
Lecture Notes in Computer Science 3461
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Paweł Urzyczyn (Ed.)

Typed Lambda Calculi
and Applications

7th International Conference, TLCA 2005
Nara, Japan, April 21-23, 2005
Proceedings

13

Volume Editor

Paweł Urzyczyn
Warsaw University
Institute of Informatics
Banacha 2, 02-097 Warszawa, Poland
E-mail: urzy@mimuw.edu.pl

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.4.1, F.3, D.1.1, D.3

ISSN 0302-9743
ISBN-10 3-540-25593-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25593-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11417170 06/3142 5 4 3 2 1 0

Preface

The 7th International Conference on Typed Lambda Calculi and Applications
(TLCA 2005) was held in Nara (Japan) from 21 to 23 April 2005, as part of the
Joint Conference on Rewriting, Deduction and Programming (RDP 2005). This
book contains the contributed papers, and extended abstracts of two invited
talks, given by Thierry Coquand and Susumu Hayashi. A short abstract of the
joint RDP invited lecture by Amy Felty is also included.

The 27 contributed papers were selected from 61 submissions of generally
very high quality, and the Program Committee had a hard time making the
selection. The editor would like to thank everyone who submitted a paper and
to express his regret that many interesting works could not be included.

The editor also wishes to thank the invited speakers, the members of the
Program and Organizing Committees, the Publicity Chair, and the referees for
their joint effort towards the success of the conference. The support from the
Nara Convention Bureau is gratefully acknowledged.

The typed lambda calculus continues to be an important tool in logic and
theoretical computer science. Since 1993, the research progress in this area has
been documented by the TLCA proceedings. The present volume contributes to
this tradition.

February 2005 Pawe�l Urzyczyn

Organization

Steering Committee

Samson Abramsky, Oxford, chair
Henk Barendregt, Nijmegen
Mariangiola Dezani-Ciancaglini, Turin

Roger Hindley, Swansea
Martin Hofmann, Munich

Program Committee

Thorsten Altenkirch, Nottingham
Stefano Berardi, Turin
Adriana Compagnoni, Hoboken
Herman Geuvers, Nijmegen
Andy Gordon, Microsoft, Cambridge
Fritz Henglein, Copenhagen

Martin Hofmann, Munich
Assaf J. Kfoury, Boston
Atsushi Ohori, JAIST, Tatsunokuchi
Laurent Regnier, Marseille
Pawe�l Urzyczyn, Warsaw, chair
Marek Zaionc, Cracow

Organizing Committee

Masahito Hasegawa, Kyoto, chair
Ryu Hasegawa, Tokyo
Mitsu Okada, Keio, Tokyo

Masahiko Sato, Kyoto
Masako Takahashi, ICU, Mitaka

Publicity Chair

Masahito Hasegawa, Kyoto

Referees

Klaus Aehlig
Patrick Baillot
Adam Bakewell
Anindya Banerjee
Franco Barbanera
Henk Barendregt
Gilles Barthe
Denis Béchet
Marcin Benke
Chantal Berline
Marc Bezem
Frederic Blanqui

Eduardo Bonelli
Michele Bugliesi
Felice Cardone
Jesper Carlström
Juliusz Chroboczek
Jacek Chrzaszcz
Paolo Coppola
Roy L. Crole
Lúıs Cruz-Filipe
Ugo Dal Lago
Vincent Danos
René David

Pietro Di Gianantonio
Thomas Ehrhard
Andrzej Filinski
Carsten Führmann
Ken-etsu Fujita
Pablo Garralda
Jacques Garrigue
Silvia Ghilezan
Andreas Goerdt
Healfdene Goguen
Philippe de Groote
Yves Guiraud

VIII Organization

Christian Haack
Joe Hallett
Hugo Herbelin
Martin Hyland
Atsushi Igarashi
Patricia Johann
Jean-Baptiste Joinet
Delia Kesner
Siau-Cheng Khoo
Bartek Klin
Jan Willem Klop
Adam Kolany
Jean-Louis Krivine
Olivier Laurent
Pierre Lescanne
Paul Blain Levy
Ugo de’Liguoro
Henning Makholm
Simone Martini
Ralph Matthes
Conor McBride
Ricardo Medel
Marino Miculan
Dale Miller
Alexandre Miquel
Torben Mogensen

Peter Møller Neergaard
Larry Moss
César Muñoz
Andrzej Murawski
Tobias Nipkow
Luca Paolini
Zoran Petrić
Brigitte Pientka
Benjamin Pierce
Adolfo Piperno
Rinus Plasmeijer
Randy Pollack
François Pottier
Bernhard Reus
Eike Ritter
Mads Rosendahl
James Royer
Luca Roversi
Paul Ruet
Alejandro C. Russo
Takafumi Sakurai
Jeffrey Sarnat
Alexis Saurin
Aleksy Schubert
Carsten Schürmann
Philip Scott

Peter Selinger
Konrad Slind
Morten Heine Sørensen
Bas Spitters
Ian Stark
Jasper Stein
Charles Stewart
Lutz Straßburger
Eijiro Sumii
Makoto Takeyama
Makoto Tatsuta
Lorenzo Tortora de Falco
Silvio Valentini
René Vestergaard
Fer-Jan de Vries
Philip Wadler
David Walker
Daria
Walukiewicz-Chrzaszcz

Pawe�l Waszkiewicz
Joe Wells
Freek Wiedijk
Hongwei Xi
Yoriyuki Yamagata
Maddalena Zacchi

Table of Contents

Completeness Theorems and λ-Calculus
Thierry Coquand . 1

A Tutorial Example of the Semantic Approach to Foundational
Proof-Carrying Code: Abstract

Amy P. Felty . 10

Can Proofs Be Animated by Games?
Susumu Hayashi . 11

Contributed Papers

Untyped Algorithmic Equality for Martin-Lf’s Logical Framework with
Surjective Pairs

Andreas Abel, Thierry Coquand . 23

The Monadic Second Order Theory of Trees Given by Arbitrary
Level-Two Recursion Schemes Is Decidable

Klaus Aehlig, Jolie G. de Miranda, C.-H. Luke Ong 39

A Feasible Algorithm for Typing in Elementary Affine Logic
Patrick Baillot, Kazushige Terui . 55

Practical Inference for Type-Based Termination in a Polymorphic
Setting

Gilles Barthe, Benjamin Grégoire, Fernando Pastawski 71

Relational Reasoning in a Nominal Semantics for Storage
Nick Benton, Benjamin Leperchey . 86

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve
Yves Bertot . 102

Recursive Functions with Higher Order Domains
Ana Bove, Venanzio Capretta . 116

Elementary Affine Logic and the Call-by-Value Lambda Calculus
Paolo Coppola, Ugo Dal Lago, Simona Ronchi Della Rocca 131

Rank-2 Intersection and Polymorphic Recursion
Ferruccio Damiani . 146

X Table of Contents

Arithmetical Proofs of Strong Normalization Results for the Symmetric
λμ-Calculus

René David, Karim Nour . 162

Subtyping Recursive Types Modulo Associative Commutative Products
Roberto Di Cosmo, François Pottier, Didier Rémy 179

Galois Embedding from Polymorphic Types into Existential Types
Ken-etsu Fujita . 194

On the Degeneracy of Σ-Types in Presence of Computational Classical
Logic

Hugo Herbelin . 209

Semantic Cut Elimination in the Intuitionistic Sequent Calculus
Olivier Hermant . 221

The Elimination of Nesting in SPCF
J. Laird . 234

Naming Proofs in Classical Propositional Logic
François Lamarche, Lutz Straßburger . 246

Reducibility and ��-Lifting for Computation Types
Sam Lindley, Ian Stark . 262

Privacy in Data Mining Using Formal Methods
Stan Matwin, Amy Felty, István Hernádvölgyi, Venanzio Capretta 278

L3: A Linear Language with Locations
Greg Morrisett, Amal Ahmed, Matthew Fluet . 293

Binding Signatures for Generic Contexts
John Power, Miki Tanaka . 308

Proof Contexts with Late Binding
Virgile Prevosto, Sylvain Boulm . 324

The ∇-Calculus. Functional Programming with Higher-Order Encodings
Carsten Schürmann, Adam Poswolsky, Jeffrey Sarnat 339

A Lambda Calculus for Quantum Computation with Classical Control
Peter Selinger, Benôıt Valiron . 354

Continuity and Discontinuity in Lambda Calculus
Paula Severi, Fer-Jan de Vries . 369

Table of Contents XI

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets
François-Régis Sinot . 386

Avoiding Equivariance in Alpha-Prolog
Christian Urban, James Cheney . 401

Higher-Order Abstract Non-interference
Damiano Zanardini . 417

Author Index . 433

Completeness Theorems and λ-Calculus

Thierry Coquand

Institutionen för Datavetenskap,
Chalmers Tekniska Högskola, Göteborg, Sweden

coquand@cs.chalmers.se

Abstract. The purpose of this note is to present a variation of Hind-
ley’s completeness theorem for simply typed λ-calculus based on Kripke
model. This variation was obtained indirectly by simplifying an analysis
of a fragment of polymorphic λ-calculus [2].

1 Introduction

One the most important problem in proof theory is the status of impredicative
definitions. Since the sharp criticism of Poincaré [15] one of the goal of Hilbert’s
pro m was precisely to show that such “circular” definitions cannot lead to
contradictions. A typical example of impredicative definition is Leibnitz defini-
tion of equality, which defines “a is equal to b” by the formula

∀X.X(a) → X(b) (∗)
Here X(x) ranges over all possible properties. In particular it could be the prop-
erty P (x)

P (x) ↔def x is equal to b

and there is an apparent circularity. If we have a logic with a given equality =,
it is clear that (∗) is equivalent to a = b: we have indeed that a = b and φ(a)
implies φ(b), and conversely, if P (a) implies P (b) for any propery P (x) we can
take P (x) ↔def a = x and we get a = b since a = a. In this case, an apparent
impredicative definition is equivalent to a predicative one1. The intuitions of
Poincaré have been confirmed by several works [3], which show that impredica-
tive definitions are proof theoretically very strong. According to Gödel [5], it is
precisely the use of impredicative definitions that separates classical mathemat-
ics from intuitionistic mathematics, much more than the use of excluded middle
(and a similar view is now taken by Martin-Löf).

One breakthrough was accomplished in the 60s by G. Takeuti [18], who
showed that the first level of impredicative definitions, so called Π1

1 compre-
hension, can be reduced to a strong form of inductive definitions. G. Takeuti

1 The purpose of the “reducibility axiom” [16] is precisely to postulate that one can
always replace an impredicative definition by a predicative one. Theorems 2 and 5
are instances where a priori impredicative definitions can be replaced by predicative
ones.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 1–9, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

rag

2 T. Coquand

introduces a stratification of Π1
1 comprehension, and the first level, which we

shall call strict quantification, is obtained by limiting the quantification over
predicate ∀X.φ(X) to formulae φ(X) which contain only first order quantifica-
tion. In order to interpret this fragment we need only inductive definitions in a
form already considered by Brouwer and thus Takeuti’s result shows that strict
Π1

1 -quantification can be understood intuitionistically2. It is quite remarkable
that most use of impredicative definitions are done at this level. For instance,
Leibnitz equality explained above uses only a strict quantification. Another ex-
ample is provided by the greatest lower bound of a collection of reals. We repre-
sent a real as a Dedekind cut, i.e. a set of rational numbers which is downward
closed. If the collection of real numbers is represented by a formula φ(X), the
greatest lower bound, as a set of rationals, is the intersection of all properties
satisfying φ(X). It can thus be represented by the formula P (q) defined by

P (q) ↔def ∀X.φ(X) → X(q)

Takeuti’s reduction was quite indirect: it was based first on ordinal analysis,
and then an intuitionistic proof that the corresponding ordinal system is well-
founded. It has been greatly simplified by W. Buchholz [4], by using the Ω-rule.
One main intuition can be found in Lorenzen [8]: it is possible to explain the
classical truth of a statement

∀X.φ(X)

where φ does not have any quantification on predicates, by saying that φ(X) is
provable, where X is a variable. The key point is that we know how to express
classical provability of such formulae using inductive definitions. Indeed the rules
of ω-logic provides an intuitionistic way of explaining the truth of arithmetical
formulae such as φ(X), which contains free variables ranging over predicates
[13, 9, 10].

For instance, it can be seen in this way that ∀X.X(5) → X(5) is valid,
without having to consider the notion of an arbitrary subset of N, by checking
instead that the formula X(5) → X(5) is provable. This idea of replacing a
quantification over an arbitrary subset by a syntactical quantification over a free
predicate variable will play an important rôle in this note.

In a previous work [2] we used the idea of the Ω-rule to analyse the system
F0, which is a natural restriction of system F , with only strict Π1

1 -quantification.
This corresponds closely to the system analysed in [17]. We showed that, for this
fragment, normalisation could be proved in Peano arithmetic. We learnt since
then that a similar analysis had been done by I. Takeuti [18], following however
the method of ordinal analysis of G. Takeuti, and showing that an upper-bound
for the restricted system F is ε0. The argument of [2] was simplified by Buchholz.
In this version, we have to use a Kripke semantics where worlds are contexts of
simply typed λ-calculus.

2 The corresponding system of inductive definition is called ID1. Stronger forms of
inductive definitions are needed to interpret Π1

1 -comprehension in general, and the
intuitionistic status of these stronger forms is not clear.

Completeness Theorems and λ-Calculus 3

A natural question on this simplification was to understand if the use of
Kripke model is necessary in this argument. It turned out that this question
had been answered already by R. Hindley [6]. It is thus possible to use instead
Hindley’s completeness theorem and we obtain in this way an alternative simple
way to analyse the system F0.

This note is organised as follow. We first motivate the use of the Ω-rule to
analyse impredicative quantifications on two examples. We then present a sim-
plification of the argument presented in [2], which explains how to interpret the
system F0 in Peano arithmetic. We end by showing how Hindley’s completeness
theorem [6] can be used instead to give an alternative proof of this result.

2 Ω-Rule

In order to explain the use of the Ω-rule, we present two examples where one
can interpret in a predicative way strict impredicative quantification. The first
example is for minimal propositional calculus, and the second example explains
how to give a predicative interpretation of second-order arithmetic with strict
Π1

1 -quantification.

2.1 Minimal Propositional Calculus

We show in this way that the introduction to strict universal quantification over
propositions is a conservative extension of the minimal logic, that is the logic
with only → and ∧. The axioms for these connectives are

[a ≤ b ∧ c] ↔ [a ≤ b ∧ a ≤ c] [a ∧ b ≤ c] ↔ [a ≤ b → c]

Let H be the free Heyting algebra over variables x1, x2, We can think of
the elements of H as finite expressions a(x1, . . . , xn) built from finitely variables
with → and ∧. We consider now the Heyting algebra D of downward closed
subsets of H, with operations

X ∧ Y = X ∩ Y, X → Y = {a ∈ H | ∀b.b ∈ X → a ∧ b ∈ Y }
Since H is free, any interpretation ρ(xi) ∈ D of the free variables xi ∈ H extends
to a map a
−→ ρ(a), H → D. The following lemma has a direct proof.

Lemma 1. If ρ(xi) =↓ xi then ρ(a) =↓ a for all a ∈ H

Let i : H → D be the map i(a) =↓ a. We have clearly i(a) ≤ i(b) in D if and
only if a ≤ b in H. Let now p(x) be an arbitrary expression, containing only x
as a free variable. If u ∈ D we can consider p(u) ∈ D.

Lemma 2. We have i(a) ≤ p(u) for all u ∈ D if and only if a ≤ p(x) in H for
x not free in a.

Proof. If we take u = i(x) we have p(u) = i(p(x)) and i(a) ≤ p(u) implies
a ≤ p(x). Conversely, assume a ≤ p(x) in H with x not free in a and let u be

4 T. Coquand

an arbitrary element of D. Let ρ be defined by ρ(xi) = i(xi) for xi free in a and
ρ(x) = u. We have then ρ(a) ≤ ρ(p(x)) and hence i(a) ≤ p(u) in D.

Corollary 1. For any expression p(x) with only one free variable x there exists
v ∈ D such that w ≤ p(u) for all u ∈ D if and only if w ≤ v.

Proof. We define v to be the subset of H of elements a ∈ H such that a ≤ p(x)
for x not free in a.

More generally, this shows how to interpret a proposition containing universal
quantification, such that ∀x.((z → x) → z) → z as an element of D. In this case
this would be the set of expressions a such that a ≤ ((z → x) → z) → z for x
not free in a. In the Heyting algebra D we can interpret proposition of the form
∀x.p(x)3.

2.2 Interpretation of Strict Π1
1-Quantification

We consider now σ-complete Heyting algebras, that is structures with → and
finite and countable conjunctions. The axiom for countable conjunction is

[a ≤ ∧nbn] ↔ ∀n.[a ≤ bn]

Since the work of Lorenzen [9], it is known how to build constructively the free
σ-complete Heyting algebra (see also [11]). We let H(X1, . . . , Xn) be the free σ-
complete Heyting algebra on propositions Xi(p), i ≤ n, p ∈ N and H the union
∪nH(X1, . . . , Xn). It is possible to interpret in H all arithmetical formulae built
with predicates variables X1, X2, . . . and →, conjunction and universal quan-
tification on natural numbers. For instance, (∀x.X1(x)) → X1(5) is interpreted
by (∧nX1(n)) → X1(5). A normalisation theorem for a related proof system is
proved in [11].

For interpreting strict quantification on predicates, we follow the same method
as in the previous section. We consider the σ-complete Heyting algebra D of dow-
nard closed subsets of H. As before we have an embedding i : H → D such that
i(x) ≤ i(y) if and only if x ≤ y, by defining i(x) =↓ x. It is possible to give a
semantics of strict universal quantification in D by interpreting ∀X.φ(X) as the
subset of all a ∈ H such that a ≤ φ(X) for X not free in a.

One important point is that the construction of the σ-complete algebra D
involves only inductive definitions provided by the system ID1, since proofs in
ω-logic are represented as well-founded trees with countable branching. We get
in this way a quite simple proof of the following result.

Theorem 1. The strength of second-order arithmetic with strict Π1
1 -compre-

hension is the same as the one of the system ID1.

3 A. Pitts had shown [14] that, quite surprisingly, if we have also disjunction, one can
already model in H these propositions, for instance ∀x.(y → x) is y → 0.

Completeness Theorems and λ-Calculus 5

3 A Finitary Analysis of a Fragment of System F

3.1 A Completeness Theorem

The completeness theorem we present was obtained by analysing Buchholz sim-
plification of the argument of [2], following the method presented in the previous
section.

We let Λ be the set of all untyped, maybe open, λ-terms, with β-conversion
as equality.

We consider types of the form

T ::= α | T → T

We use the notation T1 → T2 → T3 for T1 → (T2 → T3) and similarly
T1 → T2 → . . . → Tn for T1 → (T2 → (. . . → Tn)).

Let L,M range over contexts, that is finite sets of the form x1 : T1, . . . , xk : Tk

with xi
= xj if i
= j. We let H be the set of downward closed subsets of the
set of contexts, where the order is reversed inclusion. H is thought of as a set of
generalised truth-values.

We define CT : Λ → H by

CT (t) = {L ∈ S | L � t : T}

If A,B ∈ H we define A ⇒ B ∈ H by

A ⇒ B = {L | ∀M ⊇ L.M ∈ A → M ∈ B}

and for X,Y : Λ → H we define X → Y : Λ → H by

(X → Y)(t) = ∩uX(u) ⇒ Y (t u)

We introduce the following typing rule for deriving L � t : T , which defines
the system TAβ , system analysed in the references [6, 7].

L � x : T
x : T ∈ L

L, x : T � t : U
L � λx t : T → U

L � u : V → T L � v : V
L � u v : T

L � t : T t =β u

L � u : T
Simple properties are:

Lemma 3. If L ⊆ M and L � t : T then M � t : T .

Lemma 4. If L, x : T � t : T1 and x is not free in t then L � t : T1.

By these two lemmas, we derive

6 T. Coquand

Lemma 5. We have CT1 → CT2 = CT1→T2 .

Proof. It is indeed clear by Lemma 3 that if L � t : T1 → T2 and M � u : T1
and M ⊇ L then M � t u : T2. Conversely if L ∈ (CT1 → CT2)(t) then for x
not free in t we have L, x : T1 ∈ CT1(x) and hence L, x : T1 ∈ CT2(t x) and so
L, x : T1 � t x : T2. It follows from this that we have L, x : T1 � t : T1 → T2 and
hence by Lemma 4, L � t : T1 → T2.

If T is a first-order type and we have an assignment ρ(α) : Λ → H defined for
at least all the free type variables α occuring in T , we define the interpretation
Tρ by induction as usual: αρ = ρ(α) and (T1 → T2)ρ = T1ρ → T2ρ.

Lemma 6. If x1 : T1, . . . , xn : Tn � t : T then for any assigment ρ, we have in
H

T1ρ(u1) ∩ . . . ∩ Tnρ(un) ⊆ Tρ(t(x1 = u1, . . . , xn = un))

Corollary 2. If M = x1 : T1, . . . , xn : Tn and M � t : T (α) and T (α) is a
first-order type using only α as a free type variable, which does not appear in
T1, . . . , Tn then M ∈ T (α = X)(t) for any X : Λ → H.

Proof. We take ρ(β) = Cβ for β free in T1, . . . , Tn and ρ(α) = X. By Lemma 5
we have Tiρ = CTi and since M ∈ CTi(xi) we get by Lemma 6 M ∈ Tρ(t) that
is, M ∈ T (α = X)(t).

Theorem 2. If T (α) is a first-order type using only α as a free type variable,
then ⋂

X:Λ→H
T (α = X)(t)

is exactly {L | L � T (β)} for β fresh w.r.t. L.

This show that the a priori impredicative intersection
⋂

X:Λ→H T (α = X)(t)
has a predicative description.

3.2 A Fragment of System F

We apply Theorem 2 to give a finitary interpretation of the fragment F0 of system
F which involves only strict Π1

1 -quantification. We consider the following types

T ::= α | T → T | (Πα)T

where in the quantification, T has to be built using only α and → .
Let us give some examples to illustrate the restriction on quantification. We

can have T = (Πα)[α → α] or (Πα)[α → (α → α) → α] or even (Πα)[((α →
α) → α) → α] but a type such as (Πα)[[(Πβ)[α → β]] → α] is not allowed.

We have the following typing rules

Γ � x : T
x : T ∈ Γ

Completeness Theorems and λ-Calculus 7

Γ � t : T t =β u

Γ � u : T
Γ, x : T � t : U

Γ � λx t : T → U

Γ � u : V → T Γ � v : V
Γ � u v : T

Γ � t : (Πα)T
Γ � t : T [U]

Γ � t : T
Γ � t : (Πα)T

where Γ is a finite set of type declaration x : T , and in the last rule, α does not
appear free in any type of Γ .

We let N be the type (Πα)[α → (α → α) → α]. and cn be the lambda term
λxλf fn x. We have � cn : N for each n. Our interpretation in H gives a finitary
proof of the following result.

Theorem 3. If � t : N → N then for each n there exists m such that t cn x f =
fm x for x, f variables.

Proof. Theorem 2 provides exactly a model of F0, where types are interpreted
as functions Λ → H. In particular since � t cn : N we should have L � t cn : α →
(α → α) → α for all L and, for L = x : α, f : α → α we get L � t cn x f : α in
TAβ , and hence t cn x f = fm x for some n.

This gives a finitary interpretation of system F0 since our use of the notion of
subsets for building H is never done in an impredicative way. This implies that
our argument could be formalised in second-order arithmetic with only arith-
metical comprehension [3], and it is standard that second-order arithmetic with
arithmetic comprehension is conservative over Peano arithmetic. An application
of this is [2]:

Theorem 4. A function in N → N is representable by a term t such that �F0

t : N → N if and only if it is provably total in Peano arithmetic.

Had we consider instead the fragment FN where the only quantified type
that we can form is the type N , it would have been quite easy to give a finitary
interpretation. This is because it is clear in this case that the subset

⋂
X⊆Λ(X →

(X → X) → X) which has a description a priori impredicative, can also be
described in a finitary way as the set {cn | n ∈ N}. Indeed, all terms cn are
clearly in this intersection, and conversely if a term t is in this intersection we
can take for X the subset {fn x | n ∈ N} where x and f are free variables not
in t. We should have t x f ∈ X which implies that t =β cn for some n ∈ N. The
next section shows that this idea actually extends to all types of the system F0.

4 Hindley’s Completeness Theorem

In all interpretations of strict impredicative quantifications we have seen so far,
the use of some form of Kripke model has been essential. It is thus quite surprising
that for the analysis of F0, this use is not essential, and we can instead rely on a

8 T. Coquand

direct set-theoretical semantics. A first-order type T (α) is interpreted as a subset
of Λ in the following intended way

[[α]]α=X = X, [[T1 → T2]]α=X = {t ∈ Λ | ∀u.u ∈ [[T1]]α=X → t u ∈ [[T2]]α=X}

Theorem 5. (Hindley) We have t ∈ [[T]]α=X for all X ⊆ Λ if and only if
� t : T .

Proof. We refer to [6, 7]. The proof is similar to the proof of theorem 2 but it
avoids the use of Kripke model by building first a suitable infinite context4.

For instance, for T = α → (α → α) → α this gives another proof that⋂
X⊆Λ

(X → (X → X) → X)

is the set of terms cn, n ∈ N, since it can be shown directly that � t : N if
and only if t = cn for some n ∈ N. The surprising fact is that it gives a finitary
description of complicated sets such as⋂

X⊆Λ

((X → X) → X) → X

This is the set {t ∈ Λ | � t : ((α → α) → α) → α}. This is remarkable since
it is difficult, contrary to the previous case, to have any clear intuition for the
meaning of this intersection.

The work [1] extends the result of [2] by giving constructive interpretations
of a hierarchy of stronger and stronger systems F0 ⊂ F1 ⊂ For instance,
we obtain F1 by allowing types (Πα)T (α) where in T (α) can appear also closed
types of F0. Typically the type of constructive ordinals [12]

(Πα)[α → ((N → α) → α) → α]

is a type of the system F1. It is shown in [1] that the functions N → N repre-
sentable as terms of type N → N in the system F1 are exactly the functions
provably total in the system ID1. This work is based on the use of the Ω-rule,
and it might be interesting to analyse if one can give an alternative argument
by a suitable generalisation of Theorem 5.

References

1. K. Aehlig. On Fragments of Analysis with Strengths of Finitely Iterated Inductive
Definitions. PhD thesis, Munich, 2003.

4 In this infinite context, each type T gets assigned countably many variables x : T .
The construction of this infinite context relies on a non canonical enumeration of
all types and all variables. The completeness Theorem 2 does not involve such non
canonical enumeration, but relies instead on a non standard semantics.

Completeness Theorems and λ-Calculus 9

2. Th. Altenkirch and Th. Coquand. A finitary subsystem of the polymorphic λ-
calculus. Typed lambda calculi and applications (Krakw, 2001), 22–28, Lecture
Notes in Comput. Sci., 2044, Springer, Berlin, 2001.

3. W. Buchholz, S. Feferman, W. Pohlers and W. Sieg. Iterated inductive defini-
tions and subsystems of analysis: recent proof-theoretical studies. Lecture Notes in
Mathematics, 897. Springer-Verlag, Berlin-New York, 1981.

4. W. Buchholz, and K. Schtte. Proof theory of impredicative subsystems of analysis.
Studies in Proof Theory. Monographs, 2. Bibliopolis, Naples, 1988.

5. K. Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse einers
math. Koll., Heft 4 (1933), pp. 34-38.

6. R. Hindley. The completeness theorem for typing λ-terms. Theoret. Comput. Sci.
22 (1983), no. 1-2, 1–17.

7. R. Hindley. Basic simple type theory. Cambridge Tracts in Theoretical Computer
Science, 42. Cambridge University Press, Cambridge, 1997.

8. P. Lorenzen. Logical reflection and formalism. J. Symb. Logic 23 1958 241–249.
9. P. Lorenzen. Algebraische und logistische Untersuchungen über freie Verbände. J.

Symbolic Logic 16, (1951). 81–106.
10. P. Martin-Löf. Notes on constructive mathematics. Almquist and Wixsekk, Stock-

holm, 1968.
11. P. Martin-Löf. Infinite terms and a system of natural deduction. Compositio Math.

24 (1972), 93–103.
12. P. Martin-Löf. A construction of the provable wellorderings of the theory of species.

Logic, meaning and computation, 343–351, Synthese Lib., 305, Kluwer Acad. Publ.,
Dordrecht, 2001.

13. P. Novikov. On the consistency of a certain logical calculus. Matematicesky
sbovnik, 12(3):353-369, 1943.

14. A. Pitts. On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. J. Symbolic Logic 57 (1992), no. 1, 33–52.

15. H. Poincaré. La logique de l’infini. Revue de metaphysique et de morale, 1909.
16. B. Russell and A. Whitehead. Principia Mathematica. Cambridge, 1910-1913.
17. G. Takeuti. On the fundamental conjecture of GLC. I. J. Math. Soc. Japan 7

(1955), 249–275.
18. G. Takeuti. Consistency proofs of subsystems of classical analysis. Ann. of Math.

(2) 86 1967 299–348.
19. I. Takeuti. Proof of calculability through cut elimination. Proof theory and reverse

mathematics (Kyoto, 1993), pp. 78–93 .

A Tutorial Example of the Semantic Approach
to Foundational Proof-Carrying Code: Abstract

Amy P. Felty

School of Information Science and Technology,
University of Ottawa, Canada
afelty@site.uottawa.ca

Proof-carrying code provides a mechanism for insuring that a host, or code
consumer, can safely run code delivered by a code producer. The host specifies
a safety policy as a set of axioms and inference rules. In addition to a com-
piled program, the code producer delivers a formal proof of safety expressed in
terms of those rules that can be easily checked. Foundational proof-carrying code
(FPCC) provides increased security and greater flexibility in the construction of
proofs of safety. Proofs of safety are constructed from the smallest possible set
of axioms and inference rules. For example, typing rules are not included. In our
semantic approach to FPCC, we encode a semantics of types from first princi-
ples and the typing rules are proved as lemmas. In addition, we start from a
semantic definition of machine instructions and safety is defined directly from
this semantics.

Since FPCC starts from basic axioms and low-level definitions, it is neces-
sary to build up a library of lemmas and definitions so that reasoning about
particular programs can be carried out at a higher level, and ideally, also be
automated. I describe a high-level organization that allows Hoare-style reason-
ing about machine code programs. This organization will be presented using
a detailed example. The example, as well as illustrating the above mentioned
approach to organizing proofs, is designed to provide a tutorial introduction to
as many facets of our FPCC approach as possible. For example, it illustrates
how to prove safety of programs that traverse input data structures as well as
allocate new ones.

More information can be found in the full paper [1].

References

1. Felty, A.P.: A tutorial example of the semantic approach to foundational proof-
carrying code. In: Sixteenth International Conference on Rewriting Techniques and
Applications, Springer-Verlag Lecture Notes in Computer Science (2005)

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, p. 10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Can Proofs Be Animated By Games?

Susumu Hayashi�

Faculty of Engineering, Kobe University, Japan
susumu@shayashi.jp

http://www.shayashi.jp

Abstract. Proof animation is a way of executing proofs to find errors in
the formalization of proofs. It is intended to be “testing in proof engineer-
ing”. Although the realizability interpretation as well as the functional
interpretation based on limit-computations were introduced as means for
proof animation, they were unrealistic as an architectural basis for ac-
tual proof animation tools. We have found game theoretical semantics
corresponding to these interpretations, which is likely to be the right
architectural basis for proof animation.

