for
the ordering P, 7

The answer is no. We can develop a formal proof of the principle with the
wrong definition of P, ,(z,y) given above. This is because the ordering is iso-
morphic to its reverse. Formal proofs do not help us to find the error, since the
wrong definition does not imply any contradictions. Only one thing is wrong
with it, that is, the definition is not the one which we intended in our mind.
Since the intention is in our mind, there is no formal way to compare it with the
formal definition.

In the case of program developments, we can check our system against our
intention by executing it. If the system is correct w.r.t. a specification, then
we can check specifications against our intention through validating the system.
This kind of activities are called validation [16]. Verification is to ask “Did we
build the system right?”. Validation is to ask “Did we build the right system?”.
We may build a wrong system which is right relative to wrong specifications.

Can we do validation in formal proof developments? In the example given
above, if our proof checker is smart enough to evaluate truth values of simple
formulas, we can check if a definition is correctly formulated. We expect Px 7(6, 3)
holds, but the proof checker would return false by evaluating 7 —6 > 7 — 3.

When we can execute formalized notions, we can validate them. Quite often,
specifications of realistic softwares are interactively executable by simulators,
which are sometimes called animators. Thus, executing specifications by such
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tools are sometimes called specification animation. Using this terminology, the
evaluation of P 7(6,3) with the result false may be called “definition anima-
tion.”

Although a large part of mathematics is non-executable, constructive math-
ematics is known to be executable by means of Curry-Howard isomorphism.
This means that constructive mathematics can be animated. For example, the
animation for P 7(6,3) above, may be regarded as an execution of a construc-
tive proposition Vz, y.(Ps 7(z,y) V- Ps 7(x,y)). Then, the animation of definition
turns to be an animation of the proof. The activity of animating proofs to vali-
date them is called proof animation.

2 Limit Interpretations

Constructive mathematics can be animated and validated through their execu-
tions (see [8]). However, a large part of mathematics is non-constructive. Clas-
sical proofs have been known to be executable by some constructive interpre-
tations, such as continuation. However, they are known locally legible but not
globally legible. We can understand how each classical rule is executed. We call
this property local legibility. However, when the interpretations are applied to
actual mathematical proofs, even for the simplest proofs such as the proof of
the minimum number principle, the resulting algorithms are too complicated to
understand. We can understand their behaviors in only a few exceptional cases
with non-trivial efforts. We call this difficulty global ilegibility.'. If proof anima-
tion is for finding useful information such as bounds for solutions and algorithms
in classical proofs as proof mining in [14], global ilegibility is not a real obstacle.
However, our aim is to test proofs to our intentions just as engineers test sys-
tems. Proof executions must be light and legible as test runs of programs. Thus,
the global ilegibility is an essential defect for proof animations.

In [7,15], we introduced a new realizability interpretation to overcome the
global ilegibility. The definition of our new realizability interpretation of logical
connectives is the same as the original one by Kleene. However, the recursive
realizers are replaced with the A9-partial functions. Since the A9-partial func-
tions satisfy an axiom system of abstract recursion theory, everything goes just
as in the case of the original realizability interpretation [15].

According to such a realizability interpretation, some semi-classical princi-
ples are valid, e.g., the principles of excluded middle for ¥¢-formulas hold. The
fragment of classical mathematics valid by this interpretation was named LCM,
Limit-Computable Mathematics. It has been proved that there exists a fine hi-
erarchy of classical principles in [1]. According to the results of [1], LCM cor-
responds to the lower part of the hierarchy. We cannot therefore derive all the
classical theorems in LCM, but it is known that quite a large variety of non-
constructive theorems belong to LCM: see, e.g. [18]. For example, the minimal
number principle for the natural numbers (MNP)

! Local and global legibility are terminologies due to Stefano Berardi.
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. Vy.(f(z) < f(y)),

where x and y are natural numbers, holds in LCM if f is recursive.

LCM uses learning theoretic notions to make semi-classical proof execution
legible. Let us explain it with the example of MNP. There is no recursive realizer
for MNP. However, there is a AY-function computing x. It is known that AY-
functions represent learning algorithms called inductive inference in Learning
theory [17]. An inductive inference is a try-and-error algorithmic process to find
a right solution in finite time.

Here is an inductive inference for MNP. At the beginning, we temporarily
assume that f(0) is the minimal value among f(0), f(1), .... Then, we start to
compare the value of f(0) with the values f(1), f(2), ... to confirm our hypoth-
esis. If we find f(n1) smaller than f(0), then we change mind and assume that
f(n1) is the real minimal value instead. We repeat the process and continue to
find f(0) > f(n1) > f(n2) > .... Since the sequence is decreasing, we eventually
reach the minimal value f(n,,) in finite time. Then, we learned or discovered a
right value for .

Hilbert’s main idea of the proof of the finite basis theorem in [10] was this
argument on the learning process (see [7]). By applying the argument repeat-
edly to streams of algebraic forms, Hilbert gave a proof of his famous lemma,
which opened the door to the modern abstract algebra. By the aid of limiting
realizability interpretation, it is not so difficult to read the learning process of
a basis of any ideal of algebraic forms recursively enumerated, from his proof in
1890 paper.

3 Animation via Games?

Execution of a proof in LCM is a kind of learning process as illustrated above.
Using an analogy with learning processes, we can understand algorithmic con-
tents of proofs of LCM rather intuitively. Nonetheless, it has not been known if
such learning algorithms can be fully automatically extracted from formalized
versions of such informal proofs.

According to our experiences with the PX system [6], algorithms which are
automatically extracted from the proofs based on the mathematical soundness
theorem or the original Curry-Howard isomorphism are much more complicated
and illegible than the ones which human beings read from texts with realizabil-
ity or Curry-Howard isomorphism in their minds. Human beings unconsciously
refine and simplify extracted codes. In the PX system, we introduced some opti-
mization procedures to mimic humans’ natural refinements and simplifications.
Natural codes could thus be extracted from proofs by the PX system.

We have to do similar things to build an LCM animator, and it is a non-trivial
technological task. Furthermore, there is a rather serious theoretical obstacle. In
the algorithmic learning theory, an inductive inference is defined by a limiting
recursive function such as f(x) = lim,, .g(n,z), where g is a recursive function
and n is a natural number. We compute g(0, x), g(1,2), ... and, if it stops chang-
ing at g(n,x), then the value g(n,x) is the value of the limit. Namely, the limit
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is “computed” through the discrete time line. Careful inspections of the sound-
ness theorem in [15] shows that the learning processes extracted from proofs
by the extraction method given there use a unique “global time” for the learn-
ing. However, Hilbert’s proof in [10] apparently uses plural “local times”. In a
sense, a local time is generated by a occurrence of the principle of X{-excluded
middle. Since ¥9-excluded middle is repeatedly used in Hilbert’s proof, we have
several limits, each of which has its own internal clock in the learning algorithm
associated to Hilbert’s proof.

It is not difficult to read these learning algorithms based on plural “local
times”, when you look at Hilbert’s original proof texts.? However, we do not
have any formal way to represent such intuition yet. This has been the main
obstacle to build a real proof animation tool based on LCM. However, recently,
a game theoretic equivalent of the interpretation has been found [3,9], and we
expect that it will give a right framework to solve this problem.

3.1 1-Backtracking Game

Game theoretical semantics of logical formulas are known to be a good substitute
for Tarskian semantics of logic [13]. It is said that game semantics is easier to
learn than Tarski semantics.

Coquand [5] introduced a game theoretical semantics of classical first order
arithmetic. It allows Eloise, the player for existential quantifiers, to do back-
tracking as she likes. On the other hand, her opponent Abelard, the player for
universal quantifiers, is not allowed to backtrack. Due to backtracks, existence of
recursive winning strategy for Eloise was proven to be equivalent to the validity
of the formula in Tarski’s semantics. In standard games, e.g., I1%-true sentences
normally has a winning strategy at least of A? ;. In this paper, Coquand’s
games will be referred to as backtracking games or full backtracking games. Since
strategies are recursive, the backtracking game may be regarded as a way of
executing classical logic.

It is known that this semantics still suffers global ilegibility, even though it is
much more legible than the other constructivization of classical logic. However,
when backtracks of the games are restricted to simple backtracks, the game
semantics coincides with LCM semantics and become very legible. Such a game
is called 1-game or 1-backtracking game. We now give its definition. To do so,
we will define some game theoretic notions.

Definition 1. A position of a play is a finite sequence of moves, which are
expressed as [x = 0], [t = 0;a = 3;b = 8y = 11], [x = 0;a = 3;b = 8]. The
empty position is []. For example, a position [x1 = T;y1 = 11,20 = 18;y2 = 4]
for dz1.Vy;.3xo Vyo.21 + y1 < T2 + yo leads to the true formula 7+ 11 < 18 44,
and represents a win by Eloise. Assignments such as 1 = 7, y; = 11,... in

2 His proof is the essentially the one of Dixon’s lemma taught in the contemporary
algebra courses. However, Hilbert’s original proof is much more “learning theoretic”
than the contemporary counterparts. Especially, the discussions in his course at
Gottingen July 5th 1897 shows its learning theoretic nature[11].
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a position are called moves. In the present paper, we assume that each player
moves alternatively. This restriction is not essential, and makes things easier. If
the last move of a position is played by a player A, we say that A played the
position. EndOfDef

Let us note that the position of a play was called “occurrence” in [5]. In our [9],
the notion of position was more restrictive so that the end of a position must be
played by Abelard. In the present paper, we relax the condition. Notations are
different, but these two notions are essentially the same.

Position S; is a subposition of position Ss iff Sy is an initial segment of S5.
Namely, S7 is obtained from Sy by “popping up” some rounds from the tail.
Thus, we do not need to memorize stack contents, when we do backtracking. We
now formulate 1-backtracking game.

Definition 2. A play with 1-backtracking consists of an infinite or finite se-
quence of positions ug, u1, usg,... with the following conditions:

(i) It starts with empty position, ug = [].
(ii) For any position in the sequence, the last move of w,1 is the opponent of
the player who played the last move of u,,.
(iii) When Eloise plays a position w1, un+1 is an extension of a position u by
Eloise’s move, where u is a subposition of u,, and is played by Abelard.
(iv) When Abelard plays a position w41, t,+1 is an extension of the position
u,, which is played by Eloise’s move.

The game of plays with 1-backtracking is called simple backtracking game or
1-backtracking game, 1-game in short. EndOfDef

We introduce some more terminologies for the later discussions.

Definition 3. A move by Eloise (the move by the condition (iii) above) is called
a backtracking move, when u is a proper subposition of u,,. All of the other moves
are called normal moves. The normal moves are all of Abelard’s moves by the
rule (iv) and Eloise’s move by (iii) of the case u = uy,.

Note that a backtracking move not only flush a tail of stack (position), but
also adds a new move for an occurrence of existential quantifier, say Jx. The
move is said a backtracking move to 3z or backtracking to 3z. EndOfDef

We now give an example of 1-game session. Consider a $-EM (X{-Excluded
Middle):
Jx.T(e,x) VVa.T (e, a). (2)

It is transformed to the following prenex normal form:
JrVa.((x >0AT(e,x —1))V(z=0AT (e,a))). (3)

Eloise has the following recursive 1-backtracking strategy for it as shown below.
Observe that there is only 1-backtracking.
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up: []. The initial empty position consisting of zero moves.

uy: [ = 0]. The first move.

ug: [x = 0;a = Aj]. The second move. A; is a number played by Abelard. After
this, we have two cases. If T~ (e, A;) is true, then Eloise wins and she stops
to play. If it’s false, Eloise backtracks to 3z, i.e., backtracks to ug and moves
for dx as follows:

ug: [z = A1 + 1]. Then Abelard plays, say a = As.

ugt [x = A + 1;a = As]. For any move a = Ay, Eloise wins, since T~ (e, A;)
was false and so T'(e, (41 + 1) — 1) is true.

3.2 1-Game and LCM

It has been proved that 1-game for prenex normal forms are equivalent to LCM
in the following sense:

Theorem 1. For any prenex normal formula, there is a recursive winning strat-
egy of 1-backtracking game for Eloise i the formula is realizable by the LCM-
realizability interpretation.

We now prove the theorem.

“Only if” direction: We prove the theorem for 3z,Vy; 3xoVy,. R. The proof
is easily extended to the general case.

Assume ¢ is Eloise’s winning strategy for 3z1Vy; 3zoVys. R. We have to define
two AJ-functions f() and g(yy) such that Vy; .Vyz.R(f(), 41, 9(y1), y2) holds. Note
that f() is a function without arguments as in programming languages, or an
expression for a constant.

First, we define f() and g(y;) without considering if they are AY. After we
defined them, we will prove the defined functions are AJ.

Let P(¢) be the set of plays played after ¢. Since all the plays of P(¢) are
played after ¢, they must be finite. (Infinite plays cannot be won in our game
theoretical semantics.) Note that P(¢) is a recursive set.

There is a play po in P(¢) satisfying the following conditions:

1. The last position of pg is of the form [x; = a;]. Namely, it consists Eloise’s
move for the first existential quantifier 9z;.

2. Let pg be ug, ..., upn. fug, ..., up, Unt1,. .., Un is an extension of po in P(¢),
then wy41, ..., U, never contains backtracking moves to Jz;.

Namely, pg is a play “stable” with respect to Jdx;. Beyond the last move of the
play, any move played after ¢ never backtracks to 3z; anymore.

Then, we define f() = a1, where 1 = a; is the last move for a stable play
po- There might be many stable plays. We may take the play smallest in some
fixed ordering.

We must prove such pg exists. It is proved by reductio ad absurdum. Consider
the set S7 of the plays in P(¢) satisfying the first condition for pg. Of course, it is
not empty. Assume there is no plays satisfying the second condition in S;. Then,
we can build an infinite play played after the strategy ¢. Let vy be any play in
S1. Since this does not satisfy the second condition for pg, there is an extension



18 S. Hayashi

v1 whose last move is a backtrack to dz;. It again belongs to S7. Repeatedly,
we can define an infinite sequence vy, v, ... which is played after ¢. Thus there
is an infinite play played after ¢. But, it is a contradiction, since ¢ is a winning
strategy.

Now we verify that f() is AY-definable. The first condition for py is a recursive
statement and the second condition is I19-statement. Thus, pg is defined by an ex-
pression min,, P(pg), where P is a II{-formula expressing the two conditions for
po. Since any II9-predicates has AJ-characteristic functions, f() = min,, P(po)
is AJ-definable.

After we defined f(), we consider the games 3x9.Vya.R(f(), b1, z2,y2) for all
b1, which are fought with ¢ after pg. More formally, we consider the set P(¢) T po
that is the set of all the play of P(¢), for which pg is an initial segment.

By essentially the same argument, we can define a “stable play” plfl for dzq
for each by in the new games, and define g(b;) from it. A play p; is a stable play
with respect to s for by is a play satisfying the following conditions:

L. p1 € P(¢) T po
2. The last move of the last position of p; is Eloise’s move for the second

existential quantifier .
3. Let p1 be ug,...,upn. If ug, ..., Un, Upy1,..., Uy is an extension of p; in
P(¢) 1 po, then w41, ..., u, never contain backtracking moves to Jxs.

Note that all extensions of the stable play p; in P(¢) T po do not contain
any backtracking moves at all. Backtracking to Jx; is forbidden, since they are
extensions of py and backtracking to Jzs is forbidden by the definition of p;.