1 Introduction -Proof Animation

In this paper, we will discuss a possible application of game theoretic semantics
to proof animation. Proof animation is an application of an extended Curry-
Howard isomorphism. The notion of “proofs as programs” reads “if a program
is extracted from a checked proof, then it does not have bugs.” Proof animation
is its contrapositive, “if a program extracted from a proof has a bug, then the
proof is not correct.” The objects of proof animation are not correct programs
but formalized proofs.

By the late 80’s, many people had still believed that formally verified pro-
grams would not have bugs. But, this has been proved wrong. Now, many soft-
ware engineers have realized bugs in the formalization are far more serious than
the bugs in the implementation. You cannot formally prove that your formal
specifications correctly reflect your informal intentions or requirements in your
mind. It was believed that building a system according to detailed specifications
is more difficult than writing such a specification according to informal inten-
tions or requirements. Probably, this was the right attitude at the time. However,
the time has past and the environments for software engineering have changed.
Thanks to excellent tools and software engineering technologies, such as design
patterns, building systems correct to specifications has become much easier than
before. In the changeable modern business environments, specifications tend to
be changed even in the middle of a project. Requirement analysis, compliance
test and validation are thus becoming more difficult and important in software
development processes than verification.

� Partly supported by Monbushyo Kakenhi grant 1005-16650028. The address will
change soon. Consult Web page for the new address.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 11–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

12 S. Hayashi

The same will happen in formal proof developments. Although the proof
checkers and methodologies to use them are not powerful enough for everyday
usages in software developments, they are becoming ever more and more realis-
tic. When formal verification technologies become a reality technology, the last
problem left would be “how to show correctness of formalization.”

Let us illustrate this problem by an example used in [9]. Assume that we
are developing a formal theory of a metric ||x|| on the interval [m,n] of the set
of integers by the distance from n. For example, ||n|| is 0 and ||m|| is n − m.
A linear order is defined by means of the metric so that x is smaller than y iff
||x|| < ||y||, i.e., x is closer to n than y. We wish to prove a minimum number
principle for the ordering:

∃x.∀y.Pm,n(f(x), f(y)), (1)

where f is any function from the natural numbers to the interval and Pm,n(x, y)
represent “x is less than or equals to y in the ordering”. It maintains that there is
some x such that f(x) is the minimum among f(0), f(1), . . ., namely, a minimum
number principle for the ordering Pm,n.

The metric of x ∈ [m,n] is formally defined by n − x. Thus, the formal
definition of Pm,n(x, y) should be n−y ≥ n−x. Suppose that our proof language
has the built-in predicate for ≥ but not for ≤. Thus the ≥-sign was used instead
of ≤-sign. However, it is a confusing usage of the inequality. It is plausible that
we type n−x ≥ n−y by a slip of fingers in the definition of Pm,n(x, y). Suppose
this happened. Then, the order is defined by its reverse. Can we find this error
by developing the fully formalized proof of the minimum number principle for
the ordering Pm,n?

The answer is no. We can develop a formal proof of the principle with the
wrong definition of Pm,n(x, y) given above. This is because the ordering is iso-
morphic to its reverse. Formal proofs do not help us to find the error, since the
wrong definition does not imply any contradictions. Only one thing is wrong
with it, that is, the definition is not the one which we intended in our mind.
Since the intention is in our mind, there is no formal way to compare it with the
formal definition.

In the case of program developments, we can check our system against our
intention by executing it. If the system is correct w.r.t. a specification, then
we can check specifications against our intention through validating the system.
This kind of activities are called validation [16]. Verification is to ask “Did we
build the system right?”. Validation is to ask “Did we build the right system?”.
We may build a wrong system which is right relative to wrong specifications.

Can we do validation in formal proof developments? In the example given
above, if our proof checker is smart enough to evaluate truth values of simple
formulas, we can check if a definition is correctly formulated. We expect P2,7(6, 3)
holds, but the proof checker would return false by evaluating 7− 6 ≥ 7− 3.

When we can execute formalized notions, we can validate them. Quite often,
specifications of realistic softwares are interactively executable by simulators,
which are sometimes called animators. Thus, executing specifications by such

Can Proofs Be Animated By Games? 13

tools are sometimes called specification animation. Using this terminology, the
evaluation of P2,7(6, 3) with the result false may be called “definition anima-
tion.”

Although a large part of mathematics is non-executable, constructive math-
ematics is known to be executable by means of Curry-Howard isomorphism.
This means that constructive mathematics can be animated. For example, the
animation for P2,7(6, 3) above, may be regarded as an execution of a construc-
tive proposition ∀x, y.(P2,7(x, y)∨¬P2,7(x, y)). Then, the animation of definition
turns to be an animation of the proof. The activity of animating proofs to vali-
date them is called proof animation.

2 Limit Interpretations

Constructive mathematics can be animated and validated through their execu-
tions (see [8]). However, a large part of mathematics is non-constructive. Clas-
sical proofs have been known to be executable by some constructive interpre-
tations, such as continuation. However, they are known locally legible but not
globally legible. We can understand how each classical rule is executed. We call
this property local legibility. However, when the interpretations are applied to
actual mathematical proofs, even for the simplest proofs such as the proof of
the minimum number principle, the resulting algorithms are too complicated to
understand. We can understand their behaviors in only a few exceptional cases
with non-trivial efforts. We call this difficulty global ilegibility.1. If proof anima-
tion is for finding useful information such as bounds for solutions and algorithms
in classical proofs as proof mining in [14], global ilegibility is not a real obstacle.
However, our aim is to test proofs to our intentions just as engineers test sys-
tems. Proof executions must be light and legible as test runs of programs. Thus,
the global ilegibility is an essential defect for proof animations.

In [7, 15], we introduced a new realizability interpretation to overcome the
global ilegibility. The definition of our new realizability interpretation of logical
connectives is the same as the original one by Kleene. However, the recursive
realizers are replaced with the Δ0

2-partial functions. Since the Δ0
2-partial func-

tions satisfy an axiom system of abstract recursion theory, everything goes just
as in the case of the original realizability interpretation [15].

According to such a realizability interpretation, some semi-classical princi-
ples are valid, e.g., the principles of excluded middle for Σ0

1-formulas hold. The
fragment of classical mathematics valid by this interpretation was named LCM,
Limit-Computable Mathematics. It has been proved that there exists a fine hi-
erarchy of classical principles in [1]. According to the results of [1], LCM cor-
responds to the lower part of the hierarchy. We cannot therefore derive all the
classical theorems in LCM, but it is known that quite a large variety of non-
constructive theorems belong to LCM: see, e.g. [18]. For example, the minimal
number principle for the natural numbers (MNP)

1 Local and global legibility are terminologies due to Stefano Berardi.

14 S. Hayashi

∃x.∀y.(f(x) ≤ f(y)),

where x and y are natural numbers, holds in LCM if f is recursive.
LCM uses learning theoretic notions to make semi-classical proof execution

legible. Let us explain it with the example of MNP. There is no recursive realizer
for MNP. However, there is a Δ0

2-function computing x. It is known that Δ0
2-

functions represent learning algorithms called inductive inference in Learning
theory [17]. An inductive inference is a try-and-error algorithmic process to find
a right solution in finite time.

Here is an inductive inference for MNP. At the beginning, we temporarily
assume that f(0) is the minimal value among f(0), f(1), Then, we start to
compare the value of f(0) with the values f(1), f(2), . . . to confirm our hypoth-
esis. If we find f(n1) smaller than f(0), then we change mind and assume that
f(n1) is the real minimal value instead. We repeat the process and continue to
find f(0) > f(n1) > f(n2) > Since the sequence is decreasing, we eventually
reach the minimal value f(nm) in finite time. Then, we learned or discovered a
right value for x.

Hilbert’s main idea of the proof of the finite basis theorem in [10] was this
argument on the learning process (see [7]). By applying the argument repeat-
edly to streams of algebraic forms, Hilbert gave a proof of his famous lemma,
which opened the door to the modern abstract algebra. By the aid of limiting
realizability interpretation, it is not so difficult to read the learning process of
a basis of any ideal of algebraic forms recursively enumerated, from his proof in
1890 paper.

3 Animation via Games?

Execution of a proof in LCM is a kind of learning process as illustrated above.
Using an analogy with learning processes, we can understand algorithmic con-
tents of proofs of LCM rather intuitively. Nonetheless, it has not been known if
such learning algorithms can be fully automatically extracted from formalized
versions of such informal proofs.

According to our experiences with the PX system [6], algorithms which are
automatically extracted from the proofs based on the mathematical soundness
theorem or the original Curry-Howard isomorphism are much more complicated
and illegible than the ones which human beings read from texts with realizabil-
ity or Curry-Howard isomorphism in their minds. Human beings unconsciously
refine and simplify extracted codes. In the PX system, we introduced some opti-
mization procedures to mimic humans’ natural refinements and simplifications.
Natural codes could thus be extracted from proofs by the PX system.

We have to do similar things to build an LCM animator, and it is a non-trivial
technological task. Furthermore, there is a rather serious theoretical obstacle. In
the algorithmic learning theory, an inductive inference is defined by a limiting
recursive function such as f(x) = limn .g(n, x), where g is a recursive function
and n is a natural number. We compute g(0, x), g(1, x), . . . and, if it stops chang-
ing at g(n, x), then the value g(n, x) is the value of the limit. Namely, the limit

Can Proofs Be Animated By Games? 15

is “computed” through the discrete time line. Careful inspections of the sound-
ness theorem in [15] shows that the learning processes extracted from proofs
by the extraction method given there use a unique “global time” for the learn-
ing. However, Hilbert’s proof in [10] apparently uses plural “local times”. In a
sense, a local time is generated by a occurrence of the principle of Σ0

1-excluded
middle. Since Σ0

1-excluded middle is repeatedly used in Hilbert’s proof, we have
several limits, each of which has its own internal clock in the learning algorithm
associated to Hilbert’s proof.

It is not difficult to read these learning algorithms based on plural “local
times”, when you look at Hilbert’s original proof texts.2 However, we do not
have any formal way to represent such intuition yet. This has been the main
obstacle to build a real proof animation tool based on LCM. However, recently,
a game theoretic equivalent of the interpretation has been found [3, 9], and we
expect that it will give a right framework to solve this problem.

3.1 1-Backtracking Game

Game theoretical semantics of logical formulas are known to be a good substitute
for Tarskian semantics of logic [13]. It is said that game semantics is easier to
learn than Tarski semantics.

Coquand [5] introduced a game theoretical semantics of classical first order
arithmetic. It allows Eloise, the player for existential quantifiers, to do back-
tracking as she likes. On the other hand, her opponent Abelard, the player for
universal quantifiers, is not allowed to backtrack. Due to backtracks, existence of
recursive winning strategy for Eloise was proven to be equivalent to the validity
of the formula in Tarski’s semantics. In standard games, e.g., Π0

n-true sentences
normally has a winning strategy at least of Δ0

n−1. In this paper, Coquand’s
games will be referred to as backtracking games or full backtracking games. Since
strategies are recursive, the backtracking game may be regarded as a way of
executing classical logic.

It is known that this semantics still suffers global ilegibility, even though it is
much more legible than the other constructivization of classical logic. However,
when backtracks of the games are restricted to simple backtracks, the game
semantics coincides with LCM semantics and become very legible. Such a game
is called 1-game or 1-backtracking game. We now give its definition. To do so,
we will define some game theoretic notions.

Definition 1. A position of a play is a finite sequence of moves, which are
expressed as [x = 0], [x = 0; a = 3; b = 8; y = 11], [x = 0; a = 3; b = 8]. The
empty position is []. For example, a position [x1 = 7; y1 = 11;x2 = 18; y2 = 4]
for ∃x1.∀y1.∃x2.∀y2.x1 + y1 ≤ x2 + y2 leads to the true formula 7 + 11 ≤ 18 + 4,
and represents a win by Eloise. Assignments such as x1 = 7, y1 = 11, . . . in

2 His proof is the essentially the one of Dixon’s lemma taught in the contemporary
algebra courses. However, Hilbert’s original proof is much more “learning theoretic”
than the contemporary counterparts. Especially, the discussions in his course at
Göttingen July 5th 1897 shows its learning theoretic nature[11].

16 S. Hayashi

a position are called moves. In the present paper, we assume that each player
moves alternatively. This restriction is not essential, and makes things easier. If
the last move of a position is played by a player A, we say that A played the
position. EndOfDef

Let us note that the position of a play was called “occurrence” in [5]. In our [9],
the notion of position was more restrictive so that the end of a position must be
played by Abelard. In the present paper, we relax the condition. Notations are
different, but these two notions are essentially the same.

Position S1 is a subposition of position S2 iff S1 is an initial segment of S2.
Namely, S1 is obtained from S2 by “popping up” some rounds from the tail.
Thus, we do not need to memorize stack contents, when we do backtracking. We
now formulate 1-backtracking game.

Definition 2. A play with 1-backtracking consists of an infinite or finite se-
quence of positions u0, u1, u2, . . . with the following conditions:

(i) It starts with empty position, u0 = [].
(ii) For any position in the sequence, the last move of un+1 is the opponent of

the player who played the last move of un.
(iii) When Eloise plays a position un+1, un+1 is an extension of a position u by

Eloise’s move, where u is a subposition of un and is played by Abelard.
(iv) When Abelard plays a position un+1, un+1 is an extension of the position

un, which is played by Eloise’s move.

The game of plays with 1-backtracking is called simple backtracking game or
1-backtracking game, 1-game in short. EndOfDef

We introduce some more terminologies for the later discussions.

Definition 3. A move by Eloise (the move by the condition (iii) above) is called
a backtracking move, when u is a proper subposition of un. All of the other moves
are called normal moves. The normal moves are all of Abelard’s moves by the
rule (iv) and Eloise’s move by (iii) of the case u = un.

Note that a backtracking move not only flush a tail of stack (position), but
also adds a new move for an occurrence of existential quantifier, say ∃x. The
move is said a backtracking move to ∃x or backtracking to ∃x. EndOfDef

We now give an example of 1-game session. Consider a Σ0
1-EM (Σ0

1-Excluded
Middle):

∃x.T (e, x) ∨ ∀a.T−(e, a). (2)

It is transformed to the following prenex normal form:

∃x.∀a.((x > 0 ∧ T (e, x− 1)) ∨ (x = 0 ∧ T−(e, a))). (3)

Eloise has the following recursive 1-backtracking strategy for it as shown below.
Observe that there is only 1-backtracking.

Can Proofs Be Animated By Games? 17

u0: []. The initial empty position consisting of zero moves.
u1: [x = 0]. The first move.
u2: [x = 0; a = A1]. The second move. A1 is a number played by Abelard. After

this, we have two cases. If T−(e,A1) is true, then Eloise wins and she stops
to play. If it’s false, Eloise backtracks to ∃x, i.e., backtracks to u0 and moves
for ∃x as follows:

u3: [x = A1 + 1]. Then Abelard plays, say a = A2.
u4: [x = A1 + 1; a = A2]. For any move a = A2, Eloise wins, since T−(e,A1)

was false and so T (e, (A1 + 1) − 1) is true.

3.2 1-Game and LCM

It has been proved that 1-game for prenex normal forms are equivalent to LCM
in the following sense:

Theorem 1. For any prenex normal formula, there is a recursive winning strat-
egy of 1-backtracking game for Eloise iff the formula is realizable by the LCM-
realizability interpretation.

We now prove the theorem.
“Only if” direction: We prove the theorem for ∃x1∀y1∃x2∀y2.R. The proof

is easily extended to the general case.
Assume φ is Eloise’s winning strategy for ∃x1∀y1∃x2∀y2.R. We have to define

two Δ0
2-functions f() and g(y1) such that ∀y1.∀y2.R(f(), y1, g(y1), y2) holds. Note

that f() is a function without arguments as in programming languages, or an
expression for a constant.

First, we define f() and g(y1) without considering if they are Δ0
2. After we

defined them, we will prove the defined functions are Δ0
2.

Let P (φ) be the set of plays played after φ. Since all the plays of P (φ) are
played after φ, they must be finite. (Infinite plays cannot be won in our game
theoretical semantics.) Note that P (φ) is a recursive set.

There is a play p0 in P (φ) satisfying the following conditions:

1. The last position of p0 is of the form [x1 = a1]. Namely, it consists Eloise’s
move for the first existential quantifier ∃x1.

2. Let p0 be u0, . . . , un. If u0, . . . , un, un+1, . . . , um is an extension of p0 in P (φ),
then un+1, . . . , um never contains backtracking moves to ∃x1.

Namely, p0 is a play “stable” with respect to ∃x1. Beyond the last move of the
play, any move played after φ never backtracks to ∃x1 anymore.

Then, we define f() = a1, where x1 = a1 is the last move for a stable play
p0. There might be many stable plays. We may take the play smallest in some
fixed ordering.

We must prove such p0 exists. It is proved by reductio ad absurdum. Consider
the set S1 of the plays in P (φ) satisfying the first condition for p0. Of course, it is
not empty. Assume there is no plays satisfying the second condition in S1. Then,
we can build an infinite play played after the strategy φ. Let v0 be any play in
S1. Since this does not satisfy the second condition for p0, there is an extension

18 S. Hayashi

v1 whose last move is a backtrack to ∃x1. It again belongs to S1. Repeatedly,
we can define an infinite sequence v1, v2, . . . which is played after φ. Thus there
is an infinite play played after φ. But, it is a contradiction, since φ is a winning
strategy.

Now we verify that f() is Δ0
2-definable. The first condition for p0 is a recursive

statement and the second condition is Π0
1-statement. Thus, p0 is defined by an ex-

pression minp0 P (p0), where P is a Π0
1-formula expressing the two conditions for

p0. Since any Π0
1-predicates has Δ0

2-characteristic functions, f() = minp0 P (p0)
is Δ0

2-definable.
After we defined f(), we consider the games ∃x2.∀y2.R(f(), b1, x2, y2) for all

b1, which are fought with φ after p0. More formally, we consider the set P (φ) ↑ p0
that is the set of all the play of P (φ), for which p0 is an initial segment.

By essentially the same argument, we can define a “stable play” pb1
1 for ∃x2

for each b1 in the new games, and define g(b1) from it. A play p1 is a stable play
with respect to ∃x2 for b1 is a play satisfying the following conditions:

1. p1 ∈ P (φ) ↑ p0
2. The last move of the last position of p1 is Eloise’s move for the second

existential quantifier ∃x2.
3. Let p1 be u0, . . . , un. If u0, . . . , un, un+1, . . . , um is an extension of p1 in

P (φ) ↑ p0, then un+1, . . . , um never contain backtracking moves to ∃x2.

Note that all extensions of the stable play p1 in P (φ) ↑ p0 do not contain
any backtracking moves at all. Backtracking to ∃x1 is forbidden, since they are
extensions of p0 and backtracking to ∃x2 is forbidden by the definition of p1.

Let the last position of p1 be [x1 = f(), y1 = b1, x2 = a2]. Then, we set
g(b1) = a2. Then g(b1) is again Δ0

2-definable.
We must prove R(f(), b1, g(b1), b2) is true for any b1 and b2 to finish the

proof. Assume R(f(), b1, g(b1), b2) were false. Then Eloise loses for the position
[x1 = f(), y1 = b1, x2 = g(b1)]. Since φ is a winning strategy, Eloise must be
able to continue to play by backtracking and eventually win. Thus, P (φ) ↑ p0
must contain a play with backtracking. But, we have shown that this cannot
happen. Thus, R(f(), b1, g(b1), b2) is true for any b1 and b2. This ends the proof
of only-if direction.

“If” direction: Assume that ∀y1.∀y2.R(f(), y1, g(y1), y2) holds for two Δ0
2-

definable functions f() and g(y1). There are recursive functions h(t) and k(t, y1)
(guessing functions in the terminology of learning theory) such that f() =
limt h(t) and g(y1) = limt k(t, y1). Then, Eloise’s winning strategy is as follows:

She plays for h(0) for ∃x1, and, after Abelard’s play b1 for ∀y1 she plays
k(0, b1) for ∃x2. If she wins for Abelard’s play b2 for ∀y2, she stops. If she
loses, she computes h(1). When h(1) changes from h(0), she backtracks
to ∃x1, and restart the play using h(1) and k(1,−). When h(1) does not
changes from h(0),i.e. h(0) = h(1), she backtracks to ∃x2 instead, and
continue to play k(1,−).

Note that Abelard’s first play for ∀y1 is kept in the latter case, incrementing
t of h(t) and k(t,−). Eventually, h(t) converges to f(). Assume h(t) is stable

Can Proofs Be Animated By Games? 19

after t ≥ t0. She never backtracks to ∃x1 after t0, for h(t) does not change
anymore after t0. Then, Abelard’s play b1 for ∀y1 is kept forever, since Eloise
never backtracks beyond it. Eventually, k(t0, b1) converges to g(b1) and then she
can win for any move for ∀y2. This ends the proof of if-direction.

3.3 General Formulation of Backtracking Games and Jump

The notion of 1-game has been further generalized and refined by Berardi [3].
We can associate a backtracking game bck(G) to each game G in the sense of set
theory . In the setting of [3], both players are allowed to backtrack and winning
conditions are defined even for infinite plays. This is natural from the standard
game theoretic point of view, unlike the game presented in this paper.

Remarkably, Berardi has proved that having a winning strategy for bck(G)
in a degree O is equivalent to having a strategy for G in the jump O′. Thus,
the motto is “1-backtracking represents the first order quantifiers.” We may say
that, if we are allowed to change our hypotheses on a system (or on the nature),
then we can cope with the “infinity” represented by arithmetical quantifiers.

Recall that Brouwer, Hilbert and their contemporaries in the research of the
foundations of mathematics in the 1920’s regarded arithmetical quantifiers as the
gate to the infinite world from the finite world. We may say the jump, namely
a single arithmetical quantifier, corresponds to the “smallest infinity.” Although
finitary human beings are bound to be recursive, human beings may virtually
handle the smallest infinity (or the jump) with try-and-error investigations or
experiments, i.e. 1-backtracking. It strongly suggests that the learning theoretic
notion of inductive inference would be a right kind of theoretical foundations of
researches on the notion of discovery.

3.4 1-Games and Proof Animation

Although there are some unsolved problems with the 1-game in applying it to
proof animation, it seems to be the right framework for proof animation. In this
subsection, we will discuss the problems of “approximation” and “semantics of
implication.”

In the limiting recursive realizability in [15], more the clock (the index n of
limn) ticks, the closer the guesses get to the correct answer. Thus we can regard
that learning algorithms are approximating the right answer as time progresses.
This simple notion of approximation is one of reasons why LCM-interpretation
is legible than the other approaches.

In 1-games, there is no apparent notion of clocks. However, there is a kind of
approximations. When Eloise picks, e.g. x = 7 for ∃x.∀y.A(x, y), Abelard starts
to attack her hypothesis x = 7. He may be able to give a counterexample with
a particular instance of y. Then, Eloise changes her hypothesis and continues to
play. As shown in the proof of “only if”-part of the equivalence of the theorem
above, Eloise eventually reaches a right solution for x. Namely, the more Abelard
attacks Eloise’s hypothesis, the close Eloise moves to the right answer guided by
her recursive winning strategy.

20 S. Hayashi

In other words, Eloise is approximating the right solution, pushed by test
cases given by Abelard. Namely, the set of test cases (or attacks) by Abelard
advances the clock. As the set grows, Eloise gets closer to the right answer.3

To build a 1-game animator, we need a good notion of approximation for-
mulated well. We have not found such a formulation on which a real software
system can be built. We have just started to analyze the real proofs by means of
1-games, seeking such a notion. The initial results show that it remarkably fits
our intuitive understanding of the proofs mentioned above. This suggests that
the 1-game is likely to be the right framework for proof animation. However,
more case studies are necessary.

We now discuss the problem of semantics of implication. Note that we con-
sidered only the prenex normal forms for the 1-game. We did not handle impli-
cations. Transformation of an implicational formula to the prenex normal form
already includes classical reasonings. we have to give an game theoretical inter-
pretation of implication which is equivalent to LCM-semantics of implication.

There are at least two ways to handle implication in game theoretical seman-
tics (see [12]). The standard way is to regard A → B as A⊥ ∨ B, where A⊥ is
the dual game. Another way is to use the notion of the subgame. Although some
modifications are necessary, it is basically easy to extend our discussions to the
full fragment of the first order arithmetic by the subgame approach in Chapter 3
of [12]. We regard A → B as the game to play B, provided we have a free access
to a winning strategy for A. You can imagine that you are playing an online
chess game. You are pondering on your next move for a configuration B. To do
so, you wish to know a right move for another configuration A, which may turn
up after B. You know how to win B, if you can win A. Instead of pondering on
the next move for A, you may consult a chess program (it’s an online game) how
to win A. Then A is a subgame for A → B. This scenario is natural, and easy
to understand. However, it might obscure interactions between the strategies for
A and B. To say “the strategy f for B can consult the strategy g for A”, we
mean that f is defined relative to g. Thus, the interaction is concealed in the
computation of strategy f .

On the other hand, there is a way to use backtracks to represent communica-
tion between A and B in A⊥∨B. Since our backtrack is a kind of pops of stacks,
we may simulate recursive function calls by 1-backtracking. It is expected that
this approach and subgame approach are related.

However, from the system design point of view, these two are very different.
If we take the latter approach, the interaction between A and B becomes part of
plays of the game and it would give more legible animation of proofs. However,
we have to allow Abelard to backtrack, since we must make the game symmetric
to use the dual A⊥ of A. If we identify Abelard’s moves as test cases as explained
above, test cases with backtracks must be introduced. After these differences,
proof animation tools based on these two frameworks would be rather different.

3 Berardi has introduced a series of limit-interpretations whose indexes are sets of
conditions[2]. It is expected that these notions are closely related.

Can Proofs Be Animated By Games? 21

3.5 Why Is 1-Game Legible?

We will close this section by a remark on legibility of the 1-games. Since the full
backtracking game needs only recursive strategies, there is no apparent reason
to use the 1-game instead of the full backtracking game for proof animation.
However, as already noted, the full backtracking game is not so legible as the 1-
game. The ilegibility come from the lack of “stable play”. If plays are stabilized,
then the winning strategy is essentially that of 1-games. Thus, games won by
stabilizing winning strategies must be 1-games. When, plays are not stabilized,
we cannot “approximate” the truth. When, we say A ∨ B holds, we wish to
know which of A and B holds. In constructive mathematics, we can effectively
tell the answer. In LCM, we can approximate the truth. We may be wrong at the
beginning, but we can move closer and closer to the right answer by try-and-error
processes. The temporary guesses may oscillate between A and B, but eventually
converge. In general, we cannot know when it converges, but, for many concrete
cases, we can often find criteria by which we can see when guesses are stabilized.

We never have such stabilization for plays of the Σ0
2-excluded middle for

the universal Σ0
2-formula ∃x.∀y.T (e, x, y) ∨∀a.∃b.T−(e, a, b). A relatively simple

winning strategy for this formula in the full backtracking game is given in [9].
However, the plays after it are never stabilized. Thus, we cannot have any useful
information on which side of the disjunction operator holds, even though Abelard
plays all possible moves. Contrary to this case, in the case of the Σ0

1-excluded
middle (2) above, when ∃x.T (e, x) is correct, we will observe a backtracking and
find this side is correct. When ∀a.T−(e, a) holds, we will observe the plays are
stable and will have more and more confidence of the truth of ∀a.T−(e, a), as
the game is repeatedly played.

The 1-game is expected to be a restricted backtracking game. Namely, we
have found a subset of the full backtracking games, in which Eloise’s winning
strategies are guaranteed “legible” in the sense that the plays are eventually
stabilized. Note that this does not exclude the possibility of some plays in Co-
quand’s game beyond the 1-game may be legible in some particular cases. It
is quite likely that there are some important classes of classical proofs beyond
LCM, for which we can find legible computational contents through the full
backtracking game or the like.

4 Conclusion

We have briefly surveyed proof animation, limit computable mathematics and
backtracking games. We presented a version of 1-backtracking game and give a de-
tailed proof of its equivalence to limiting recursive realizability. We also discussed
how these notions and some results are expected to be useful for proof animation.
We are now analyzing some simple LCM-proofs such as a proof of MNP from the
Σ0

1-excluded middle given in [9]. Doing so, we will eventually find the right way to
handle implication semantics and approximation. After finding the solutions, we
would design and build a prototype of proof animator. Then, we will see mathe-
matical proofs, such as the ones of Hilbert’s paper [10], animated by games.

22 S. Hayashi

The many materials of the present paper are outcomes of joint research with
Stefano Berardi and Thierry Coquand. I thank them for many helpful suggestions
and discussions.

References

1. Akama, Y., Berardi, S., Hayashi, S. and Kohlenbach, U.: An arithmetical hierarchy
of the law of excluded middle and related principles,

2. Berardi, S.: Classical logic as Limit Completion, -a constructive model for
non-recursive maps-, submitted, 2001, available at http://www.di.unito.it/
~stefano/

3. Berardi, S., Coquand, T. and Hayashi, S.: Games with 1-Backtracking, submitted,
2005.

4. Coquand, T.: A Semantics of Evidence for Classical Arithmetic, in Géard Huet,
Gordon Plotkin and Claire Jones, eds, Proceedings of the Second Workshop on
Logical Frameworks, 1991, (a preliminary version of [5])

5. Coquand, T.: A Semantics of Evidence for Classical Arithmetic, Journal of Sym-
bolic Logic, 60(1), 325-337, 1995.

6. Hayashi, S. and Nakano, H.: PX: A Computational Logic, 1988, The MIT Press,
available free from the author’s web page in PDF format.

7. Hayashi, S. and Nakata, M.: Towards Limit Computable Mathematics, in Types
for Proofs and Programs, P. Challanghan, Z. Luo, J. McKinna, R. Pollack, eds.,
LNCS 2277 (2001) 125–144

8. Hayashi, S., Sumitomo, R. and Shii, K.: Towards Animation of Proofs - Testing
Proofs by Examples -, Theoretical Computer Science, 272 (2002), 177–195

9. Hayashi, S.: Mathematics based on Incremental Learning, -Excluded middle and
Inductive inference-, to appear in Theoretical Computer Science.

10. Hilbert, D.: Über die Theorie der algebraische Formen, Mathematische Annalen 36
(1890), 473–531.

11. Hilbert, D.: Theory of Algebraic Invariants, translated by Laubenbacher, R.L.,
Cambridge University Press, 1993.

12. Hintikka, J. and Kulas, J.: The Game of Language, Reidel, 1983.
13. Hintikka, J. and Sandu, G.: Game-Theoretical Semantics, in Handbook of Logic

and Language, Part I, edited by van Benthem Jan F. A. K. et al., 1999.
14. Kohlenbach, U. and Oliva, P.: Proof mining: a systematic way of analysing proofs

in Mathematics, in Proceedings of the Steklov Institute of Mathematics, Vol. 242
(2003), 136–164.

15. Nakata, M. and Hayashi, S.: Realizability Interpretation for Limit Computable
Mathematics, Scientiae Mathematicae Japonicae, vol.5 (2001), 421–434.

16. Sommerville, I.: Software engineering, 6th edition, Addison Wesley, 2000.
17. Sanjay, J., Osherson, D., Royer, J.S., and Sharma, A.: Systems That Learn - 2nd

Edition: An Introduction to Learning Theory (Learning, Development, and Con-
ceptual Change), The MIT Press, 1999.

18. Toftdal, M.: A Calibration of Ineffective Theorems of Analysis in a Hierarchy of
Semi-Classical Logical Principles, in Proceedings of ICALP ’04, 1188–1200, 2004.

Untyped Algorithmic Equality for Martin-Löf’s
Logical Framework with Surjective Pairs

Andreas Abel� and Thierry Coquand

Department of Computer Science, Chalmers University of Technology
abel, coquand@cs.chalmers.se

Abstract. An untyped algorithm to test βη-equality for Martin-Löf’s
Logical Framework with strong Σ-types is presented and proven complete
using a model of partial equivalence relations between untyped terms.

1 Introduction

Type checking in dependent type theories requires comparison of expressions
for equality. In theories with β-equality, an apparent method is to normalize
the objects and then compare their β-normal forms syntactically. In the theory
we want to consider, an extension of Martin-Löf’s logical framework with βη-
equality by dependent surjective pairs (strong Σ types), which we call MLFΣ ,
a naive normalize and compare syntactically approach fails since βη-reduction
with surjective pairing is known to be non-confluent [Klo80].

We therefore advocate the incremental βη-convertibility test which has been
given by the second author for dependently typed λ-terms [Coq91, Coq96], and
extend it to pairs. The algorithm computes the weak head normal forms of the
conversion candidates, and then analyzes the shape of the normal forms. In case
the head symbols do not match, conversion fails early. Otherwise, the subterms
are recursively weak head normalized and compared. There are two flavors of
this algorithm.

Type-directed conversion. In this style, the type of the two candidates dictates
the next step in the algorithm. If the candidates are of function type, both are
applied to a fresh variable, if they are of pair type, their left and right projec-
tions are recursively compared, and if they are of base type, they are compared
structurally, i. e., their head symbols and subterms are compared. Type-directed
conversion has been investigated by Harper and Pfenning [HP05]. The advan-
tage of this approach is that it can handle cases where the type provides extra
information which is not already present in the shape of terms. An example is
the unit type: any two terms of unit type, e. g., two variables, can be considered

� Research supported by the coordination action TYPES (510996) and thematic net-
work Applied Semantics II (IST-2001-38957) of the European Union and the project
Cover of the Swedish Foundation of Strategic Research (SSF).

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 23–38, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 A. Abel and T. Coquand

equal. Harper and Pfenning report difficulties in showing transitivity of the con-
version algorithm, in case of dependent types. To circumvent this problem, they
erase the dependencies and obtain simple types to direct the equality algorithm.
In the theory they consider, the Edinburgh Logical Framework [HHP93], erasure
is sound, but in theories with types defined by cases (large eliminations), erasure
is unsound and it is not clear how to make their method work. In this article,
we investigate an alternative approach.

Shape-directed (untyped) conversion. As the name suggests, the shape of the
candidates directs the next step. If one of the objects is a λ-abstraction, both
objects are applied to a fresh variable, if one object is a pair, the algorithm
continues with the left and right projections of the candidates, and otherwise,
they are compared structurally. Since the algorithm does not depend on types,
it is in principle applicable to many type theories with functions and pairs. In
this article, we prove it complete for MLFΣ , but since we are not using erasure,
we expect the proof to extend to theories with large eliminations.

Main technical contributions of this article.

1. We extend the untyped conversion algorithm of the second author [Coq91] to
a type system with Σ-types and surjective pairing. Recall that reduction in
the untyped λ-calculus with surjective pairing is not Church-Rosser [Bar84]
and, thus, one cannot use a presentation of this type system with conversion
defined on raw terms.1

2. We take a modular approach for showing the completeness of the conversion
algorithm. This result is obtained using a special instance of a general PER
model construction. Furthermore this special instance can be described a
priori without references to the typing rules.

Contents. We start with a syntactical description of MLFΣ , in the style of
equality-as-judgement (Section 2). Then, we give an untyped algorithm to check
βη-equality of two expressions, which alternates weak head reduction and com-
parison phases (Section 3). The goal of this article is to show that the algorithmic
equality of MLFΣ is equivalent to the declarative one. Soundness is proven rather
directly in Section 4, requiring inversion for the typing judgement in order to es-
tablish subject reduction for weak head evaluation. Completeness, which implies
decidability of MLFΣ , requires construction of a model. Before giving a specific
model, we describe a class of PER models of MLFΣ based on a generic model of
the λ-calculus with pairs (Section 5). In Section 6 we turn to the specific model
of expressions modulo β-equality, on which we define an inductive η-equality. Its
transitive closure is regarded as the “universe” S of type interpretations, each
interpretation is shown to be a subset of S. As a consequence, two declaratively
equal terms are related by S. We complete the circle in Section 7 where we show
that well-typed S-related terms are algorithmically equal, using standardization

1 In the absence of confluence, one cannot show injectivity of type constructors, hence
subject reduction fails.

Untyped Algorithmic Equality for Martin-Löf’s Logical Framework 25

for λ-terms. Decidability of judgmental equality on well-typed terms in MLFΣ

ensues, which entails that type checking of normal forms is decidable as well.
The full version of the article, which contains additionally a bidirectional

type-checking algorithm for MLFΣ and more detailed proofs, is available on the
homepage of the first author [AC05].

2 Declarative Presentation of MLFΣ

This section presents the typing and equality rules for an extension of Martin-
Löf’s logical framework [NPS00] by dependent pairs. We show some standard
properties like weakening and substitution, as well as injectivity of function
and pair types and inversion of typing, which will be crucial for the further
development.

Wellformed contexts Γ � ok.

cxt-empty � � ok
cxt-ext

Γ � A :Type
Γ, x :A � ok

Typing Γ � t : A.

hyp
Γ � ok (x :A) ∈ Γ

Γ � x : A
conv

Γ � t : A Γ � A = B :Type
Γ � t : B

set-f
Γ � ok

Γ � Set :Type
set-e

Γ � t : Set
Γ � El t :Type

fun-f
Γ � A :Type Γ, x :A � B :Type

Γ � FunA (λxB) :Type

fun-i
Γ, x :A � t : B

Γ � λxt : FunA (λxB)
fun-e

Γ � r : FunA (λxB) Γ � s : A
Γ � r s : B[s/x]

pair-f
Γ � A :Type Γ, x :A � B :Type

Γ � PairA (λxB) :Type
pair-i

Γ � s : A Γ � t : B[s/x]
Γ � (s, t) : PairA (λxB)

pair-e-l
Γ � r : PairA (λxB)

Γ � r L : A
pair-e-r

Γ � r : PairA (λxB)
Γ � rR : B[r L/x]

Fig. 1. MLFΣ rules for contexts and typing

Expressions (terms and types). We do not distinguish between terms and types
syntactically. Dependent function types, usually written Πx : A.B, are writ-
ten FunA (λxB); similarly, dependent pair types Σx : A.B are represented by

26 A. Abel and T. Coquand

PairA (λxB). We write projections L and R postfix. The syntactic entities of
MLFΣ are given by the following grammar.

Var � x, y, z variables
Const � c ::= Fun | Pair | El | Set constants
Proj � p ::= L | R left and right projection
Exp � r, s, t, A,B,C ::= c | x | λxt | r s | (t, t′) | r p expressions
Cxt � Γ ::= � | Γ, x :A typing contexts

We identify terms and types up to α-conversion and adopt the convention that
in contexts Γ , all variables must be distinct; hence, the context extension Γ, x :A
presupposes (x :B)
∈ Γ for any B.

The inhabitants of Set are type codes; El maps type codes to types. E. g.,
Fun Set (λa. Fun (El a) (λ .El a)) is the type of the polymorphic identity λaλxx.

Judgements are inductively defined relations. If D is a derivation of judgement
J , we write D :: J . The type theory MLFΣ is presented via five judgements:

Γ � ok Γ is a well-formed context
Γ � A :Type A is a well-formed type
Γ � t : A t has type A
Γ � A = A′ :Type A and A′ are equal types
Γ � t = t′ : A t and t′ are equal terms of type A

Typing and well-formedness of types both have the form Γ � : . We will refer
to them by the same judgement Γ � t : A. If we mean typing only, we will
require A
≡ Type. The same applies to the equality judgements. Typing rules
are given in Figure 1, together with the rules for well-formed contexts. The rules
for the equality judgements are given in Figure 2. Observe that we have chosen
a “parallel reduction” version for β- and η-rules, which has been inspired by
Harper and Pfenning [HP05] and Sarnat [Sar04], in order to make the proof of
functionality easier. In the following, we present properties of MLFΣ which have
easy syntactical proofs.

Admissible rules. MLFΣ enjoys the usual properties of weakening, context con-
version, substitution, functionality and inversion and injectivity for the type
expressions El t, FunA (λxB) and PairA (λxB). These rules can be found in the
extended version of this article [AC05]. Note that in Martin-Löf’s LF, injectivity
is almost trivial since computation is restricted to the level of terms. This is also
true for Harper and Pfenning’s version of the Edinburgh LF which lacks type-
level λ-abstraction [HP05]. In the Edinburgh LF with type-level λ it involves a
normalization argument and is proven using logical relations [VC02].

Lemma 1 (Syntactic Validity).

1. Typing: If Γ � t : A then Γ � ok and either A ≡Type or Γ � A :Type.
2. Equality: If Γ � t = t′ : A then Γ � t : A and Γ � t′ : A.

Untyped Algorithmic Equality for Martin-Löf’s Logical Framework 27

Equivalence, hypotheses, conversion.

eq-sym
Γ � t = t′ : A
Γ � t′ = t : A

eq-trans
Γ � r = s : A Γ � s = t : A

Γ � r = t : A

eq-hyp
Γ � ok (x :A) ∈ Γ

Γ � x = x : A
conv

Γ � t = t′ : A Γ � A = B :Type
Γ � t = t′ : B

Sets.

eq-set-f
Γ � ok

Γ � Set = Set :Type
eq-set-e

Γ � t = t′ : Set
Γ � El t = El t′ :Type

Dependent functions.

eq-fun-f
Γ � A = A′ :Type Γ, x :A � B = B′ :Type

Γ � FunA (λxB) = FunA′ (λxB′) :Type

eq-fun-i
Γ, x :A � t = t′ : B

Γ � λxt = λxt′ : FunA (λxB)

eq-fun-e
Γ � r = r′ : FunA (λxB) Γ � s = s′ : A

Γ � r s = r′ s′ : B[s/x]

eq-fun-β
Γ, x :A � t = t′ : B Γ � s = s′ : A

Γ � (λxt) s = t′[s′/x] : B[s/x]

eq-fun-η
Γ � t = t′ : FunA (λxB)

Γ � (λx. t x) = t′ : FunA (λxB)
x �∈ FV(t)

Dependent pairs.

eq-pair-f
Γ � A = A′ :Type Γ, x :A � B = B′ :Type

Γ � PairA (λxB) = PairA′ (λxB′) :Type

eq-pair-i
Γ � s = s′ : A Γ � t = t′ : B[s/x]
Γ � (s, t) = (s′, t′) : PairA (λxB)

eq-pair-e-l
Γ � r = r′ : PairA (λxB)

Γ � r L = r′ L : A
eq-pair-e-r

Γ � r = r′ : PairA (λxB)
Γ � rR = r′ R : B[r L/x]

eq-pair-β-l
Γ � s = s′ : A Γ � t : B

Γ � (s, t) L = s′ : A
eq-pair-β-r

Γ � s : A Γ � t = t′ : B
Γ � (s, t) R = t′ : B

eq-pair-η
Γ � r = r′ : PairA (λxB)

Γ � (r L, r R) = r′ : PairA (λxB)

Fig. 2. MLFΣ equality rules

28 A. Abel and T. Coquand

Lemma 2 (Inversion of Typing). Let C
≡Type.

1. If Γ � x : C then Γ � Γ (x) = C :Type.
2. If Γ � λxt : C then C ≡ FunA (λxB) and Γ, x :A � t : B.
3. If Γ � r s : C then Γ � r : FunA (λxB) with Γ � s : A and Γ � B[s/x] =

C :Type.
4. If Γ � (r, s) : C then C ≡ PairA (λxB) with Γ � r : A and Γ � s : B[r/x].
5. If Γ � rL : A then Γ � r : PairA (λxB).
6. If Γ � rR : C then Γ � r : PairA (λxB) and Γ � B[rL/x] = C :Type.

3 Algorithmic Presentation

In this section, we present an algorithm for deciding equality. The goal of this
article is to prove it sound and complete.

Syntactic classes. The algorithm works on weak head normal forms WVal. For
convenience, we introduce separate categories for normal forms which can denote
a function and for those which can denote a pair. In the intersection of these
categories live the neutral expressions.

WElim � e ::= s | p eliminations
WNe � n ::= c | x | n e neutral expressions
WFun � wf ::= n | λxt weak head function values
WPair � wp ::= n | (t, t′) weak head pair values
WVal � w,W ::= wf | wp weak head values

Weak head evaluation t ↘ w and active elimination w@e ↘ w′ are simultane-
ously given by the following rules:

r ↘ wf wf@s ↘ w

r s ↘ w

r ↘ wp wp@p ↘ w

r p ↘ w t ↘ t
t
≡ r s | r p

n@e ↘ n e

t[w/x] ↘ w′

(λxt)@w ↘ w′
t ↘ w

(t, t′)@L ↘ w

t′ ↘ w

(t, t′)@R ↘ w

Weak head evaluation t ↘ w is equivalent to multi-step weak head reduction to
normal form. Since both judgements are deterministic, we can interpret them by
two partial functions

↓ ∈ Exp ⇀ WVal weak head evaluation,
@ ∈ WVal × WElim ⇀ WVal active application.

Conversion. Two terms t, t′ are algorithmically equal if t ↘ w, t′ ↘ w′, and
w ∼ w′. We combine these three propositions to t↓ ∼ t′↓. The algorithmic
equality on weak head normal forms w ∼ w′ is given inductively by these rules:

Untyped Algorithmic Equality for Martin-Löf’s Logical Framework 29

aq-c
c ∼ c

aq-var
x ∼ x

aq-ne-fun
n ∼ n′ s↓ ∼ s′↓

n s ∼ n′ s′
aq-ne-pair

n ∼ n′

n p ∼ n′ p

aq-ext-fun
wf@x ∼ w′

f@x

wf ∼ w′
f

x
∈ FV(wf , w
′
f)

aq-ext-pair
wp@L ∼ w′

p@L wp@R ∼ w′
p@R

wp ∼ w′
p

For two neutral values, the rules (aq-ne-x) are preferred over aq-ext-fun and
aq-ext-pair. Thus, conversion is deterministic. It is easy to see that it is sym-
metric as well.

In our presentation, untyped conversion resembles type-directed conversion.
In the terminology of Harper and Pfenning [HP05, Sar04], the first four rules
aq-c, aq-var, aq-ne-fun and aq-ne-pair compute structural equality, whereas
the remaining two, the extensionality rules aq-ext-fun and aq-ext-pair, com-
pute type-directed equality. The difference is that in our formulation, the shape
of a value—function or pair— triggers application of the extensionality rules.

Remark 1. In contrast to the corresponding equality for λ-terms without pairs
[Coq91] (taking away aq-ne-pair and aq-ext-pair), this relation is not tran-
sitive. For instance, λx. n x ∼ n and n ∼ (nL, nR), but not λx. n x ∼ (nL, nR).

4 Soundness

The soundness proof for conversion in this section is entirely syntactical and
relies crucially on injectivity of El, Fun and Pair and inversion of typing. First,
we show soundness of weak head evaluation, which subsumes subject
reduction.

Lemma 3 (Soundness of Weak Head Evaluation).

1. If D :: t ↘ w and Γ � t : C then Γ � t = w : C.
2. If D :: w@e ↘ w′ and Γ � w e : C then Γ � w e = w′ : C.

Proof. Simultaneously by induction on D, making essential use of inversion laws.

Two algorithmically convertible well-typed expressions must also be equal in
the declarative sense. In case of neutral terms, we also obtain that their types
are equal. This is due to the fact that we can read off the type of the common
head variable and break it down through the sequence of eliminations.

30 A. Abel and T. Coquand

Lemma 4 (Soundness of Conversion).

1. Neutral non-types: If D :: n ∼ n′ and Γ � n : C
≡Type and Γ � n′ : C ′
≡
Type then Γ � n = n′ : C and Γ � C = C ′ :Type.

2. Weak head values: If D :: w ∼ w′ and Γ � w,w′ : C then Γ � w = w′ : C.
3. All expressions: If t↓ ∼ t′↓ and Γ � t, t′ : C then Γ � t = t′ : C.

Proof. The third proposition is a consequence of the second, using soundness
of evaluation (Lemma 3) and transitivity. We prove the first two propositions
simultaneously by induction on D.

5 Models

To show completeness of algorithmic equality, we leave the syntactic discipline.
Although a syntactical proof should be possible following Goguen [Gog99, Gog05],
we prefer a model construction since it is more apt to extensions of the type the-
ory.

The contribution of this section is that any PER model over a λ-model with
full β-equality is a model of MLFΣ . Only in the next section will we decide on a
particular model which enables the completeness proof.

5.1 λ Models

We assume a set D with the four operations

· ∈ D × D → D application,
L ∈ D → D left projection,
R ∈ D → D right projection, and

∈ Exp × Env → D denotation.

Herein, we use the following entities:

c ∈ Const := {Set,El,Fun,Pair} constants
u, v, f, V, F ∈ D ⊇ Const domain of the model
ρ, σ ∈ Env := Var → D environments

Let p range over the projection functions L and R. To simplify the notation, we
write also f v for f · v. Update of environment ρ by the binding x=v is written
ρ, x=v. The operations f · v, v p and tρ must satisfy the following laws:

den-const cρ = c if c ∈ Const
den-var xρ = ρ(x)
den-fun-e (r s)ρ = rρ (sρ)
den-pair-e (r p)ρ = rρ p

den-fun-β (λxt)ρ v = t(ρ, x=v)
den-pair-β-l (r, s)ρ L = rρ
den-pair-β-r (r, s)ρR = sρ

Untyped Algorithmic Equality for Martin-Löf’s Logical Framework 31

den-fun-ξ (λxt)ρ = (λxt′)ρ′ if t(ρ, x=v) = t′(ρ′, x=v) for all v ∈ D
den-pair-ξ (r, s)ρ = (r′, s′)ρ′ if rρ = r′ρ′ and sρ = s′ρ′

den-set-f-inj El v = El v′ implies v = v′

den-fun-f-inj FunV F = FunV ′ F ′ implies V = V ′ and F = F ′

den-pair-f-inj Pair V F = Pair V ′ F ′ implies V = V ′ and F = F ′

Lemma 5 (Irrelevance). If ρ(x) = ρ′(x) for all x ∈ FV(t), then tρ = tρ′.

Proof. By induction on t. Makes crucial use of the ξ rules.

Lemma 6 (Soundness of Substitution). (t[s/x])ρ = t(ρ, x=sρ).

Proof. By induction on t, using the ξ rules and Lemma 5.

5.2 PER Models

In the definition of PER models, we follow a paper of the second author with
Pollack and Takeyama [CPT03] and Vaux [Vau04]. The only difference is, since
we have codes for types in D, we can define the semantical property of being a
type directly on elements of D, whereas the cited works introduce an intensional
type equality on closures tρ.

Partial equivalence relation (PER). A PER is a symmetric and transitive rela-
tion. Let Per denote the set of PERs over D. If A ∈ Per, we write v = v′ ∈ A if
(v, v′) ∈ A. We say v ∈ A if v is in the carrier of A, i. e., v = v ∈ A. On the other
hand, each set A ⊆ D can be understood as the discrete PER where v = v′ ∈ A
holds iff v = v′ and v ∈ A.

Equivalence classes and families. Let A ∈ Per. If v ∈ A, then vA := {v′ ∈ D |
v = v′ ∈ A} denotes the equivalence class of v in A. We write D/A for the set
of all equivalence classes in A. Let Fam(A) = D/A → Per. If F ∈ Fam(A) and
v ∈ A, we use F(v) as a shorthand for F(vA).

Constructions on PERs. Let A ∈ Per and F ∈ Fam(A). We define two PERs
Fun(A,F) and Pair(A,F) by

(f, f ′) ∈ Fun(A,F) iff f v = f ′ v′ ∈ F(v) for all v = v′ ∈ A,
(v, v′) ∈ Pair(A,F) iff v L = v′ L ∈ A and v R = v′ R ∈ F(v L).

Semantical types. In the following, assume some Set ∈ Per and some E� ∈
Fam(Set). We define inductively a new relation Type ∈ Per and a new func-
tion [] ∈ Fam(Type):

Set = Set ∈ Type and [Set] is Set .
El v = El v′ ∈ Type if v = v′ ∈ Set . Then [El v] is E�(v).
Fun V F = Fun V ′ F ′ ∈ Type if V = V ′ ∈ Type and v = v′ ∈ [V] implies

F v = F ′ v′ ∈ Type. We define then [Fun V F] to be Fun([V], v
−→ [F v]).

32 A. Abel and T. Coquand

Pair V F = Pair V ′ F ′ ∈ Type if V = V ′ ∈ Type and v = v′ ∈ [V] implies
F v = F ′ v′ ∈ Type. We define then [Pair V F] to be Pair([V], v
−→ [F v]).

This definition is possible by the laws den-set-f-inj, den-fun-f-inj, and
den-pair-f-inj. Notice that in the last two clauses, we have

Fun([V], v
−→ [F v]) = Fun([V ′], v
−→ [F ′ v]), and
Pair([V], v
−→ [F v]) = Pair([V ′], v
−→ [F ′ v]).

5.3 Validity

If Γ is a context, we define a corresponding PER on Env, written [Γ]. We define
ρ = ρ′ ∈ [Γ] to mean that, for all x:A in Γ , we have Aρ = Aρ′ ∈ Type and
ρ(x) = ρ′(x) ∈ [Aρ]. Semantical contexts Γ ∈ Cxt are defined inductively by the
following rules:

� ∈ Cxt
Γ ∈ Cxt Aρ = Aρ′ ∈ Type for all ρ = ρ′ ∈ [Γ]

(Γ, x :A) ∈ Cxt

Theorem 1 (Soundness of the Rules of MLFΣ).

1. If D :: Γ � ok then Γ ∈ Cxt.
2. If D :: Γ � A :Type then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type.
3. If D :: Γ � t : A then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type

and tρ = tρ′ ∈ [Aρ].
4. If D :: Γ � A = A′ : Type then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ =

A′ρ′ ∈ Type.
5. If D :: Γ � t = t′ : A then Γ ∈ Cxt, and if ρ = ρ′ ∈ [Γ] then Aρ = Aρ′ ∈ Type

and tρ = t′ρ′ ∈ [Aρ].

Proof. Each by induction on D, using lemmas 5 and 6.

5.4 Safe Types

We define an abstract notion of safety, similar to what Vaux calls “saturation”
[Vau04]. A PER is safe if it lies between a PER N on neutral expressions and a
PER S on safe expressions [Vou04]. In the following, we use set notation ⊆ and
∪ also for PERs.

Safety. N ,Sfun ,Spair ∈ Per form a safety range if the following conditions are
met:

safe-int N ⊆ S = Sfun ∪ Spair
safe-ne-fun u v = u′ v′ ∈ N if u = u′ ∈ N and v = v′ ∈ S
safe-ne-pair u p = u′ p ∈ N if u = u′ ∈ N
safe-ext-fun v = v′ ∈ Sfun if v u = v′ u′ ∈ S for all u = u′ ∈ N
safe-ext-pair v = v′ ∈ Spair if v L = v′ L ∈ S and v R = v′ R ∈ S

A relation A ∈ Per is called safe w. r. t. to a safety range (N ,Sfun ,Spair) if
N ⊆ A ⊆ S.

Untyped Algorithmic Equality for Martin-Löf’s Logical Framework 33

Lemma 7 (Fun and Pair Preserve Safety). If A ∈ Per is safe and F ∈
Fam(A) is such that F(v) is safe for all v ∈ A then Fun(A,F) and Pair(A,F)
are safe.

Proof. By monotonicity of Fun and Pair , if one considers the following refor-
mulation of the conditions:

safe-ne-fun N ⊆ Fun(S,
−→ N)
safe-ne-pair N ⊆ Pair(N ,
−→ N)
safe-ext-fun Fun(N ,
−→ S) ⊆ Sfun
safe-ext-pair Pair(S,
−→ S) ⊆ Spair

Lemma 8 (Type Interpretations are Safe). Let Set be safe and E�(v) be
safe for all v ∈ Set. If v ∈ Type then [v] is safe.

Proof. By induction on the proof that v ∈ Type, using Lemma 7.

6 Term Model

In this section, we instantiate the model of the previous section to the set of ex-
pressions modulo β-equality. Application is interpreted as expression application
and the projections of the model are mapped to projections for expressions.

Let rβ ∈ D denote the equivalence class of r ∈ Exp with regard to =β . We
set D := Exp/=β , rβ · sβ := r sβ , rβ L := r Lβ , rβ R := r Rβ , and tρ := t[ρ]β .
Herein, t[ρ] denotes the substitution of ρ(x) for x in t, carried out in parallel
for all x ∈ FV(t). In the following, we abbreviate the equivalence class rβ by its
representative r, if clear from the context.

Value classes. The β-normal forms v ∈ Val, which can be described by the
following grammar, completely represent the β-equivalence classes tβ ∈ Exp/=β .

VNe � u ::= c | x | u v | u p neutral values
VFun � vf ::= u | λxv function values
VPair � vp ::= u | (v, v′) pair values
Val � v ::= vf | vp values

An η-equality on β-equivalence classes. We define a relation � ⊆ Val × Val
inductively by the following rules.

eta-var
x � x

eta-ne-fun
u � u′ v � v′

u v � u′ v′
eta-ne-pair

u � u′

u p � u′ p

eta-c
c � c

eta-ext-fun
vf x � v′f x

vf � v′f
x
∈ FV(vf , v

′
f)

eta-ext-pair
vp L � v′p L vp R � v′p R

vp � v′p

34 A. Abel and T. Coquand

Note, since we are talking about equivalence classes, in the extensionality rules
eta-ext-fun and eta-ext-pair we actually mean the normal forms of the
expressions appearing in the hypotheses. In the conclusion of an extensionality
rule, we require one of the two values to be non-neutral.

As algorithmic equality, the relation � is symmetric, but not transitive. To
turn it into a PER, we need to take the transitive closure �+ explicitly.

Lemma 9 (Admissible Rules for �+). If we replace � by �+ consistently
in the rules for �, we get admissible rules for �+. We denote the admissible rule
by appending a + to the rule name.

Lemma 10 (Safety Range). Let S := �+, N := S ∩ (VNe × VNe), Sfun :=
S ∩ (VFun × VFun), and Spair := S ∩ (VPair × VPair). Then N ,Sfun ,Spair are
PERs and form a safety range.

Proof. safe-int is shown by definition of N ,Sfun ,Spair . safe-ext-fun is sat-
isfied by rule eta-ext-fun+ since x = x ∈ N for each variable. Each other
requirement has its directly matching admissible rule.

Lemma 11 (Context Satisfiable). Let ρ0(x) := x for all x ∈ Var. If Γ � ok,
then ρ0 ∈ [Γ].

Corollary 1 (Equal Terms are Related). If Γ � t = t′ : C
≡ Type then
tβ �+ t

′
β.

Proof. By soundness of MLFΣ (Thm. 1), tρ0 = t′ρ0 ∈ [Cρ0]. The claim follows
since [Cρ0] ⊆ S by Lemma 8.

It remains to show that tβ �+ t
′
β implies t↓ ∼ t′↓, which means that both t

and t′ weak head normalize and these normal forms are algorithmically equal.

7 Completeness

We establish completeness of the algorithmic equality in two steps. First we
prove that η-equality of β-normal forms entails equality in the algorithmic sense.
Then we show that for well-typed terms, transitivity is admissible for algorithmic
equality. Combining this with the result of the last section, we are done.

Lemma 12 (Standardization).

1. If t =β u v then t ↘ n s with n =β u and s =β v.
2. If t =β u p then t ↘ n p with n =β u.
3. If t =β vf then t ↘ wf with wf =β vf .
4. If t =β vp then t ↘ wp with wp =β vp.

Proof. Fact about the λ-calculus [Bar84].

Lemma 13 (Completeness of ∼ w. r. t. �). If D :: nβ � n′
β then n ∼ n′

and if D :: tβ � t
′
β then t↓ ∼ t′↓.

Untyped Algorithmic Equality for Martin-Löf’s Logical Framework 35

Proof. Simultaneously by induction on D, using standardization.

While transitivity does not hold for the pure algorithmic equality (see Re-
mark 1), it can be established for terms of the same type. The presence of types
forbids comparison of function values with pair values, the stepping stone for
transitivity of the untyped equality.

For a derivation D of algorithmic equality, we define the measure |D| which
denotes the number of rule applications on the longest branch of D, counting
the rules aq-ext-fun and aq-ext-pair twice.2 We will use this measure for the
proof of transitivity and termination of algorithmic equality.

Lemma 14 (Transitivity of Typed Algorithmic Equality).

1. Let Γ � n1 : C1, Γ � n2 : C2, and Γ � n3 : C3. If D :: n1 ∼ n2 and
D′ :: n2 ∼ n3 then n1 ∼ n3.

2. Let Γ � w1, w2, w3 : C. If D :: w1 ∼ w2 and D′ :: w2 ∼ w3 then w1 ∼ w3.
3. Let Γ � t1, t2, t3 : C. If t1↓ ∼ t2↓ and t2↓ ∼ t3↓ then t1↓ ∼ t3↓.

Proof. The third proposition is an immediate consequence of the second, using
soundness of weak head evaluation. We prove 1. and 2. simultaneously by in-
duction on |D| + |D′|, using inversion for typing and soundness of algorithmic
equality.

Theorem 2 (Completeness of Algorithmic Equality).

1. If Γ � t = t′ : C
≡Type then t↓ ∼ t′↓.
2. If D :: Γ � A = A′ :Type then A↓ ∼ A′↓.

Proof. Completeness for terms (1): By Cor. 1 we have tβ �+ t
′
β . Lemma 13

entails t↓ ∼+ t′↓, and since Γ � t, t′ : C, we infer t↓ ∼ t′↓ by transitivity. The
completeness for types (2) is then shown by induction on D, using completeness
for terms in case eq-set-e.

We have shown that two judgmentally equal terms t, t′ weak-head normalize
to w,w′ and a derivation of w ∼ w′ exists, hence the equality algorithm, which
searches deterministically for such a derivation, terminates with success. What
remains to show is that the query t↓ ∼ t′↓ terminates for all well-typed t, t′,
either with success, if the derivation can be closed, or with failure, in case the
search arrives at a point where there is no matching rule. For the following
lemma, observe that w ∼ w iff w is weakly normalizing.

Lemma 15 (Termination of Equality). If D1 :: w1 ∼ w1 and D2 :: w2 ∼ w2
then the query w1 ∼ w2 terminates.

Proof. By induction on |D1| + |D2|.

2 A similar measure is used by Goguen [Gog05] to prove termination of algorithmic
equality restricted to pure λ-terms [Coq91].

36 A. Abel and T. Coquand

Theorem 3 (Decidability of Equality). If Γ � t, t′ : C then the query
t↓ ∼ t′↓ succeeds or fails finitely and decides Γ � t = t′ : C.

Proof. By Theorem 2, t ↘ w, t′ ↘ w′, w ∼ w, and w′ ∼ w′. By the previous
lemma, the query w ∼ w′ terminates. Since by soundness and completeness of
the algorithmic equality, w ∼ w′ if and only if Γ � t = t′ : C, the query decides
judgmental equality.