Let the last position of p; be [z1 = f(), y1 = b1, x2 = az]. Then, we set
g(b1) = az. Then g(by) is again AY-definable.

We must prove R(f(),b1,g(b1),b2) is true for any by and by to finish the
proof. Assume R(f(),b1,g(b1),bs) were false. Then Eloise loses for the position
[x1 = f(), y1 = b1, x2 = g(b1)]. Since ¢ is a winning strategy, Eloise must be
able to continue to play by backtracking and eventually win. Thus, P(¢) T po
must contain a play with backtracking. But, we have shown that this cannot
happen. Thus, R(f(), b1, g(b1),b2) is true for any b; and be. This ends the proof
of only-if direction.

“If” direction: Assume that Vy;.Vy2.R(f(), 91, 9(y1),y2) holds for two AS-
definable functions f() and g(y1). There are recursive functions h(t) and k(t, y1)
(guessing functions in the terminology of learning theory) such that f() =
lim; A(t) and g(y1) = limy k(t, y1). Then, Eloise’s winning strategy is as follows:

She plays for h(0) for 3z, and, after Abelard’s play b; for Vy; she plays
k(0, by) for Jxo. If she wins for Abelard’s play by for Vyso, she stops. If she
loses, she computes h(1). When h(1) changes from h(0), she backtracks
to Jx1, and restart the play using h(1) and k(1, —). When h(1) does not
changes from h(0),i.e. h(0) = h(1), she backtracks to Iz instead, and
continue to play k(1,—).

Note that Abelard’s first play for Vy; is kept in the latter case, incrementing
t of h(t) and k(t,—). Eventually, h(t) converges to f(). Assume h(t) is stable
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after ¢t > tg. She never backtracks to Jz; after to, for h(t) does not change
anymore after 5. Then, Abelard’s play b; for Vy; is kept forever, since Eloise
never backtracks beyond it. Eventually, k(¢o, b1) converges to g(b1) and then she
can win for any move for Vys. This ends the proof of if-direction.

3.3 General Formulation of Backtracking Games and Jump

The notion of 1-game has been further generalized and refined by Berardi [3].
We can associate a backtracking game bck(G) to each game G in the sense of set
theory . In the setting of [3], both players are allowed to backtrack and winning
conditions are defined even for infinite plays. This is natural from the standard
game theoretic point of view, unlike the game presented in this paper.

Remarkably, Berardi has proved that having a winning strategy for bck(G)
in a degree O is equivalent to having a strategy for G in the jump O’. Thus,
the motto is “l1-backtracking represents the first order quantifiers.” We may say
that, if we are allowed to change our hypotheses on a system (or on the nature),
then we can cope with the “infinity” represented by arithmetical quantifiers.

Recall that Brouwer, Hilbert and their contemporaries in the research of the
foundations of mathematics in the 1920’s regarded arithmetical quantifiers as the
gate to the infinite world from the finite world. We may say the jump, namely
a single arithmetical quantifier, corresponds to the “smallest infinity.” Although
finitary human beings are bound to be recursive, human beings may virtually
handle the smallest infinity (or the jump) with try-and-error investigations or
experiments, i.e. 1-backtracking. It strongly suggests that the learning theoretic
notion of inductive inference would be a right kind of theoretical foundations of
researches on the notion of discovery.

3.4 1-Games and Proof Animation

Although there are some unsolved problems with the 1-game in applying it to
proof animation, it seems to be the right framework for proof animation. In this
subsection, we will discuss the problems of “approximation” and “semantics of
implication.”

In the limiting recursive realizability in [15], more the clock (the index n of
lim,,) ticks, the closer the guesses get to the correct answer. Thus we can regard
that learning algorithms are approximating the right answer as time progresses.
This simple notion of approximation is one of reasons why LCM-interpretation
is legible than the other approaches.

In 1-games, there is no apparent notion of clocks. However, there is a kind of
approximations. When Eloise picks, e.g. = 7 for Jz.Vy.A(x,y), Abelard starts
to attack her hypothesis z = 7. He may be able to give a counterexample with
a particular instance of y. Then, Eloise changes her hypothesis and continues to
play. As shown in the proof of “only if”-part of the equivalence of the theorem
above, Eloise eventually reaches a right solution for x. Namely, the more Abelard
attacks Eloise’s hypothesis, the close Eloise moves to the right answer guided by
her recursive winning strategy.
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In other words, Eloise is approximating the right solution, pushed by test
cases given by Abelard. Namely, the set of test cases (or attacks) by Abelard
advances the clock. As the set grows, Eloise gets closer to the right answer.3

To build a 1-game animator, we need a good notion of approximation for-
mulated well. We have not found such a formulation on which a real software
system can be built. We have just started to analyze the real proofs by means of
1-games, seeking such a notion. The initial results show that it remarkably fits
our intuitive understanding of the proofs mentioned above. This suggests that
the 1-game is likely to be the right framework for proof animation. However,
more case studies are necessary.

We now discuss the problem of semantics of implication. Note that we con-
sidered only the prenex normal forms for the 1-game. We did not handle impli-
cations. Transformation of an implicational formula to the prenex normal form
already includes classical reasonings. we have to give an game theoretical inter-
pretation of implication which is equivalent to LCM-semantics of implication.

There are at least two ways to handle implication in game theoretical seman-
tics (see [12]). The standard way is to regard A — B as AL V B, where At is
the dual game. Another way is to use the notion of the subgame. Although some
modifications are necessary, it is basically easy to extend our discussions to the
full fragment of the first order arithmetic by the subgame approach in Chapter 3
of [12]. We regard A — B as the game to play B, provided we have a free access
to a winning strategy for A. You can imagine that you are playing an online
chess game. You are pondering on your next move for a configuration B. To do
S0, you wish to know a right move for another configuration A, which may turn
up after B. You know how to win B, if you can win A. Instead of pondering on
the next move for A, you may consult a chess program (it’s an online game) how
to win A. Then A is a subgame for A — B. This scenario is natural, and easy
to understand. However, it might obscure interactions between the strategies for
A and B. To say “the strategy f for B can consult the strategy g for A”, we
mean that f is defined relative to g. Thus, the interaction is concealed in the
computation of strategy f.

On the other hand, there is a way to use backtracks to represent communica-
tion between A and B in AV B. Since our backtrack is a kind of pops of stacks,
we may simulate recursive function calls by 1-backtracking. It is expected that
this approach and subgame approach are related.

However, from the system design point of view, these two are very different.
If we take the latter approach, the interaction between A and B becomes part of
plays of the game and it would give more legible animation of proofs. However,
we have to allow Abelard to backtrack, since we must make the game symmetric
to use the dual A+ of A. If we identify Abelard’s moves as test cases as explained
above, test cases with backtracks must be introduced. After these differences,
proof animation tools based on these two frameworks would be rather different.

3 Berardi has introduced a series of limit-interpretations whose indexes are sets of
conditions[2]. It is expected that these notions are closely related.
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3.5 Why Is 1-Game Legible?

We will close this section by a remark on legibility of the 1-games. Since the full
backtracking game needs only recursive strategies, there is no apparent reason
to use the 1-game instead of the full backtracking game for proof animation.
However, as already noted, the full backtracking game is not so legible as the 1-
game. The ilegibility come from the lack of “stable play”. If plays are stabilized,
then the winning strategy is essentially that of 1-games. Thus, games won by
stabilizing winning strategies must be 1-games. When, plays are not stabilized,
we cannot “approximate” the truth. When, we say A V B holds, we wish to
know which of A and B holds. In constructive mathematics, we can effectively
tell the answer. In LCM, we can approximate the truth. We may be wrong at the
beginning, but we can move closer and closer to the right answer by try-and-error
processes. The temporary guesses may oscillate between A and B, but eventually
converge. In general, we cannot know when it converges, but, for many concrete
cases, we can often find criteria by which we can see when guesses are stabilized.

We never have such stabilization for plays of the X9-excluded middle for
the universal ¥9-formula 32.Vy.T (e, x,y) V Va.3b.T~ (e, a,b). A relatively simple
winning strategy for this formula in the full backtracking game is given in [9].
However, the plays after it are never stabilized. Thus, we cannot have any useful
information on which side of the disjunction operator holds, even though Abelard
plays all possible moves. Contrary to this case, in the case of the X{-excluded
middle (2) above, when Jz.T'(e, x) is correct, we will observe a backtracking and
find this side is correct. When Va.T~ (e, a) holds, we will observe the plays are
stable and will have more and more confidence of the truth of Va.T~ (e, a), as
the game is repeatedly played.

The 1-game is expected to be a restricted backtracking game. Namely, we
have found a subset of the full backtracking games, in which Eloise’s winning
strategies are guaranteed “legible” in the sense that the plays are eventually
stabilized. Note that this does not exclude the possibility of some plays in Co-
quand’s game beyond the 1-game may be legible in some particular cases. It
is quite likely that there are some important classes of classical proofs beyond
LCM, for which we can find legible computational contents through the full
backtracking game or the like.

4 Conclusion

We have briefly surveyed proof animation, limit computable mathematics and
backtracking games. We presented a version of 1-backtracking game and give a de-
tailed proof of its equivalence to limiting recursive realizability. We also discussed
how these notions and some results are expected to be useful for proof animation.
We are now analyzing some simple LCM-proofs such as a proof of MNP from the
¥9-excluded middle given in [9]. Doing so, we will eventually find the right way to
handle implication semantics and approximation. After finding the solutions, we
would design and build a prototype of proof animator. Then, we will see mathe-
matical proofs, such as the ones of Hilbert’s paper [10], animated by games.
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The many materials of the present paper are outcomes of joint research with
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and discussions.

References

10.

11.

12.
13.

14.

15.

16.

17.

18.

. Akama, Y., Berardi, S., Hayashi, S. and Kohlenbach, U.: An arithmetical hierarchy

of the law of excluded middle and related principles,

Berardi, S.: Classical logic as Limit Completion, -a constructive model for
non-recursive maps-, submitted, 2001, available at http://www.di.unito.it/
“stefano/

Berardi, S., Coquand, T. and Hayashi, S.: Games with 1-Backtracking, submitted,
2005.

Coquand, T.: A Semantics of Evidence for Classical Arithmetic, in Géard Huet,
Gordon Plotkin and Claire Jones, eds, Proceedings of the Second Workshop on
Logical Frameworks, 1991, (a preliminary version of [5])

Coquand, T.: A Semantics of Evidence for Classical Arithmetic, Journal of Sym-
bolic Logic, 60(1), 325-337, 1995.

Hayashi, S. and Nakano, H.: PX: A Computational Logic, 1988, The MIT Press,
available free from the author’s web page in PDF format.

Hayashi, S. and Nakata, M.: Towards Limit Computable Mathematics, in Types
for Proofs and Programs, P. Challanghan, Z. Luo, J. McKinna, R. Pollack, eds.,
LNCS 2277 (2001) 125-144

Hayashi, S., Sumitomo, R. and Shii, K.: Towards Animation of Proofs - Testing
Proofs by Examples -, Theoretical Computer Science, 272 (2002), 177-195
Hayashi, S.: Mathematics based on Incremental Learning, -Excluded middle and
Inductive inference-, to appear in Theoretical Computer Science.

Hilbert, D.: Uber die Theorie der algebraische Formen, Mathematische Annalen 36
(1890), 473-531.

Hilbert, D.: Theory of Algebraic Invariants, translated by Laubenbacher, R.L.,
Cambridge University Press, 1993.

Hintikka, J. and Kulas, J.: The Game of Language, Reidel, 1983.

Hintikka, J. and Sandu, G.: Game-Theoretical Semantics, in Handbook of Logic
and Language, Part I, edited by van Benthem Jan F. A. K. et al., 1999.
Kohlenbach, U. and Oliva, P.: Proof mining: a systematic way of analysing proofs
in Mathematics, in Proceedings of the Steklov Institute of Mathematics, Vol. 242
(2003), 136-164.

Nakata, M. and Hayashi, S.: Realizability Interpretation for Limit Computable
Mathematics, Scientiae Mathematicae Japonicae, vol.5 (2001), 421-434.
Sommerville, I.: Software engineering, 6th edition, Addison Wesley, 2000.

Sanjay, J., Osherson, D., Royer, J.S., and Sharma, A.: Systems That Learn - 2nd
Edition: An Introduction to Learning Theory (Learning, Development, and Con-
ceptual Change), The MIT Press, 1999.

Toftdal, M.: A Calibration of Ineffective Theorems of Analysis in a Hierarchy of
Semi-Classical Logical Principles, in Proceedings of ICALP ’04, 1188-1200, 2004.



Untyped Algorithmic Equality for Martin-Lof’s
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Abstract. An untyped algorithm to test Sn-equality for Martin-Lof’s
Logical Framework with strong Y-types is presented and proven complete
using a model of partial equivalence relations between untyped terms.

1 Introduction

Type checking in dependent type theories requires comparison of expressions
for equality. In theories with (-equality, an apparent method is to normalize
the objects and then compare their S-normal forms syntactically. In the theory
we want to consider, an extension of Martin-Lof’s logical framework with An-
equality by dependent surjective pairs (strong X types), which we call MLF 5,
a naive normalize and compare syntactically approach fails since Bn-reduction
with surjective pairing is known to be non-confluent [K1o80].

We therefore advocate the incremental Sn-convertibility test which has been
given by the second author for dependently typed A-terms [Coq91, Coq96], and
extend it to pairs. The algorithm computes the weak head normal forms of the
conversion candidates, and then analyzes the shape of the normal forms. In case
the head symbols do not match, conversion fails early. Otherwise, the subterms
are recursively weak head normalized and compared. There are two flavors of
this algorithm.

Type-directed conversion. In this style, the type of the two candidates dictates
the next step in the algorithm. If the candidates are of function type, both are
applied to a fresh variable, if they are of pair type, their left and right projec-
tions are recursively compared, and if they are of base type, they are compared
structurally, i. e., their head symbols and subterms are compared. Type-directed
conversion has been investigated by Harper and Pfenning [HP05]. The advan-
tage of this approach is that it can handle cases where the type provides extra
information which is not already present in the shape of terms. An example is
the unit type: any two terms of unit type, e. g., two variables, can be considered
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equal. Harper and Pfenning report difficulties in showing transitivity of the con-
version algorithm, in case of dependent types. To circumvent this problem, they
erase the dependencies and obtain simple types to direct the equality algorithm.
In the theory they consider, the Edinburgh Logical Framework [HHP93], erasure
is sound, but in theories with types defined by cases (large eliminations), erasure
is unsound and it is not clear how to make their method work. In this article,
we investigate an alternative approach.

Shape-directed (untyped) conversion. As the name suggests, the shape of the
candidates directs the next step. If one of the objects is a A-abstraction, both
objects are applied to a fresh variable, if one object is a pair, the algorithm
continues with the left and right projections of the candidates, and otherwise,
they are compared structurally. Since the algorithm does not depend on types,
it is in principle applicable to many type theories with functions and pairs. In
this article, we prove it complete for MLF 5, but since we are not using erasure,
we expect the proof to extend to theories with large eliminations.

Main technical contributions of this article.

1. We extend the untyped conversion algorithm of the second author [Coq91] to
a type system with Y-types and surjective pairing. Recall that reduction in
the untyped A-calculus with surjective pairing is not Church-Rosser [Bar84]
and, thus, one cannot use a presentation of this type system with conversion
defined on raw terms.!

2. We take a modular approach for showing the completeness of the conversion
algorithm. This result is obtained using a special instance of a general PER
model construction. Furthermore this special instance can be described a
priori without references to the typing rules.

Contents. We start with a syntactical description of MLFy, in the style of
equality-as-judgement (Section 2). Then, we give an untyped algorithm to check
On-equality of two expressions, which alternates weak head reduction and com-
parison phases (Section 3). The goal of this article is to show that the algorithmic
equality of MLFyx is equivalent to the declarative one. Soundness is proven rather
directly in Section 4, requiring inversion for the typing judgement in order to es-
tablish subject reduction for weak head evaluation. Completeness, which implies
decidability of MLFyx, requires construction of a model. Before giving a specific
model, we describe a class of PER models of MLFx based on a generic model of
the A-calculus with pairs (Section 5). In Section 6 we turn to the specific model
of expressions modulo §-equality, on which we define an inductive n-equality. Its
transitive closure is regarded as the “universe” S of type interpretations, each
interpretation is shown to be a subset of S. As a consequence, two declaratively
equal terms are related by S. We complete the circle in Section 7 where we show
that well-typed S-related terms are algorithmically equal, using standardization

! In the absence of confluence, one cannot show injectivity of type constructors, hence
subject reduction fails.
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for A-terms. Decidability of judgmental equality on well-typed terms in MLF
ensues, which entails that type checking of normal forms is decidable as well.

The full version of the article, which contains additionally a bidirectional
type-checking algorithm for MLFyx and more detailed proofs, is available on the
homepage of the first author [ACO05].

2 Declarative Presentation of MLFx;

This section presents the typing and equality rules for an extension of Martin-
Lof’s logical framework [NPS00] by dependent pairs. We show some standard
properties like weakening and substitution, as well as injectivity of function
and pair types and inversion of typing, which will be crucial for the further
development.

Wellformed contexts I" F ok.

CXT-EMPTY CXT-EXT m
o F ok I'x:A F ok
Typing I' H¢: A.
HYPFFok (z:A)er CONVFFL‘:A I' A= B:Type
I'kFz: A I'kt:B
I' ok I' Ft:Set
SET-F

e S _ e
I' F Set : Type ETEF}—EIL‘:Type

I' B A:Type Ix:AF B:Type

FUN-E T F Fun A (\zB) : Type
FUN-I Iz:AFt:B FUNEFI—r:FunA(AxB) I'kts: A
I' b Azt : Fun A (AzB) I' b rs: B[s/z]
PAIRFFFA:Type I''z:A F B :Type PAIRLL I'ks: A I' Ht: B[s/x]
I' + Pair A (AzB) : Type I' - (s,t) : Pair A(AxB)
PATRELL I' b r:Pair A(AzB) PAIRAE-R I' b r:Pair A(AzB)
I'krL:A I' FrR: BrlL/z]

Fig. 1. MLF5 rules for contexts and typing

Expressions (terms and types). We do not distinguish between terms and types
syntactically. Dependent function types, usually written IIx : A. B, are writ-
ten Fun A (A\xB); similarly, dependent pair types Xz : A. B are represented by
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Pair A (AzB). We write projections L and R postfix. The syntactic entities of
MLF 5 are given by the following grammar.

Var >uz,y,z2 variables

Const > ¢ ::= Fun | Pair | El | Set constants

Proj 2p x=L|R left and right projection
Exp 2rs,t,AB,Cu=c|x|Xxt|rs|(t,t)|rp expressions

Cxt >TI n=o| Naz:A typing contexts

We identify terms and types up to a-conversion and adopt the convention that
in contexts I, all variables must be distinct; hence, the context extension I', z: A
presupposes (z:B) & I" for any B.

The inhabitants of Set are type codes; El maps type codes to types. E.g.,
Fun Set (Aa. Fun (Ela) (A-. Ela)) is the type of the polymorphic identity Aadzz.

Judgements are inductively defined relations. If D is a derivation of judgement
J, we write D :: J. The type theory MLFy is presented via five judgements:

I' ok I' is a well-formed context

I' B A :Type A is a well-formed type

I'kFt: A t has type A

I'+A=A":Type A and A’ are equal types
I'rt=t:A t and ¢’ are equal terms of type A

Typing and well-formedness of types both have the form I' F _: _. We will refer
to them by the same judgement I' F t : A. If we mean typing only, we will
require A # Type. The same applies to the equality judgements. Typing rules
are given in Figure 1, together with the rules for well-formed contexts. The rules
for the equality judgements are given in Figure 2. Observe that we have chosen
a “parallel reduction” version for - and n-rules, which has been inspired by
Harper and Pfenning [HP05] and Sarnat [Sar04], in order to make the proof of
functionality easier. In the following, we present properties of MLF x5, which have
easy syntactical proofs.

Admissible rules. MLF 5 enjoys the usual properties of weakening, context con-
version, substitution, functionality and inversion and injectivity for the type
expressions El ¢, Fun A (AzB) and Pair A (AzB). These rules can be found in the
extended version of this article [AC05]. Note that in Martin-Lof’s LF, injectivity
is almost trivial since computation is restricted to the level of terms. This is also
true for Harper and Pfenning’s version of the Edinburgh LF which lacks type-
level A-abstraction [HP05]. In the Edinburgh LF with type-level A it involves a
normalization argument and is proven using logical relations [VC02].

Lemma 1 (Syntactic Validity).

1. Typing: If I' =t : A then I" - ok and either A =Type or I' A : Type.
2. Equality: f I'+-t=¢:Athen"'+¢: Aand I" Ht': A.
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Equivalence, hypotheses, conversion.

“ SYMFFt:t':A “ TRANSF#T:S:A I'kFs=t:A
@ 't =t:A @ I'kFr=t:A
. HYPFFok (x:A)erl CONVFFt:t’:A ' A= B:Type
Q I'Fx=x2:A I'tt=t¢:B
Sets.
I ok I'+-t=t:Set
EQ-SET-F EQ-SET-E

I' F Set = Set : Type I' -Elt=Elt :Type
Dependent functions.

I' A=A :Type I''z:A - B= DB :Type

PN Fin A (AeB) = Fun A’ (e B') < Type
BO-FUN-I Ix:A+-t=t:B
@ T F hat = hat’ - Fun A (\B)
EO-FUN-E Fr=r":FunA(\zB) I'kFs=s:4A
@ I' -rs=r's": Bls/x]
Iz:A+-t=t:B I'kFs=5s:A
EQ-FUN-(3

I' b (\xt)s =t'[s'/z] : Bls/x]

EOFUN I't=1t:FunA(\zB)
@ "TF (Az.tx) =t : Fun A (AxB)

x & FV(t)

Dependent pairs.

I' -A=A :Type I'x:A+ B= B :Type

PQPAIRE =i A (AzB) = Pair A’ (AzB’) : Type

I'kFs=s:4 ' +t=t: Bls/7]

QPR e = (o7, ¢ : Pair A (\iB)

I'br=r":Pair A(\zB) I Fr=1":PairA(\zB)

BRI L T T =L A BB T R= 7R BlrL/a]

I'ks=s:A I'+t:B EQPAIRﬁRF}_S:A 'rt=t:B
'k (s,t)L=s":A 'm0 I'kH(s,t)R=t:B

EQ-PAIR-[3-L

I'+r=r":PairA(AzB)
(rL, rR) =7’ : Pair A (AzB)

EQ-PAIR-1)

Fig. 2. MLFx equality rules



28 A. Abel and T. Coquand

Lemma 2 (Inversion of Typing). Let C # Type.

1. fI'Fx:Cthen I' F I'(z) = C : Type.

2.f ' Xat:Cthen C=FunA(MAzB)and Ix: A +t: B.

3.fIrkFrs:Cthenl" Fr:FunA(MxB)with ' Fs: Aand I' F B[s/z] =
C :Type.

4. f I' b (r,s) : C then C =PairA(AzB) with I' +r: Aand I' + s : Blr/x].

If " rL: Athen I F r: Pair A(A\xB).

6. If ' -rR:C then I' k- r: PairA(AzB) and I' + B[rL/z] = C : Type.

o

3 Algorithmic Presentation

In this section, we present an algorithm for deciding equality. The goal of this
article is to prove it sound and complete.

Syntactic classes. The algorithm works on weak head normal forms WVal. For
convenience, we introduce separate categories for normal forms which can denote
a function and for those which can denote a pair. In the intersection of these
categories live the neutral expressions.

WElim > e n=s|p eliminations

WNe >n  u:=c|z|ne neutral expressions

WFun > w; ==n| Azt  weak head function values
WPair 5w, :==n|(¢,t') weak head pair values

WVal > w, W i=wy |w, weak head values

Weak head evaluation ¢ \, w and active elimination w@e \, w’ are simultane-
ously given by the following rules:

TN\, Wy wr@Qs \, w 7\, Wp wp@p \, w
s\, w TP\ W i\

tw/z] \, w’ N\, w N\, w
nQe \ , ne (Azt)@Quw N\, w’ (t, QL \, w (t, t")QR N\, w

tt;érs|rp

Weak head evaluation ¢ \, w is equivalent to multi-step weak head reduction to
normal form. Since both judgements are deterministic, we can interpret them by
two partial functions

| € Exp — WVal weak head evaluation,
@ e WVal x WElim — WVal active application.

Conversion. Two terms t,t' are algorithmically equal if ¢ \, w, ¢’ \, w’, and
w ~ w'. We combine these three propositions to t| ~ #'|. The algorithmic
equality on weak head normal forms w ~ w’ is given inductively by these rules:
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AQ-C AQ-VAR
c~c T~
n~mn' sl ~s'| n~mn
AQ-NE-FUN AQ-NE-PAIR —————
ns~n's np~n'p

wyQr ~ w}Qz ,
AQ-EXT-FUN ——————— x ¢ FV(wy, w})

wyp ~ w}
w,@L ~ w;@L wp@R ~ w;@R

/
Wyp pr

AQ-EXT-PAIR

For two neutral values, the rules (AQ-NE-X) are preferred over AQ-EXT-FUN and
AQ-EXT-PAIR. Thus, conversion is deterministic. It is easy to see that it is sym-
metric as well.

In our presentation, untyped conversion resembles type-directed conversion.
In the terminology of Harper and Pfenning [HP05, Sar04], the first four rules
AQ-C, AQ-VAR, AQ-NE-FUN and AQ-NE-PAIR compute structural equality, whereas
the remaining two, the extensionality rules AQ-EXT-FUN and AQ-EXT-PAIR, com-
pute type-directed equality. The difference is that in our formulation, the shape
of a value—function or pair— triggers application of the extensionality rules.

Remark 1. In contrast to the corresponding equality for A-terms without pairs
[Coq91] (taking away AQ-NE-PAIR and AQ-EXT-PAIR), this relation is not tran-
sitive. For instance, Ax.nx ~ n and n ~ (nL, nR), but not Az.nx ~ (nL, nR).

4 Soundness

The soundness proof for conversion in this section is entirely syntactical and
relies crucially on injectivity of El, Fun and Pair and inversion of typing. First,
we show soundness of weak head evaluation, which subsumes subject
reduction.

Lemma 3 (Soundness of Weak Head Evaluation).

L.IfDstNwandI'+t:Cthen ' Ft=w:C.
2. DwQeN w and I' Fwe:Cthen I' Fwe=w":C.

Proof. Simultaneously by induction on D, making essential use of inversion laws.

Two algorithmically convertible well-typed expressions must also be equal in
the declarative sense. In case of neutral terms, we also obtain that their types
are equal. This is due to the fact that we can read off the type of the common
head variable and break it down through the sequence of eliminations.
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Lemma 4 (Soundness of Conversion).

1. Neutral non-types: If D::n~n"and I' b n:C £Typeand I' b n' : C' #
Typethen I' Fn=n':Cand I F C = C’ : Type.

2. Weak head values: If D::w~w' and I' Fw,w’ : Cthen I' Fw =w": C.

3. All expressions: If t| ~t'| and I' ¢, : Cthen " Ft=1t:C.

Proof. The third proposition is a consequence of the second, using soundness
of evaluation (Lemma 3) and transitivity. We prove the first two propositions
simultaneously by induction on D.

5 Models

To show completeness of algorithmic equality, we leave the syntactic discipline.
Although a syntactical proof should be possible following Goguen [Gog99, Gog05],
we prefer a model construction since it is more apt to extensions of the type the-
ory.

The contribution of this section is that any PER model over a A-model with
full B-equality is a model of MLF . Only in the next section will we decide on a
particular model which enables the completeness proof.

5.1 A Models

We assume a set D with the four operations

_-.eDbxD—-=D application,
L eD—D left projection,
_ReD—-D right projection, and

__ € ExpxEnv—D denotation.

Herein, we use the following entities:

c € Const := {Set, El, Fun, Pair}  constants
u,v, f,V,FFeD D Const domain of the model
p,o € Env :=Var—D environments

Let p range over the projection functions L and R. To simplify the notation, we
write also f v for f-v. Update of environment p by the binding x=wv is written
p,x=v. The operations f - v, vp and tp must satisfy the following laws:

DEN-CONST cp=c if ¢ € Const
DEN-VAR xp = p(x)

DEN-FUN-E (rs)p=rp (sp)

DEN-PAIR-E (rp)p=rpp

DEN-FUN-(3 (Axt)p v =t(p,x=0)
DEN-PAIR-B-L  (r,s)pL=rp
DEN-PAIR--R  (1,8)pR = sp
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DEN-FUN-{ (Axt)p = (Axt')p’ i t(p,x=v) =t (p/,z=v) for all v e D
DEN-PAIR-£ (r,s)p=0',8)p ifrp=r'p and sp=s'p’
DEN-SET-F-INJ Elv = Elv/ implies v = v’

DEN-FUN-F-INJ  FunV F =FunV’'F’ implies V =V’ and F = F’
DEN-PAIR-F-INJ PairV F = PairV' F/ implies V =V’ and F = F’

Lemma 5 (Irrelevance). If p(x) = p/(z) for all x € FV(t), then tp = tp'.
Proof. By induction on ¢. Makes crucial use of the £ rules.
Lemma 6 (Soundness of Substitution). (¢[s/z])p = t(p, z=sp).

Proof. By induction on ¢, using the £ rules and Lemma 5.

5.2 PER Models

In the definition of PER models, we follow a paper of the second author with
Pollack and Takeyama [CPT03] and Vaux [Vau04]. The only difference is, since
we have codes for types in D, we can define the semantical property of being a
type directly on elements of D, whereas the cited works introduce an intensional
type equality on closures tp.

Partial equivalence relation (PER). A PER is a symmetric and transitive rela-
tion. Let Per denote the set of PERs over D. If A € Per, we write v =v' € A if
(v,v") € A. We say v € A if v is in the carrier of A4, i.e., v = v € A. On the other
hand, each set A C D can be understood as the discrete PER where v = v’ € A
holds iff v = v' and v € A.

Equivalence classes and families. Let A € Per. If v € A, then T4 := {v' € D |
v =0 € A} denotes the equivalence class of v in A. We write D/A for the set
of all equivalence classes in A. Let Fam(A) = D/ A — Per. If F € Fam(A) and
v € A, we use F(v) as a shorthand for F (v 4).

Constructions on PERs. Let A € Per and F € Fam(A). We define two PERs
Fun(A, F) and Pair (A, F) by

(fif)yeRAn(AF) iff fo=f v eF() forallv=1v €A,
(v,v") € Pair(A,F) if vL=v'LeAand vR=v'R € F(vlL).