8 Conclusion

We have presented a sound and complete conversion algorithm for MLFΣ . The
completeness proof builds on PERs over untyped expressions, hence, we need—in
contrast to Harper and Pfenning’s completeness proof for type-directed conver-
sion [HP05]—no Kripke model and no notion of erasure, what we consider an
arguably simpler procedure. We see in principle no obstacle to generalize our re-
sults to type theories with type definition by cases (large eliminations), whereas
it is not clear how to treat them with a technique based on erasure.

The disadvantage of untyped conversion, compared to type-directed conver-
sion, is that it cannot handle cases where the type of a term provides more
information on equality than the shape of a terms, e. g., unit types, singleton
types and signatures with manifest fields [CPT03].

A more general proof of completeness? Our proof uses a λ-model with full β-
equality thanks to the ξ-rules. We had also considered a weaker model without ξ-
rules which only equates weakly convertible objects. Combined with extensional
PERs this would have been the model closest to our algorithm. But due to the
use of substitution in the declarative formulation, we could not show MLFΣ ’s
rules to be valid in such a model. Whether it still can be done, remains an open
question.

Related work. The second author, Pollack, and Takeyama [CPT03] present a
model for βη-equality for an extension of the logical framework by singleton
types and signatures with manifest fields. Equality is tested by η-expansion, fol-
lowed by β-normalization and syntactic comparison. In contrast to this work, no
syntactic specification of the framework and no incremental conversion algorithm
are given.

Schürmann and Sarnat [Sar04] have been working on an extension of the
Edinburgh Logical Framework (ELF) by Σ-types (LFΣ), following Harper and
Pfenning [HP05]. In comparison to MLFΣ , syntactic validity (Lemma 1) and
injectivity are non-trivial in their formulation of ELF. Robin Adams [Ada01]
has extended Harper and Pfenning’s algorithm to Luo’s logical framework (i. e.,
MLF with typed λ-abstraction) with Σ-types and unit.

Goguen [Gog99] gives a typed operational semantics for Martin-Löf’s logical
framework. An extension to Σ-types has to our knowledge not yet been con-
sidered. Recently, Goguen [Gog05] has proven termination and completeness for
both the type-directed [HP05] and the shape-directed equality [Coq91] from the

Untyped Algorithmic Equality for Martin-Löf’s Logical Framework 37

standard meta-theoretical properties (strong normalization, confluence, subject
reduction, etc.) of the logical framework.

Acknowledgments. We are grateful to Lionel Vaux whose clear presentation of
models for this implicit calculus [Vau04] provided a guideline for our model
construction. Thanks to Ulf Norell for proof-reading. The first author is indebted
to Frank Pfenning who taught him type-directed equality at Carnegie Mellon
University in 2000, and to Carsten Schürmann for communication on LFΣ .

References

[AC05] A. Abel and T. Coquand. Untyped algorithmic equality for Martin-Löf’s
logical framework with surjective pairs (extended version). Tech. rep.,
Department of Computer Science, Chalmers, Göteborg, Sweden, 2005.

[Ada01] R. Adams. Decidable equality in a logical framework with sigma kinds,
2001. Unpublished note, see http://www.cs.man.ac.uk/˜radams/.

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, Amsterdam, 1984.

[Coq91] T. Coquand. An algorithm for testing conversion in type theory. In G. Huet
and G. Plotkin, eds., Logical Frameworks, pp. 255–279. Cambridge Uni-
versity Press, 1991.

[Coq96] T. Coquand. An algorithm for type-checking dependent types. In Mathe-
matics of Program Construction (MPC 1995), vol. 26 of Science of Com-
puter Programming , pp. 167–177. Elsevier Science, 1996.

[CPT03] T. Coquand, R. Pollack, and M. Takeyama. A logical framework with
dependently typed records. In Typed Lambda Calculus and Applications,
TLCA’03 , vol. 2701 of Lecture Notes in Computer Science. Springer, 2003.

[Gog99] H. Goguen. Soundness of the logical framework for its typed operational
semantics. In J.-Y. Girard, ed., Typed Lambda Calculi and Applications,
TLCA 1999 , vol. 1581 of Lecture Notes in Computer Science. Springer,
1999.

[Gog05] H. Goguen. Justifying algorithms for βη conversion. In FoSSaCS 2005. To
appear.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the Association of Computing Machinery, 40(1):143–184, 1993.

[HP05] R. Harper and F. Pfenning. On equivalence and canonical forms in the
LF type theory. ACM Transactions on Computational Logic, 6(1):61–101,
2005.

[Klo80] J. W. Klop. Combinatory reducion systems. Mathematical Center Tracts,
27, 1980.

[NPS00] B. Nordström, K. Petersson, and J. Smith. Martin-löf’s type theory. In
Handbook of Logic in Computer Science, vol. 5. Oxford University Press,
2000.

[Sar04] J. Sarnat. LFΣ : The metatheory of LF with Σ types, 2004. Unpublished
technical report, kindly provided by Carsten Schürmann.

[Vau04] L. Vaux. A type system with implicit types, 2004. English version of his
mémoire de mâitrise.

38 A. Abel and T. Coquand

[VC02] J. C. Vanderwaart and K. Crary. A simplified account of the metatheory
of Linear LF. Tech. rep., Dept. of Comp. Sci., Carnegie Mellon, 2002.

[Vou04] J. Vouillon. Subtyping union types. In J. Marcinkowski and A. Tarlecki,
eds., Computer Science Logic, CSL’04 , vol. 3210 of Lecture Notes in Com-
puter Science, pp. 415–429. Springer, 2004.

The Monadic Second Order Theory of Trees
Given by Arbitrary Level-Two Recursion

Schemes Is Decidable

Klaus Aehlig�, Jolie G. de Miranda, and C.-H. Luke Ong

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

aehlig@math.lmu.de
{jgdm, lo}@comlab.ox.ac.uk

Abstract. A tree automaton can simulate the successful runs of a word
or tree automaton working on the word or tree denoted by a level-2
lambda-tree. In particular the monadic second order theory of trees given
by arbitrary, rather than only by safe, recursion schemes of level 2 is
decidable. This solves the level-2 case of an open problem by Knapik,
Niwiński and Urzyczyn.

1 Introduction and Related Work

Since Rabin [11] showed the decidability of the monadic second order theory of
the binary tree this result has been applied and extended to various mathematical
structures, including algebraic trees [4] and a hierarchy of graphs [3] obtained by
iterated unfolding and inverse rational mappings from finite graphs. The interest
in these kinds of structures arose in recent years in the context of verification of
infinite state systems [9, 13].

Recently Knapik, Niwiński and Urzyczyn [6] showed that the monadic second
order (MSO) theory of any infinite tree generated by a level-2 grammar satisfying
a certain “safety” condition is decidable. Later they generalised [7] this result
to grammars of arbitrary levels, but still requiring the “safety” condition. It
remains open whether this condition is actually needed. In this article we give a
partial answer: For grammars of level 2 the condition can be dropped.

Two observations are essential to obtain the result. The first, albeit trivial,
is that if we go down to level 0, we will never actually perform a substitution,
thus we need not worry that substitution is capture avoiding. If you don’t do a
substitution, you’ll never do a wrong substitution!

The second observation is that even though first-order variables stand for
words or trees of unbounded lengths, all the information we need to know in order
to check for a particular property is the transition function of the automaton
verifying this property. And this is a bounded amount of information!

� On leave from Ludwig-Maximilians-Universität München. Supported by a postdoc-
toral fellowship of the German Academic Exchange Service (DAAD).

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 39–54, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

40 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

Therefore the run of a Büchi automaton on an ω-word can be simulated by a
Büchi tree automaton on a second order lambda tree denoting this word. More-
over, this idea extends to the simulation of an alternating parity-tree automaton
by a two-way alternating parity tree automaton. It follows that the full MSO
theory of the tree language generated by a level-2 recursion scheme is decidable.

It should be mentioned that in another article [1] the authors show a related
result. For word languages general level-2 recursion schemes and safe recursion
schemes indeed produce the same set of languages and the transformation is ef-
fective. It is yet unclear whether that result extends to tree languages. Moreover,
the authors believe that the conceptual simplicity of the method presented here
makes it worth being studied in its own right.

Only after finishing the work presented here the authors became aware of a
manuscript by Knapik, Niwiński, Urzyczyn and Walukiewicz [8] who also solved
the level-2 decidability problem. They used a new kind of automaton equipped
with a limited “backtracking” facility.

The article is organised as follows. In Sections 2 and 3 we introduce lambda
trees and recursion schemes. Section 4 shows the expected connection between
the denotation of a recursion scheme and that of the associated lambda tree.
Section 5 explains the main technical idea of the article: if we are interested
in a particular property, all we need to know about a first-order object can be
described by a bounded amount of information. Sections 6 and 7 show how the
idea can be used to obtain the decidability of the MSO theory of words and trees
given by level-2 recursion schemes.

2 Lambda Trees

Since the main technical idea for deciding properties of recursion schemes is
to translate them to properties of infinitary lambda terms [5] we first have to
consider these terms qua trees. In this section we will only handle abstractions
that (morally) handle first-order abstractions (even though we give an untyped
definition). The extension to function abstractions is explained in Section 5.

We presuppose a countably infinite set V of variables x.

Definition 1 (Lambda Trees). A lambda tree is a, not necessarily well-founded,
tree built from the binary constructor application @, and for every variable x a
unary abstraction constructor λx, and nullary variable constructor vx. Moreover
there is an unspecified but finite set Σ of constants, called “letters”.

A lambda tree defines a, potentially partial, ω-word in a natural way made
precise by the following definitions. They are motivated by ideas of geometry of
interaction [2] and similar to the ones presented by Knapik et al [6].

Definition 2 (The Matching Lambda of a Variable). Let p be a node in
a lambda tree that is a variable vx. Its matching path is the shortest prefix (if it
exists) of the path from p to the root of the tree that ends in a λx node. We call
the last node of the matching path the matching lambda of the variable node p.

The Monadic Second Order Theory of Trees 41

If no such path exists, we say the variable node p is a free variable vx. Variable
nodes that are not free are called bound.

In this definition, if we replace “root of the tree” by a node r we get the
notion of a variable free in the (located) subterm r.

Definition 3 (Matching Argument of a Lambda or a Letter). For a
lambda tree we define the k-th argument of a node, which is assumed to be
a lambda or a letter, to be the right-hand child of the application node (if it
exists) where, when walking from the given node to the root, for the first time
the number of applications visited exceeds the number of abstractions visited
(not including the starting node) by k. We presuppose that on this path, called
the matching path, application nodes are only visited from the left child. We
define the matching argument of a λ-node to be its first argument.

Definition 4 (Canonical Traversal of a Lambda-Tree). The canonical
traversal of a lambda tree starts at the root of the tree. From an application we
go to the left subtree, from an abstraction we go to the body. From a letter we
go to its first argument. From a variable we first go to the matching lambda and
then from there to the matching argument where we continue as above.

If we collect on the canonical traversal all the letters we pass downwards (that
is, in direction from the root to the leaves) in order of traversal we get a, maybe
partially defined, ω-word. This word is called the word met on the canonical
traversal. If, instead of always going to the first argument when we meet a letter
we branch and continue with the i’th argument, for 1 ≤ i ≤ k where k is the
“arity” of the letter (assuming a fixed assignment), we obtain a tree, the tree of
the canonical traversal.

Proposition 5. In the canonical traversal (and in every path of the canonical
tree traversal) every node is visited at most three times. More precisely, each
node is visited at most once from each direction (top, left and right child).

Remark 6. It should be noted that all the notions and results in this section are
invariant under renaming of bound variables in a lambda tree in the usual way.
This will be used tacitly in the sequel.

3 Recursion Schemes

Definition 7 (Simple Types and Their Level). Given a base type ι, the
simple types over ι are inductively defined as the smallest set containing ι that
is closed under forming arrow types σ → τ . We use the expression “simple
type” if ι is understood from the context or irrelevant. We understand that →
associates to the right, so σ → τ → τ ′ is short for σ → (τ → τ ′).

The level lv(τ) of a simple type is inductively defined by lv(ι) = 0 and
lv(σ → τ) = max(lv(σ) + 1, lv(τ)). We use the expression “type of level i” to
mean types τ with lv(τ) = i.

42 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

Definition 8 (Combinatory Terms). Given a set C of typed constants and
a set V of typed variables, the sets T τ (C,V) of terms (over C and V) of type τ
is inductively defined as follows.

– x ∈ T τ (C,V) if x ∈ V is of type τ and C ∈ T τ (C,V) if C ∈ C is of type τ
– if s ∈ T τ→σ(C,V) and t ∈ T τ (C,V) then st ∈ T σ(C,V)

Proposition 9. Every term in T τ (C,V) is of one of the following forms.

– C
−→
t with C ∈ C of type −→τ → σ and ti ∈ T τi(C,V)

– x
−→
t with x ∈ V of type −→τ → σ and ti ∈ T τi(C,V)

Definition 10 (Recursion Scheme). A level-2 recursion scheme is given by
the following data.

– A finite set N of typed constants, called “non-terminals”. Every non-terminal
has a type of level at most 2. Moreover, there is a distinguished non-terminal
S of level 0, called the start symbol.

– A finite set Σ of typed constants, called “terminal symbols”. Every terminal
symbol has a type of level at most 1.

– Maybe some binder symbol �. If it is present, then for every variable x, a
new constant �x of type ι → ι and a new constant vx of type ι is present.
We consider any occurrence of vx in a term of the form �xt to be bound,
and identify terms that are equal up to renaming of bound variables in the
usual way. (However, we still formally consider the constants �x and vx as
additional terminal symbols.)

– A set of recursion equations of the form N−→x = e, where N is a non-terminal,
the −→x are pairwise distinct typed variables such that N−→x is a term of type
ι and e ∈ T ι(N ∪ Σ, {−→x }).
If a binder is present we require moreover, that every occurrence of a constant
�x is in the context �xt and that every occurrence of vx is bound in e.

Note that we do not insist that there is at most one equation for every non-
terminal. In general a recursion scheme denotes a set of trees.

A level-1 or level-0 recursion scheme is a recursion scheme where all non-
terminals have a type of level at most 1 or at most 0, respectively. A recursion
scheme is said to be a “word recursion scheme”, if all terminals have type ι → ι;
it is called “pure” if no binder is present.

Remark 11. Due to the native binding mechanism a non-pure recursion scheme
currently is only a theoretical concept. However, in the only case where we
need an effective construction on recursion schemes, that is for level-0 recursion
schemes, we can always use the given names and needn’t do any renaming.

Example 12. Let Σ = {a, b, f, e} a set of terminal symbols, each of which has
type ι → ι. For N = {F,A,B, S,E} a set of non-terminals with F of type
(ι → ι) → ι → ι → ι and E, A, B, S of type ι. The following equations define a
pure level-2 recursion scheme.

The Monadic Second Order Theory of Trees 43

Fϕxy = F (Fϕy)y(ϕx) A = aE S = FfAB

Fϕxy = y B = bE E = eE

Here x and y are variables of type ι and ϕ is a variable of type ι → ι. It should
be noted that this recursion scheme is neither safe nor deterministic.

Let Σ̃ = Σ ∪ {@} with @ of type ι → ι → ι and λ a binder. Let F̃ be of type
ι → ι. Then a (non-pure) level-1 recursion scheme over Σ̃ with non-terminals
Ñ = {F̃ , Ã, B̃, S̃, Ẽ} would be given by

F̃ϕ = λx(λy(@ (@(F̃ (@(F̃ z)vy))vy)
(@ϕvx)))

where ϕ is a variable of type ι. The other equa-
tions are

F̃ϕ = λx(λyy)

Ã = @aẼ B̃ = @bẼ

S̃ = @(@(F̃ f)Ã)B̃ Ẽ = @eẼ

λx�
λy�
@�

��
@�

��
@�
�
vx��

ϕ
�
vy��

F̃ϕ =

@�
�
vy��

F̃ϕ

F̃

In fact, this is the reduced scheme (Definition 18) of the first scheme.

Proposition 13. Let t ∈ T τ (N ,X), with lv(τ) ≤ 1 and all variables in X of
level at most 1 and all symbols in N of level at most 2. Then every occurrence
of an N ∈ N is in a context N

−→
t such that N

−→
t has type of level at most 1.

Corollary 14. In every term e at the right hand side of a recursion equation
of a level-2 recursion scheme it is the case that every non-terminal has all its
level-1 arguments present.

Remark 15. Corollary 14 shows that we may assume without loss of generality
that in every non-terminal symbol of a level-2 recursion scheme the higher order
arguments come first. In other words, at level-2 we can assume types to be
homogeneous [7]. From now on we will use this assumption tacitly.

Unwinding a recursion scheme yields a (potentially non well-founded) tree,
labelled with terminal symbols. Following ideas of Knapik et al [6] we will now
define the lambda tree associated with a level-2 pure recursion scheme. It will
be generated by a level 1 grammar, the “reduced recursion scheme”.

Definition 16 (Reduced Type of Level 2). For τ = τ1 → . . . → τn → ι →
. . . → ι → ι with the τi types of level 1 we define inductively τ ′ = τ ′1 → . . . →
τ ′n → ι.

Definition 17 (Reduced Terms). For any term e ∈ T (N ∪Σ, {−→x }) we define
a reduced term e′ inductively as follows.

44 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

(C−→
t −→s)′ = (C

−→
t′)@s′1@ . . .@s′n

(ϕ−→
t)′ = ϕ@t′1@ . . .@t′n

x′ = vx

Here C ∈ N ∪ Σ is a non-terminal or a letter with −→
t terms of type of level 1

and −→s terms of level 0; ϕ ∈ {−→x } a variable of non-ground type with arguments−→
t necessarily of type of level 0 and x a variable of ground type; @ is a terminal
of type ι → ι → ι, here written in infix.

Definition 18 (Reduced Recursion Scheme). For a level-2 recursion scheme,
where we assume without loss of generality that all non-terminals have their first-
order arguments first, we define a level-1 recursion scheme, the reduced recursion
scheme, defining a lambda tree in the following way.

Terminals are those of the original recursion scheme, however with reduced
type, and a new symbol @: ι → ι → ι. The new recursion scheme has a binder
λ. Non-terminals are the same as in the original, however with the type reduced.

For any rule of the original recursion scheme of the form N−→ϕ −→x → e where
−→ϕ are the level-1 arguments and −→x the level-0 arguments we add a rule N−→ϕ →−→
λx .e′ with e′ being the reduced term of e.

Definition 19 (Typed Lambda Trees). A typed lambda tree is a lambda tree
with nodes labelled by simple types in such a way that

– Every variable is bound and if it is labelled with type σ, then the matching
lambda has type σ → τ for some τ ; moreover, every abstraction node is
labelled with a type of the form σ → τ and its child is labelled with τ .

– If an application is labelled τ then, for some type σ the left child is labelled
by σ → τ and the right child by σ.

– Every terminal f ∈ Σ is labelled by its type.

A lambda tree is finitely typed if it is a typed lambda tree and all types come
from the same finite set.

Proposition 20. The reduced recursion scheme of a pure level-2 word recursion
scheme is finitely typed.

Proposition 21. If a lambda tree is finitely typed then the difference in the
number of lambdas and applications seen on the matching path of an abstraction
is bounded.

Corollary 22. In the reduced recursion scheme of a pure level-2 word recursion
scheme the matching argument of an abstraction can be found by a finite state
path walking automaton.

4 Reductions and Denotations

In this section we make precise our intuitive notion of the tree denoted of re-
cursion scheme, the (ω-word or) tree denoted by a lambda tree, and prove the
needed properties. This essentially recasts results of Knapik et al [6].

The Monadic Second Order Theory of Trees 45

Definition 23 (Reduction Relation). Let S be a recursion scheme. Its asso-
ciated reduction relation →S on finite terms is inductively defined as follows.

– N
−→
t →S e

[−→
t /−→x] if there is a recursion equation N−→x = e in S.

– If t →S t′ then ts →S t′s. If f is a terminal symbol and t →S t′ then
f−→s t →S f−→s t′.

– In particular we have: If t →S t′ then λxt →S λxt
′.

If in any reduction a variable is substituted in the scope of a binder then appro-
priate renaming is assumed to prevent the variable from getting bound at a new
binder. In other words our reduction is capture avoiding in the usual sense. As
we identify α-equal terms this is a well-defined notion.

Intuitively t⊥ is t with all unfinished computations replaced by ⊥. More
precisely we have the following

Definition 24 (Constructed Part of a Term). For t a term we define t⊥

inductively as follows.

– f⊥ = f for f ∈ Σ a terminal and N⊥ = ⊥ for N ∈ N a non-terminal.
– If s⊥ = ⊥ then (st)⊥ = ⊥. Otherwise (st)⊥=s⊥t⊥.
– In particular we have (λxt)⊥ = λxt

⊥.

Moreover, we define a partial order � on terms inductively as follows.

– ⊥ � t and f � f for every constant f .
– If s � s′ and t � t′ then st � s′t′.
– In particular: If t � t′ then λxt � λxt

′.

This order is obviously reflexive, transitive and directed complete.

Lemma 25. If t →S t′ then t⊥ � t′⊥.

Definition 26 (Terms Over a Signature). The set T ∞(Σ) of not neces-
sarily well founded terms over the signature Σ is coinductively defined by “If
t ∈ T ∞(Σ) then t = f

−→
t for some t1, . . . , tn ∈ T ∞(Σ) and f ∈ Σ of type

ι → . . . → ι︸ ︷︷ ︸
n

→ ι”.

Definition 27 (Language of a Recursion Scheme). Let S be a recursion
scheme with start symbol S. Then t ∈ T ∞(Σ) belongs to the language of S, in
symbols t ∈ L(S), if t is finite and there are terms S = t0 →S t1 →S . . . →S
tn = t; or t is infinite and there are terms S = t0 →S t1 →S . . . where t is the
supremum of the t⊥i .

It should be noted that T ∞(Σ), and hence the language of a recursion scheme,
contains only total objects. This, however, is not a restriction, as introducing a
new terminal fR : ι → ι and transforming every rule N−→x = e to N−→x = fRe
guarantees the defined trees to be total. Note moreover, that “removing the
repetition constructors fR” is MSO definable.

46 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

Remark 28 (Status of Binder). If a binder is present in a recursion scheme, then
Definition 27 is only defined up to renaming of bound variables, as α-equal terms
are identified. However, as all our notions on lambda trees are invariant under
α-equality we can safely assume that some canonical α-variants of the generated
lambda trees are chosen.

We note moreover that in the only case where we actually need this construc-
tion to be effective, that is in the case of a level-0 recursion scheme, only closed
terms are replaced by other closed terms, so we can (and will) always choose the
variable named in the underlying equation.

@�
��

b
e
e...

a
e...

@�
��

λx�
λy�
@�

��
@�

��
@�
�
vx��

f
�
vy��

λx�
λz !�
@�

��
@�

��
@�
�
vx���

vz��... @�
�
vy��...

�

�

Example 29. The figure on the left shows a
lambda tree of the language given by the second
grammar in Example 12 with added arrows in-
dicating some of the bindings; note in particular
the renaming at the marked node. This example
will be continued in Example 41.

Proposition 30 (Level-0 Trees). Let S be a
level-0 recursion scheme. Since in its reductions
no capture can occur (since there are no substi-
tutions), we may assume it to be pure (and con-
sider λx and vx as usual terminals). Then L(S)
is the language of a Büchi tree automaton.

Definition 31 (Reduction Relation with
Beta). Let S ′ be a recursion scheme with binder
λ and distinguished binary terminal @. We de-
fine a relation →β

S′ inductively as follows.

– N
−→
t →β

S′ e
[−→
t /−→x] if there is a recursion

equation N−→x = e in S.

– (λxt)@s →β
S′ t [s/vx]. We recall that our notion of substitution is understood

to be capture free.
– If t →β

S′ t′ then t@s →β
S′ t′@s. Moreover, if t is of the form f@r1@ . . .@rn

and s → s′ then t@s →β
S′ t@s′.

We also define t⊥β as t with all unfinished computations replaced by ⊥. This
time, however, we consider @ as denoting application and the f ∈ Σ as belong-
ing to a reduced recursion scheme. That is we want ((λx . . .)@a)⊥β = ⊥ and
(f@a)⊥β = fa.

Definition 32 (Constructed Part of a Recursion Scheme with Beta).
For t a term we define t⊥β inductively using the “vector notation” characterisa-
tion of terms, provided by Proposition 9.

– f⊥β = f for f ∈ Σ and
(
N

−→
t
)⊥β

= (λxt)⊥β = ⊥.
– If t⊥β = f−→r for some f ∈ Σ then (t@s)⊥β = t⊥βs⊥β ; otherwise (t@s)⊥β = ⊥.

The Monadic Second Order Theory of Trees 47

Lemma 33. If t →β
S′ t′ then t⊥β � t′⊥β.

Definition 34 (The Beta-Language of a Recursion Scheme). Let S ′ be a
recursion scheme with start symbol S, binder λ and distinguished non-terminal
@. Then t ∈ T ∞(Σ) belongs to the β-language of S ′, in symbols t ∈ Lβ(S ′), if
t is finite and there are terms S = t0 →β

S′ t1 →β
S′ . . . →β

S′ tn with t⊥βn = t, or t

is infinite and there are terms S = t0 →β
S′ t1 →β

S′ . . . and t is the supremum of
the t⊥βi .

Lemma 35. Let S be a recursion scheme and S ′ the reduced scheme. Then
w ∈ L(S) ⇔ w ∈ Lβ(S ′).

Proof. First we note that N−→s −→
t →β

S′ (−→λx .e [−→s /−→ϕ])@t0@ . . .@tn →β
S′ . . . →β

S′

e
[−→s −→

t /−→ϕ −→x]. So a reduction sequence for S approximating some term w ∈
L(S) can be transformed into a reduction sequence for S ′ approximating the
same w ∈ L(S ′).

Moreover, we note that if in S ′ we have that t →β
S′ t′ by unfolding of

a non-terminal, that is, by replacing somewhere in t the expression N−→s by−→
λx .e [−→s /−→ϕ] then this happens in a context to produce r = (−→λx .e [−→s /−→ϕ])@t1@
. . .@tn. Moreover r⊥β = ⊥ and every →β

S′ -reduction sequence starting with r
has to first reduce the obvious beta redexes yielding e

[−→s ,
−→
t /−→ϕ ,−→x] with all

reducts r′ before obtaining r′⊥β
= ⊥.

Lemma 36. Let S ′ be the reduced recursion scheme of a pure level-2 recursion
scheme S. Then the word or tree met on the canonical traversal of the lambda-
tree denoted by S ′ and the word denoted by S ′ coincide.

Corollary 37. For a pure recursion scheme, its language can also be described
as the words met on the canonical traversals of the trees obtained by the reduced
recursion scheme.

5 First Order Functions

Recall that our main idea is to simulate an automaton walking along the word
or tree met on the canonical traversal. By Corollary 37 this suffices to test for a
given ω-regular property. However, we currently have two unsolved problems.

– The definition of the tree denoted by a first-order recursion scheme involves
binders and substitution is assumed to be performed in a capture avoiding
manner. This no longer results in local conditions on testing whether a tree
is generated by a given recursion scheme.

– There is no obvious way to characterise level-1 trees by automata. So the
idea of intersecting an automaton testing whether the tree belongs to the
language of the recursion scheme and an automaton simulating the Büchi-
automaton does not work.

48 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

Fortunately, both problems simultaneously disappear if we perform the same
trick again, and denote parts of the lambda tree by second-order abstractions.

Definition 38 (Second Order Lambda Trees). A second-order lambda tree
is a tree built from the following constructors.

– Letters f , g, h, . . . , “application” @, “abstraction” λx and “variables” vx

– “function abstraction λϕ” and “function variables ϕ” and “function appli-
cation @”.

Definition 39 (Typed Second Order Lambda Trees). A second-order lambda
tree is called typed if it arises from a level-2 recursion scheme by replacing every
rule N−→ϕ −→x → e by

N → −→
λϕ

−→
λx e′′

where the −→ϕ are the first-order arguments of N and the −→x are the ground type
arguments of N . Here e′′ is the term e reduced twice in the sense of Definition 17;
the first time with respect to λ and @ and the second time with respect to λ
and @.

Remark 40. Note that in a level-0 recursion scheme no substitution is
performed and hence no variable renaming is necessary. Therefore, in ac-
cordance with Remark 28, we assume that always the variable name of the
underlying equation is chosen. In particular we only need a fixed amount
of variables.

Example 41. The figure on the right shows a second-order lambda
tree associated with the grammar in Example 12. The tree corre-
sponds to the one shown in Example 29, with the same bindings
indicated. Note that no care had to be taken with the naming of the
variables.

Remark 42. Since all higher order arguments are present
and the function abstractions λϕ come first in the unfolding
of every nonterminal, first-order abstraction and application
come always in the pattern

(λ−→ϕ .t)@t1@ . . .@tn

which we will in the following abbreviate by

subst(t,−→ϕ ,
−→
t)

It should be noted that –as only finitely many
arities are possible– this introduction of new
subst(·,−→ϕ , ·) constructor symbols does not de-
stroy the automata-theoretic description of the
tree language.

@�
��

b
e
e...

a
e...

@�
��

@
��

fλϕ

λx�
λy�
@�

��
@�

��
@�
�
vx��

ϕ
�
vy��@

�� ��
@�
�
vy��...

λϕ

λx�
λy�
@�

��
@�

��
@�
�
vx��

ϕ
�
vy��...

�

�

The Monadic Second Order Theory of Trees 49

Proposition 43. Consider a typed lambda tree for words, that is, with every
letter f ∈ Σ of type ι → ι. The canonical traversal continues in one of the
following ways when entering a subterm of type ι → . . . → ι︸ ︷︷ ︸

k

→ ι.

– continues forever within this subterm
– passes finitely many letters and eventually hits a variable denoting one of

the k function arguments
– it passes finitely letters and eventually hits a free variable of the subterm

The crucial point about Proposition 43 is that it shows that only a fixed
amount of information is needed to describe a first-order variable ϕ. This will
allow us to split the traversal into two parts in the style of a logical “cut”, and
non-deterministically guess the splittings, carrying our guesses in the state of
the automaton.

6 Word Languages

Theorem 44. For any ω-regular property of words, fixed set of types and vari-
ables, there is a Büchi tree automaton that accepts precisely those second order
lambda trees over the given set of variables and typed by the given types, where the
denoted word satisfies the regular property. (We do not care what the automaton
does on input trees that are not appropriately typed second-order lambda-trees.)

Proof. Let the ω-regular property be given as a nondeterministic Büchi word
automaton. First assume that there are no first-order variables. Then what we
have to do is to assign each of the visited letters the state it has in a successful
run (which we guess) and check local correctness and acceptance condition.

To make the transitions completely local, we use the fact that every node
is visited at most three times so that we can guess for each node up to three
annotations of the form “a automaton coming from direction . . . in state . . . is
continuing its path here”, “ . . . is searching upwards for variable x” or “ . . . is
looking for the k’th argument”. Since the number of arguments is bounded by
the type for every such statement only a fixed amount of information is needed
and the correctness of the guessed traversal can be checked locally.

Concerning the acceptance condition: given that each node of the lambda tree
is visited only finitely many times, it must be the case that we visit infinitely
many nodes in order to traverse an infinite word. As the automaton moves locally,
at every node where an automaton enters, but doesn’t come back there must
be a child where an automaton enters but doesn’t come back. Following these
nodes traces a path that is visited infinitely often by the simulated automaton.
Acceptance checking results in only signalling acceptance on the distinguished
path (which we can guess) only if the automaton visits it having visited an
accepting state since the last visit of the distinguished path.