Semantical types. In the following, assume some Set € Per and some &f €
Fam(&et). We define inductively a new relation 7ype € Per and a new func-
tion [-] € Fam(7ype):

Set = Set € Type and [Set] is Set.

El v =El v’ € Type if v = v’ € Set. Then [El v] is E0(v).

FunV F=Fun V' F' € Type if V. = V' € Type and v = v’ € [V] implies
F v=F v € Type. We define then [Fun V F] to be Fun([V],v — [F v]).
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Pair V. F = Pair V' F' € Type it V. = V' € Type and v = v’ € [V] implies
Fv=F v e Type. We define then [Pair V' F] to be Pair ([V],v — [F v]).

This definition is possible by the laws DEN-SET-F-INJ, DEN-FUN-F-INJ, and
DEN-PAIR-F-INJ. Notice that in the last two clauses, we have

Fun([V],v — [F v]) = Aun([V'],v — [F’ v]), and
Pair ([V],v — [F v]) = Pair ([V'],v — [F' v]).

5.3  Validity

If I is a context, we define a corresponding PER on Env, written [I']. We define
p = p € [I'] to mean that, for all 2:A in I', we have Ap = Ap’ € Type and
p(x) = p'(z) € [Ap]. Semantical contexts I" € (kt are defined inductively by the
following rules:

I' e Gkt Ap = Ap’ € Type for all p = p’ € [I]
o e (xt (I,x:A) € Cxt

Theorem 1 (Soundness of the Rules of MLFy).

=

If D:: 1" - ok then I" € (xt.

fD:T F A:Typethen I € (kt, and if p = p’ € [I"] then Ap = Ap’ € Type.

3D Ft:Athen I' e (kt, and if p = p’ € [I'] then Ap = Ap’ € Type
and tp = tp’ € [Ap].

4. f DT F A=A :Typethen I' € (kt, and if p = p' € [['] then Ap =
A'p € Type.

5. f DT kt=t:AthenI € (kt,and if p=p' € [I'] then Ap = Ap’ € Type

and tp =t'p’ € [Ap].

N

Proof. Each by induction on D, using lemmas 5 and 6.

5.4  Safe Types

We define an abstract notion of safety, similar to what Vaux calls “saturation”
[Vau04]. A PER is safe if it lies between a PER A on neutral expressions and a
PER S on safe expressions [Vou04]. In the following, we use set notation C and
U also for PERs.

Safety. N, Spun,Spair € Per form a safety range if the following conditions are
met:

SAFE-INT N C 8 = Spun USpair
SAFE-NE-FUN uv=uv eEN ifu=v eNandv=2v' €S
SAFE-NE-PAIR up=upeN ifu=uveN

SAFE-EXT-FUN v=0v €8, fvu=vveSforalu=uveN
SAFE-EXT-PAIR v =10 € Spqr Hfvl=v'LeSandvR=v'ReS

A relation A € Per is called safe w.r.t. to a safety range (N, Spun,Spair) if
NCACS.
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Lemma 7 (Fun and Pair Preserve Safety). If A € Per is safe and F ¢
Fam(.A) is such that F(v) is safe for all v € A then Fun(A, F) and Pair (A, F)
are safe.

Proof. By monotonicity of Fun and Pair, if one considers the following refor-
mulation of the conditions:

SAFE-NE-FUN N C AN, -—N)
SAFE-NE-PAIR N C Pair(N, -— N)
SAFE-EXT-FUN  FUn(N, _+— S) C Spun
SAFE-EXT-PAIR  Pair(S, -+— S) C Spair

Lemma 8 (Type Interpretations are Safe). Let Set be safe and £/(v) be
safe for all v € Set. If v € Type then [v] is safe.

Proof. By induction on the proof that v € 7Type, using Lemma 7.

6 Term Model

In this section, we instantiate the model of the previous section to the set of ex-
pressions modulo SB-equality. Application is interpreted as expression application
and the projections of the model are mapped to projections for expressions.

Let 73 € D denote the equivalence class of r € Exp with regard to =3. We
set D := Exp/Zﬁ, Tg 53 =T33, gL = TTﬁ, 78R = T7R5, and tp = mﬁ'
Herein, t[p] denotes the substitution of p(x) for x in ¢, carried out in parallel
for all z € FV(t). In the following, we abbreviate the equivalence class 73 by its
representative r, if clear from the context.

Value classes. The (-normal forms v € Val, which can be described by the
following grammar, completely represent the S-equivalence classes t3 € Exp/=g.

VNe su u=c|z|uv|up neutral values
VFun 3 vy i=u | Azv function values
VPair 3 v, = u | (v,?) pair values

Val v u=wvs|v values

An n-equality on (-equivalence classes. We define a relation ~ C Val x Val
inductively by the following rules.

! !

u~u v~ u~u
ETA-NE-FUN ETA-NE-PAIR
T~ UV ™~ U

ETA-VAR

up>~u'p

vfxzv}z

ETA-C ETA-EXT-FUN ————— x & FV(vy,v})
c~c vp V%
vy L~ L v, R>~v, R

ETA-EXT-PAIR /
Up >~ ’Up
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Note, since we are talking about equivalence classes, in the extensionality rules
ETA-EXT-FUN and ETA-EXT-PAIR we actually mean the normal forms of the
expressions appearing in the hypotheses. In the conclusion of an extensionality
rule, we require one of the two values to be non-neutral.

As algorithmic equality, the relation ~ is symmetric, but not transitive. To
turn it into a PER, we need to take the transitive closure ~* explicitly.

Lemma 9 (Admissible Rules for ~T). If we replace ~ by ~* consistently
in the rules for ~, we get admissible rules for ~*. We denote the admissible rule
by appending a T to the rule name.

Lemma 10 (Safety Range). Let S := ~", N := SN (VNe x VNe), Spy, :=
S N (VFun x VFun), and Sp,ir := S N (VPair x VPair). Then N, Spun, Spair are
PERs and form a safety range.

Proof. SAFE-INT is shown by definition of N, Syn, Spair- SAFE-EXT-FUN is sat-
isfied by rule ETA-EXT-FUNT since z = x € AN for each variable. Each other
requirement has its directly matching admissible rule.

Lemma 11 (Context Satisfiable). Let po(z) := « for all z € Var. If I | ok,
then po € [I].

Corollary 1 (Equal Terms are Related). If I' -t =t : C # Type then
— —

Proof. By soundness of MLFyx, (Thm. 1), tpg = t'po € [Cpo]. The claim follows
since [C'pg] € S by Lemma 8.

It remains to show that {g ~T f/ﬁ implies t| ~ t'|, which means that both ¢
and ¢’ weak head normalize and these normal forms are algorithmically equal.

7 Completeness

We establish completeness of the algorithmic equality in two steps. First we
prove that n-equality of G-normal forms entails equality in the algorithmic sense.
Then we show that for well-typed terms, transitivity is admissible for algorithmic
equality. Combining this with the result of the last section, we are done.

Lemma 12 (Standardization).

1. Ift=guvthent\ ns withn =gu and s = v.
2. If t =g up then t \ np with n =g u.

3. If t =g vy then ¢\, wy with wy =3 vy.

4. If t =5 v, then t \, w, with w, =g v,,.

Proof. Fact about the A-calculus [Bar84].

Lemma 13 (Completeness of ~ w.r.t. ~). If D : g ~ 7j; then n ~ n/
and if D :: 75 ~ 1 then t| ~¢|.
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Proof. Simultaneously by induction on D, using standardization.

While transitivity does not hold for the pure algorithmic equality (see Re-
mark 1), it can be established for terms of the same type. The presence of types
forbids comparison of function values with pair values, the stepping stone for
transitivity of the untyped equality.

For a derivation D of algorithmic equality, we define the measure |D| which
denotes the number of rule applications on the longest branch of D, counting
the rules AQ-EXT-FUN and AQ-EXT-PAIR twice.2 We will use this measure for the
proof of transitivity and termination of algorithmic equality.

Lemma 14 (Transitivity of Typed Algorithmic Equality).

l.letI' Fny : Ci, I' Fng : Cy,and I' - n3 : C3. f D :: ny ~ ny and
D no ~ n3 then ny ~ ns.

2. Let I' Fwy,wo, w3 : C. If D ::wy ~we and D’ :: wy ~ w3 then wy ~ ws.

3. Let I' + ti,ta,t3 ¢ C.If tll ~ tgl and tzl ~ tgl then tll ~ tgl.

Proof. The third proposition is an immediate consequence of the second, using
soundness of weak head evaluation. We prove 1. and 2. simultaneously by in-
duction on |D| + |D’|, using inversion for typing and soundness of algorithmic
equality.

Theorem 2 (Completeness of Algorithmic Equality).

L. I Ht=t:C £Typethent| ~#|.
2.f DT+ A=A :Type then A| ~ A'|.

Proof. Completeness for terms (1): By Cor. 1 we have {g ~* f,/@. Lemma 13
entails t| ~* /|, and since I' - t,¢ : C, we infer t| ~ t'| by transitivity. The
completeness for types (2) is then shown by induction on D, using completeness
for terms in case EQ-SET-E.

We have shown that two judgmentally equal terms ¢, ¢ weak-head normalize
to w,w’ and a derivation of w ~ w’ exists, hence the equality algorithm, which
searches deterministically for such a derivation, terminates with success. What
remains to show is that the query t| ~ #'| terminates for all well-typed t,t',
either with success, if the derivation can be closed, or with failure, in case the
search arrives at a point where there is no matching rule. For the following
lemma, observe that w ~ w iff w is weakly normalizing.

Lemma 15 (Termination of Equality). If Dy :: wy ~ wy and Dy :: we ~ wo
then the query w; ~ wo terminates.

Proof. By induction on |D;| + |Da].

2 A similar measure is used by Goguen [Gog05] to prove termination of algorithmic
equality restricted to pure A-terms [Coq91].
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Theorem 3 (Decidability of Equality). If ' - ¢,¢' : C then the query
t| ~ t'| succeeds or fails finitely and decides I" ¢ =1t : C.

Proof. By Theorem 2, t \, w, t' \, w’, w ~ w, and w’' ~ w’. By the previous
lemma, the query w ~ w’ terminates. Since by soundness and completeness of
the algorithmic equality, w ~ w’ if and only if I' = ¢ =t : C, the query decides
judgmental equality.

8 Conclusion

We have presented a sound and complete conversion algorithm for MLFy. The
completeness proof builds on PERs over untyped expressions, hence, we need—in
contrast to Harper and Pfenning’s completeness proof for type-directed conver-
sion [HP05]—no Kripke model and no notion of erasure, what we consider an
arguably simpler procedure. We see in principle no obstacle to generalize our re-
sults to type theories with type definition by cases (large eliminations), whereas
it is not clear how to treat them with a technique based on erasure.

The disadvantage of untyped conversion, compared to type-directed conver-
sion, is that it cannot handle cases where the type of a term provides more
information on equality than the shape of a terms, e.g., unit types, singleton
types and signatures with manifest fields [CPT03].

A more general proof of completeness? Our proof uses a A-model with full 5-
equality thanks to the &-rules. We had also considered a weaker model without &-
rules which only equates weakly convertible objects. Combined with extensional
PERs this would have been the model closest to our algorithm. But due to the
use of substitution in the declarative formulation, we could not show MLFx’s
rules to be valid in such a model. Whether it still can be done, remains an open
question.

Related work. The second author, Pollack, and Takeyama [CPT03] present a
model for fgn-equality for an extension of the logical framework by singleton
types and signatures with manifest fields. Equality is tested by n-expansion, fol-
lowed by (-normalization and syntactic comparison. In contrast to this work, no
syntactic specification of the framework and no incremental conversion algorithm
are given.

Schiirmann and Sarnat [Sar04] have been working on an extension of the
Edinburgh Logical Framework (ELF) by Y-types (LFx), following Harper and
Pfenning [HP05]. In comparison to MLFy, syntactic validity (Lemma 1) and
injectivity are non-trivial in their formulation of ELF. Robin Adams [Ada0]]
has extended Harper and Pfenning’s algorithm to Luo’s logical framework (i.e.,
MLF with typed A-abstraction) with X-types and unit.

Goguen [Gog99] gives a typed operational semantics for Martin-Lof’s logical
framework. An extension to X-types has to our knowledge not yet been con-
sidered. Recently, Goguen [Gog05] has proven termination and completeness for
both the type-directed [HP05] and the shape-directed equality [Coq91] from the
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standard meta-theoretical properties (strong normalization, confluence, subject
reduction, etc.) of the logical framework.

Acknowledgments. We are grateful to Lionel Vaux whose clear presentation of
models for this implicit calculus [Vau04] provided a guideline for our model
construction. Thanks to Ulf Norell for proof-reading. The first author is indebted
to Frank Pfenning who taught him type-directed equality at Carnegie Mellon
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Abstract. A tree automaton can simulate the successful runs of a word
or tree automaton working on the word or tree denoted by a level-2
lambda-tree. In particular the monadic second order theory of trees given
by arbitrary, rather than only by safe, recursion schemes of level 2 is
decidable. This solves the level-2 case of an open problem by Knapik,
Niwinski and Urzyczyn.

1 Introduction and Related Work

Since Rabin [11] showed the decidability of the monadic second order theory of
the binary tree this result has been applied and extended to various mathematical
structures, including algebraic trees [4] and a hierarchy of graphs [3] obtained by
iterated unfolding and inverse rational mappings from finite graphs. The interest
in these kinds of structures arose in recent years in the context of verification of
infinite state systems [9, 13].

Recently Knapik, Niwiriski and Urzyczyn [6] showed that the monadic second
order (MSO) theory of any infinite tree generated by a level-2 grammar satisfying
a certain “safety” condition is decidable. Later they generalised [7] this result
to grammars of arbitrary levels, but still requiring the “safety” condition. It
remains open whether this condition is actually needed. In this article we give a
partial answer: For grammars of level 2 the condition can be dropped.

Two observations are essential to obtain the result. The first, albeit trivial,
is that if we go down to level 0, we will never actually perform a substitution,
thus we need not worry that substitution is capture avoiding. If you don’t do a
substitution, you’ll never do a wrong substitution!

The second observation is that even though first-order variables stand for
words or trees of unbounded lengths, all the information we need to know in order
to check for a particular property is the transition function of the automaton
verifying this property. And this is a bounded amount of information!

* On leave from Ludwig-Maximilians-Universitat Miinchen. Supported by a postdoc-
toral fellowship of the German Academic Exchange Service (DAAD).

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 39-54, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Therefore the run of a Biichi automaton on an w-word can be simulated by a
Biichi tree automaton on a second order lambda tree denoting this word. More-
over, this idea extends to the simulation of an alternating parity-tree automaton
by a two-way alternating parity tree automaton. It follows that the full MSO
theory of the tree language generated by a level-2 recursion scheme is decidable.

It should be mentioned that in another article [1] the authors show a related
result. For word languages general level-2 recursion schemes and safe recursion
schemes indeed produce the same set of languages and the transformation is ef-
fective. It is yet unclear whether that result extends to tree languages. Moreover,
the authors believe that the conceptual simplicity of the method presented here
makes it worth being studied in its own right.

Only after finishing the work presented here the authors became aware of a
manuscript by Knapik, Niwinski, Urzyczyn and Walukiewicz [8] who also solved
the level-2 decidability problem. They used a new kind of automaton equipped
with a limited “backtracking” facility.

The article is organised as follows. In Sections 2 and 3 we introduce lambda
trees and recursion schemes. Section 4 shows the expected connection between
the denotation of a recursion scheme and that of the associated lambda tree.
Section 5 explains the main technical idea of the article: if we are interested
in a particular property, all we need to know about a first-order object can be
described by a bounded amount of information. Sections 6 and 7 show how the
idea can be used to obtain the decidability of the MSO theory of words and trees
given by level-2 recursion schemes.

2 Lambda Trees

Since the main technical idea for deciding properties of recursion schemes is

to translate them to properties of infinitary lambda terms [5] we first have to

consider these terms qua trees. In this section we will only handle abstractions

that (morally) handle first-order abstractions (even though we give an untyped

definition). The extension to function abstractions is explained in Section 5.
We presuppose a countably infinite set V of variables x.

Definition 1 (Lambda Trees). A lambda tree is a, not necessarily well-founded,
tree built from the binary constructor application @, and for every variable z a
unary abstraction constructor \;, and nullary variable constructor v,,. Moreover
there is an unspecified but finite set X of constants, called “letters”.

A lambda tree defines a, potentially partial, w-word in a natural way made
precise by the following definitions. They are motivated by ideas of geometry of
interaction [2] and similar to the ones presented by Knapik et al [6].

Definition 2 (The Matching Lambda of a Variable). Let p be a node in
a lambda tree that is a variable v,. Its matching path is the shortest prefix (if it
exists) of the path from p to the root of the tree that ends in a A, node. We call
the last node of the matching path the matching lambda of the variable node p.
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If no such path exists, we say the variable node p is a free variable v,.. Variable
nodes that are not free are called bound.

In this definition, if we replace “root of the tree” by a node r we get the
notion of a variable free in the (located) subterm r.

Definition 3 (Matching Argument of a Lambda or a Letter). For a
lambda tree we define the k-th argument of a node, which is assumed to be
a lambda or a letter, to be the right-hand child of the application node (if it
exists) where, when walking from the given node to the root, for the first time
the number of applications visited exceeds the number of abstractions visited
(not including the starting node) by k. We presuppose that on this path, called
the matching path, application nodes are only visited from the left child. We
define the matching argument of a A-node to be its first argument.

Definition 4 (Canonical Traversal of a Lambda-Tree). The canonical
traversal of a lambda tree starts at the root of the tree. From an application we
go to the left subtree, from an abstraction we go to the body. From a letter we
go to its first argument. From a variable we first go to the matching lambda and
then from there to the matching argument where we continue as above.

If we collect on the canonical traversal all the letters we pass downwards (that
is, in direction from the root to the leaves) in order of traversal we get a, maybe
partially defined, w-word. This word is called the word met on the canonical
traversal. If, instead of always going to the first argument when we meet a letter
we branch and continue with the i’th argument, for 1 < i < k where k is the
“arity” of the letter (assuming a fixed assignment), we obtain a tree, the tree of
the canonical traversal.

Proposition 5. In the canonical traversal (and in every path of the canonical
tree traversal) every node is visited at most three times. More precisely, each
node is visited at most once from each direction (top, left and right child).

Remark 6. It should be noted that all the notions and results in this section are
invariant under renaming of bound variables in a lambda tree in the usual way.
This will be used tacitly in the sequel.

3 Recursion Schemes

Definition 7 (Simple Types and Their Level). Given a base type ¢, the
simple types over . are inductively defined as the smallest set containing ¢ that
is closed under forming arrow types ¢ — 7. We use the expression “simple
type” if ¢ is understood from the context or irrelevant. We understand that —
associates to the right, so o — 7 — 7’ is short for 0 — (7 — 7).

The level lv(7) of a simple type is inductively defined by lv(¢) = 0 and
lv(c — 7) = max(lv(o) + 1,1v(7)). We use the expression “type of level i to
mean types 7 with lv(7) = 1.
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Definition 8 (Combinatory Terms). Given a set C of typed constants and
a set V of typed variables, the sets 77(C,V) of terms (over C and V) of type 7
is inductively defined as follows.

—zxzeT7(C,V)ifxeVisof type T and C € T7(C,V) if C € C is of type T
—ifseT™7(C,V) and t € T7(C,V) then st € T°(C,V)

Proposition 9. Every term in 77(C,V) is of one of the following forms.

— CT withCeCoftype 7 —oandt; € T7(C,V)
— 27 withzeVoftype 77 — o and t; € T7(C, V)

Definition 10 (Recursion Scheme). A level-2 recursion scheme is given by
the following data.

— A finite set N of typed constants, called “non-terminals”. Every non-terminal
has a type of level at most 2. Moreover, there is a distinguished non-terminal
S of level 0, called the start symbol.

— A finite set X of typed constants, called “terminal symbols”. Every terminal
symbol has a type of level at most 1.

— Maybe some binder symbol £. If it is present, then for every variable z, a
new constant £, of type ¢+ — ¢ and a new constant v, of type ¢ is present.
We consider any occurrence of v, in a term of the form /.t to be bound,
and identify terms that are equal up to renaming of bound variables in the
usual way. (However, we still formally consider the constants ¢, and v, as
additional terminal symbols.)

— A set of recursion equations of the form NT~ = e, where IV is a non-terminal,
the T~ are pairwise distinct typed variables such that NT~ is a term of type
tand e € T"(N U X, {T7}).

If a binder is present we require moreover, that every occurrence of a constant
l, is in the context /.t and that every occurrence of v, is bound in e.

Note that we do not insist that there is at most one equation for every non-
terminal. In general a recursion scheme denotes a set of trees.

A level-1 or level-0 recursion scheme is a recursion scheme where all non-
terminals have a type of level at most 1 or at most 0, respectively. A recursion
scheme is said to be a “word recursion scheme”, if all terminals have type v — ¢;
it is called “pure” if no binder is present.

Remark 11. Due to the native binding mechanism a non-pure recursion scheme
currently is only a theoretical concept. However, in the only case where we
need an effective construction on recursion schemes, that is for level-0 recursion
schemes, we can always use the given names and needn’t do any renaming.

Example 12. Let X = {a,b, f,e} a set of terminal symbols, each of which has
type ¢ — . For N = {F, A, B,S,E} a set of non-terminals with F of type
(t—1) =1 — 11— vand E, A, B, S of type «. The following equations define a
pure level-2 recursion scheme.
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Fory = F(Foy)y(pz) A=aE S=FfAB
Fozy =y B =bE E =¢F

Here x and y are variables of type ¢ and ¢ is a variable of type ¢ — ¢. It should
be noted that this recursion scheme is neither safe nor deterministic.

Let ¥ = ¥ U{@} with @ of type t — ¢ — ¢ and X a binder. Let F be of type
t — ¢. Then a (non-pure) level-1 recursion scheme over Y with non-terminals
N ={F,A, B,S,E} would be given by

Fp = Xo(Ay(Q (Q(F(Q(Fz)vy))vy)

Qo ~ :
(Qpu,))) Fol = D
where ¢ is a variable of type ¢. The other equa- Q
tions are © 2
Fo=X:(A\yy) D P O
A=@QaE B = @bE ia
S =Q(Q(Ff)A)B E =QeFE Fo Oy)

In fact, this is the reduced scheme (Definition 18) of the first scheme.

Proposition 13. Let t € T7(N, X), with Iv(r) < 1 and all variables in X of
level at most 1 and all symbols in A of level at most 2. Then every occurrence
of an N € NV is in a context N7  such that N7  has type of level at most 1.

Corollary 14. In every term e at the right hand side of a recursion equation
of a level-2 recursion scheme it is the case that every non-terminal has all its
level-1 arguments present.

Remark 15. Corollary 14 shows that we may assume without loss of generality
that in every non-terminal symbol of a level-2 recursion scheme the higher order
arguments come first. In other words, at level-2 we can assume types to be
homogeneous [7]. From now on we will use this assumption tacitly.

Unwinding a recursion scheme yields a (potentially non well-founded) tree,
labelled with terminal symbols. Following ideas of Knapik et al [6] we will now
define the lambda tree associated with a level-2 pure recursion scheme. It will
be generated by a level 1 grammar, the “reduced recursion scheme”.

Definition 16 (Reduced Type of Level 2). Forr =7 — ... > 7, —> 1 —
. — ¢t — ¢ with the 7; types of level 1 we define inductively 7/ =7 — ... —

T, — L.

Definition 17 (Reduced Terms). For any term e € T(N'UX, {Z"}) we define
a reduced term e’ inductively as follows.
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(CT5) = (CY)as,a...as,
(T) =qQt@... at,
x’ = vy

Here C € N U X is a non-terminal or a letter with 7 terms of type of level 1
and 5~ terms of level 0; ¢ € {Z”} a variable of non-ground type with arguments
T necessarily of type of level 0 and z a variable of ground type; @ is a terminal
of type ¢t — ¢ — , here written in infix.

Definition 18 (Reduced Recursion Scheme). For a level-2 recursion scheme,
where we assume without loss of generality that all non-terminals have their first-
order arguments first, we define a level-1 recursion scheme, the reduced recursion
scheme, defining a lambda tree in the following way.

Terminals are those of the original recursion scheme, however with reduced
type, and a new symbol @Q: 1 — ¢ — . The new recursion scheme has a binder
A. Non-terminals are the same as in the original, however with the type reduced.

For any rule of the original recursion scheme of the form N T~ — e where
z))are the level-1 arguments and T~ the level-0 arguments we add a rule N~ —
Az .€ with €’ being the reduced term of e.

Definition 19 (Typed Lambda Trees). A typed lambda tree is a lambda tree
with nodes labelled by simple types in such a way that

— Every variable is bound and if it is labelled with type o, then the matching
lambda has type 0 — 7 for some 7; moreover, every abstraction node is
labelled with a type of the form ¢ — 7 and its child is labelled with 7.

— If an application is labelled 7 then, for some type o the left child is labelled
by ¢ — 7 and the right child by o.

— Every terminal f € X is labelled by its type.

A lambda tree is finitely typed if it is a typed lambda tree and all types come
from the same finite set.

Proposition 20. The reduced recursion scheme of a pure level-2 word recursion
scheme is finitely typed.

Proposition 21. If a lambda tree is finitely typed then the di erence in the
number of lambdas and applications seen on the matching path of an abstraction
is bounded.

Corollary 22. In the reduced recursion scheme of a pure level-2 word recursion
scheme the matching argument of an abstraction can be found by a finite state
path walking automaton.

4 Reductions and Denotations

In this section we make precise our intuitive notion of the tree denoted of re-
cursion scheme, the (w-word or) tree denoted by a lambda tree, and prove the
needed properties. This essentially recasts results of Knapik et al [6].
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Definition 23 (Reduction Relation). Let S be a recursion scheme. Its asso-
ciated reduction relation —g on finite terms is inductively defined as follows.

~ NT —se [?/x_’] if there is a recursion equation NT° = e in S.

—If t -5 t' then ts —gs t's. If f is a terminal symbol and ¢t —gs t’ then
f5t—s f5t.

— In particular we have: If t —g ¢’ then A\t —s Ayt

If in any reduction a variable is substituted in the scope of a binder then appro-
priate renaming is assumed to prevent the variable from getting bound at a new
binder. In other words our reduction is capture avoiding in the usual sense. As
we identify a-equal terms this is a well-defined notion.

Intuitively ¢+ is ¢ with all unfinished computations replaced by L. More
precisely we have the following

Definition 24 (Constructed Part of a Term). For ¢ a term we define =+
inductively as follows.

— ft = ffor f € ¥ aterminal and N+ = 1 for N € N a non-terminal.
— If st = L then (st)* = L. Otherwise (st)*=s>tt.
— In particular we have (\,t)* = A\ t+.

Moreover, we define a partial order C on terms inductively as follows.

— L Etand f C f for every constant f.
— If sC s and t C ¢ then st C s't'.
— In particular: If ¢t C ' then A\t C A t'.

This order is obviously reflexive, transitive and directed complete.

Lemma 25. If t —g ¢ then ¢t C ¢'+.

Definition 26 (Terms Over a Signature). The set 7°°(X) of not neces-
sarily well founded terms over the signature X is coinductively defined by “If
t € T®(X) then t = f% for some ti,...,t, € T°(X) and f € X of type

L— .= — .
——

Definition 27 (Language of a Recursion Scheme). Let S be a recursion
scheme with start symbol S. Then ¢ € 7°°(X') belongs to the language of S, in
symbols t € L(S), if ¢ is finite and there are terms S = tg —s t; —s ... —s
t, = t; or t is infinite and there are terms S =ty —s t; —s ... where t is the
supremum of the t;-.

It should be noted that 7°°(X'), and hence the language of a recursion scheme,
contains only total objects. This, however, is not a restriction, as introducing a
new terminal fr:: — ¢ and transforming every rule NT° = e to NT' = fre
guarantees the defined trees to be total. Note moreover, that “removing the
repetition constructors fr” is MSO definable.
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Remark 28 (Status of Binder). If a binder is present in a recursion scheme, then
Definition 27 is only defined up to renaming of bound variables, as a-equal terms
are identified. However, as all our notions on lambda trees are invariant under
a-equality we can safely assume that some canonical a-variants of the generated
lambda trees are chosen.

We note moreover that in the only case where we actually need this construc-

tion to be effective, that is in the case of a level-0 recursion scheme, only closed
terms are replaced by other closed terms, so we can (and will) always choose the
variable named in the underlying equation.
Example 29. The figure on the left shows a
lambda tree of the language given by the second
grammar in Example 12 with added arrows in-
dicating some of the bindings; note in particular
the renaming at the marked node. This example
will be continued in Example 41.

Proposition 30 (Level-0 Trees). Let S be a
level-0 recursion scheme. Since in its reductions
no capture can occur (since there are no substi-
tutions), we may assume it to be pure (and con-
sider A\, and v, as usual terminals). Then L(S)
is the language of a Blichi tree automaton.

Definition 31 (Reduction Relation with
Beta). Let S’ be a recursion scheme with binder
A and distinguished binary terminal @. We de-
fine a relation —>g, inductively as follows.

- NT —>g, e [T)/x_)} if there is a recursion
equation NZ° = e in S.

— (A\t)@s —>g, t [s/vz]. We recall that our notion of substitution is understood
to be capture free.
—Ift Hg, t' then tQs Hg, t'@s. Moreover, if ¢ is of the form f@Qr;@...Qr,

and s — s’ then tQs —>§, tQs’.

We also define t¥ as t with all unfinished computations replaced by L. This
time, however, we consider @ as denoting application and the f € X as belong-
ing to a reduced recursion scheme. That is we want ((A...)@a)™ = L and

(f@a)¥ = fa.
Definition 32 (Constructed Part of a Recursion Scheme with Beta).
For t a term we define ¢t inductively using the “vector notation” characterisa-
tion of terms, provided by Proposition 9.

— B =ffor feXand (NT)Y = ()P = L.

— If t% = f7 for some f € X then (+t@s)¥ = t¥s%; otherwise (t@s)¥ = 1.
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Lemma 33. If ¢ —>§, ' then ¢t8 C ¢/18,

Definition 34 (The Beta-Language of a Recursion Scheme). Let S’ be a
recursion scheme with start symbol S, binder A and distinguished non-terminal
@. Then t € T°°(X) belongs to the 3-language of S’, in symbols t € LA(S"), if

t is finite and there are terms S = ¢y —>g, t1 —>§, —>g, t,, with tff =t,ort
is infinite and there are terms S = ¢, —>g/ 131 —>g, ... and t is the supremum of
the tjﬁ.