Now assume that first-order variables are present. If we then consider walking
just down the subst(t,−→ϕ ,

−→
t) nodes as if they were not present, we might at some

point hit a first-order variable ϕ, that stands for a tree. The path might either

50 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

continue forever in the tree denoted by ϕ or come back after finitely many steps
asking to continue in one of its k arguments.

We note that there is still a path that is visited infinitely often: either the
main branch of a subst(·,−→ϕ , ·) node or the subtree the variable stands for where
the automaton enters, but never returns.

What remains to be shown is that local correctness can be tested. To do so,
we keep for every of the (finitely many!) first-order variables a table with our
guess of the behaviour of the variable in the current context. Such an entry is
one of the following.

– “The variable will not be needed.”
– “The successful run will enter in state q and will remain there forever.”
– “When entering this variable the path will come back asking for argument

k and the transition table for the word read in between is δ.”

Here a “transition table” is understood as a table saying for every pair (p, q) of
states of the simulated automaton, whether, when entering with state p we can
leave with state q and whether we can do so with a visit of an accepting state
in between.

Obviously only a fixed amount of information is needed to store this table.
At every subst(t,−→ϕ ,

−→
t)-“node” we update the table for the variables −→ϕ and

our offspring to subtree ti verifies our guess for ϕi.

– For the guess “The variable will not be needed” we need to verify nothing.
So we just accept this subtree.

– For the guess “The successful run will enter here with state q” we have to
simulate a successful run starting in state q.

Note that we will continue producing the successful run even if this in-
volves going upwards beyond the subst(·,−→ϕ , ·) where we entered the side
branch. This is precisely the device that allows us to work without a safety
condition.

The picture on the right shows an ex-
ample of such a run in a situation where
blind substitution would produce variable
capture. It should be noted that above the
subst(·, ϕ, ·) node all the annotations are the
same, as if the automaton looking for vari-
able x came directly from the main branch,
correctly jumping over the λx there.

– For the guess “will come back to argument k
with transition table δ”, we have to produce
a symbolic run, i.e., a run with transition
tables rather than just states. But as tran-
sition tables can be updated locally when
reading a letter we can produce such a sym-
bolic run in the same way, as we would pro-
duce a usual run.

q q′′′;x?

subst(·, ϕ, ·)
�

�
q

...
q′

�λx

q′

�@
�

�

q′

�

ϕ
...

ϕ = [q′]

����q′
q′′′;x?

...

q′′ q
′′′;x?

�@
�

�
q′′

q′′′
�

�q′′′ q′′′;x?

f
�vx

The Monadic Second Order Theory of Trees 51

All this can be checked locally. Here we note that the guessing and verifying
mechanism can be used for first-order variables, even if we are in a branch that
currently verifies a guess. The reason is that our guesses are absolute ones and we
needn’t care what we use them for. The figure after this proof shows an example
of such a guessed and verified run.

When our path now hits a second order variable ϕ, we do the following,
depending on our guess of how ϕ behaves. If we have guessed that ϕ will not
be needed, we fail. If we have guessed that ϕ will be entered in state q then
we accept if and only if the current state is q. If we have guessed that the path
will come back asking for argument k, we choose a state q′ in accordance with
the guessed transition table and make sure the node above has annotation “an
automaton in state q′ coming from left below searching for argument k”.

q

subst(·, ϕ, ·)

ϕ = δfgfg; 1

������

������
q

q
q′ q′

q′

q′′ q′′

q′′

q′ ∈ δfgfg(q)
q′′ ∈ δfgfg(q′)

@�
�

�
�

�
ϕ �@

�
�

�
�ϕ ...

ϕ = δfg; 1

δε

δε

δε

δε

δfg
δfg

δfg

δfgfg
δfgfg

δfgfg;xδfgfg;x

δfgfg;x

δfgfg;x

δfgfg; 1

δfgfg; 1

subst(·, ϕ, ·)
�

�

���������λx

�@
�

�
�

�ϕ �@
�

�
�

�ϕ �vx

�λx

�@
�

�
�

�f �@
�

�
�

�g �vx

δε

δfg; 1

δε δfg;x

δε

δf δf
δfg;x

δf
δfg

δfg
δfg;x

Corollary 45. Given a level-2 word recursion scheme and an MSO property, it
is decidable whether some word can be generated with the given recursion scheme
that has the given property.

7 Tree Languages

In this section we show how the proof of Theorem 44 can be extended to tree
languages. To do so, we will use a result of Vardi [12] showing that the emptiness
problem for two way alternating parity tree automata is decidable.

This has the advantage that we can follow the canonical paths directly (even
upwards) and we can use our own alternating power to follow the alternations
of the simulated automata and we use our own parity conditions to check the
parity conditions of the simulated automaton. The only non-trivial point is still
the case when we meet a first-order variable. Here we branch and do the same
“guess and verify” as in the word case; this time with guesses of the form

52 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

“There is a successful run in the tree denoted by ϕ, starting from state
q with automata entering the arguments of this function with at most
the given states and the given parities visited in between.”

Theorem 46. For any alternating parity tree automaton there is a two-way
alternating parity tree automaton that accepts precisely those typed second order
lambda-trees denoting trees that have an accepting run of the given automaton.

Proof. Our aim is to simulate an accepting run of an alternating one-way parity
tree automaton on a tree denoted by the recursion scheme.

Since we now can also walk backwards we follow the path directly and we use
our own alternating power to do the alternating of the simulated automaton. The
only thing that remains to show is what we do, if we hit a first-order variable.

In short, we guess what the run through that variable would look like and
then, on the one hand, send an automaton upwards to verify the guess and on
the other hand simulate those paths of the tree that come up from the variable
again. Of course we must make sure that the guess can be stored in the state
of the automaton walking upwards and that there is only a bounded number of
possible automata coming out of the variable and continue their run here (so
that we can use our alternating power to branch off in such a strong way). This
is achieved by the following observations.

– Automata coming out in the same state, with the same set of parities visited,
and asking for the same argument can be merged into a single automaton,
as automata entering the same tree with the same condition either all have
an accepting run, or none.

– The question whether the automata on the paths that never leave the (tree
denoted by) the first-order variable have an accepting run can be checked
by the automaton walking upwards towards the variable.

Hence our guess “There is a successful run with automata entering the arguments
of this function with at most the given states” can be described by a subset of
Q×{1, . . . , k}×P(Ω) where Q is the set of states of the simulated automaton,
k the arity of the variable (which is bounded by the maximal number of arrows
in any non-terminal of the original grammar) and P(Ω) the power set of the set
of parities of the original automaton. So our guess comes from a fixed finite set.

The automaton walking upwards verifies its guess in the following way. It
enters in the designated start state and simulates a run in the usual way, except
that it remembers in its states the following information.

– The fact that we are in verifying a guess and its minimal parity visited since
entering here.

– The set of allowed state/argument/acceptance triples for leaving the subtree
“upwards”

This information is only used when walking upwards and hitting the subst(·,−→ϕ , ·)-
node from somewhere different than the main-branch, i.e., when leaving the
subtree denoted by the variable. Then we check, whether we leave in one of the

The Monadic Second Order Theory of Trees 53

allowed states. Of course when hitting the subst(·,−→ϕ , ·) node while searching for
a variable, we continue our simulation (just forgetting that we were in verifying
mode); we can do this, as this path will never ask for an argument of ϕi. Again,
this is the device, that allows us to work without a safety condition.

Corollary 47. The MSO theory of tree languages given by level-2 recursion
schemes (that need not be safe or deterministic) is decidable.

Proof. For every MSO formula there is an alternating parity tree automaton
accepting those trees that satisfy it [11, 10]. Since level-0 recursion schemes are
given by tree automata, we can intersect the language of the automaton ob-
tained by Theorem 46 with the language of the corresponding level-0 recursion
scheme. The decidability of the non-emptiness of two-way alternating parity tree
automata was shown by Vardi [12].

References

1. Klaus Aehlig, Jolie G de Miranda, and C H Luke Ong. Safety is not a restriction at
level two for string languages. In Foundations of Software Science and Computation
Structures (FOSSACS ’05), April 2005. To appear.

2. A. Asperti, V. Danos, C. Laneve, and L. Regnier. Paths in the lambda-calculus. In
Proceedings of the Ninth Annual IEEE Symposium an Logic in Computer Science
(LICS ’94), pages 426–436, July 1994.

3. D. Caucal. On infinite transition graphs having a decidable monadic theory. In
F. M. auf der Heide and B. Monien, editors, Proceedings of the 23th International
Colloquium on Automata, Languages and Programming (ICALP ’96), volume 1099
of Lecture Notes in Computer Science, pages 194–205. Springer Verlag, 1996.

4. B. Courcelle. The monadic second-order logic of graphs IX: Machines and their
behaviours. Theoretical Comput. Sci., 151(1):125–162, 1995.

5. J. R. Kennaway, J. W. Klop, and F. J. d. Vries. Infinitary lambda calculus. The-
oretical Comput. Sci., 175(1):93–125, Mar. 1997.

6. T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperal-
gebraic trees. In S. Abramsky, editor, Proceedings of the 5th International Con-
ference on Typed Lambda Caculi and Applications (TLCA ’01), volume 2044 of
Lecture Notes in Computer Science, pages 253–267. Springer Verlag, 2001.

7. T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy.
In M. Nielson, editor, Proceedings of the 5th International Conference Foundations
of Software Science and Computation Structures (FOSSACS ’02), volume 2303 of
Lecture Notes in Computer Science, pages 205–222, Apr. 2002.

8. T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars, panic
automata, and decidability. Manuscript, Oct. 2004.

9. O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning
about infinite-state systems. In E. A. Emerson and A. P. Sistla, editors, 12th
International Conference on Computer Aided Verification (CAV ’00), volume 1855
of Lecture Notes in Computer Science, pages 36–52. Springer Verlag, 2000.

10. D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Comput. Sci., 54:267–276, 1987.

11. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, July 1969.

54 K. Aehlig, J.G. de Miranda, and C.-H.L. Ong

12. M. Y. Vardi. Reasoning about the past with two-way automata. In K. G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Collo-
quium on Automata, Languages and Programming (ICALP 98), volume 1443 of
Lecture Notes in Computer Science, pages 628–641. Springer Verlag, 1998.

13. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and
Computation, 164(2):234–263, Jan. 2001.

A Feasible Algorithm for Typing in
Elementary Affine Logic

Patrick Baillot1,� and Kazushige Terui2,��

1 Laboratoire d’Informatique de Paris-Nord / CNRS, Université Paris-Nord, France
pb@lipn.univ-paris13.fr

2 National Institute of Informatics, Tokyo, Japan
terui@nii.ac.jp

Abstract. We give a new type inference algorithm for typing lambda-terms in
Elementary Affine Logic (EAL), which is motivated by applications to complexity
and optimal reduction. Following previous references on this topic, the variant
of EAL type system we consider (denoted EAL�) is a variant where sharing is
restricted to variables and without polymorphism. Our algorithm improves over
the ones already known in that it offers a better complexity bound: if a simple type
derivation for the term t is given our algorithm performs EAL� type inference in
polynomial time in the size of the derivation.

1 Introduction

Linear logic (LL) has proved a fruitful logical setting in which computational complexity
can be brought into the picture of the proofs-as-programs correspondence, since the early
work [GSS92]. In particular Light linear logic ([Gir98]) and Soft linear logic ([Laf04])
are variants of LL in which all numerical functions programmed are polynomial time.
Another system, Elementary linear logic (ELL, see [Gir98, DJ03]) corresponds to Kalmar
elementary complexity.

Hence one can consider specific term calculi designed through the Curry-Howard
correspondence and program directly in these languages with the guaranteed complexity
bound ([Rov98, Ter01]). However this turns out in practice to be a difficult task, in
particular because these languages require managing specific constructs corresponding
to the logical modalities. Considering the affine variant (i.e. with unrestricted weakening)
of these systems is an advantage ([Asp98]) but does not suppress the difficulty.

An alternative point of view is to keep ordinary lambda-calculus and use the logic
as a type system: then if a program is well-typed the logic provides a way to execute it
with the guaranteed complexity bound. The difficulty is then moved to the problem of
type inference. This approach and the corresponding type inference problems have been
studied in [CM01, CRdR03] for Elementary affine logic (EAL) and [Bai02, Bai04] for

� Work partially supported by project CRISS ACI Sécurité informatique and project GEOCAL
ACI Nouvelles interfaces des mathématiques.

�� Work partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan. This work
was started during a visit of this author at Université Paris-Nord, in september 2004.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 55–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

56 P. Baillot and K. Terui

Light affine logic (LAL). It was shown that type inference in the propositional fragments
of these systems is decidable.

Typing in EAL is actually also motivated by another goal (see [CM01,ACM00]):
EAL-typed terms can be evaluated with the optimal reduction discipline much more
easily than general terms, by using only the abstract part of Lamping’s algorithm. Thus
EAL has been advocated as a promising type system for performing efficient optimal
reduction, using the following strategy: given a term, first try to infer an EAL type and if
there is one then evaluate the term using Lamping’s abstract algorithm. To succeed, this
approach would require: an efficient type inference algorithm, evidence that the class
of EAL-typable terms is large enough and includes interesting programs, and finally a
proof that those terms are indeed evaluated in a faster way with Lamping’s algorithm.
Maybe intersection types could also be a useful tool in this direction ([Car04]).

However though the type inference problems for EAL and LAL have been shown
decidable the algorithms provided, either for EAL or LAL, are not really efficient. They
all run at least in exponential time, even if one considers as input a simply typed lambda-
term. Our goal is to improve this state-of-the-art by providing more efficient and possibly
simpler algorithms.

In this paper we propose a new algorithm for EAL typing, which is therefore a
contribution to the perspective of EAL-driven optimal reduction discussed above. This
is also a first step for designing an efficient inference procedure for Dual light affine
logic (DLAL, [BT04a]) which is a simplification of LAL and corresponds to Ptime
computation.

Contribution. Technically speaking the main difficulty with EAL typing is to find out
where in the derivation to place !-rules and to determine how many of them to put. This
corresponds in proof-nets terminology to placing boxes. The algorithms in [CM01] and
[CRdR03] are based on two tactics for first placing abstract boxes and then working
out their number using linear constraints. Our approach also uses linear constraints but
departs from this point of view by determining the place of boxes dynamically, at the time
of constraints solving. This method was actually already proposed in [Bai02] for LAL
typing but with several conditions; in particular the term had to be in normal form. In the
present work we show that in a system without sharing of subterms other than variables
(like DLAL, but unlike LAL), this approach is considerably simplified. In particular it
results that:

– one can use as intermediary syntax a very simple term calculus (introduced in
[AR02]) instead of proof-nets like in [Bai02];

– the procedure can be run in polynomial time, if one considers as input a simply
typed lambda-term (instead of an untyped lambda-term).

Outline. The paper will proceed as follows: in section 2 we introduce Elementary affine
logic and the type system EAL� we consider for lambda-calculus; in section 3 we
describe the term calculus (pseudo-terms, or concrete syntax) we will use to denote
EAL� derivations and we prove a theorem (Theorem 8) on EAL� typability; finally in
section 4 we give an EAL� decoration algorithm (based on Theorem 8), prove it can be
run in polynomial time (4.2) and derive from it an EAL� type inference algorithm (4.3).

A Feasible Algorithm for Typing in Elementary Affine Logic 57

Acknowledgements. We are grateful to an anonymous referee who suggested important
remarks about optimal reduction and possible improvement of the present work.

Notations. Given a lambda-term M we denote by FV (M) the set of its free variables.
Given a variable x we denote by no(x,M) the number of occurrences of x in M . We
denote by |M | the structural size of a term M . We denote substitution (without capture
of variable) by M [N/x]. When there is no ambiguity we will write M [Mi/xi] for
M [M1/x1, . . . ,Mn/xn].

Notations for lists: ε will denote the empty list and pushing element a on list l will
be denoted by a :: l. The prefix relation on lists will be denoted by ≤.

2 Typing in Elementary Affine Logic

The formulas of Intuitionistic multiplicative Elementary affine logic (Elementary affine
logic for short, EAL) are given by the following grammar:

A,B ::= α | A � B | !A | ∀α.A
We restrict here to propositional EAL (without quantification). A natural deduction

presentation for this system is given on Figure 1.

A � A
(var) Γ � B

Γ,A � B
(weak)

Γ1 � A � B Γ2 � A

Γ1, Γ2 � B
(appl)

Γ,A � B

Γ � A � B
(abst)

Γ � !A !A, . . . , !A,Δ � B

Γ,Δ � B
(contr)

Γ1 � !A1 · · · Γn � !An A1, . . . , An � B

Γ1, . . . , Γn � !B
(prom)

Fig. 1. Natural deduction for EAL

We call erasure A− of an EAL formula A the simple type defined inductively by:

α− = α, (!A)− = A−, (A � B)− = A− → B−.

Conversely, given a simple type T we say that an EAL formula A is a decoration of T
if we have A− = T .

We will use EAL as a type system for lambda-terms, but in a way more constrained
than that allowed by this natural deduction presentation:

Definition 1. Let M be a lambda-term; we say M is typable in EAL� with type Γ �
M : A if there is a derivation of this judgment in the system from Figure 2.

58 P. Baillot and K. Terui

Notice that the rule (contr) is restricted and an affinity condition is imposed on the rule
(prom). The effect is that it does not allow sharing of subterms other than variables.
This comes in contrast with the computational study of ELL carried out for instance in
[DJ03] but is motivated by several points:

– With our restrictions, terms and derivations correspond more closely to each other.
For instance, the size of a typed termM is always linear in the length (i.e. the number
of typing rules) of its type derivation.

– This approach where sharing is restricted to variables (and not arbitrary subterms)
is enough to define Dual Light Affine Logic (DLAL) typing ([BT04a]) which is
sufficient to capture polynomial time computation.

– It is not hard to see that our notion of EAL�-typability precisely coincides with the
EAL-typability for lambda-terms considered by Coppola and Martini in [CM01] (see
[BT04b]). As argued in their paper [CM01], sharing-free derivations are necessary
to be able to use EAL for optimal reduction with the abstract part of Lamping’s
algorithm.

– Finally: using sharing of arbitrary subterms would make type inference more difficult
. . .

x : A � x : A
(var) Γ �M : B

Γ, x : A �M : B
(weak)

Γ1 �M1 : A � B Γ2 �M2 : A
Γ1, Γ2 � (M1)M2 : B

(appl)
Γ, x : A �M : B

Γ � λx.M : A � B
(abst)

x1 : !A, . . . , xn : !A,Δ �M : B
x : !A,Δ �M [x/x1, . . . , xn] : B

(contr)

Γ1 �M1 : !A1 · · · Γn �Mn : !An x1 : A1, . . . , xn : An �M : B
Γ1, . . . , Γn �M [Mi/xi] : !B

(prom)

In the rule (prom), each xi occurs at most once in M .

Fig. 2. Typing rules for EAL�

3 Concrete Syntax and Box Reconstruction

3.1 Pseudo-Terms

In order to describe the structure of type derivations we need a term calculus more
informative than lambda-calculus. We will use the language introduced in [AR02] (called
concrete syntax in this paper), which is convenient because it has no explicit construct
neither for boxes, nor for contractions. It was stressed in this reference that this syntax
is not faithful for LAL: several type derivations (LAL proofs) correspond to the same
term. However it is faithful for EAL�, precisely because sharing is restricted to variables
and there is no ambiguity on the placement of contractions.

A Feasible Algorithm for Typing in Elementary Affine Logic 59

Let us introduce pseudo-terms:

t, u ::= x | λx.t | (t)u | !t | !t

The basic idea is that ! constructs correspond to main doors of boxes in proof-nets
([Gir87,AR02]) while ! constructs correspond to auxiliary doors of boxes. But note that
there is no information in the pseudo-terms to link occurrences of ! and ! corresponding
to the same box.

There is a natural erasure map (.)− from pseudo-terms to lambda-terms consisting
in removing all occurrences of ! and !. When t− = M , t is called a decoration of M .

For typing pseudo-terms the rules are the same as in Definition 1 and Figure 2, but
for (prom):

Γ1 � t1 : !A1 · · · Γn � tn : !An x1 : A1, . . . , xn : An � t : B

Γ1, . . . , Γn � !t [!ti/xi] : !B
(prom)

We want to give an algorithm to determine if a pseudo-term can be typed in EAL�:
this can be seen as a kind of correctness criterion allowing to establish if boxes can be
reconstructed in a suitable way; this issue will be examined in 3.2.

Actually, when searching for EAL� type derivations for (ordinary) lambda-terms it
will be interesting to consider a certain subclass of derivations. A type derivation in
EAL� is restricted if in all applications of the rule (prom),

(i) the subject M of the main premise x1 : A1, . . . , xn : An � M : B is not a variable,
and

(ii) the last rules to derive auxiliary premises Γi � Mi :!Ai (1 ≤ i ≤ n) are either (var)
or (appl).

A pseudo-term is restricted if it is obtained by the following grammar:

a ::= x | λx.t | (t)t
t ::= !ma,

where m is an arbitrary value in Z and !ma is defined by:

!ma = ! · · · !︸︷︷︸
m times

a if m ≥ 0; !ma = ! · · · !︸︷︷︸
−m times

a if m < 0.

We then have the following proposition (see [BT04b] for the proof):

Proposition 2.

1. (For lambda-terms) if Γ � M : A has a type derivation, then it also has a restricted
type derivation.

2. (For pseudo-terms) Every restricted derivation yields a restricted pseudo-term.

As a consequence, when a lambda-term M is typable in EAL� one can always find a
decoration of M (of the same type) in the set of restricted pseudo-terms.

60 P. Baillot and K. Terui

3.2 Box Reconstruction

We will consider words over the language L = {!, !}�.
If t is a pseudo-term and x is an occurrence of variable (either free or bound) in t,

we define t〈x〉 as the word of L obtained by listing the occurrences of !, ! holding x in
their scope. More formally:

x〈x〉 = ε, (!t)〈x〉 = ! :: (t〈x〉),
(λy.t)〈x〉 = t〈x〉, (y might be equal to x) (!t)〈x〉 = ! :: (t〈x〉),
((t1)t2)〈x〉 = ti〈x〉 where ti is the subterm containing x.

We define a map: s : L → Z by:

s(ε) = 0, s(! :: l) = 1 + s(l), s(! :: l) = −1 + s(l).

We call s(l) the sum associated to l.
Let t be a pseudo-term. We say that t satisfies the bracketing condition if

– for any occurrence of variable x in t:

∀l ≤ t〈x〉, s(l) ≥ 0,

– moreover if x is an occurrence of free variable:

s(t〈x〉) = 0.

That is to say: if ! is seen as an opening bracket and ! as a closing bracket, in t〈x〉 any
! matches a ! (we will say that t〈x〉 is weakly well-bracketed) and if x is free t〈x〉 is
well-bracketed.

We say t satisfies the scope condition if: for any subtermλx.v of t, for any occurrence
xi of x in v, v〈xi〉 is well-bracketed:

– ∀l ≤ v〈xi〉, s(l) ≥ 0,
– and s(v〈xi〉) = 0.

It is obvious that:

Lemma 3. If t is a pseudo-term which satisfies the scope condition, then any subterm
of t also satisfies this condition.

Proposition 4. If t is an EAL� typed pseudo term, then t satisfies the bracketing and
scope conditions.

Proof. By induction on the EAL� type derivations.

For instance the two following pseudo-terms are not EAL� typable:

!λf.!((!f)(!f)!
3
x), !λf.!((!

2
f)(!f)!

2
x),

the first one because it does not satisfy bracketing, and the second one because it does
not satisfy the scope condition (because of the first occurrence of f).

A Feasible Algorithm for Typing in Elementary Affine Logic 61

Now, we can observe the following property:

Lemma 5 (Boxing). If !u is a pseudo-term which satisfies the bracketing and scope
conditions then there exist v, u1, . . . , un unique (up to renaming of v’s free variables)
such that:

– FV (v) = {x1, . . . , xn} and for 1 ≤ i ≤ n, no(xi, v) = 1,
– !u = !v[!u1/x1, . . . , !un/xn],
– v and ui, for 1 ≤ i ≤ n, satisfy the bracketing condition.

Proof. We denote by !0 the first occurrence of ! in the term considered: !0u. Denote by
!1, . . . , !n the occurrences of ! matching !0 in the words !u〈x〉, where x ranges over the
occurrences of variables in !u. Let ui, with 1 ≤ i ≤ n, be the subterms of !u such that
!iui is a subterm of !u, for 1 ≤ i ≤ n. Then it is clear that no ui is a subterm of a uj , for
i
= j.

Let now v be the pseudo-term obtained from u by replacing each !iui by a distinct
variable xi. Let us show that inside t, no occurrence of variable in ui can be bound by a
λ in v. Indeed assume it was the case for an occurrence y in ui and let λy.w denote the
subterm of t starting with λy. Then λy.w would be of the form λy.w′{!ui/xi}, where
v1{v2/x} denotes the syntactic substitution of x by v2 in v1 (i.e. possibly with variable
capture). One can check that the scope condition for t would then be violated, hence a
contradiction.

Therefore we have !u = !v[!u1/x1, . . . , !un/xn] (without variable capture), and by
definition of !i we know that for 1 ≤ i ≤ n, v〈xi〉 is well-bracketed.

Finally let us assume x is an occurrence of free variable in v distinct from xi, for
1 ≤ i ≤ n. Then x is an occurrence of free variable in !u, and as !u is well-bracketed
we have that s(!u〈x〉) = 0, hence x is in the scope of a !0 matching !0. Then !0 must be
one of the !i, for 1 ≤ i ≤ n, hence x is in ui and thus does not occur in v, which gives
a contradiction. Therefore we have FV (v) = {x1, . . . , xn}.

Let us show that v satisfies bracketing. Let y be an occurrence of variable in v. If y is
free we already know that v〈y〉 is well-bracketed. If y is bound then !v〈y〉 = !u〈y〉. So
if l ≤ !v〈y〉 and l
= ε, then s(l) ≥ 1, therefore ∀l ≤ v〈y〉, s(l) ≥ 0. So v satisfies the
bracketing condition. It is easy to check that the uis also satisfy the bracketing condition.

Given a pseudo-term twe call EAL type assignment for t a mapΓ from the variables of
t (free or bound) to EAL formulas. EAL type assignments are simply called assignments
when there is no danger of confusion. This map Γ is extended to a partial map from
subterms of t to EAL formulas by the following inductive definition:

Γ (!u) = !A, if Γ (u) = A,

Γ (!u) = A, if Γ (u) = !A, undefined otherwise,
Γ (λx.u) = A � B, if Γ (x) = A,Γ (u) = B,
Γ ((u1)u2) = B, if Γ (u2) = A and Γ (u1) = A � B, undefined otherwise.

Given a pair (t, Γ) of a pseudo-term t and an assignment Γ (we omit Γ if it is natural
from the context) we say that (t, Γ) satisfies the typing condition if:

– Γ (t) is defined (so in particular each subterm of t of the form (u1)u2 satisfies the
condition above),

62 P. Baillot and K. Terui

– for any variable x of t which has at least 2 occurrences we have: Γ (x) is of the form
!B for some formula B.

Given an EAL� type derivation for a pseudo-term t there is a natural assignment
Γ obtained from this derivation: the value of Γ on free variables is obtained from the
environment of the final judgment and its value on bound variables from the type of the
variable in the premise of the abstraction rule in the derivation.

Proposition 6. If t is an EAL� typed pseudo-term and Γ is an associated assignment
then (t, Γ) satisfies the typing condition.

Moreover it is easy to observe that:

Lemma 7. If (t, Γ) satisfies the typing condition and u is a subterm of t, then (u, Γ)
also satisfies the typing condition.

Now, the conditions on pseudo-terms we have listed up to now are sufficient to ensure
that t is an EAL� typed pseudo-term:

Theorem 8. If t is a pseudo-term and Γ an assignment such that:

– t satisfies the bracketing and scope conditions,
– (t, Γ) satisfies the typing condition,

then t is typable in EAL� with a judgment Δ � t : A such that: Γ (t) = A and Δ is the
restriction of Γ to the free variables of t.

Proof. Let us use the following enumeration for the conditions:
(i) bracketing, (ii) scope, (iii) typing.
The proof proceeds by structural induction on the pseudo-term t. Let us just deal

here with the case t = !u. The complete proof can be found in [BT04b].
By the Boxing Lemma 5, t can be written as t = !v[!u1/x1, . . . , !un/xn] where

FV (v) = {x1, . . . , xn} and each v〈xi〉 is well-bracketed. By Lemma 5 again, each ui

satisfies (i).
By Lemmas 3 and 7 as t satisfies (ii) and (iii), ui also satisfies (ii) and (iii). Therefore

by induction hypothesis we get that there exists an EAL� derivation of conclusion:

Δi � ui : Ai,

where Ai = Γ (ui), for 1 ≤ i ≤ n.
Let us now examine the conditions for v. As t satisfies the bracketing condition and

by the Boxing Lemma 5, we get that v satisfies (i). By the Boxing Lemma again we
know that all free variables of v have exactly one occurrence. It is easy to check that as
t satisfies the scope condition (ii), so does v.

Consider now the typing condition. Let Γ̃ be defined as Γ but Γ̃ (xi) = Γ (!ui)
for 1 ≤ i ≤ n. If y has several occurrences in v then it has several occurrences in
t, hence Γ (y) = !B, so Γ̃ (y) = !B. If (v1)v2 is a subterm of v then (v′1)v

′
2, where

v′i = vi[!u1/x1, . . . , !un/xn], is a subterm of t and Γ̃ (v′i) = Γ (vi). Therefore as (t, Γ)
satisfies the typing condition, then so does (v, Γ̃).

A Feasible Algorithm for Typing in Elementary Affine Logic 63

As Γ (ui) = Ai and Γ (!ui) is defined we have Ai = !Bi and Γ̃ (xi) = Bi. Finally
as v satisfies conditions (i)–(iii), by i.h. there exists an EAL� derivation of conclusion:

x1 : B1, . . . , xn : Bn � v : C,

where C = Γ̃ (v).
If ui and uj for i
= j have a free variable y in common then as t satisfies the typing

condition we have Γ (y) = !B. We rename the free variables common to several of the
uis, apply a (prom) rule to the judgments on ui and the judgment on v, then some (contr)
rules and get a judgment: Δ′ � t : !C. Hence the i.h. is valid for t.

4 A Decoration Algorithm

4.1 Decorations and Instantiations

We consider the following decoration problem:

Problem 9 (decoration). Let x1 : A1, . . . , xn : An � M : B be a simply typed term;
does there exist EAL decorations A′

i of the Ai for 1 ≤ i ≤ n and B′ of B such that
x1 : A′

1, . . . , xn : A′
n � M : B′ is a valid EAL� judgment for M?

For that we will need to find out the possible concrete terms corresponding to M .
Actually following section 3.1 and Prop. 2 it is sufficient to search for a suitable term
in the set of restricted pseudo-terms, instead of considering the whole set of pseudo-
terms. To perform this search we will use parameters: n,m,k, The parameterized
pseudo-terms are defined by the following grammar:

a ::= x | λx.t | (t)t, t ::= !na,

where n is a parameter (and not an integer).
To parameterize types, we will also use linear combinations of parameters c,d, . . .

defined by:
c ::= 0 | n | n + c.

The parameterized types are defined by:

A ::= !cα | !c(A � A).

Given a parameterized pseudo-term t, a parameterized type assignment Σ for t is a map
from the variables of t (free or bound) to the parameterized types.

We denote by par(t) (par(A), resp.) the set of parameters occurring in t (A, resp.),
and by par(Σ) the union of par(Σ(x)) with x ranging over all the variables of t.

An instantiation φ for t is a map φ : par(t) → Z. It allows to define a restricted
pseudo-term φ(t) obtained by substituting the integer φ(n) for each parameter n. Sim-
ilarly, an instantiation φ for (t, Σ) is a map φ : par(t) ∪ par(Σ) → Z. The map φ is
naturally extended to the linear combinations of parameters. If A is a parameterized type
such that par(A) ⊆ par(Σ) and moreover φ(c) is non-negative whenever !cB occurs

64 P. Baillot and K. Terui

in A, one can obtain an EAL type φ(A) by substituting φ(n) for each parameter n as
above. For instance, φ(!n(!0α � !n+nα)) = !3(α � !6α) when φ(n) = 3. An EAL
type assignment φΣ for φ(t) is then obtained by φΣ(x) = φ(Σ(x)) when φ(Σ(x)) is
defined for all variables x of t.

We define the size |A| of a parameterized formula A as the structural size of its
underlying simple type (so the sum of the number of � connectives and atomic sub-
types), and |Σ| as the maximum of |Σ(x)| for all variables x. The erasure map (.)− is
defined for parameterized pseudo-terms and parameterized types analogously to those
for pseudo-terms and EAL types.

It is clear that given a lambda-term M there exists a parameterized pseudo-term
t such that t− = M and all occurrences of parameter in t are distinct. We denote t,
which is unique up to renaming of its parameters, by M and call it the free decoration
of M . Note that the size of M is linear in the size of M . Given a simple type T , its free
decoration T is defined by:

α = !nα, A −◦ B = !n(A −◦ B),

where in the second case we have taken A and B with disjoint sets of parameters and
n a fresh parameter. Finally, a simple type assignment Θ for M is a map from the
variables of M to the simple types. Its free decoration Θ is defined pointwise, by taking
Θ(x) = Θ(x), where all these decorations are taken with disjoint parameters.

The following picture illustrates the relationship among various notions introduced
so far:

pseudo-terms
EAL types

EAL typ. assign.

instantiation←−
param. pseudo-terms

param. types
param. typ. assign.

erasure−→←−
free

decoration

lambda-terms
simple types

simple typ. assign.

Given a simple type derivation of x1 : T1, . . . , xn : Tn � M : T , one can natu-
rally obtain a simple type assignment Θ for M . Furthermore, it is automatic to build a
parameterized pseudo-term M and a parameterized type assignment Θ for M . If φ is
an instantiation for (M,Θ) such that φ(Ti) and φ(T) are defined (i.e. φ(n) ≥ 0 for all
n ∈ par(T1) ∪ · · · par(Tn) ∪ par(T)), then φ(Ti) is a decoration of Ti for 1 ≤ i ≤ n
and φ(T) is a decoration of T . Conversely, any decorations of Ti’s and T are obtained
through some instantiations for (M,Θ). Therefore, the decoration problem boils down
to the following instantiation problem:

Problem 10 (instantiation). Given a parameterized pseudo-term t and a parameterized
type assignment Σ for it: does there exist an instantiation φ for (t, Σ) such that φ(t) has
an EAL� type derivation associated to φΣ?

To solve this problem we will use Theorem 8 to find suitable instantiations φ if there
exists any. For that we will need to be able to state the conditions of this theorem on
parameterized pseudo-terms; they will yield linear constraints. We will speak of linear
inequations, meaning in fact both linear equations and linear inequations.

A Feasible Algorithm for Typing in Elementary Affine Logic 65

We will consider lists over parameters n. Let us denote by L′ the set of such lists.
As for pseudo-terms we define for t a parameterized pseudo-term andx an occurrence

of variable in t, a list t〈x〉 in L′ by:

x〈x〉 = ε, ((t1)t2)〈x〉 = ti〈x〉 where ti is the subterm containing x,
(!na)〈x〉 = n :: (a〈x〉), (λy.t)〈x〉 = t〈x〉 (y might be equal to x).

The sum s(l) of an element l of L′ is a linear combination defined by:

s(ε) = 0, s(n :: l) = n + s(l).

Let t be a parameterized pseudo-term. We define the boxing constraints for t as the
set of linear inequations Cb(t) obtained from t in the following way:

– bracketing: for any occurrence of variable x in t and any prefix l of t〈x〉, add the
inequation: s(l) ≥ 0; moreover ifx is an occurrence of free variable add the equation
s(t〈x〉) = 0.

– scope: for any subterm λx.v of t, for any occurrence xi of x in v, add similarly the
inequations expressing the fact that v〈xi〉 is well-bracketed.

It is then straightforward that:

Proposition 11. Given an instantiation φ for t, we have: φ(t) satisfies the bracketing
and scope conditions iff φ is a solution of Cb(t).

Note that the number of inequations in Cb(t) is polynomial in the size of t (hence also
in the size of t−).

In the sequel, we will need to unify parameterized types. For that, given 2 parame-
terized types A and B we define their unification constraints U(A,B) by:

U(!cα, !dα) = {c = d}
U(!c(A1 � A2), !d(B1 � B2)) = {c = d} ∪ U(A1, B1) ∪ U(A2, B2)

and U(A,B) = {false} (unsolvable constraint) in the other cases.
Let Σ be a parameterized type assignment for t. Then we extend Σ to a partial map

from the subterms of t to parameterized types in the following way:

Σ(!na) = !n+cA if Σ(a) = !cA,
Σ(λx.u) = !0(A � B) if Σ(x) = A,Σ(u) = B,
Σ((u1)u2) = B, if Σ(u1) = !c(A � B), undefined otherwise.

We define the typing constraints for (t, Σ) as the set of linear inequations Ctyp(t, Σ)
obtained from t, Σ as follows. When Σ(t) is not defined, then Ctyp(t, Σ) = {false}.
Otherwise:

(applications) for any subterm of t of the form (u1)u2 with Σ(u1) = !c(A1 � B1)
and Σ(u2) = A2 add the constraints U(A1, A2) ∪ {c = 0}.

(bangs) for any subterm of t of the form !nu with Σ(u) = !cA, add the constraint
n + c ≥ 0.

66 P. Baillot and K. Terui

(contractions) for any variable x of t which has at least 2 occurrences and Σ(x) = !cA,
add the constraint c ≥ 1.

(variables) for any c such that !cB is a subtype of Σ(x) for some variable x of t, add
the constraint c ≥ 0.

We then have:

Proposition 12. Let t be a parameterized pseudo-term and Σ be a parameterized type
assignment for t. Given an instantiation φ for (t, Σ), we have: φΣ is defined and
(φ(t), φΣ) satisfies the typing condition iff φ is a solution of Ctyp(t, Σ).

Note that the number of inequations in Ctyp(t, Σ) is polynomial in (|t| + |Σ|).
We define C(t, Σ) = Cb(t) ∪ Ctyp(t, Σ). Using the two previous Propositions and

Theorem 8 we get the following result, which solves the instantiation problem:

Theorem 13. Let t be a parameterized pseudo-term, Σ be a parameterized type as-
signment for t, and φ be an instantiation for (t, Σ). The two following conditions are
equivalent:

– φΣ is defined and φ(t) is typable in EAL� with a judgment Δ � φ(t) : A such that
φΣ(φ(t)) = A and Δ is the restriction of φΣ to the free variables of φ(t),

– φ is a solution of C(t, Σ).

Moreover the number of inequations in C(t, Σ) is polynomial in (|t| + |Σ|).
Finally, we obtain the following result, which solves the decoration problem:

Theorem 14. Let x1 : A1, . . . , xn : An � M : B be a simply typed term and let
Θ be the associated simple type assignment. There exist decorations A′

i of the Ai for
1 ≤ i ≤ n and B′ of B such that x1 : A′

1, . . . , xn : A′
n � M : B′ is a valid EAL�

judgment iff there is a solution φ of C(M,Θ).
In this case each solution φ gives a suitable EAL� judgment x1 : A′

1, . . . , xn : A′
n �

M : B′. Moreover the number of inequations and the number of parameters in C(M,Θ)
are polynomial in (|M | + |Θ|).

4.2 Solving the Constraints

Now we turn our attention to the constraints and their solutions. Let t be a parameterized
pseudo-term and Σ be an assignment. We consider instead of the previous instantiation
maps with values in Z, maps with rational numbers as values:ψ : par(t)∪par(Σ) → Q.
If ψ is such a map and k is a non-negative integer we defined the map kψ by: (kψ)(n) =
k.ψ(n), for any parameter n.

Lemma 15. If ψ is a solution of C(t, Σ) and k is a strictly positive integer then kψ is
also a solution of C(t, Σ).

Proof. It is enough to observe that for any inequation of Cb(t) and Ctyp(t, Σ) if ψ is a
solution then so is kψ:

– all inequations from Cb(t) and all those from Ctyp(t, Σ) except the contraction
cases are homogeneous (no constant element in combinations) and as k ≥ 0 the
inequalities are preserved when multiplying both members by k;

A Feasible Algorithm for Typing in Elementary Affine Logic 67

– the inequations coming from the contraction cases in Ctyp(t, Σ) are of the form
m ≥ 1, so as k ≥ 1 we have: if ψ(m) ≥ 1 holds then so does kψ(m) ≥ 1.

Recall that the problem of finding if a linear system of inequations C admits a solution
in Q can be solved in polynomial time in the size of C and its number of variables. Hence
we have:

Proposition 16. The problem of whether the system C(t, Σ) admits a solution with
values in Z can be solved in time polynomial in (|t| + |Σ|).

Proof. As the number of inequations and the number of parameters in Ctyp(t, Σ) are
polynomial in (|t| + |Σ|) and by the result we recalled above we have: one can decide
if Ctyp(t, Σ) admits a solution with values in Q in time polynomial in (|t| + |Σ|).

Then, if there is no solution in Q there is no solution in Z. Otherwise if ψ is a solution
in Q take for k the least multiple of the denominators of ψ(n), for all parameters n.
Then by Lemma 15, kψ is a solution in Z.

It then follows that:

Theorem 17. The decoration problem of Theorem 14 can be solved in time polynomial
in (|M | + |Θ|).

4.3 Type Inference

The procedure for EAL� decoration we have given can be extended to a type inference
procedure for EAL� in the way used in [CM01]: given an ordinary term M ,

– compute the principal assignment Θ for M (giving the principal simple type),
– use the procedure of Theorem 14 to find if M , Θ admits a suitable EAL� decoration.

It follows from a result of [CRdR03] that:

Proposition 18. if M is EAL� typable and admits as principal simple type judgment
Δ � M : A, then M admits an EAL� type judgment which is a decoration of this
judgment.

See [BT04b] for a self-contained proof of this proposition.
As a consequence, searching for an EAL� decoration of the principal type judgment

of M is sufficient to decide if M is EAL� typable. It then follows from Theorem 17 that
our EAL� type inference algorithm applied to a termM can be executed in time bounded
by a polynomial in (|M |+ |Θ|) where Θ is the principal (simple type) assignment of M .

Note, however, that this does not mean that the overall algorithm is polynomial time
in |M |, as the principal simple type assignment for M can have a size exponential in
|M |. Still, type inference in simples types can be performed in polynomial time if one
uses a representation with sharing for the types. Further work is needed to examine if
using a shared representation for types one can design an algorithm for EAL typing
polynomial w.r.t. the size of the untyped term.

68 P. Baillot and K. Terui

4.4 Example

Let us consider a small example to illustrate our method: take M = λy.λz.(y)(y)z (the
Church integer 2). The decoration M is given by:

M = !m1λy.!m2λz.!m3 [(!m4y1) !m5 [(!m6y2)!m7z]]

(we have distinguished the 2 occurrences of y in y1 and y2). We get for the boxing
constraints:

Cb(M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 ≥ 0 (1) m2 ≥ 0 (8)
m1 + m2 ≥ 0 (2) m2 + m3 ≥ 0 (9)

m1 + m2 + m3 ≥ 0 (3) m2 + m3 + m4 = 0 (10)
m1 + m2 + m3 + m4 ≥ 0 (4) m2 + m3 + m5 ≥ 0 (11)
m1 + m2 + m3 + m5 ≥ 0 (5) m2 + m3 + m5 + m6 = 0 (12)

m1 + m2 + m3 + m5 + m6 ≥ 0 (6) m3 ≥ 0 (13)
m1 + m2 + m3 + m5 + m7 ≥ 0 (7) m3 + m5 ≥ 0 (14)

m3 + m5 + m7 = 0 (15)

where (1)–(7) express bracketing, (8)–(12) scope for λy and (13)–(15) scope for λz.
Now let us examine the typing constraints. We consider the principal typing assign-

ment: Θ(y) = α → α, Θ(z) = α, which yields Θ(M) = (α → α) → (α → α). Thus
we have: Θ(y) = !p1(!p2α � !p3α), Θ(z) = !p4α. We get for instance:

Θ(!m7z) = !m7+p4α
Θ(!m6y2) = !m6+p1(!p2α � !p3α)
Θ((!m6y2)!m7z) = !p3α
Θ(!m5((!m6y2)!m7z)) = !m5+p3α
Θ(!m4y1) = !m4+p1(!p2α � !p3α)
Θ((!m4y1) !m5 [(!m6y2)!m7z]) = !p3α
Θ(M) = !m1(!p1(!p2α � !p3α) � !m2(!p4α � !m3+p3α))

We obtain the following typing constraints (omitting some obvious constraints):

Ctyp(M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m7 + p4 ≥ 0 (16) m4 + p1 ≥ 0 (21)
m6 + p1 ≥ 0 (17) m4 + p1 = 0 (22)
m6 + p1 = 0 (18) p2 = m5 + p3 (23)

p2 = m7 + p4 (19) p1, . . . ,p4 ≥ 0 (24)
m5 + p3 ≥ 0 (20) p1 ≥ 1 (25)

Putting Cb(M) and Ctyp(M) together we get that C(M) is equivalent to:

{m1,m2,m3 ≥ 0; m2 + m3 = −m4 = −m6 = p1 ≥ 1;
m5 = 0; m3 + m7 = 0; p2 = p3 ≥ 0; p4 = p2 + m3}.

This finally gives the following (informally written) parameterized term and type with
constraints, which describe all solutions to this decoration problem:

A Feasible Algorithm for Typing in Elementary Affine Logic 69

⎧⎪⎪⎨⎪⎪⎩
M = !m1λy.!m2λz.!m3 [(!

m2+m3
y1) [(!

m2+m3
y2)!

m3
z]]

!m1(!m2+m3(!p2α � !p2α) � !m2(!p2+m3α � !p2+m3α))

constraints: {m1,m2,m3,p2 ≥ 0,m2 + m3 ≥ 1}.
Observe that this representation corresponds to several canonical forms (6 in this par-
ticular example) in the approach of Coppola and Ronchi della Rocca (see [CRdR03]).

5 Conclusion

We have given a new type inference algorithm for EAL� which is more efficient and we
think simpler than the previous ones. It generates a set of constraints which consists of
two parts: one which deals with placing suitable (potential) boxes and the other one with
typing the boxed term obtained. We believe the first part is not specific to EAL� typing
and could be used for typing with other Linear logic systems which require determining
boxes; what would need to be adapted to each case is the second (typing) part. This
was already stressed by Coppola and Martini for their EAL type inference procedure
([CM04]). In particular we plan to study in this way second-order EAL typing (assuming
a system F type given) and DLAL typing ([BT04a]).

We have shown that the set of constraints needed in our algorithm is polynomial in
the size of the term and its simple type assignment. Finally we have also shown that by
using resolution of linear inequations over rationals our algorithm can be executed in
polynomial time with respect to the size of the initial term and its principal simple type
assignment.

References

[ACM00] A. Asperti, P. Coppola, and S. Martini. (Optimal) duplication is not elementary
recursive. In Proceedings of POPL’00, pages 96–107, 2000.

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Transactions on
Computational Logic, 3(1):1–39, 2002.

[Asp98] A. Asperti. Light affine logic. In Proceedings of LICS’98, pages 300–308, 1998.
[Bai02] P. Baillot. Checking polynomial time complexity with types. In Proceedings of IFIP

TCS’02, pages 370–382, Montreal, 2002.
[Bai04] P. Baillot. Type inference for light affine logic via constraints on words. Theoretical

Computer Science, 328(3):289–323, 2004.
[BT04a] P. Baillot and K. Terui. Light types for polynomial time computation in lambda-

calculus. In Proceedings of LICS’04, pages 266–275, 2004. Long version available
at http://arxiv.org/abs/cs.LO/0402059.

[BT04b] P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine logic
(long version). Technical Report cs.LO/0412028, arXiv, 2004. Available from
http://arxiv.org/abs/cs.LO/0412028.

[Car04] D. de Carvalho. Intersection types for light affine lambda calculus. In Proceedings
of 3rd Workshop on Intersection Types and Related Systems (ITRS’04), 2004. To
appear in ENTCS.

70 P. Baillot and K. Terui

[CM01] P. Coppola and S. Martini. Typing lambda-terms in elementary logic with linear
constraints. In Proceedings of TLCA’01, volume 2044 of LNCS, pages 76–90, 2001.

[CM04] P. Coppola and S. Martini. Optimizing optimal reduction. A type inference algorithm
for elementary affine logic. ACM Transactions on Computational Logic, 2004. To
appear.

[CRdR03] P. Coppola and S. Ronchi della Rocca. Principal typing in Elementary Affine Logic.
In Proceedings of TLCA’03, volume 2701 of LNCS, pages 90–104, 2003.

[DJ03] V. Danos and J.-B. Joinet. Linear logic & elementary time. Information and Com-
putation, 183(1):123–137, 2003.

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intuitionistic
derivations. Archive for Mathematical Logic, 33(6):387–412, 1995.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gir98] J.-Y. Girard. Light linear logic. Information and Computation, 143:175–204, 1998.
[GSS92] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic: A modular approach to

polynomial time computability. Theoretical Computer Science, 97:1–66, 1992.
[Laf04] Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,

318(1–2):163–180, 2004.
[Rov98] L. Roversi. A polymorphic language which is typable and poly-step. In Proceedings

of the Asian Computing Science Conference (ASIAN’98), volume 1538 of LNCS,
pages 43–60, 1998.

[Ter01] K. Terui. Light affine lambda-calculus and polytime strong normalization. In Pro-
ceedings of LICS’01, pages 209–220, 2001. Full version to appear in Archive for
Mathematical Logic.

Practical Inference for Type-Based Termination
in a Polymorphic Setting

Gilles Barthe1, Benjamin Grégoire1, and Fernando Pastawski2,�

1 INRIA Sophia-Antipolis, France
{Gilles.Barthe, Benjamin.Gregoire}@sophia.inria.fr

2 FaMAF, Univ. Nacional de Córdoba, Argentina
fernandopastawski@arnet.com.ar

Abstract. We introduce a polymorphic λ-calculus that features induc-
tive types and that enforces termination of recursive definitions through
typing. Then, we define a sound and complete type inference algorithm
that computes a set of constraints to be satisfied for terms to be ty-
pable. In addition, we show that Subject Reduction fails in a naive use
of typed-based termination for a λ-calculus à la Church, and we propose
a general solution to this problem.

1 Introduction

Type-based termination is a method to enforce termination of recursive functions
through typing, using an enriched type system that conveys size information
about the inhabitants of inductive types. Tracing back to N. P. Mendler’s work
on inductive types [13], type-based termination offers several distinctive advan-
tages over termination checking through syntactic criteria, e.g. the possibility
for separate compilation. However, there is no widely used implementation of a
type system that relies on type-based termination. There are two main reasons
for the lack of such an implementation:

– termination of recursive definitions is mostly relevant for proof assistants, but
less so for programming languages. However, proof assistants that enforce
termination through syntactic means often rely on dependent type theories
à la Church, for which type-based termination is not completely understood,
despite preliminary work in this direction [4, 6, 11];

– the problem of size inference is seldom considered, and existing algorithms [7,
16] for inferring size annotations are complex, and typically return for ev-
ery program an annotated type and a formula (in a decidable fragment of
arithmetic) to be satisfied by the size variables.

The principal contribution of this article is to provide a practical inference al-
gorithm for a polymorphic λ-calculus featuring type-based termination. The in-
ference algorithm is scalable, in the sense that it computes size annotations

� Most of the work was done while supported by an INRIA International Internship.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 71–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 G. Barthe, B. Grégoire, and F. Pastawski

efficiently, and returns types that are easily understood. We achieve practicality
by two means: first of all, we require recursive definitions to carry annotations
about the dependency between the arguments and results of a recursive function
definition. Due to the limited overhead they introduce (they should be compared
to the {struct id} declarations in recursive definitions of Coq V8 [8]), we con-
sider it perfectly acceptable to require users to provide such annotations when
writing programs. Second of all, we consider a simple grammar for stage ex-
pressions: stage expressions are either stage variables, or ∞ (which denotes the
maximal, closing stage of a datatype), or the successor of a stage expression.
Thus our approach departs from the philosophy of many works on type-based
termination which aim at typing as many terminating recursive definitions as
possible. Nevertheless, our approach is more powerful than syntactic criteria for
termination checking, see e.g. [5].

The combination of minimal annotations and a restricted language for stages
enables us to guarantee that inferred types are of the form C ⇒ τ , where τ is
a type, and C is a finite conjunction of stage inequalities (our system features
an obvious partial order on stages; hence the inference algorithm generates in-
equality constraints). The inference algorithm takes as input a pair (Γ, e) where
Γ is a context and e is an expression, and returns an error if e is not typable in
Γ , or a type τ and a set C of inequality between size expressions such that:

Soundness: for every stage substitution ρ satisfying C, we have ρΓ � e : ρτ .

Completeness: for every stage substitution ρ′ such that ρ′Γ �e : τ ′, there exists
a stage substitution such that ρ satisfies C and ρΓ = ρ′Γ and ρτ % τ ′, where
the subtyping relation % is inherited from the partial order on stages.

Contents of the paper. Section 2 introduces F ,̂ which gives the setting of our
work. Section 3 introduces the inference algorithm and establishes its soundness
and completeness. Section 3.5 briefly describes an implementation of the size
inference algorithm for F .̂ Section 4 provides an overview of related work. We
conclude in Section 5.

2 System F̂
The system F̂ is an extension of System F with inductive types and type-based
termination. As such, F̂ shares many features of λ̂ [5], from which it is inspired:
simple stage arithmetic, implicit stage polymorphism, and a subtyping relation
inherited from the partial order between stages. Unlike λ̂ , the system F̂ features
abstractions à la Church, i.e. of the form λx : τ.e, and letrec f : σ = e.

2.1 Types and Datatypes Declarations

In order to achieve subject reduction and efficient type inference, we are led
to consider three different families of types: size types, which record size infor-
mation, bare types, which do not contain any size information and are used to
tag variables in λ-abstractions, position types which are used to tag fixpoint

Practical Inference for Type-Based Termination in a Polymorphic Setting 73

variables in recursive definitions and indicate which positions in the type of a
recursive function have the same stage variable as the recursive argument (we
use a � to indicate those positions). The need for bare types and position types
is further justified in Sections 2.4 and 3.1 below.

Types are built from type variables and datatypes using type constructors
for universal quantification and function space. Formally, we assume given a set
X of type variables, and a set D of datatype identifiers. Each datatype identifier
comes equipped with an arity ar(d).

Definition 1 (Stages and Types).

1. The set S of stage expressions is given by the abstract syntax:

s, r ::= ı | ∞ | ŝ

where ı ranges over stage variables. Stage substitution is defined in the ob-
vious way, and we write s[ı := s′] to denote the stage obtained by replacing
ı by s′ in s. Furthermore, the base stage of a stage expression is defined by
the clauses &ı' = ı and &ŝ' = &s' (the function is not defined on stages that
contain ∞).

2. The sets T, T and T� of bare types, (size) types, and position types are
given by the abstract syntaxes:

T ::= X | T → T | ∀X.T | D T

T ::= X | T → T | ∀X.T | DS T

T� ::= X | T� → T� | ∀X.T� | D� T� | D T�

where in the clauses for datatypes, it is assumed that the length of the vectors
T, T, and T� is exactly the arity of the datatype.

Types are related by a subtyping relation inherited from stages.

Definition 2 (Subtyping). The relations s is a substage of s′, written s � s′,
and τ is a subtype of σ, written τ % σ, are defined by the rules:

(refl)
s � s

(trans)
s � r r � p

s � p
(hat)

s � ŝ
(infty)

s � ∞

(refl)
σ
 σ

(data)
s � r τ
 τ ′

dsτ
 drτ ′
(func)

τ ′
 τ σ
 σ′

τ → σ
 τ ′ → σ′ (prod)
σ
 σ′

∀A.σ
 ∀A.σ′

Remark that the rule (infty) imply that ∞̂ � ∞. We now turn to datatype
declarations. We assume given a fixed set C of constructors, and a function
C : D → ℘(C) such that C(d) ∩ C(d′) = ∅ for every distinct d, d′ ∈ D.

Definition 3.
1. A size type σ ∈ T is a (d, ı,A)-constructor type if it is of the form

∀B.θ1 → . . . → θk → dı̂ A

and every θi belongs to the set T(d,ı,A) ⊆ T defined by the syntax:

X | T(d,ı,A) → T(d,ı,A) | ∀X.T(d,ı,A) | dı A | d′∞ T(d,ı,A)

74 G. Barthe, B. Grégoire, and F. Pastawski

(Note that ı is the sole stage variable in (d, ı,A)-constructor type.) In the se-
quel, we let Inst(σ, s, τ , σ′) = θ1[A := τ , ı := s]→ . . . → θk[A := τ , ı := s] → σ′.

2. A datatype definition is a declaration of the form:

Inductive d A := c1 : σ1 | . . . | cn : σn

where C(d) = {c1, . . . , cn} and σ1 . . . σn are (d, ı,A)-constructor types in
which A, dı A occur positively. We let Type(ci, s) = ∀A.σi[ı := s] and

Inst(ci, s, τ , σ) = Inst(σi, s, τ , σ)

3. An environment is a set of datatype definitions I1 . . . In in which constructors
of the datatype definition Ik only use datatypes introduced by I1 . . . Ik.

Note that the definition of constructor types and environments rules out hetero-
geneous and mutually recursive datatypes. Besides, the positivity requirement
for dı A is a standard assumption to guarantee strong normalization. Also, the
positivity requirement for A is added to guarantee the soundness of the sub-
typing rule for datatypes, and to avoid considering polarity, as in e.g. [14]. See
e.g. [5] for a definition of positivity.

In the remaining of the paper, we implicitly assume given an environment in
which every d ∈ D has a corresponding datatype definition.

2.2 Terms and Reduction

Terms are built from variables, abstractions, applications, constructors, case-
expressions and recursive definitions. Formally we assume given a set V of (object)
variables.

Definition 4 (Terms). The set E of terms is given by the abstract syntax:

e, e′ ::= x | λx : τ.e | ΛA.e | e e′ | e τ | c | caseτ e′ of {c ⇒ e} | letrec f : τ� = e

Free and bound variables, substitution, etc. are defined as usual. We let e[x := e′]
be the result of replacing all free occurrences of x in e with e′.

The reduction calculus is given by β-reduction for function application, ı-
reduction for case analysis and μ-reduction for unfolding recursive definitions,
which is only allowed in the context of application to a constructor application.

Definition 5 (Reduction Calculus). The notion of βıμ-reduction →βıμ is
defined as →β ∪ →ı ∪ →μ, where →β, →ı, and μ-reduction are defined as the
compatible closure of the rules

(λx : τ.e) e′ →β e[x := e′]
(Λα.e) τ →β e[α := τ]

caseτ (ci a) of {c1 ⇒ e1 | . . . | cn ⇒ en} →ı ei a
(letrec f : τ� = e) (c a) →μ e[f := (letrec f : τ� = e)] (c a)

The rewrite system βıμ is orthogonal and confluent.

Practical Inference for Type-Based Termination in a Polymorphic Setting 75

(var)
Γ �x : σ

if (x : σ) ∈ Γ

(abs)
Γ ; x :τ �e : σ

Γ �λx : |τ |.e : τ → σ

(app) Γ �e : τ → σ Γ �e′ : τ
Γ �e e′ : σ

(T-abs) Γ �e : σ
Γ �ΛA.e : ∀A.σ

if A �∈ Γ

(T-app) Γ �e : ∀A.σ

Γ �e |τ | : σ[A := τ]
(cons)

Γ �c : Type(c, s)
if c ∈ C(d) for some d

(case)
Γ �e′ : dŝτ Γ �ei : Inst(ci, s, τ , θ) (1 ≤ i ≤ n)

Γ �case|θ| e
′ of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ

if C(d) = {c1, . . . , cn}

(rec)
Γ ; f :dıτ → θ�e : dı̂τ → θ[ı := ı̂]

Γ � letrec f : τ� = e : dsτ → θ[ı := s]
if
{
ı not in Γ , τ and ı pos θ
τ� is ı− compatible with dıτ → θ

(sub)
Γ �e : σ σ
 σ′

Γ �e : σ′

Fig. 1. Typing rules for F̂
2.3 Typing Rules

The type system is adapted from [5], and uses an erasure function |.| that maps
types to bare types by removing all size information.

Definition 6 (Contexts and Judgments).

1. A context is a finite sequence x1 : σ1, . . . , xn : σn where x1, . . . , xn are
pairwise disjoint (object) variables and σ1, . . . , σn are (size) types.

2. A typing judgment is a triple of the form Γ � e : σ, where Γ is a context,
e is a term and σ is a (size) type.

3. A typing judgment is derivable if it can be inferred from the rules of Figure 1
where the positivity condition ı pos σ in the (rec) rule is defined in the usual
way [5], and an annotated type σ� is ı-compatible with a size type σ if σ�

can be obtained from σ by replacing all stage annotations containing ı by �
and by erasing all other size annotations.

4. A term e ∈ E is typable if Γ �e : σ is derivable for some context Γ and (size)
type σ.

In the (rec) rule the side condition on ı-compatibility is only relevant for the
inference algorithm. Note also that the expression λx : Nat.x has type Nats →
Nats for all stages s. We refer to [5] for further explanations on the typing rules.

2.4 Subject Reduction

The system F̂ enjoys subject reduction. The proof is routine.

76 G. Barthe, B. Grégoire, and F. Pastawski

Lemma 1. If Γ �e : τ and e →βıμ e′, then Γ �e′ : τ .

On the contrary, subject reduction would fail if annotated terms were used to tag
expressions. Indeed, consider for a moment that terms carry annotated types.
With the obvious adaptation of the typing rules, we would be able to derive
y : Natj � M (s y) : Natj , where M is

letrec f : Natı → Natı = λx : Nat̂ı. caseNatı x of {o⇒o | s x′⇒(λz : Natı.z) x′}
With the obvious adaptation of the reduction rules, one would also derive that
M (s y) reduces to (λz : Natı.z)y. However, the latter is obviously ill-typed. In-
tuitively, the failure of subject reduction is caused by the combination of implicit
stage polymorphism with explicit stage annotations in the tags of λ-expressions.

2.5 Strong Normalization

Type-based termination is meant to enforce strong normalization of recursive
definitions, therefore it is important to show that every typable expression in
F̂ is strongly normalizing. The latter can be established by adapting standard
model constructions based on saturated sets, see [5].

3 Inference Algorithm

The purpose of this section is to define a sound and complete inference algorithm
which computes for every context and expression a most general typing of the
form C ⇒ σ where C is a set (i.e. conjunction) of constraints, and σ is an
annotated type.