Lemma 35. Let S be a recursion scheme and S’ the reduced scheme. Then
w € L(S) & w e LP(S).

Proof First we note that N7~ —>S, (As € [s7/@’)aty,@...at, —>3, g,

e[s T/ 7’]. So a reduction sequence for S approximating some term w €
L(S) can be transformed into a reduction sequence for &’ approximating the
same w € L(S’).

Moreover, we note that if in &’ we have that ¢ —>g, t’ by unfolding of
a_r)l on-terminal, that is, by replacing somewhere in t the expresblon NS’ by
Az .€[$7/%’] then this happens in a context to produce r = (/\;C e[57/7’])at,@
...@ . Moreover ¥ = 1 and every —>g,—reduct10n sequence starting with r
has to ﬁrst reduce the obvious beta redexes yielding e [57, T/ , 7| with all
reducts 7’ before obtaining % # 1.

Lemma 36. Let S’ be the reduced recursion scheme of a pure level-2 recursion
scheme S. Then the word or tree met on the canonical traversal of the lambda-
tree denoted by S’ and the word denoted by S’ coincide.

Corollary 37. For a pure recursion scheme, its language can also be described
as the words met on the canonical traversals of the trees obtained by the reduced
recursion scheme.

5 First Order Functions

Recall that our main idea is to simulate an automaton walking along the word
or tree met on the canonical traversal. By Corollary 37 this suffices to test for a
given w-regular property. However, we currently have two unsolved problems.

— The definition of the tree denoted by a first-order recursion scheme involves
binders and substitution is assumed to be performed in a capture avoiding
manner. This no longer results in local conditions on testing whether a tree
is generated by a given recursion scheme.

— There is no obvious way to characterise level-1 trees by automata. So the
idea of intersecting an automaton testing whether the tree belongs to the
language of the recursion scheme and an automaton simulating the Biichi-
automaton does not work.



48 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

Fortunately, both problems simultaneously disappear if we perform the same
trick again, and denote parts of the lambda tree by second-order abstractions.

Definition 38 (Second Order Lambda Trees). A second-order lambda tree
is a tree built from the following constructors.

— Letters f, g, h, ..., “application” @, “abstraction” A\, and “variables” v,
— “function abstraction Ap” and “function variables ¢” and “function appli-
cation @Q”.

Definition 39 (Typed Second Order Lambda Trees). A second-order lambda
tree is called typed if it arises from a level-2 recursion scheme by replacing every
rule Ng°T” — e by o

N = dp' N\, €’
where the @~ are the first-order arguments of N and the T~ are the ground type
arguments of N. Here e” is the term e reduced twice in the sense of Definition 17;
the first time with respect to A and @ and the second time with respect to A
and Q.

Remark 40. Note that in a level-0 recursion scheme no substitution is
performed and hence no variable renaming is necessary. Therefore, in ac-
cordance with Remark 28, we assume that always the variable name of the @
underlying equation is chosen. In particular we only need a fixed amount

of variables. @ ©®

Q
Example 41. The figure on the right shows a second-order lambda /X Z :
tree associated with the grammar in Example 12. The tree corre- A\p
sponds to the one shown in Example 29, with the same bindings

variables.

Remark 42. Since all higher order arguments are present
and the function abstractions Ay come first in the unfolding
of every nonterminal, first-order abstraction and application
come always in the pattern

(A\p.@na...at,

which we will in the following abbreviate by

subst(t, 2, )

It should be noted that —as only finitely many
arities are possible— this introduction of new
subst(-, @, -) constructor symbols does not de-
stroy the automata-theoretic description of the
tree language.
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Proposition 43. Consider a typed lambda tree for words, that is, with every
letter f € X of type « — «. The canonical traversal continues in one of the
following ways when entering a subterm of type ¢t — ... — ¢ — ¢.

—_———

R - R k
— continues forever within this subterm

— passes finitely many letters and eventually hits a variable denoting one of
the £ function arguments
— it passes finitely letters and eventually hits a free variable of the subterm

The crucial point about Proposition 43 is that it shows that only a fixed
amount of information is needed to describe a first-order variable . This will
allow us to split the traversal into two parts in the style of a logical “cut”, and
non-deterministically guess the splittings, carrying our guesses in the state of
the automaton.

6 Word Languages

Theorem 44. For any w-regular property of words, fixed set of types and vari-
ables, there is a Bilichi tree automaton that accepts precisely those second order
lambda trees over the given set of variables and typed by the given types, where the
denoted word satisfies the regular property. (We do not care what the automaton
does on input trees that are not appropriately typed second-order lambda-trees.)

Proof. Let the w-regular property be given as a nondeterministic Biichi word
automaton. First assume that there are no first-order variables. Then what we
have to do is to assign each of the visited letters the state it has in a successful
run (which we guess) and check local correctness and acceptance condition.

To make the transitions completely local, we use the fact that every node
is visited at most three times so that we can guess for each node up to three
annotations of the form “a automaton coming from direction ... in state ... is
continuing its path here”, is searching upwards for variable ” or “ ... is
looking for the k’th argument”. Since the number of arguments is bounded by
the type for every such statement only a fixed amount of information is needed
and the correctness of the guessed traversal can be checked locally.

Concerning the acceptance condition: given that each node of the lambda tree
is visited only finitely many times, it must be the case that we visit infinitely
many nodes in order to traverse an infinite word. As the automaton moves locally,
at every node where an automaton enters, but doesn’t come back there must
be a child where an automaton enters but doesn’t come back. Following these
nodes traces a path that is visited infinitely often by the simulated automaton.
Acceptance checking results in only signalling acceptance on the distinguished
path (which we can guess) only if the automaton visits it having visited an
accepting state since the last visit of the distinguished path.

Now assume that first-order variables are present. If we then consider walking
just down the subst(t, 3", T_) nodes as if they were not present, we might at some
point hit a first-order variable ¢, that stands for a tree. The path might either
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continue forever in the tree denoted by ¢ or come back after finitely many steps
asking to continue in one of its k arguments.

We note that there is still a path that is visited infinitely often: either the
main branch of a subst(-, 77, ) node or the subtree the variable stands for where
the automaton enters, but never returns.

What remains to be shown is that local correctness can be tested. To do so,
we keep for every of the (finitely many!) first-order variables a table with our
guess of the behaviour of the variable in the current context. Such an entry is
one of the following.

— “The variable will not be needed.”

— “The successful run will enter in state ¢ and will remain there forever.”

— “When entering this variable the path will come back asking for argument
k and the transition table for the word read in between is 6.”

Here a “transition table” is understood as a table saying for every pair (p, q) of
states of the simulated automaton, whether, when entering with state p we can
leave with state ¢ and whether we can do so with a visit of an accepting state
in between.

Obviously only a fixed amount of information is needed to store this table.
At every subst(t, 7", T )-“node” we update the table for the variables 3 and
our offspring to subtree t; verifies our guess for ;.

— For the guess “The variable will not be needed” we need to verify nothing.
So we just accept this subtree.

— For the guess “The successful run will enter here with state ¢” we have to
simulate a successful run starting in state g.

Note that we will continue producing the successful run even if this in-
volves going upwards beyond the subst(-,®”,-) where we entered the side
branch. This is precisely the device that allows us to work without a safety
condition.

The picture on the right shows an ex-
ample of such a run in a situation where
blind substitution would produce variable
capture. It should be noted that above the
subst(-, ¢, -) node all the annotations are the
same, as if the automaton looking for vari- ‘
able x came directly from the main branch,
correctly jumping over the A, there. \

— For the guess “will come back to argument &
with transition table 6”, we have to produce |
a symbolic run, i.e., a run with transition ‘
tables rather than just states. But as tran-
sition tables can be updated locally when | &
reading a letter we can produce such a sym-
bolic run in the same way, as we would pro- :E']
duce a usual run.
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All this can be checked locally. Here we note that the guessing and verifying
mechanism can be used for first-order variables, even if we are in a branch that
currently verifies a guess. The reason is that our guesses are absolute ones and we
needn’t care what we use them for. The figure after this proof shows an example
of such a guessed and verified run.

When our path now hits a second order variable ¢, we do the following,
depending on our guess of how ¢ behaves. If we have guessed that ¢ will not
be needed, we fail. If we have guessed that ¢ will be entered in state ¢ then
we accept if and only if the current state is ¢. If we have guessed that the path
will come back asking for argument k, we choose a state ¢’ in accordance with
the guessed transition table and make sure the node above has annotation “an
automaton in state ¢’ coming from left below searching for argument &”.

Y = 6fgfg§ 1

q/ € 6fgfg(9)
q" € begeg(q’)

Corollary 45. Given a level-2 word recursion scheme and an MSO property, it
is decidable whether some word can be generated with the given recursion scheme
that has the given property.

7 'Tree Languages

In this section we show how the proof of Theorem 44 can be extended to tree
languages. To do so, we will use a result of Vardi [12] showing that the emptiness
problem for two way alternating parity tree automata is decidable.

This has the advantage that we can follow the canonical paths directly (even
upwards) and we can use our own alternating power to follow the alternations
of the simulated automata and we use our own parity conditions to check the
parity conditions of the simulated automaton. The only non-trivial point is still
the case when we meet a first-order variable. Here we branch and do the same
“guess and verify” as in the word case; this time with guesses of the form
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“There is a successful run in the tree denoted by ¢, starting from state
g with automata entering the arguments of this function with at most
the given states and the given parities visited in between.”

Theorem 46. For any alternating parity tree automaton there is a two-way
alternating parity tree automaton that accepts precisely those typed second order
lambda-trees denoting trees that have an accepting run of the given automaton.

Proof. Our aim is to simulate an accepting run of an alternating one-way parity
tree automaton on a tree denoted by the recursion scheme.

Since we now can also walk backwards we follow the path directly and we use
our own alternating power to do the alternating of the simulated automaton. The
only thing that remains to show is what we do, if we hit a first-order variable.

In short, we guess what the run through that variable would look like and
then, on the one hand, send an automaton upwards to verify the guess and on
the other hand simulate those paths of the tree that come up from the variable
again. Of course we must make sure that the guess can be stored in the state
of the automaton walking upwards and that there is only a bounded number of
possible automata coming out of the variable and continue their run here (so
that we can use our alternating power to branch off in such a strong way). This
is achieved by the following observations.

— Automata coming out in the same state, with the same set of parities visited,
and asking for the same argument can be merged into a single automaton,
as automata entering the same tree with the same condition either all have
an accepting run, or none.

— The question whether the automata on the paths that never leave the (tree
denoted by) the first-order variable have an accepting run can be checked
by the automaton walking upwards towards the variable.

Hence our guess “There is a successful run with automata entering the arguments
of this function with at most the given states” can be described by a subset of
Q x{1,... ,k} xP(£2) where Q is the set of states of the simulated automaton,
k the arity of the variable (which is bounded by the maximal number of arrows
in any non-terminal of the original grammar) and B ({2) the power set of the set
of parities of the original automaton. So our guess comes from a fixed finite set.

The automaton walking upwards verifies its guess in the following way. It
enters in the designated start state and simulates a run in the usual way, except
that it remembers in its states the following information.

— The fact that we are in verifying a guess and its minimal parity visited since
entering here.

— The set of allowed state/argument/acceptance triples for leaving the subtree
“upwards”

This information is only used when walking upwards and hitting the subst(-, @, -)-
node from somewhere different than the main-branch, i.e., when leaving the
subtree denoted by the variable. Then we check, whether we leave in one of the
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allowed states. Of course when hitting the subst(-, 7", -) node while searching for
a variable, we continue our simulation (just forgetting that we were in verifying
mode); we can do this, as this path will never ask for an argument of ;. Again,
this is the device, that allows us to work without a safety condition.

Corollary 47. The MSO theory of tree languages given by level-2 recursion
schemes (that need not be safe or deterministic) is decidable.

Proof. For every MSO formula there is an alternating parity tree automaton
accepting those trees that satisfy it [11, 10]. Since level-0 recursion schemes are
given by tree automata, we can intersect the language of the automaton ob-
tained by Theorem 46 with the language of the corresponding level-0 recursion
scheme. The decidability of the non-emptiness of two-way alternating parity tree
automata was shown by Vardi [12].
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Abstract. We give a new type inference algorithm for typing lambda-terms in
Elementary Affine Logic (EAL), which is motivated by applications to complexity
and optimal reduction. Following previous references on this topic, the variant
of EAL type system we consider (denoted EAL*) is a variant where sharing is
restricted to variables and without polymorphism. Our algorithm improves over
the ones already known in that it offers a better complexity bound: if a simple type
derivation for the term ¢ is given our algorithm performs EAL* type inference in
polynomial time in the size of the derivation.

1 Introduction

Linear logic (LL) has proved a fruitful logical setting in which computational complexity
can be brought into the picture of the proofs-as-programs correspondence, since the early
work [GSS92]. In particular Light linear logic ([Gir98]) and Soft linear logic ([Laf04])
are variants of LL in which all numerical functions programmed are polynomial time.
Another system, Elementary linear logic (ELL, see [Gir98, DJ03]) corresponds to Kalmar
elementary complexity.

Hence one can consider specific term calculi designed through the Curry-Howard
correspondence and program directly in these languages with the guaranteed complexity
bound ([Rov98, Ter01]). However this turns out in practice to be a difficult task, in
particular because these languages require managing specific constructs corresponding
to the logical modalities. Considering the affine variant (i.e. with unrestricted weakening)
of these systems is an advantage ([Asp98]) but does not suppress the difficulty.

An alternative point of view is to keep ordinary lambda-calculus and use the logic
as a type system: then if a program is well-typed the logic provides a way to execute it
with the guaranteed complexity bound. The difficulty is then moved to the problem of
type inference. This approach and the corresponding type inference problems have been
studied in [CMO01, CRdRO03] for Elementary affine logic (EAL) and [Bai02, Bai04] for

* Work partially supported by project CRISS ACI Sécurité informatique and project GEOCAL
ACI Nouvelles interfaces des mathématiques.
** Work partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan. This work
was started during a visit of this author at Université Paris-Nord, in september 2004.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 55-70, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



56 P. Baillot and K. Terui

Light affine logic (LAL). It was shown that type inference in the propositional fragments
of these systems is decidable.

Typing in EAL is actually also motivated by another goal (see [CMO01, ACMO00]):
EAL-typed terms can be evaluated with the optimal reduction discipline much more
easily than general terms, by using only the abstract part of Lamping’s algorithm. Thus
EAL has been advocated as a promising type system for performing efficient optimal
reduction, using the following strategy: given a term, first try to infer an EAL type and if
there is one then evaluate the term using Lamping’s abstract algorithm. To succeed, this
approach would require: an efficient type inference algorithm, evidence that the class
of EAL-typable terms is large enough and includes interesting programs, and finally a
proof that those terms are indeed evaluated in a faster way with Lamping’s algorithm.
Maybe intersection types could also be a useful tool in this direction ([Car04]).

However though the type inference problems for EAL and LAL have been shown
decidable the algorithms provided, either for EAL or LAL, are not really efficient. They
all run at least in exponential time, even if one considers as input a simply typed lambda-
term. Our goal is to improve this state-of-the-art by providing more efficient and possibly
simpler algorithms.

In this paper we propose a new algorithm for EAL typing, which is therefore a
contribution to the perspective of EAL-driven optimal reduction discussed above. This
is also a first step for designing an efficient inference procedure for Dual light affine
logic (DLAL, [BTO4a]) which is a simplification of LAL and corresponds to Ptime
computation.