Definition 7 (Constraint and Constraint Systems).

1. A stage constraint is a pair of stages, written s1 � s2.
2. A constraint system is a finite set of stage constraints.
3. A stage substitution ρ satisfies a constraint system C, written ρ |= C, if for

every constraint s1 � s2 in C, we have ρs1 � ρs2.

Every constraint system has an obvious solution which maps all stage variables
for ∞. Furthermore, each subtyping constraint σ % τ which has a solution yields
a constraint system C. In the sequel, we often write σ % τ instead of C. Finally,
we equate ∞ with ∞̂.

3.1 Discussion

Before describing the algorithm, we would like to illustrate two issues with ef-
ficient size annotation: the lack of unconstrained principal types, and the need
for position types.

Lack of unconstrained principal types. This issue is pervasive in type systems
with subtyping, but we sketch how it can be cast it to our setting. Consider the
expression twice, defined as λf : Nat → Nat.λx : Nat.f (f x), and which can be

Practical Inference for Type-Based Termination in a Polymorphic Setting 77

given the typings τ1 ≡ (Natı → Natı) → Natı → Natı and also τ2 ≡ (Natı →
Nat∞) → Natı → Nat∞. If there would exist an unconstrained principal type
τ0 ≡ (Nats1 → Nats2) → Nats3 → Nats4 , such that twice : τ0 then we would
have two stage substitutions ρ and ρ′ such that ρτ0 % τ1 and ρ′τ0 % τ2. Using
the soundness of the inference algorithm (Proposition 5) and some elementary
reasoning one can show that no such substitutions exist.
The same example can be used to show that the completeness statement of the
inference algorithm must involve both subtyping and stage substitution.

Need for annotated types. Consider the most general typings

letrec f : Nat� → Nat� = λx : Nat.o : Natı → Natı

letrec f : Nat� → Nat = λx : Nat.o : Natı → Natĵ

Would we omit � in the tags of the recursive definitions, then letrec f : Nat →
Nat = λx : Nat.o would not have a most general typing. Indeed, such a most
general typing would be of the form C ⇒ Natı1 → Natı2 with the substitutions
[ı1 := ı, ı2 := ı] |= C and [ı1 := ı, ı2 := ĵ] |= C. By elementary reasoning, we
can show that it is impossible. In order to recover a most general typing, it
will be required to allow both disjunctions and conjunctions of constraints in C.
Unfortunately, disjunction makes types more complex to compute and to grasp.

3.2 Algorithm

The inference algorithm Infer(V, Γ , t) take as input a context Γ , an expression
e and an auxiliary parameter V that represents the stage variables that have
been previously used during inference (we need the latter to guarantee that
we only introduce fresh variables). It returns a tuple (V ′, C, τ) where τ is an
annotated type, C is a constraint system, and V ′ is an extended set of stage
variables that has been used by the algorithm. The invariants are FV(Γ) ⊆ V
and V ⊆ V ′ and FV(C, τ) ⊆ V ′. For practical reasons, we also use a second
algorithm Check(V, Γ , t, τ) which return a pair (V ′, C) ensuring that t has type τ
in environment Γ . The invariants are FV(Γ , τ) ⊆ V and V ⊆ V ′ and FV(C) ⊆ V ′.

Definition 8. The algorithms Infer and Check are defined in Figure 2.

Note that the algorithms rely on auxiliary functions Annot, AnnotRec and Rec-
Check. Annot(σ, V) = (σ, V ′) where V is a set of stage variables, σ a bare type.
σ is an annotated version of σ with fresh stage variables (that do not belong to
V) and V ′ = V

⋃
FV(σ). The only stage expressions that appear in σ are distinct

and fresh stage variables. The second function AnnotRec is similar, but takes as
input a position type instead of a bare type and returns (σ, V ′, V �) where V �

is the set of fresh stage variables that appear in σ where there was a � in the
original position type.

The function RecCheck is at the core of guaranteeing termination: it takes as
input the set of constraints that has been inferred for the body of the recursive
definition, and either returns an error if the definition is unsound w.r.t. the type

78 G. Barthe, B. Grégoire, and F. Pastawski

Check(V, Γ , e, τ) = Ve,Ce ∪ τe
 τ

where (Ve,Ce, τe) := Infer(Γ , e)
Infer(V, Γ , x) = V, ∅, Γ (x)
Infer(V, Γ , λx : τ1.e) = Ve,Ce, τ1 → τ2

where V1, τ1 := annot(V, τ1)
(Ve,Ce, τ2) := Infer(V1, Γ ; x :τ1, e)

Infer(V, Γ ,ΛA.e) = Ve,Ce, ∀A.τ

where (Ve,Ce, τ) := Infer(V, Γ , e)
if A does not occur in Γ

Infer(V, Γ , e1 e2) = V2,C1 ∪ C2, τ

where (V1,C1, τ2 → τ) := Infer(V, Γ , e1)
(V2,C2) := Check(V1, Γ , e2, τ2)

Infer(V, Γ , e τ) = Ve,Ce, τe[A := τ]
where V1, τ := annot(V, τ)

(Ve,Ce, ∀A.τe) := Infer(V1, Γ , e)
Infer(V, Γ , c) = V ∪ {α}, , Type(c,α)

with α �∈ V

Infer(V, Γ , caseθ e′ of {ci ⇒ ei}) = Vn, s � α̂ ∪ Ce′ ∪⋃n
i=1 Ci, θ

where α �∈ V

Vθ, θ := annot(V ∪ {α}, θ)
(V0,Ce′ , dsτ) := Infer(Vθ, Γ , e′)
(Vi,Ci) := Check(Vi−1, Γ , ei, Inst(ci,α, τ , θ))

if C(d) = {c1, . . . , cn}
Infer(V, Γ , letrec f : d�τ → θ = e′) = Ve′ ,Cf , dατ → θ

where (V1,V
�, dατ → θ) := annotrec(V, d�τ → θ)

θ̂ := θ[αi := α̂i]αi∈V �

(Ve′ ,Ce′) := Check(V1, Γ ; f :dατ → θ, e′, dα̂τ → θ̂)
Cf := RecCheck(α,V �,V1\V �,Ce′ ∪ θ
 θ̂)

Fig. 2. Inference Algorithm

system, or the set of constraints for the recursive definition, if the definition is
sound w.r.t. the type system. Formally, the function RecCheck takes as input:

– the stage variable α which corresponds to the recursive argument, and which
must be mapped to a fresh base stage ı;

– a set of stage variables V � that must be mapped to a stage expression with
the same base stage as α. The set V � is determined by the position types in
the tag of the recursive definition. In particular, we have α ∈ V �;

– a set of stage variables V �= that must be mapped to a stage expression with
a base stage different from ı;

– a set of constraints C ′;

and returns an error or a set of constraints subject to the conditions below. To ex-
press these conditions concisely, we use ρ ≤V2

V1
ρ′ as a shorthand for ρ(α) � ρ′(α)

Practical Inference for Type-Based Termination in a Polymorphic Setting 79

for all α ∈ V1 and ρ(α) = ρ′(α) for all α ∈ V2 and ◦ to denote the usual compo-
sition of substitutions. Furthermore, we freely use set notation.

Soundness (SRC): if RecCheck(α, V �, V �=, C ′) = C then for all stage sub-
stitutions ρ such that ρ |= C there exists a fresh stage variable ı and a stage
substitution ρ′ such that ρ′ |= C ′, and ρ′(α) = ı, and [ı := ρ(α)] ◦ ρ′ ≤V �=

V � ρ, and
&ρ′(V �)' = ı, and &ρ′(V �=)'
= ı (the last two formulas state respectively that for
all αi ∈ V �, &ρ′(αi)' = ı, and for all β ∈ V �=, &ρ′(β)'
= ı).

Completeness (CRC): if ρ(α) = ı and &ρ(V �)' = ı and &ρ(V �=)'
= ı and also
ρ |= C ′ then RecCheck(α, V �, V �=, C ′) is defined and

ρ |= RecCheck(α, V �, V �=, C ′)

The algorithm for computing RecCheck, and the proofs of correctness, are given
in Section 3.4.

3.3 Soundness and Completeness

In order to establish soundness and completeness of the inference and checking
algorithms, we must prove some preliminary lemmas. The first lemma provides
a characterization of positivity which we use for dealing with the positivity
constraints of the (rec) rule.

Lemma 2. ı pos τ ⇔ τ % τ [ı := ı̂]

In the sequel, we use the notation V pos τ as a shorthand for τ % τ [α := α̂]α∈V .
The second and third lemmas are concerned with stage substitutions.

Lemma 3. If ρ ≤V2
V1

ρ′ ∧ FV(τ) ⊆ V1 ∪ V2 ∧ V1 pos τ then ρ(τ) % ρ′(τ)

Lemma 4. If &ρ(V)' = ı then ρ(τ)[ı := ı̂] = ρ(τ [αi := α̂i]αi∈V).

We now turn to soundness.

Lemma 5 (Soundness). Check and Infer are sound:

Check(V, Γ , e, τ) = (V ′, C) ⇒ ∀ρ |= C. ρ(Γ)�e : ρ(τ)
Infer(V, Γ , e) = (V ′, C, τ) ⇒ ∀ρ |= C. ρ(Γ)�e : ρ(τ)

Proof. We prove the two statements simultaneously. Note that the first state-
ment can be deduced easily from the second one.

Indeed, assume that Check(V, Γ , e, τ) = (V ′, C) and that ρ |= C. By def-
inition of Check, we have Infer(V, Γ , e) = (V ′, Ce, τ e) and ρ |= Ce ∪ τe % τ ,
so ρ |= Ce and ρ(τe) % ρ(τ). Assuming the first statement, it follows that
ρ(Γ)�e : ρ(τe) and we conclude using the (sub) rule.

Therefore we focus on the proof of the second statement, by induction on the
structure of e:

Cases e ≡ x and e ≡ ΛA.e1 e ≡ c. Trivial.

80 G. Barthe, B. Grégoire, and F. Pastawski

Cases e ≡ λx : τ1.e1 and e ≡ t τ1. The result follows from the induction
hypothesis and the facts that both |annot(τ1, V)| = τ1 and ρ(τe[A := τ1]) =
ρ(τe)[A := ρ(τ1)].

Case e ≡ e1 e2. By hypothesis, ρ |= C1 ∪ C2 so ρ |= C1 and ρ |= C2. By
the induction hypotheses, ρ(Γ) � e1 : ρ(τ2) → ρ(τ) and ρ(Γ) � e2 : ρ(τ2). We
conclude using the (app) rule.

Case e ≡ caseθ e′ of {ci ⇒ ei}. By hypothesis, ρ |= s � α̂ ∪ Ce′ ∪⋃n
i=1 Ci. By

induction hypotheses, ρ(Γ)�e′ : ρ(dsτ) and for every ci ∈ C(d)

ρ(Γ)�ei : ρ(Inst(ci, α, τ , θ)) = Inst(ci, ρ(α), ρ(τ), ρ(θ))

Using the (sub) rule and the fact that ρ(s) � ρ(α̂), we derive

ρ(Γ)�e′ : ρ(dα̂τ)

and conclude using the (case) rule.

Case e ≡ letrec f : d�τ → θ = e′. By hypothesis,

ρ |= RecCheck(α, V �, V �=
1 , Ce′ ∪ θ % θ̂)

By (SRC), there exists ı and ρ′ such that ρ′ |= Ce′ . Using the induction hypoth-
esis with ρ′, we get ρ′(Γ); f :dıρ′(τ) → ρ′(θ)�e′ : dı̂ρ′(τ) → ρ′(θ̂). So by Lemma
4 : ρ′(Γ); f :dıρ′(τ) → ρ′(θ)�e′ : dıρ′(τ) → ρ′(θ)[ı := ı̂].
Because ρ′ |= θ % θ̂, we know that ı pos ρ′(θ) by lemma 2. We also know from
(SRC) that ı
∈ ρ′(Γ), ρ′(τ). Let s be ρ(α), by application of the (rec) typing
rule we obtain ρ′(Γ)� e : dsρ′(τ) → ρ′(θ)[ı := s]. Finally we use the facts that
[ı := s] ◦ ρ′ ≤V �=

V � ρ, V � pos θ and Lemma 3 to conclude that e has the expected
type.

We now turn to completeness. Note that, for the proofs to go through, the
statement of completeness is slightly stronger than the one of the introduction:
we require ρ =V ρ′ instead of ρ(Γ) = ρ′(Γ), where ρ =V ρ′ iff ρ(α) = ρ′(α) for
all α ∈ V .

Lemma 6 (Completeness). Check and Infer are complete:

1. If ρ(Γ) � e : ρτ and FV(Γ , τ) ⊆ V then there exist V ′, C, ρ′ such that
Check(V, Γ , e, τ) = (V ′, C) and ρ′ |= C ∧ ρ =V ρ′.

2. If ρ(Γ)�e : θ and FV(Γ) ⊆ V there exist V ′, C, τ , ρ′ such that Infer(V, Γ , e) =
(V ′, C, τ) and ρ′ |= C and ρ′(τ) % θ and ρ′ =V ρ

Proof. We prove the two statements simultaneously. Note that the first state-
ment can be deduced easily from the second one. Indeed, assume that ρ(Γ) �
e : ρτ with FV(Γ , τ) ⊆ V . Using the completeness of inference, there exists
V ′, C, τ1, ρ′ such that Infer(V, Γ , e) = (V ′, C, τ1), ρ′ |= C, ρ′(τ1) % ρ(τ) and
ρ′ =V ρ. Because FV(τ) ⊆ V , we have ρ(τ) = ρ′(τ), so we conclude easily.

Therefore, we focus on the proof of the second statement, by induction on
the typing derivation:

Practical Inference for Type-Based Termination in a Polymorphic Setting 81

Cases (var) and (sub). Trivial.

Case (abs). Let e = λx : τ1.e
′ and (V1, τ1) = annot(V, |σ1|), by definition of

annot, variables in τ1 do not appear in V , so we can choose ρ1 such that ρ1 =V ρ
and ρ1(τ1) = σ. By induction hypotheses we have that Infer(V1, Γ ;x : τ1, e

′) =
(V ′, C, τ2) and ρ′ |= C, ρ′(τ2) % σ2 ρ′ =V1

ρ1. It is easy to conclude.

Case (app), (T-abs), (T-app). Similar to (abs), just remark for the last one
that τ % σ implies τ [A := τ ′] % σ[A := τ ′] .

Case (cons). Choose ρ′ = ρ[α := s] and conclude.

Case (case). Let e = case|σ| e′ of {ci ⇒ ei} and (Vσ, σ′) = annot(V ∪{α}, |σ|).
Choose ρσ such that ρσ =V ρ, ρσ(α) = s and ρσ(σ′) = σ. By induction hypothe-
ses, the type checking of branches succeeds. So we can easily conclude.

Case (rec). Let e = fix f : τ�.e′, with τ� is ı-compatible with dıτ → θ.
Let (V1, V

�, dατ ′ → θ
′
) = annotrec(V, τ�) and choose ρ1 such that ρ1 =V ρ,

ρ1(dατ ′ → θ
′
) = dıτ → θ, in particular we have ρ1(α) = ı. By induction hy-

pothesis Check(V1, Γ ; f : dατ ′ → θ
′
, e′, dα̂τ ′ → θ̂′) = (Ve′ , Ce′) and there exists

ρe′ =V1 ρ1 such that ρe′ |= Ce′ . By soundness,

ρe′(Γ ; f :dατ ′ → θ
′
)�e′ : ρe′(dα̂τ ′ → θ̂′)

By CRC, ρe′ is a solution for Cf . Choose ρ′ = [i := s] ◦ ρe′ to conclude.

3.4 Implementation of the RecCheck Algorithm

Constraint systems can be represented by a graph where the nodes are stage
variables and ∞, and the edges are integers. Concretely, each constraint in C is
of the form ∞ � α̂n , or α̂n1

1 � α̂n2
2 . In the first case, one adds an edge from α

to ∞ labeled with 0, in the second case one adds an edge from α2 to α1 labeled
with n2 − n1. Using Bellman’s algorithm, one can then detect negative cycles
in the graph, i.e. cycles where the sums of the edges are strictly negative. Such
cycles imply α̂k+1 � α, or equivalently ∞ � α, for the stage variable α at the
beginning of the cycle.

We now turn to the computation of RecCheck(α, V �, V �=, C). Assuming
that we intend to map α to a fresh stage variable ı, the computation proceeds
as follows:
1. it computes the downwards closed set Sı of stage variables that must be

mapped to a stage expression with base stage ı. The rules are V � ⊆ Sı, and
if α1 ∈ Sı and α̂n2

2 � α̂n1
1 ∈ C then α2 ∈ Sı;

2. the algorithm must enforce that α is the smallest variable in Sı. It does so
by adding to C the constraints α � Sı. Let C1 = C ∪ α � Sı;

3. the algorithm checks for negative cycles in the graph representation of C1.
Each time it finds such a cycle starting from β, the algorithm computes the
set V
β of variables greater or equal to β, removes all inequalities about
variables in V
β and adds the constraints ∞ � V
β . At the end of this step
there are no more negative cycles in the graph, and we get a new set of
constraints C2;

82 G. Barthe, B. Grégoire, and F. Pastawski

4. the algorithm computes the upwards closed set Sı� of stage variables that
must be mapped to ∞ or to a stage expression with base stage ı. The rules
are Sı ⊆ Sı� and if α1 ∈ Sı� and α̂n1

1 � α̂n2
2 ∈ C2 then α2 ∈ Sı�;

5. the algorithm computes the upwards closed set S¬ı of stage variables that
cannot be mapped to a stage expression with base stage ı. The rules are
V �= ⊆ S¬ı and if α1 ∈ S¬ı and α̂n1

1 � α̂n2
2 ∈ C2 then α2 is in S¬ı;

6. the algorithm sets all variables β ∈ S¬ı ∩ Sı� to ∞ (as in Step 3). At the
end of this step we get a new set of constraints C3;

7. the algorithm computes the upwards closed set S∞ of stage variables that
must be mapped to ∞. If ∞ � β̂k ∈ C3 then β is in S∞, and if α1 ∈ S∞
and α̂n1

1 � α̂n2
2 ∈ C3 then α2 is in S∞.

8. if S∞ ∩ Sı = ∅ the algorithm returns the new set of constraints, else it fails.

Lemma 7 (Soundness of RecCheck). The algorithm guarantees (SRC).

Proof. Assume RecCheck(α, V �, V �=, C ′) = C and let ρ be a stage substitution
such that ρ |= C. Let ı be a fresh base stage that does not appear in the codomain
of ρ, and let Cı be the subset of C that only contains inequalities of the form
α̂n1

1 � α̂n2
2 with both αi ∈ Sı� and ρ(αi)
= ∞. By definition of the algorithm,

there is no negative cycle in the graph representation of Cı. So we can use the
Floyd-Warshall algorithm to compute the shortest path (SP) from α to each
variable of Sı� . Then we set

ρ′(β) =
{
ı̂SP(β)if β ∈ Sı ∨ (β ∈ Sı� ∧ ρ(β)
= ∞)
ρ(β) otherwise

Let us show that ρ′ has the expected properties. By construction, ı does not
appear in ρ(β) for β ∈ V �= and ρ′ verifies the first and last two properties required
from it in (SRC); hence are left to verify that ρ′ |= C ′ and [ı := ρ(α)]◦ρ′ ≤V �=

V � ρ.
We first prove ρ′ |= C ′. Note that constraints of the form s � ∞ are trivially

satisfied by ρ′, and that ρ′(s) = ρ(s) whenever there is a constraint of the
form ∞ � s in C ′ (in which case the constraint is derivable from C, and hence
satisfied by ρ and ρ′). Hence we only need to focus on constraints of the form
β̂n1

1 � β̂n2
2 ∈ C ′. We write β ∈ SLP if β ∈ Sı ∨(β ∈ Sı�∧ρ(β)
= ∞). We proceed

by case analysis. There are three cases to treat:

– β1, β2 ∈ SLP. By definition of SP, the constraint is satisfied by ρ′.
– β1 ∈ SLP and β2
∈ SLP. Since β2 ∈ Sı�, we must have ρ(β2) = ∞. Therefore

ρ′(β2) = ∞ and the constraint is satisfied by ρ′.
– β1
∈ Sı�. Necessarily β2
∈ Sı� and we conclude as for constraints of the

form ∞ � s.

Now we prove that [ı := ρ(α)] ◦ ρ′ ≤V �=
V � ρ:

– if β ∈ V �=, we must prove ρ′(β) = ρ(β). By definition of ρ′ it is sufficient to
show for all β ∈ V �= that β
∈ Sı, and that if β ∈ Sı� then ρ(β) = ∞.
For the first statement, we have Sı ∩ V �= = ∅, and for the second statement,
we have that if β ∈ V �= ∩ Sı� then the algorithm has added a constraint
∞ � β so that ρ(β) = ∞;

Practical Inference for Type-Based Termination in a Polymorphic Setting 83

– if β ∈ V �, we must prove ρ′(β)[ı := ρ(α)] � ρ(β). As ρ |= C we have

ρ′(β)[ı := ρ(α)] = ρ̂(α)
SP(β) � ρ(β)

which concludes the proof.

Note that in the above SP is only used to establish the soundness of RecCheck.

Lemma 8 (Completeness of RecCheck). The algorithm guarantees (CRC).

Proof. Assume RecCheck(α, V �, V �=, C ′) = C and let ρ be a stage substitu-
tion s.t. ρ(α) = ı and &ρ(V �)' = ı and &ρ(V �=)'
= ı and ρ |= C ′. To show
ρ |= RecCheck(α, V �, V �=, C ′). We proceed by showing that the constraints in-
troduced by each step of the algorithm are satisfied.

During Step (2), the algorithm adds the constraints α � Sı; because &ρ(Sı)' =
ı, and by construction of Sı, it follows that these constraints are satisfied by ρ.

During Step (3) the algorithm adds the constraints ∞ � V
β each time it
finds a negative cycle starting from β. By construction, negative cycles entail that
β̂k+1 � β is derivable from C. Since ρ satisfies C, it must satisfy all inequalities
derivable from C, so necessarily ∞ � ρ(β), as expected.

During Step (6) the algorithm adds constraints ∞ � S¬ı ∩ Sı�. However, a
constraint ∞ � α is only added if one can derive from C that β̂k � α̂k′

with
β ∈ V �= and ı � α. Since ρ satisfies C, it must satisfy all inequalities derivable
from C, which forces ∞ � ρ(α), as expected.

3.5 Implementation Issues and Complexity

We have implemented the inference algorithm in OCaml. The implementation
also supports global declarations, and performs some additional heuristics to
increase readability and compactness of constraints. Roughly speaking, heuristics
either try to remove constraints that involve stage variables not occurring in the
inferred type (these stage variables are implicitly quantified existentially), or try
to exploit positivity or negativity information about the positions in which stage
variables occur (we do not loose any solutions by maximizing stage variables that
occur negatively, or by minimizing stage variables that occur positively; in the
first case it amounts replacing the variable by ∞).

The complexity of the RecCheck algorithm is in n2 where n is the number
of distinct stage variables used in the set of constraints, since it is equivalent to
the complexity of Bellman algorithm.

4 Related Work

The origins of type-based termination can be traced back to N. Mendler [13],
who considered recursors and corecursors in a fixpoint-like style. The study of
type-based termination was further pursued by H. Geuvers [9] who established
a comparison between Mendler’s formulation and the traditional formulation of
recursors, and by E. Giménez [10, 11], who developed a variant of the Calculus

84 G. Barthe, B. Grégoire, and F. Pastawski

of Inductive Definitions based on type-based termination, and established its
relationship with the variant that uses a syntactic criterion for termination.
Independently, J. Hughes, L. Pareto and A. Sabry [12] studied the use of size
types to ensure productivity of reactive programs, and provided a type-checking
algorithm for size types.

In an attempt to gain a better understanding of [11] and [12], several authors
have studied the meta-theoretical properties of these systems or their variants. In
particular, R. Amadio and S. Coupet-Grimal [2] considered type-based termina-
tion for coinductive types. Decidability of type-checking for this system is further
established in [3]. More recently, G. Barthe, M.J. Frade, E. Giménez, L. Pinto
and T. Uustalu [5] introduced λ̂ and showed its strong normalization, but did
not consider the issue of type checking. Furthermore, A. Abel [1] has studied
type-based termination in a non-dependent setting and established decidability
of type-checking for his type system (strictly speaking, his result only applies
to terms in normal form, as a result of considering a calculus with domain-free
abstractions). In a dependent setting, B. Barras [4] pursued the work of [11]
by formalizing a variant of Giménez’s system, and showed decidability of type-
checking. Finally, F. Blanqui [6] considered a variant of the Calculus of Algebraic
Constructions where termination of rewrite systems is enforced through typing.

However, these works do not consider the problem of inferring size annota-
tions. To our best knowledge, the first inference algorithm for size types has
been developed by W.-N. Chin and S.-C. Khoo [7], who provide an algorithm
that infers for every program an annotated type and a formula in Presburger
arithmetic to be satisfied by the size variables. Their type system is more pow-
erful than ours, but has a greater complexity. In a similar line of work, H. Xi
[16] proposes a system of restricted dependent types, built upon DML [17], to
ensure program termination. As in [7], his system features a very rich system
with stage arithmetic, and a notion of metric that is very useful to handle func-
tions in several arguments. Expressiveness is achieved at the cost of practicality
(some difficulties with scalability are discussed in [7]).

5 Conclusion

The main contribution of this paper is the definition and justification of a practi-
cal size inference algorithm for a polymorphic typed λ-calculus combining type-
based termination and λ-abstractions à la Church. We have tried to motivate
our choices in the design of the inference algorithm, and shown its soundness
and completeness. Experimentations with an implementation of the algorithm
suggests that the algorithm is practical.

In a companion article, we define a sound, complete and terminating size
inference algorithm for a type-based variant of the Calculus of Inductive Con-
structions [15]. We also discuss some experiments with an implementation of the
system, notably a formal proof of the correctness of sorting algorithms. Taken
together, the results of the two articles demonstrate that it is feasible and indeed
desirable that proof assistants such as Coq use type-based termination instead
of syntactic termination criteria.

Practical Inference for Type-Based Termination in a Polymorphic Setting 85

Future work includes implementing type-based termination for Coq, and ex-
perimenting with extensions that increase the expressiveness of the type system
without compromising the practicality of the inference algorithm.

Acknowledgments. Thanks to the anonymous referees and F. Blanqui for their
comments on the paper.

References

1. A. Abel. Termination checking with types. RAIRO– Theoretical Informatics and
Applications, 38:277–320, October 2004.

2. R. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type theory.
In M. Nivat, editor, Proceedings of FOSSACS’98, volume 1378 of Lecture Notes in
Computer Science, pages 48–62. Springer-Verlag, 1998.

3. A. Bac. Un algorithme d’inférence de types pour les types coinductifs. Master’s
thesis, École Normale Supérieure de Lyon, 1998.

4. B. Barras. Auto-validation d’un système de preuves avec familles inductives. PhD
thesis, Université Paris 7, 1999.

5. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based ter-
mination of recursive definitions. Mathematical Structures in Computer Science,
14:97–141, February 2004.

6. F. Blanqui. A type-based termination criterion for dependently-typed higher-order
rewrite systems. In V. van Oostrom, editor, Proceedings of RTA’04, volume 3091
of Lecture Notes in Computer Science, pages 24–39, 2004.

7. W.-N. Chin and S.-C. Khoo. Calculating sized types. Higher-Order and Symbolic
Computation, 14(2–3):261–300, September 2001.

8. Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0,
January 2004.

9. H. Geuvers. Inductive and coinductive types with iteration and recursion. In
B. Nordström, K. Pettersson, and G. Plotkin, editors, Informal proceedings of Log-
ical Frameworks’92, pages 193–217, 1992.

10. E. Giménez. Un calcul de constructions infinies et son application à la vérification
de systèmes communicants. PhD thesis, Ecole Normale Superieure de Lyon,
1996.

11. E. Giménez. Structural recursive definitions in Type Theory. In K.G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of ICALP’98, volume 1443 of
Lecture Notes in Computer Science, pages 397–408. Springer-Verlag, 1998.

12. J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. In Proceedings of POPL’96, pages 410–423. ACM Press, 1996.

13. N. P. Mendler. Inductive types and type constraints in the second-order lambda
calculus. Annals of Pure and Applied Logic, 51(1-2):159–172, March 1991.

14. M. Steffen. Polarized Higher-order Subtyping. PhD thesis, Department of Com-
puter Science, University of Erlangen, 1997.

15. B. Werner. Méta-théorie du Calcul des Constructions Inductives. PhD thesis,
Université Paris 7, 1994.

16. H. Xi. Dependent Types for Program Termination Verification. In Proceedings of
LICS’01, pages 231–242. IEEE Computer Society Press, 2001.

17. H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings
of POPL’99, pages 214–227. ACM Press, 1999.

Relational Reasoning in a Nominal Semantics
for Storage

Nick Benton1 and Benjamin Leperchey2

1 Microsoft Research, Cambridge
2 PPS, Université Denis Diderot, Paris

Abstract. We give a monadic semantics in the category of FM-cpos to
a higher-order CBV language with recursion and dynamically allocated
mutable references that may store both ground data and the addresses
of other references, but not functions. This model is adequate, though
far from fully abstract. We then develop a relational reasoning principle
over the denotational model, and show how it may be used to establish
various contextual equivalences involving allocation and encapsulation
of store.

1 Introduction

The search for good models and reasoning principles for programming languages
with mutable storage has a long history [21], and we are still some way from
a fully satisfactory account of general dynamically-allocated storage in higher-
order languages. Here we take a small step forward, building on the work of Pitts
and Stark on an operational logical relation for an ML-like language with integer
references [12], that of Reddy and Yang on a parametric model for a divergence-
free, Pascal-like language with heap-allocated references [14] and that of Shinwell
and Pitts on an FM-cpo model of FreshML [17].

Section 2 introduces MILler, a monadic, monomorphic, ML-like language
with references storing integers or the addresses of other references. Section 3
defines a computationally adequate denotational semantics for MILler by using
a continuation monad over FM-cpos (cpos with an action by permutations on
location names). Working with FM-cpos is much like doing ordinary domain
theory; although it is technically equivalent to using pullback preserving functors
from the category of finite sets and injections into Cpo, it is significantly more
concrete and convenient in practice. The basic model in FM-cpo gives us an
elegant interpretation of dynamic allocation, but fails to validate most interesting
equivalences involving the use of encapsulated state.

Section 4 defines a logical relation over our model, parameterized by relations
on stores that specify explicitly both a part of the store accessible to an expres-
sion and a separated (non-interfering) invariant that is preserved by the context.
Section 5 uses the relation to establish a number of equivalences involving the
encapsulation of dynamically allocated references, and shows the incompleteness
of our reasoning principle. A fuller account of this work, including proofs, more
discussion and examples may be found in the companion technical report [2].