Contribution. Technically speaking the main difficulty with EAL typing is to find out
where in the derivation to place !-rules and to determine sow many of them to put. This
corresponds in proof-nets terminology to placing boxes. The algorithms in [CMO01] and
[CRdARO3] are based on two tactics for first placing abstract boxes and then working
out their number using linear constraints. Our approach also uses linear constraints but
departs from this point of view by determining the place of boxes dynamically, at the time
of constraints solving. This method was actually already proposed in [Bai02] for LAL
typing but with several conditions; in particular the term had to be in normal form. In the
present work we show that in a system without sharing of subterms other than variables
(like DLAL, but unlike LAL), this approach is considerably simplified. In particular it
results that:

— one can use as intermediary syntax a very simple term calculus (introduced in
[ARO2]) instead of proof-nets like in [Bai02];

— the procedure can be run in polynomial time, if one considers as input a simply
typed lambda-term (instead of an untyped lambda-term).

Outline. The paper will proceed as follows: in section 2 we introduce Elementary affine
logic and the type system EAL* we consider for lambda-calculus; in section 3 we
describe the term calculus (pseudo-terms, or concrete syntax) we will use to denote
EAL” derivations and we prove a theorem (Theorem 8) on EAL* typability; finally in
section 4 we give an EAL* decoration algorithm (based on Theorem 8), prove it can be
run in polynomial time (4.2) and derive from it an EAL* type inference algorithm (4.3).
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Notations. Given a lambda-term M we denote by F'V (M) the set of its free variables.
Given a variable = we denote by no(x, M) the number of occurrences of x in M. We
denote by | M | the structural size of a term M. We denote substitution (without capture
of variable) by M[N/x]. When there is no ambiguity we will write M[M;/x;] for
M[Ml/xla AR Mn/xn]

Notations for lists: € will denote the empty list and pushing element a on list [ will
be denoted by a :: [. The prefix relation on lists will be denoted by <.

2 Typing in Elementary Affine Logic

The formulas of Intuitionistic multiplicative Elementary affine logic ( Elementary affine
logic for short, EAL) are given by the following grammar:

A,B:=a|A—B|!A|Va.A

We restrict here to propositional EAL (without quantification). A natural deduction
presentation for this system is given on Figure 1.

I'FB
1A (var) 7F, AF B (weak)
INFA—-B IxHA A+ B
nre o TraA—.p @V
FEA M A ARE
T AFB contr
NEM oo Db Ay Ak B
... InFB promm

Fig. 1. Natural deduction for EAL

We call erasure A~ of an EAL formula A the simple type defined inductively by:
a =a, (A" =A", (A—-B)"=A" - B".

Conversely, given a simple type T' we say that an EAL formula A is a decoration of T
if wehave A= =T.

We will use EAL as a type system for lambda-terms, but in a way more constrained
than that allowed by this natural deduction presentation:

Definition 1. Let M be a lambda-term; we say M is typable in EAL* with type I"
M : A if there is a derivation of this judgment in the system from Figure 2.
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Notice that the rule (contr) is restricted and an affinity condition is imposed on the rule
(prom). The effect is that it does not allow sharing of subterms other than variables.
This comes in contrast with the computational study of ELL carried out for instance in
[DJO3] but is motivated by several points:

— With our restrictions, terms and derivations correspond more closely to each other.
For instance, the size of a typed term M is always linear in the length (i.e. the number
of typing rules) of its type derivation.

— This approach where sharing is restricted to variables (and not arbitrary subterms)
is enough to define Dual Light Affine Logic (DLAL) typing ([BT04a]) which is
sufficient to capture polynomial time computation.

— It is not hard to see that our notion of EAL*-typability precisely coincides with the
EAL-typability for lambda-terms considered by Coppola and Martini in [CMO1] (see
[BT04b]). As argued in their paper [CMO1], sharing-free derivations are necessary
to be able to use EAL for optimal reduction with the abstract part of Lamping’s
algorithm.

— Finally: using sharing of arbitrary subterms would make type inference more difficult

I'-M:B

(var) Iz:AFM:B

r:AFx: A (weak)

NEM:A—B DbMy:A (o Iz:AFM:B
I, I (My)Ms : B PP TF M:A—B

(abst)

x1: A, ... xn VA AEM B
z: 1A A Mlz/z1,...,2,]: B

(contr)

=M 1A - M, :'A, x1:A1,...,2n,: Ay - M: B
Fl,...,Fnl—M[Mi/xi}:!B

In the rule (prom), each x; occurs at most once in M.

(prom)

Fig. 2. Typing rules for EAL*

3  Concrete Syntax and Box Reconstruction

3.1 Pseudo-Terms

In order to describe the structure of type derivations we need a term calculus more
informative than lambda-calculus. We will use the language introduced in [AR02] (called
concrete syntax in this paper), which is convenient because it has no explicit construct
neither for boxes, nor for contractions. It was stressed in this reference that this syntax
is not faithful for LAL: several type derivations (LAL proofs) correspond to the same
term. However it is faithful for EAL*, precisely because sharing is restricted to variables
and there is no ambiguity on the placement of contractions.
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Let us introduce pseudo-terms:
tus=a | Azt | (u |t |l

The basic idea is that ! constructs correspond to main doors of boxes in proof-nets
([Gir87, AR02]) while ! constructs correspond to auxiliary doors of boxes. But note that
there is no information in the pseudo-terms to link occurrences of ! and ! corresponding
to the same box.

There is a natural erasure map (.)~ from pseudo-terms to lambda-terms consisting
in removing all occurrences of ! and 1. When t— = M, t is called a decoration of M.

For typing pseudo-terms the rules are the same as in Definition 1 and Figure 2, but
for (prom):

bty 1Ay - ILEt, 1A, x1:A,...,2,: A Ft: B

(prom)

We want to give an algorithm to determine if a pseudo-term can be typed in EAL*:
this can be seen as a kind of correctness criterion allowing to establish if boxes can be
reconstructed in a suitable way; this issue will be examined in 3.2.

Actually, when searching for EAL* type derivations for (ordinary) lambda-terms it
will be interesting to consider a certain subclass of derivations. A type derivation in
EAL" is restricted if in all applications of the rule (prom),

(i) the subject M of the main premise z1 : Ay,... ,x, : A, = M : Bisnota variable,
and

(i) the last rules to derive auxiliary premises I; = M; :1A; (1 < i < n) are either (var)
or (appl).

A pseudo-term is restricted if it is obtained by the following grammar:
az=x|Axt]| (L)t
t=1"aq,
where m is an arbitrary value in Z and !"™q is defined by:

a= 11l a ifm>0 "a= 1.1 a ifm<D0.
— —~

m times —m times
We then have the following proposition (see [BT04b] for the proof):
Proposition 2.

1. (For lambda-terms)if ' = M : A has a type derivation, then it also has a restricted
type derivation.
2. (For pseudo-terms) Every restricted derivation yields a restricted pseudo-term.

As a consequence, when a lambda-term M is typable in EAL* one can always find a
decoration of M (of the same type) in the set of restricted pseudo-terms.
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3.2 Box Reconstruction

We will consider words over the language £ = {!,1}*.

If ¢ is a pseudo-term and z is an occurrence of variable (either free or bound) in ¢,
we define t(x) as the word of £ obtained by listing the occurrences of !, ! holding  in
their scope. More formally:

o) = e (1)(x) = L= (ta)),
(A\y.t){x) = t(z), (y might be equal to x) ("t)(z) =12 (t{x)),
((t1)t2){(x) = t;{x) where t; is the subterm containing .

We define amap: s : £ — Z by:
s(e)=0, s(l=D)=1+s), s(l=1)=-1+s(I).

We call s({) the sum associated to [.
Let ¢ be a pseudo-term. We say that ¢ satisfies the bracketing condition if

— for any occurrence of variable x in ¢:
VI < t(x), s(1) >0,
— moreover if x is an occurrence of free variable:
s(t{x)) = 0.

That is to say: if ! is seen as an opening bracket and ! as a closing bracket, in ¢(z) any
I matches a ! (we will say that t(x) is weakly well-bracketed) and if z is free t(z) is
well-bracketed.

We say t satisfies the scope condition if: for any subterm Ax.v of ¢, for any occurrence
x; of x in v, v{x;) is well-bracketed:

- Vi <wv{z;), s(l) >0,
- and s(v{z;)) = 0.

It is obvious that:

Lemma 3. Ift is a pseudo-term which satisfies the scope condition, then any subterm
of t also satisfies this condition.

Proposition 4. If t is an EAL” typed pseudo term, then t satisfies the bracketing and
scope conditions.

Proof. By induction on the EAL* type derivations.

For instance the two following pseudo-terms are not EAL* typable:

WAAHIHT), DA HINT D),

the first one because it does not satisfy bracketing, and the second one because it does
not satisfy the scope condition (because of the first occurrence of f).
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Now, we can observe the following property:

Lemma 5 (Boxing). If lu is a pseudo-term which satisfies the bracketing and scope

conditions then there exist v, uq, ..., U, unique (up to renaming of v’s free variables)
such that:

- FV(v) ={x1,..., 2} and for 1 <i <n, no(x;,v) =1,

= lu=W[luy/z1,. .., un/xs),

— v and u;, for 1 <1 < n, satisfy the bracketing condition.

Proof. We denote by !j the first occurrence of ! in the term considered: !gu. Denote by
1y,...,1, the occurrences of ! matching !y in the words !u(x), where z ranges over the
occurrences of variables in lu. Let u;, with 1 < ¢ < n, be the subterms of !u such that
1,u; is a subterm of lu, for 1 < i < n. Then it is clear that no u; is a subterm of a u;, for
1% 7. _

Let now v be the pseudo-term obtained from u by replacing each !;u; by a distinct
variable x;. Let us show that inside ¢, no occurrence of variable in u; can be bound by a
A in v. Indeed assume it was the case for an occurrence y in u; and let Ay.w denote the
subterm of ¢ starting with Ay. Then A\y.w would be of the form \y.w’{lu; /x;}, where
v1{ve/x} denotes the syntactic substitution of « by vy in v1 (i.e. possibly with variable
capture). One can check that the scope condition for ¢ would then be violated, hence a
contradiction.

Therefore we have v = w[luy /1, ..., u,/x,] (without variable capture), and by
definition of !; we know that for 1 < i < n, v(z;) is well-bracketed.

Finally let us assume x is an occurrence of free variable in v distinct from z;, for
1 < 4 < n. Then z is an occurrence of free variable in !u, and as !u is well-bracketed
we have that s(lu(x)) = 0, hence z is in the scope of a |y matching !y. Then !y must be
one of the 1;, for 1 < i < n, hence z is in u; and thus does not occur in v, which gives
a contradiction. Therefore we have FV (v) = {x1,...,zp}.

Let us show that v satisfies bracketing. Let y be an occurrence of variable in v. If y is
free we already know that v(y) is well-bracketed. If y is bound then !v(y) = lu(y). So
if I < lv(y) and [ # ¢, then s(I) > 1, therefore Vi < v(y), s(I) > 0. So v satisfies the
bracketing condition. It is easy to check that the u;s also satisfy the bracketing condition.

Given a pseudo-term ¢ we call EAL type assignment for t amap " from the variables of
t (free or bound) to EAL formulas. EAL type assignments are simply called assignments
when there is no danger of confusion. This map I" is extended to a partial map from
subterms of ¢ to EAL formulas by the following inductive definition:

F(w) =14,  ifI'(u) = A,

I'(lu = A, if I'(u) = 'A undefined otherwise,

I'hrw) =A—B, ifl'z)=A,I(u) =B,

I'((u1)u2) = B, if I'(ug) = A and I'(u;) = A — B, undefined otherwise.

Given a pair (¢, I') of a pseudo-term ¢ and an assignment " (we omit I" if it is natural
from the context) we say that (¢, I') satisfies the typing condition if:

— I'(t) is defined (so in particular each subterm of ¢ of the form (uq)us satisfies the
condition above),
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— for any variable x of ¢ which has at least 2 occurrences we have: I'(z) is of the form
! B for some formula B.

Given an EAL” type derivation for a pseudo-term ¢ there is a natural assignment
I" obtained from this derivation: the value of I" on free variables is obtained from the
environment of the final judgment and its value on bound variables from the type of the
variable in the premise of the abstraction rule in the derivation.

Proposition 6. If t is an EAL* typed pseudo-term and I is an associated assignment
then (t, I) satisfies the typing condition.

Moreover it is easy to observe that:

Lemma 7. If (t, I') satisfies the typing condition and u is a subterm of t, then (u,I)
also satisfies the typing condition.

Now, the conditions on pseudo-terms we have listed up to now are sufficient to ensure
that ¢ is an EAL* typed pseudo-term:

Theorem 8. Ift is a pseudo-term and I" an assignment such that:

— t satisfies the bracketing and scope conditions,
— (¢, I) satisfies the typing condition,

then t is typable in EAL* with a judgment A ‘-t : A such that: I'(t) = A and A is the
restriction of I’ to the free variables of t.

Proof. Let us use the following enumeration for the conditions:

(i) bracketing, (ii) scope, (iii) typing.

The proof proceeds by structural induction on the pseudo-term ¢. Let us just deal
here with the case ¢ = !u. The complete proof can be found in [BT04b].

By the Boxing Lemma 5, t can be written as t = w[luy /x1, ..., u,/z,] where
FV(v) ={z1,...,z,} and each v(z;) is well-bracketed. By Lemma 5 again, each u;
satisfies (i).

By Lemmas 3 and 7 as ¢ satisfies (ii) and (iii), u; also satisfies (ii) and (iii). Therefore
by induction hypothesis we get that there exists an EAL* derivation of conclusion:

Ai }—ui:Ai,

where A; = I'(u;), for 1 < i < n.

Let us now examine the conditions for v. As ¢ satisfies the bracketing condition and
by the Boxing Lemma 5, we get that v satisfies (i). By the Boxing Lemma again we
know that all free variables of v have exactly one occurrence. It is easy to check that as
t satisfies the scope condition (ii), so does v.

Consider now the typing condition. Let I be defined as I" but I'(z;) = I'(Tu;)
for 1 < ¢ < n. If y has several occurrences in v then it has several occurrences in
t, hence I'(y) = !B, so I'(y) = !B. If (v1)v, is a subterm of v then (v )v},, where
v} = vi[luy /o1, . .., Wy, /2], is a subterm of ¢ and I'(v}) = I'(v;). Therefore as (¢, I)
satisfies the typing condition, then so does (v, I).
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As I'(u;) = A; and I'(lu;) is defined we have A; = !B; and I'(z;) = B;. Finally
as v satisfies conditions (i)—(iii), by i.h. there exists an EAL* derivation of conclusion:

x1:B1,...,xn: B, Fv:C,

where C' = I'(v).

If u; and u; for i # j have a free variable y in common then as ¢ satisfies the typing
condition we have I'(y) = !B. We rename the free variables common to several of the
u;S, apply a (prom) rule to the judgments on u; and the judgment on v, then some (contr)
rules and get a judgment: A’ ¢ : |C. Hence the i.h. is valid for .

4 A Decoration Algorithm

4.1 Decorations and Instantiations

We consider the following decoration problem:

Problem 9 (decoration). Let x1 : Ay,...,xn : Ay, B M : B be a simply typed term;
does there exist EAL decorations A’ of the A; for 1 < ¢ < n and B’ of B such that
x1: A, ... xn AL F M : B’ is a valid EAL* judgment for M?

For that we will need to find out the possible concrete terms corresponding to M.
Actually following section 3.1 and Prop. 2 it is sufficient to search for a suitable term
in the set of restricted pseudo-terms, instead of considering the whole set of pseudo-
terms. To perform this search we will use parameters: n,m,k, . ... The parameterized
pseudo-terms are defined by the following grammar:

as=x | Axt] (i), t = 1"a,

where n is a parameter (and not an integer).
To parameterize types, we will also use linear combinations of parameters c,d, . . .
defined by:
c:=0|n|n+c.

The parameterized types are defined by:
Az=1%|!°(4 — A).

Given a parameterized pseudo-term ¢, a parameterized type assignment X for t is a map
from the variables of ¢ (free or bound) to the parameterized types.

We denote by par(t) (par(A), resp.) the set of parameters occurring in ¢ (A, resp.),
and by par(X') the union of par(X(z)) with x ranging over all the variables of ¢.

An instantiation ¢ for t is a map ¢ : par(t) — Z. It allows to define a restricted
pseudo-term ¢(¢) obtained by substituting the integer ¢(n) for each parameter n. Sim-
ilarly, an instantiation ¢ for (¢, X) is a map ¢ : par(t) U par(X) — Z. The map ¢ is
naturally extended to the linear combinations of parameters. If A is a parameterized type
such that par(A) C par(X) and moreover ¢(c) is non-negative whenever !° B occurs
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in A, one can obtain an EAL type ¢(A) by substituting ¢(n) for each parameter n as
above. For instance, ¢(!™(1°a — "™q)) = 13(a —o 1) when ¢(n) = 3. An EAL
type assignment ¢ X for ¢(t) is then obtained by ¢X'(z) = ¢(X(x)) when ¢(X(z)) is
defined for all variables x of ¢.

We define the size |A| of a parameterized formula A as the structural size of its
underlying simple type (so the sum of the number of — connectives and atomic sub-
types), and | X| as the maximum of |X'(x)| for all variables x. The erasure map (.)~ is
defined for parameterized pseudo-terms and parameterized types analogously to those
for pseudo-terms and EAL types.

It is clear that given a lambda-term M there exists a parameterized pseudo-term
t such that t~ = M and all occurrences of parameter in ¢ are distinct. We denote ¢,
which is unique up to renaming of its parameters, by M and call it the free decoration
of M. Note that the size of M is linear in the size of M. Given a simple type T, its free
decoration T is defined by:

a=1"a, A—-oB=1"(A—-B),

where in the second case we have taken A and B with disjoint sets of parameters and
n a fresh parameter. Finally, a simple type assignment © for M is a map from the
variables of M to the simple types. Its free decoration O is defined pointwise, by taking
O(x) = O(x), where all these decorations are taken with disjoint parameters.

The following picture illustrates the relationship among various notions introduced
so far:

pseudo-terms | param. pseudo-terms | ©rasure lambda-terms

EAL types Instantiation param. types <f— simple types
EAL typ. assign. param. typ. assign. deccfreaetion simple typ. assign.
Given a simple type derivation of z; : 13,... ,x, : T,, = M : T, one can natu-

rally obtain a simple type assignment @ for M. Furthermore, it is automatic to build a
parameterized pseudo-term A/ and a parameterized type assignment © for M. If ¢ is
an instantiation for (M, ©) such that ¢(T;) and ¢(T') are defined (i.e. ¢(n) > 0 for all
n € par(Ty) U ---par(T,) Upar(T)), then ¢(T;) is a decoration of T; for 1 < i <n
and ¢(T) is a decoration of T'. Conversely, any decorations of 7};’s and 7 are obtained
through some instantiations for (M, ©). Therefore, the decoration problem boils down
to the following instantiation problem:

Problem 10 (instantiation). Given a parameterized pseudo-term ¢ and a parameterized
type assignment X for it: does there exist an instantiation ¢ for (¢, X) such that ¢(t) has
an EAL* type derivation associated to ¢ X'?

To solve this problem we will use Theorem 8 to find suitable instantiations ¢ if there
exists any. For that we will need to be able to state the conditions of this theorem on
parameterized pseudo-terms; they will yield linear constraints. We will speak of linear
inequations, meaning in fact both linear equations and linear inequations.
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We will consider lists over parameters n. Let us denote by £’ the set of such lists.
As for pseudo-terms we define for ¢ a parameterized pseudo-term and x an occurrence
of variable in ¢, a list ¢(x) in £’ by:

x(r)y = €, ((t1)t2){x) = t;{x) where t; is the subterm containing x,
(Ma)(z) =n: (a(z)), (Ay.t){x) = t(z) (y might be equal to ).

The sum s(I) of an element ! of £’ is a linear combination defined by:
s(e) =0, s(n:l)=n+s(l).

Let ¢ be a parameterized pseudo-term. We define the boxing constraints for t as the
set of linear inequations C?(t) obtained from ¢ in the following way:

— bracketing: for any occurrence of variable z in ¢ and any prefix { of ¢(x), add the
inequation: s(I) > 0; moreover if x is an occurrence of free variable add the equation
s(t{x)) = 0.

— scope: for any subterm Ax.v of ¢, for any occurrence x; of x in v, add similarly the
inequations expressing the fact that v{x;) is well-bracketed.

It is then straightforward that:

Proposition 11. Given an instantiation ¢ for t, we have: ¢(t) satisfies the bracketing
and scope conditions iff ¢ is a solution of C®(t).

Note that the number of inequations in C®(t) is polynomial in the size of ¢ (hence also
in the size of ¢ 7).

In the sequel, we will need to unify parameterized types. For that, given 2 parame-
terized types A and B we define their unification constraints U (A, B) by:

U(**a, %) = {c = d}
('C(Al —OAQ) (Bl _OBQ)) = {Czd}UU(Al,Bl)UU(AQ,BQ)

and U(A, B) = {FALSE} (unsolvable constraint) in the other cases.
Let X be a parameterized type assignment for ¢. Then we extend X to a partial map
from the subterms of ¢ to parameterized types in the following way:

Y("a) =1I1"t°4 if X(a) = I°A,
Y vau) =1°A— B) if Y(z) = A Y(u) =B,
Y((ur)u2) = B, if ¥(u1) =!°(A — B), undefined otherwise.

We define the ryping constraints for (t, X) as the set of linear inequations C*¥? (¢, X)
obtained from ¢, X as follows. When X(¢) is not defined, then C*¥? (¢, &) = {FALSE}.
Otherwise:

(applications) for any subterm of ¢ of the form (uj)ug with X (uy) = !°(4; — By)
and X (ug) = Ao add the constraints U (A7, A2) U {c = 0}.

(bangs) for any subterm of ¢ of the form "u with X'(u) = !°A, add the constraint
n+c>0.
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(contractions) for any variable x of ¢ which has at least 2 occurrences and X (z) = I°A4,
add the constraint ¢ > 1.

(variables) for any c such that !°B is a subtype of X'(z) for some variable z of ¢, add
the constraint ¢ > 0.

We then have:

Proposition 12. Let t be a parameterized pseudo-term and X' be a parameterized type
assignment for t. Given an instantiation ¢ for (t,X), we have: ¢X is defined and
(¢(t), ¢ satisfies the typing condition iff ¢ is a solution of Ct¥P (¢, X0).

Note that the number of inequations in C*¥? (¢, ) is polynomial in (|t| + | 2]).
We define C(t, X)) = Cb(t) U C'¥P(t, X)). Using the two previous Propositions and
Theorem 8 we get the following result, which solves the instantiation problem:

Theorem 13. Let t be a parameterized pseudo-term, X be a parameterized type as-
signment for t, and ¢ be an instantiation for (t,X). The two following conditions are
equivalent:

— ¢X is defined and ¢(t) is typable in EAL* with a judgment A+ ¢(t) : A such that
PX(p(t)) = A and A is the restriction of ¢X to the free variables of (t),
- ¢ is a solution of C(t, X0).

Moreover the number of inequations in C(t, X) is polynomial in (|t| + | X]).
Finally, we obtain the following result, which solves the decoration problem:

Theorem 14. Let ©1 : Ay,...,x, : An B M : B be a simply typed term and let
O be the associated simple type assignment. There exist decorations Al of the A; for
1 < i < nand B of B such that x1 : Ay,...,x, : Al, = M : B’ is a valid EAL*
judgment iff there is a solution ¢ of C(M, ©).

In this case each solution ¢ gives a suitable EAL* judgment x1 : A},... x, : Al F
M : B'. Moreover the number of inequations and the number of parameters in C(M , O)
are polynomial in (|M| + |0)).

4.2  Solving the Constraints

Now we turn our attention to the constraints and their solutions. Let ¢ be a parameterized
pseudo-term and X' be an assignment. We consider instead of the previous instantiation
maps with values in Z, maps with rational numbers as values: ¢ : par(t)Upar(X) — Q.
If ¢ is such a map and k is a non-negative integer we defined the map k1) by: (k¢)(n) =
k.1 (n), for any parameter n.

Lemma 15. If v is a solution of C(t, X)) and k is a strictly positive integer then ki) is
also a solution of C(t, X).

Proof. It is enough to observe that for any inequation of C®(t) and C*P(t, XJ) if ¢} is a
solution then so is k):

— all inequations from C’(t) and all those from C'¥P(t, X)) except the contraction
cases are homogeneous (no constant element in combinations) and as & > 0 the
inequalities are preserved when multiplying both members by k;
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— the inequations coming from the contraction cases in C*¥?(¢, X)) are of the form
m > 1,s0as k > 1 we have: if ©)(m) > 1 holds then so does k)(m) > 1.

Recall that the problem of finding if a linear system of inequations C admits a solution
in Q can be solved in polynomial time in the size of C and its number of variables. Hence
we have:

Proposition 16. The problem of whether the system C(t,X) admits a solution with
values in 7 can be solved in time polynomial in (|t| + | X]).

Proof. As the number of inequations and the number of parameters in C*¥P(t, ) are
polynomial in (|t + |X|) and by the result we recalled above we have: one can decide
if Ct¥P(t, 37) admits a solution with values in Q in time polynomial in (|¢| + | X]).

Then, if there is no solution in Q there is no solution in Z. Otherwise if 1) is a solution
in Q take for & the least multiple of the denominators of ¢ (n), for all parameters n.
Then by Lemma 15, kv is a solution in Z.

It then follows that:

Theorem 17. The decoration problem of Theorem 14 can be solved in time polynomial
in (| M| +16)]).

4.3  Type Inference

The procedure for EAL* decoration we have given can be extended to a type inference
procedure for EAL* in the way used in [CMO1]: given an ordinary term M,

— compute the principal assignment @ for M (giving the principal simple type),
— use the procedure of Theorem 14 to find if M, © admits a suitable EAL* decoration.

It follows from a result of [CRdARO03] that:

Proposition 18. if M is EAL* trypable and admits as principal simple type judgment
AF M : A then M admits an EAL* type judgment which is a decoration of this
Jjudgment.

See [BT04b] for a self-contained proof of this proposition.

As a consequence, searching for an EAL* decoration of the principal type judgment
of M is sufficient to decide if M is EAL* typable. It then follows from Theorem 17 that
our EAL” type inference algorithm applied to a term M can be executed in time bounded
by a polynomial in (] M|+ |©]) where © is the principal (simple type) assignment of M.

Note, however, that this does not mean that the overall algorithm is polynomial time
in | M|, as the principal simple type assignment for M can have a size exponential in
| M. Still, type inference in simples types can be performed in polynomial time if one
uses a representation with sharing for the types. Further work is needed to examine if
using a shared representation for types one can design an algorithm for EAL typing
polynomial w.r.t. the size of the untyped term.
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4.4 Example

Let us consider a small example to illustrate our method: take M = Ay.\z.(y)(y)z (the
Church integer 2). The decoration M is given by:

T = ™3 )y, 172 ) 5 3] (1M, ) (D[ (M6, )17 5 ] |

(we have distinguished the 2 occurrences of y in y; and y3). We get for the boxing
constraints:

m; + mso > 0(2) ms + mg ZO (9)

my + msop + ms 20(3) mso + mg + My :0(10)

Cb(M): my + mso + Mg + My 2 0(4) ms + mgs + msy 20(11)
mj +mso + Mg + Ms 20(5)m2+m3+m5+m6:0(12)
m1+m2+m3+m5—|—m620(6) ms 20(13)

m; +my + ms +ms +my >0 (7) mgs + msg >0 (14)

ms + ms + mr :0(15)

where (1)—(7) express bracketing, (8)—(12) scope for Ay and (13)—(15) scope for \z.
Now let us examine the typing constraints. We consider the principal typing assign-
ment: O(y) = a — «a, O(z) = a, which yields O(M) = (o — a) — (o — «). Thus

we have: O(y) = 1P (P2 — IP3y), O(2) = P2v. We get for instance:

@(|m7z) — !m7+p4a

O(I™Meys,) = IMeFTP1(IP2y _, IP3()
O((1™Meyg)I™72) =P3g
@(!m5((!m6y2)!m7z)) — !m5+p3a

O(™M4y;) = MatP1(IP2y _, IP3()
O((IMayy) Mo (IMeya)I™72 ]) = IP2a

o(

=

— M(IP1(P2y o [P3g) o M2 (P o [MatPsy)

We obtain the following typing constraints (omitting some obvious constraints):

my + pg > 0 (16) my+p; > 0 (21)

o mg+pi1> O (17)  mg+p1 = O (22)
CYP(M)={ mg+p1 = 0 (18) P2 = ms + p3 (23)
P2 =m7+ps(19) p1,...,Ps> 0 (24)

ms+p3> 0 (20) P1 > 1 (25)

Putting C*(M) and C*¥? (M) together we get that C(M) is equivalent to:

{m;,mz,m3 > 0;mz + mg = —my = —mg = p1 > 1;
ms = 0; mg + my = 0; p2 = p3 > 0; pg = p2 + m3}.

This finally gives the following (informally written) parameterized term and type with
constraints, which describe all solutions to this decoration problem:
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M = 1™ g 2y 1 [ (T2 700y ) [ (I20y)™ 1 )

!ml(!szrms(!pza_O!pza)_O!mz(!p2+m3a_o!pz+m3a))

constraints: {mj, my, mg, p2 > 0, mas + mg > 1}.

Observe that this representation corresponds to several canonical forms (6 in this par-
ticular example) in the approach of Coppola and Ronchi della Rocca (see [CRARO3]).

5 Conclusion

We have given a new type inference algorithm for EAL* which is more efficient and we
think simpler than the previous ones. It generates a set of constraints which consists of
two parts: one which deals with placing suitable (potential) boxes and the other one with
typing the boxed term obtained. We believe the first part is not specific to EAL* typing
and could be used for typing with other Linear logic systems which require determining
boxes; what would need to be adapted to each case is the second (typing) part. This
was already stressed by Coppola and Martini for their EAL type inference procedure
([CMO04]). In particular we plan to study in this way second-order EAL typing (assuming
a system F type given) and DLAL typing ([BT04a]).

We have shown that the set of constraints needed in our algorithm is polynomial in
the size of the term and its simple type assignment. Finally we have also shown that by
using resolution of linear inequations over rationals our algorithm can be executed in
polynomial time with respect to the size of the initial term and its principal simple type
assignment.
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