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 86–101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Relational Reasoning in a Nominal Semantics for Storage 87

2 The Language

MILler (MIL-lite with extended references), is a CBV, monadically-typed λ-
calculus with recursion and dynamically allocated references. It is a close relative
of the MIL-lite fragment [1] of the intermediate language of MLj and SML.NET,
and of ReFS [12]. MILler distinguishes value types, τ , from computation types,
of the form Tτ . The storable types, σ, are a subset of the value types:

τ ::= unit | int | σ ref | τ × τ | τ + τ | τ → Tτ
σ ::= int | σ ref
γ ::= τ | Tτ

Typing contexts, Γ , are finite maps from variable names to value types. We
assume an infinite set of locations L, ranged over by
. Store types Δ are finite
maps from locations to storable types. Terms, G, are subdivided into values, V ,
and computations, M :

V ::= x | n |
 | () | (V, V ′) | inτ
i V | rec f(x :τ) :τ ′ = M

M ::= V V ′ | let x⇐M in M ′ | val V | πiV | ref V |!V | V := V ′

| case V of in1x ⇒ M ; in2x ⇒ M ′

| V = V ′ | V + V ′ | iszero V

Some of the typing rules for MILler are shown in Figure 1. One can define syn-
tactic sugar for booleans, conditionals, non-recursive λ-abstractions, sequencing
of commands, etc. in the obvious way.

States, Σ, are finite maps from locations to Z + L. We write inZ,inL for the
injections and Σ[
 �→ inZn] (resp.inL) for updating.

Definition 1 (Typed States and Equivalence). If Σ,Σ′ are states, and Δ
is a store type, we write Σ ∼ Σ′ : Δ to mean ∀
 ∈ dom Δ,Σ ∼ Σ′ : (
 : Δ(
)),

(rec)
Δ; Γ, x : τ, f : τ → T(τ ′) � M : T(τ ′)

Δ; Γ � (rec f(x :τ) :τ ′ = M) : τ → T(τ ′)
(loc)

� : σ ∈ Δ

Δ; Γ � � : σ ref

(app)
Δ; Γ � V1 : τ → Tτ ′ Δ; Γ � V2 : τ

Δ; Γ � V1 V2 : Tτ ′

(let)
Δ; Γ � M1 : T(τ1) Δ; Γ, x : τ1 � M2 : T(τ2)

Δ; Γ � let x⇐M1 in M2 : T(τ2)
(val)

Δ; Γ � V : τ

Δ; Γ � val V : T(τ)

(eq)
Δ; Γ � V1 : σ ref Δ; Γ � V2 : σ ref

Δ; Γ � V1 = V2 : T(unit + unit)
(deref)

Δ; Γ � V : σ ref

Δ; Γ � !V : Tσ

(alloc)
Δ; Γ � V : σ

Δ; Γ � ref V : T(σ ref)
(assign)

Δ; Γ � V1 : σ ref Δ; Γ � V2 : σ

Δ; Γ � V1 := V2 : T(unit)

Fig. 1. Type Rules for MILler (extract)

88 N. Benton and B. Leperchey

Σ, let x⇐val V in val x ↓
Σ, let y⇐M [V/x] in K ↓

Σ, let x⇐val V in (let y⇐M in K) ↓

Σ, let x2⇐M1 in (let x1⇐M2 in K) ↓
Σ, let x1⇐(let x2⇐M1 in M2) in K ↓

Σ, let x1⇐M [V/x2, (rec f(x2 :τ1) :τ2 = M)/f] in K ↓
Σ, let x1⇐(rec f(x2 :τ1) :τ2 = M) V in K ↓

Σ, let x⇐val false in K ↓
� �= �′

Σ, let x⇐� = �′ in K ↓
Σ[� �→ inL�

′], let x⇐val () in K ↓
Σ, let x⇐� := �′ in K ↓

Σ(�) = inL�
′ Σ, let x⇐val �′ in K ↓

Σ, let x⇐ !� in K ↓

Σ[� �→ inL�
′], let x⇐val � in K ↓

� �∈ locs(Σ) ∪ locs(K) ∪ {�′}
Σ, let x⇐ref �′ in K ↓
Fig. 2. Operational Semantics of MILler (extract)

where Σ ∼ Σ′ : (
 : int) means ∃n ∈ Z.Σ
 = inZn = Σ′
 and Σ ∼ Σ′ : (
 : σ′ ref)
means ∃
′ ∈ L.Σ
 = inL
′ = Σ′
 ∧ Σ ∼ Σ′ : (
′ : σ′). We say that a state Σ has
type Δ, and we write Σ : Δ, when Σ ∼ Σ : Δ.

The restricted grammar of storable types means that if Σ : Δ then the part of
Σ accessible from dom(Δ) will be acyclic.

The operational semantics is defined using a termination judgement [12]
Σ, let x ⇐ M in K ↓ where M is closed and K is a continuation term in x.
Typed continuation terms are defined by

Δ;� val x : (x : τ)�
Δ;x : τ � M : Tτ ′ Δ;� K : (y : τ ′)�

Δ;� let y⇐M in K : (x : τ)�

and the rules for defining untyped ones are the same with types (though not
variables) erased. Some of the rules defining the termination predicate are shown
in Figure 2.

Definition 2 (Contextual Equivalence). Contexts, C[·], are ‘computation
terms with holes in’ and we write C[·] : (Δ;Γ � γ) ⇒ (Δ;− � Tτ) to mean that
whenever Δ;Γ � G : γ then Δ;� C[G] : Tτ . If Δ;Γ � Gi : γ for i = 1, 2 then we
write Δ;Γ � G1 =ctx G2 : γ to mean

∀τ.∀C[·] : (Δ;Γ � γ) ⇒ (Δ;− � Tτ).∀Σ : Δ.
Σ, let x⇐C[G1] in val x ↓ ⇐⇒ Σ, let x⇐C[G2] in val x ↓

Relational Reasoning in a Nominal Semantics for Storage 89

3 Denotational Semantics

We first summarize basic facts about FM-cpos. A more comprehensive account
appears in Shinwell’s thesis [16].

Fix a countable set of atoms, which in our case will be the locations, L.
Then an FM-set X is a set equipped with a permutation action: an operation
π • − : perms(L) × X → X that preserves composition and identity, and such
that each element x ∈ X is finitely supported : there is a finite set L ⊆ L such that
whenever π fixes each element of L, the action of π fixes x: π •x = x. There is a
smallest such set, which we write supp(x). A morphism of FM-sets is a function
f : X → Y between the underlying sets that is equivariant : ∀x.∀π. π • (f x) =
f (π • x).

An FM-cpo is an FM-set with an equivariant partial order relation � and
least upper bounds of all finitely-supported ω-chains. A morphism of FM-cpos
is a morphism of their underlying FM-sets that is monotone and preserves lubs
of finitely-supported chains. We only require the existence and preservation of
finitely-supported chains, so an FM-cpo may not be a cpo in the usual sense. The
sets Z, N, etc. are discrete FM-cpos with the trivial action. The set of locations,
L, is a discrete FM-cpo with the action π •
 = π(
).

The category of FM-cpos is bicartesian closed: we write 1 and × for the finite
products, ⇒ for the internal hom and 0,+ for the coproducts. The action on
products is pointwise, and on functions is given by conjugation: π •f

def
= λx.π •

(f (π−1 •x)). The category is not well-pointed: morphisms 1 → D correspond to
elements of 1 ⇒ D with empty support.

The lift monad, (·)⊥, is defined as usual with the obvious action. The Kleisli
category is the category of pointed FM-cpos (FM-cppos) and strict continuous
maps, which is symmetric monoidal closed, with smash product ⊗ and strict
function space �. We use the same notation for partial constructions on the
category of FM-cpos, defined on the range of the forgetful functor from FM-
cppo. If D is a pointed FM-cpo then fix : (D ⇒ D) � D is defined by the lub
of an ascending chain in the usual way.

We now turn to the denotational semantics of MILler. Define the FM-cpo of
states, S, to be L ⇒ (Z + L), the finitely-supported functions mapping locations
to either locations or integers, and write �Σ� for {S ∈ S | ∀
 ∈ domΣ.S(
) =
Σ(
)}. The update operation ·[· �→ ·] of type S × L × (Z + L) → S is equivariant
and continuous. The equivalence of operational states at a type of Definition 1
extends naturally to denotational states.

We write O for the flat two-element FM-cpo {⊥ � +}, with the trivial action
and then define the FM-cpo [[γ]], interpreting the type γ, inductively:

[[unit]] = 1 [[τ1 × τ2]] = [[τ1]] × [[τ2]]
[[int]] = Z [[τ1 + τ2]] = [[τ1]] + [[τ2]]

[[σ ref]] = L [[τ1 → Tτ2]] = [[τ1]] ⇒ T[[τ2]]
TD = (S ⇒ D ⇒ O) � (S ⇒ O)

90 N. Benton and B. Leperchey

[[Δ; Γ � � : σ ref]] ρ = �

[[Δ; Γ � let x⇐M1 in M2 : Tτ2]] ρ k S =
[[Δ; Γ � M1 : Tτ1]] ρ (λS′ : S.λd : [[τ1]].[[Δ; Γ, x : τ1 � M2 : Tτ2]] ρ[x �→ d] k S′) S

[[Δ; Γ � val V : Tτ]] ρ k S = k S ([[Δ; Γ � V : τ]] ρ)

[[Δ; Γ � !V : Tσ]] ρ k S =
{
k S v if S([[Δ; Γ � V : σ ref]] ρ) = in�σ�v
⊥ otherwise

[[Δ; Γ � V1 := V2 : Tunit]] ρ k S =
k S[([[Δ; Γ � V1 : σ ref]] ρ) �→ in�σ�([[Δ; Γ � V2 : σ]] ρ)] ∗

�Δ; Γ � ref V : Tσ ref� ρ k S = k S[� �→ in�σ�(�Δ; Γ � V : σ�ρ)] �
for some/any � �∈ supp(λ�′.k S[�′ �→ inσ(�Δ; Γ � V : σ�ρ)] �′).

[[Δ; Γ � (rec f x = M) : τ → Tτ ′]] ρ =
fix(λf ′ : [[τ → Tτ ′]].λx′ : [[τ]].[[Δ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′]] ρ[f �→ f ′, x �→ x′])

Fig. 3. Denotational Semantics of MILler (extract)

For terms in context, we define [[Δ;Γ � G : γ]] ∈ [[Γ]] ⇒ [[γ]], where [[x1 :
τ1, . . . , xn : τn]] is the record {x1 : [[τ1]], · · · , xn : [[τn]]}, inductively. Some of
the cases are shown in Figure 3. The most interesting case is the definition
of the semantics of allocation. Note that the monad T combines state with
continuations, even though there are no control operators in MILler. However,
explicit continuations give us a handle on just what the new location has to be
fresh for, whilst the ambient use of FM-cpos is exactly what we need to ensure
that this really is a good definition, i.e. that one can pick a sufficiently fresh

and, moreover, one gets the same result in O for any such choice. An equivalent,
perhaps simpler, definition uses the quantification

‘ . . . for some/any

∈ supp(k) ∪ supp(S) ∪ supp(�Δ;Γ � V : σ�ρ)’

Our formulation emphasizes that the notion of support is semantic, not syntactic.
The quantification can be seen as ranging not merely over locations that have not
previously been allocated (as in the operational semantics), but over all locations
that the specific continuation does not distinguish from any of the unallocated
ones, i.e. including those which are ‘extensionally garbage’.

Writing �Δ;� K : (x : τ)��K for λSd.�Δ;x : τ � K : Tτ ′�{x �→ d}(λSd.+)S,
the following is proved via a logical ‘formal approximation’ relation:

Theorem 3 (Soundness and Adequacy). If Δ;� M : Tτ , Δ;� K : (x : τ)τ ,
Σ : Δ and S ∈ �Σ� then

Σ, let x⇐M in K ↓ ⇐⇒ �Δ;� M : Tτ�{}�Δ;� K : (x : τ)��K S = +.

Relational Reasoning in a Nominal Semantics for Storage 91

Corollary 4. �Δ;Γ �G1 : γ�=�Δ;Γ �G2 : γ� implies Δ;Γ �G1 =ctx G2 : γ.

The denotational semantics validates as contextual equivalences the basic
equalities of the computational metalanguage and simple properties of assign-
ment and dereferencing. It also proves the ‘swap’ equivalence:

Δ;Γ � V1 : σ1 Δ;Γ � V2 : σ2 Δ;Γ, x : σ1 ref, y : σ2 ref � N : Tτ

Δ;Γ � let x⇐ref V1 in (let y⇐ref V2 in N)
=ctx let y⇐ref V2 in (let x⇐ref V1 in N) : Tτ

But many interesting valid equivalences, including the garbage collection rule

Δ;Γ � V : σ Δ;Γ � N : Tτ
x
∈ fvN

Δ;Γ � let x⇐ref V in N =ctx N : Tτ

are, unfortunately, not equalities in the model. The above fails because the model
contains undefinable elements that test for properties like ∃
 ∈ L.S(
) = inZ(3)
(note that this has empty support) and so make the effect of the initialization
visible. The garbage collection and swap equations correspond to two of the
structural congruences for restriction in the π-calculus. One might regard them
as rather minimal requirements for a useful model, but they also fail in other
models in the literature: Levy’s possible worlds model [3] fails to validate either
and, like ours, a model due to Stark [19–Chapter 5] fails to validate the garbage
collection rule.

4 A Parametric Logical Relation

We now embark on refining our model using parameterized logical relations.
Many authors have used forms of parametricity to reason about storage; our
approach is particularly influenced by the work of Pitts and Stark [12] and of
Reddy and Yang [14]. We will define a partially ordered set of parameters, p, and
a parameter-indexed collection of binary relations on the FM-cpos interpreting
states and types: ∀p.RS(p) ⊆ S × S and ∀p.∀γ.Rγ(p) ⊆ �γ� × �γ�. We then
show that the denotation of each term is related to itself and, as a corollary,
that typed terms with related denotations are contextually equivalent.

An important feature of the state relations we choose will be that they depend
on only part of the state: this will allow us to reason that related states are still
related if we update them in parts on which the relation does not depend.

One might expect that the notion of support, which is already built into
our denotational model, would help here; for example by taking relations to be
finitely-supported functions in S × S ⇒ 1 + 1. Unfortunately, the support is not
the right notion for defining separation of relations. For example, the relation

{S1, S2 | ∃
1,
2.S1(
1) = S2(
2) = inZ0 ∧ S1(
) = inL
1 ∧ S2(
) = inL
2}
has only
 in its support, but writing to the existentially quantified locations ‘in
the middle’ can make related states unrelated. Even with only integers in the

92 N. Benton and B. Leperchey

store, a relation like {(S1, S2) | ∃
, S1
 = 0 = S2
} can be perturbed by writes
outside of its (empty) support.

Separation logic [6] leaves the part of the store which is ‘relevant’ to a pred-
icate implicit and enforces separation by existential quantification over partial
stores in the definition of the (partial) separating conjunction ∗. We instead
make the finite part of the state on which our relations depend explicit, using
what we call accessibility maps. Because, as above, relations can ‘follow pointers’,
the set of locations on which a relation depends can itself be a function of the
states. We make no explicit use of support in this section, though working with
FM-cpos allows the use of equality of locations, rather than partial bijections,
in our definitions.

Definition 5 (Accessibility Map). An accessibility map A is a function from
S to finite subsets of L, such that:

∀S, S′ ∈ S, (∀
 ∈ AS, S
 = S′
) =⇒ A(S) = A(S′)

The subtyping ordering <: is defined as:

A <: A′ ⇐⇒ ∀S,A(S) ⊇ A′(S)

The subtype relation is a partial order, and the function λS.∅, abbreviated ∅,
is the greatest accessibility map with respect to <:. One source of concrete
accessibility maps is our existing notion of state type:

Definition 6 (Accessible Part of a State at a Type). If Δ is a state type,
then AccΔ : S → Pfin(L) is defined by AccΔ(S) =

⋃
(�:σ)∈Δ Acc(
, σ, S) where

Acc(
, int, S)
def
= {
} and

Acc(
, σ ref, S)
def
= {
} ∪

{
Acc(
′, σ, S) if S
 = inL
′

∅ otherwise

Lemma 7. AccΔ is an accessibility map, and if Δ ⊆ Δ′ then AccΔ′ <: AccΔ.

Definition 8 (Accessible Equality of States). If A is an accessibility map,
we define S ∼ S′ : A to mean ∀
 ∈ A(S), S
 = S′
.

Definition 9 (Finitary State Relation). A finitary state relation r is a pair
〈|r|, Ar〉 where |r| ⊆ S×S and Ar is an accessibility map, subject to the following
saturation condition: if S1 ∼ S′

1 : Ar and S2 ∼ S′
2 : Ar then (S1, S2) ∈ |r| ⇐⇒

(S′
1, S

′
2) ∈ |r|.

Lemma 10.

1. If A and A′ are accessibility maps then so is A∧A′, where ∀S. (A∧A′)(S) =
(A(S)) ∪ (A′(S)).

2. + def
= 〈S × S, ∅〉 is a finitary state relation.

Relational Reasoning in a Nominal Semantics for Storage 93

3. If 〈|r|, A〉 is a finitary state relation and A′ <: A then 〈|r|, A′〉 is a finitary
state relation.

4. idΔ
def
= 〈∼Δ, AccΔ〉 is a finitary state relation.

Definition 11 (Separating Conjunction). Given two finitary state relations,

r1 = 〈|r1|, A1〉 and r2 = 〈|r2|, A2〉, define r1 ⊗ r2 def
= 〈|r1 ⊗ r2|, A1 ∧ A2〉 where

(S1, S2) ∈ |r1 ⊗ r2| ⇐⇒
{

(S1, S2) ∈ |r1| ∩ |r2|
∀i ∈ {1, 2}, A1(Si) ∩ A2(Si) = ∅

Lemma 12. If r1 and r2 are finitary state relations, so is r1 ⊗r2. The conjunc-
tion is associative and commutative, with + as a unit.

We now have all the ingredients needed to define the parameters of our relations.
The intuition is that the parameters express that one part of the store is directly
accessible, or visible, and that functions in the context also give access to other
locations. Since we can do anything with visible locations, related states must be
equal on that part. Moreover, we will preserve any invariant on hidden locations
that is preserved by all the functions we can use, provided that invariant does
not also depend on the contents of visible locations. Our parameters comprise
these two components: the set of visible locations and a hidden invariant.1

Definition 13 (Parameters). A parameter is a pair (Δ, r), where Δ is a state
type and r is a finitary relation; we will abbreviate this to Δr. If Δr is a param-
eter, we define the binary relation on states RS(Δr)

def
= |idΔ ⊗ r| and define

the partial order � on parameters by

Δr � Δ′r′ ⇐⇒ (Δ ⊇ Δ′) ∧ (∃r′′, r = r′ ⊗ r′′)

Definition 14 (Logical Relation). We define the parameter- and typed- in-
dexed family of relations Rγ(Δr) by induction over the types:

Runit(Δr) = {(∗, ∗)}
Rint(Δr) = {(n, n) | n ∈ N}

Rτ×τ ′(Δr) = {((d1, d
′
1), (d2, d

′
2)) | (d1, d2) ∈ Rτ (Δr) ∧ (d′1, d

′
2) ∈ Rτ ′(Δr)}

Rτ1+τ2(Δr) = {(in1d1, in1d2) | (d1, d2) ∈ Rτ1(Δr)}
∪{(in2d1, in2d2) | (d1, d2) ∈ Rτ2(Δr)}

Rσ ref(Δr) = {(
,
) | (
 : σ) ∈ Δ}
Rτ→Tτ ′(Δr) =

{(f1, f2) | ∀Δ′r′ � Δr, (v1, v2) ∈ Rτ (Δ′r′), (f1v1, f2, v2) ∈ RTτ ′(Δ′r′)}

1 This is in the style of Reddy and Yang [14]. Pitts and Stark [12] got away with
simpler parameters, adding a new visible location � to a parameter r by r⊗ id{�}. In
the presence of references to references, this doesn’t work, as it prevents one visible
location pointing to another.

94 N. Benton and B. Leperchey

For continuations, we define Rτ�(Δr) to be

{(k1, k2) | ∀Δ′r′ � Δr, (v1, v2)∈Rτ (Δ′r′), (S1, S2) ∈ RS(Δ′r′), k1S1v1 =k2S2v2}
and for computations, RTτ (Δr) is defined as {(f1, f2) | ∀Δ′r′ � Δr, (k1, k2) ∈
Rτ�(Δ′r′), (S1, S2) ∈ RS(Δ′r′), f1k1S1 = f2k2S2}.
Definition 15 (Relations in Context). We define RΓ (Δr) to be {(ρ1, ρ2) |
∀(xi : τi) ∈ Γ, (ρ1xi, ρ2xi) ∈ Rτi

(Δr)} and RΓ
γ(Δr) to be {(v1, v2) | ∀Δ′r′ �

Δr,∀(ρ1, ρ2) ∈ RΓ (Δ′r′), (v1ρ1, v2ρ2) ∈ Rγ(Δ′r′)}.
We now have to prove a number of non-trivial technical lemmas, which we

omit here. These allow us to show that the interpretations of all the MILler
typing rules preserve the logical relation, and hence deduce:

Theorem 16 (Fundamental Lemma). If Δ;Γ � G : γ, then

∀r. (�Δ;Γ � G : γ�, �Δ;Γ � G : γ�) ∈ RΓ
γ(Δr).

Theorem 17 (Soundness of Relational Reasoning). If Δ;Γ � Gi : γ for
i = 1, 2 and

(�Δ;Γ � G1 : γ�, �Δ;Γ � G2 : γ�) ∈ RΓ
Tτ (Δ+)

then Δ;Γ � G1 =ctx G2 : γ.

Accessibility maps are convenient to prove generic results, but working with
specific ones can be a little awkward. In most examples we do not need their full
generality (for example, allowing the accessible locations to depend on the integer
contents of a particular location). We find it useful to generalize the notion of
state type a little, introducing a top type and a simple form of subtyping. This
allows a corresponding generalization of the accessibility map associated with a
state type that suffices to specify the accessiblity maps we need even in tricky
cases in which there are pointers between the visible and hidden parts of the
state, but the invariant does not follow them far enough to be affected.

Definition 18 (Extended Storable Types). Extended storable types are
given by the grammar α ::= T | int | α ref. We define an order <: between
extended storable types by: int <: T, αref <: T, and if α <: α′ then αref <: α′ref.

Definition 19 (Extended State Type). An extended state type θ is a map
from L to location types which is T for all but a finite number of locations.
Subtyping is defined pointwise.

The types α say how much of the value stored in a location is relevant: T means
that we do not care about the value of the location. For instance, a location has
type T ref if the value it carries is always a location, but we do not specify the
type of this location: it might be an integer or a location.

Definition 20 (Accessibility Map for Extended State Type). The map

Accθ is defined as in Definition 6, with the extra clause Acc(
, T, S)
def
= ∅.

Lemma 21. Accθ is an accessibility map. If θ <: θ′, Accθ′ <: Accθ.

Relational Reasoning in a Nominal Semantics for Storage 95

5 Examples

Garbage Collection. If x is not free in M , and Δ;Γ � M : Tτ , then

Γ � let x⇐ref V in M =ctx M : Tτ

We prove that �let x⇐ref V in M� and �M� are related by RΓ
Tτ (Δ+), and
we conclude using Theorem 17. Let Δ′r′ � Δ+ be a parameter and (ρ1, ρ2) ∈
RΓ (Δ′r′). We need to prove that (�let x⇐ref V in M�ρ1, �M�ρ2) ∈ RTτ (Δ′r′).
Let Δ′′r′′ � Δ′r′, (k1, k2) ∈ Rτ�(Δ′′r′′) and (S1, S2) ∈ RS(Δ′′r′′). We have to
prove that

�let x⇐ref V in M�ρ1k1S1 = �M�ρ2k2S2

For

∈ supp(λ
′.k1S1[
′ → �V �ρ]
′)

�let x⇐ref V in M�ρ1k1S1 = �M�ρ1k1S1[
 → �V �ρ1]

because x is not free in M . Since we can pick any such
, we actually choose one
also out of AccΔ′′(Si) ∪ Ar′′(Si) for i = 1, 2. By the fundamental lemma, �M�
is related to itself by RΓ
Tτ (Δ+), so if we prove that (S1[
 → �V �ρ1], S2) ∈
RS(Δ′′r′′) we are done.

First, since

∈ AccΔ′′(Si), (S1[
 → �V �ρ1], S2) ∈ idΔ′′ , and since

∈
Ar′′(Si), (S1[
 → �V �ρ1], S2) ∈ r′′. By definition of accessibility maps, AccΔ′′

and Ar′′ are unchanged, so they still do not overlap, which concludes the proof.

Meyer-Sieber 6. We can validate all the Meyer-Sieber examples [4]. We explain
here example 6, which can be translated in MILler as the program M :

let x⇐ref 0 in
let almost add2 ⇐ λz.if z = x

then x := 1
else let y⇐ !x in let y′⇐y + 2 in x := y′in

p(almost add2);
let y⇐ !x in

if !x mod 2 = 0 then divergeunit else val ()

This program always diverges: we prove that (�;Γ � M : Tunit�, λρks.⊥) ∈
RΓ
Tunit(∅+). We have, for some fresh
:

�M�ρkS = ρ(p)f
(

λS′v.
{

kS′∗ if S
 = inZn for some odd n
⊥ otherwise

)
S[
 → 0]

where

fzks =

⎧⎨⎩ks[
 → 1]∗ if z =

ks[
 → n + 2]∗ if z
=
 and s
 = inZn
⊥ otherwise

96 N. Benton and B. Leperchey

Let Δ′r′�Δr be two parameters, (ρ1, ρ2) ∈ RΓ (Δr), (k1, k2) ∈ Runit�(Δ′r′) and
(S1, S2) ∈ RS(Δ′r′). We let r′′ = r′⊗〈{(S1, S2) | S1
 and S2
 hold even integers},
Acc{�:int}〉 and prove that

(f, f) ∈ Rint ref→Tunit(Δ′r′′)

the proof is then straightforward.
Suppose Δ4r4�Δ3r3�Δ′r′′, (v3

1 , v3
2) ∈ Rint ref(Δ3r3), (k4

1, k
4
2) ∈ Runit(Δ4r4),

(S4
1 , S4

2) ∈ RS(Δ4r4). As Δ4r4�Δ′r′′, (S1, S2) ∈ r4 ⊆ r′′, so S1 and S2 hold even
integers n1 and n2. v3

1 = v3
2 is a visible location. As Ar4 <: Ar′′ ,
 ∈ Ar4(Si),

which entails that v3
i
=
. We get

fv3
i k4

i S4
i = k4

i S4
i [
 → ni + 2]

(S1[
 → ni + 2], S2[
 → ni + 2]) ∈ RS(Δ4r4), because our invariant is preserved,
and, by non interference, the other parts of the invariant are preserved too, so

fv1k1S1 = k1S1[
 → n1 + 2] = k2S2[
 → n2 + 2] = fv2k2S1

Extended Types. To illustrate the extended types, we give an example involving
a pointer from the invariant to the visible locations. We show that the following
program M diverges:

let x⇐ref 0 in
let y⇐ref x in
p x;
let z⇐ !y in
if z = x then divergeunit else val ()

As before, we prove that (�M�,⊥) ∈ RΓ
Tunit(∅+). For any fresh
x,
y:

�M�ρkS = ρ(p)

(

λS′′v.
{⊥ if S′′
y = inL
x

k1S
′′∗ otherwise

)
S′

1

where S′
1 = S1[
y →
x,
x → 0]. We want to prove that when we reach the

continuation, the value held in
y is
x.
x is given to p, so it must be visible,
but the invariant “
y holds
x” is about the location held by
y, but not about
what this location holds. We have to define an accessibility map that does not
contain
x: the invariant is

dr = 〈{(S1, S2) | S1
y = inL
x},Acc{�y:T ref}〉

Secrecy. We can prove some examples (very) loosely inspired by the work of
Sumii and Pierce [20] on logical relations and encryption. The idea, though we
certainly do not claim this is a particularly good model of cryptography, is that
encrypted messages are sent through hidden locations. Encrytion is encoded as
writing in a hidden location, and decryption as reading the same hidden location.
The visible locations are the keys the context knows, and the locations in the

Relational Reasoning in a Nominal Semantics for Storage 97

invariant the private keys. We can represent public keys by providing a function
that wraps the assignment.

For instance, in the following dummy protocol, A (the first function) sends a
message to B (the second function) containing a fresh key, and B reads this key
and sends a message i using this key. The program Mi is

let x⇐ref 0 in
let kb ⇐ref x in
let cipher⇐val λ〈k, n〉.k := n in
let decipher⇐val λk.!k in
val 〈λ().let ka ⇐ref 0 in cipher 〈kb, ka〉,

λ().let k⇐decipher kb in cipher 〈k, i〉〉

We prove that M1 is equivalent to M2, which shows that the information writ-
ten in k is not accessible from the context, thus kept secret.2 An easy calculation
gives, for fresh
x and
b:

�Mi�kS = kS[
b →
x → 0]〈φA, φB
i 〉

where

φA = λ ∗ kS.kS[
b →
a → 0] ∗ for a fresh
a

φB
i = λ ∗ kS.

{
kS[
 → i]∗ if S
b = inL

⊥ otherwise

Let Δr be a parameter (k1, k2) ∈ R(τ×τ)�(Δr) and (S1, S2) ∈ RS(Δr), where
τ = unit → Tunit is the type of the processes A and B. The invariant dr says
that
b holds a reference to an integer, which makes
b and, later,
a secret. Let
r′ = r ⊗ dr, and S′

i = Si[
b →
x → 0]. Of course (S′
1, S

′
2) ∈ RS(Δr′). If we show

that (φA, φA) and (φB
1 , φB

2) are in Rτ (Δr′), then we are done.
Let Δ′′r′′ � Δr′, (k′′

1 , k′′
2) ∈ Runit�(Δ′′r′′) and (S′′

1 , S′′
2) ∈ RS(Δ′′r′′). We

write r′′ = r ⊗ dr ⊗ dr′. We can pick a fresh
a such that, for both i = 1, 2:

φA ∗ k′′
i S′′

i = k′′
i S′′

i [
b →
a → 0]∗

It is easy to check that the new states are still related by RS(Δ′′r′′): they are
in dr, they also are in the other parts of the relation idΔ′′ , r and dr′ thanks to
the separating condition, because the only locations that were changed are
b

(which is in AdrSi) and
a (which was fresh), and there is no new cross pointer
between these parts. This gives (φA, φA) ∈ Rτ (Δr′).

The same holds for φB
1 and φB

2 because the relation dr only states that
x

holds an integer, not which integer. We get the expected contextual equivalence
of M1 and M2.

2 The equivalence of two pairs of functions of type unit → Tunit with no free loca-
tions is not completely trivial: each pair might have differing intertwined termination
behaviour, depending on hidden state.

98 N. Benton and B. Leperchey

On the other hand, if the key is public, i.e. we give an encryption function
to the context, then the secrecy is broken: the opponent can write a message
to B, giving it a channel it can read, so that the value i written by B can be
deciphered afterwards. We give to the context (as a third element in the tuple)
the function

public cipher = λn.cipher 〈kb, n〉
public cipher does not respect the relation RS(Δr′):

public cipher
kS = kS[
b →
]∗

b certainly points to a reference to an integer after it is called, so it is in dr
as before, but now this reference is
, which is visible (since it is given by the
context), so the separating condition between idΔ and dr no longer holds.

Snapback. Our logical relation fails to capture the irreversibility of state changes,
which is a source of incompleteness relative to contextual equivalence. Consider
the element ‘snapback’ of �(unit → Tint) → Tunit� defined by

snapback f k S = f ∗ (λS′.λn.k S n) S

Snapback calls its argument f , passing it the state S and a continuation that
will set the state back to S, discarding any updates made by f . Snapback is
not definable, but it is parametric: assume Δ′r′ � Δr are parameters, (f1, f2) ∈
Runit→Tint(Δr), (k1, k2) ∈ Rint�(Δ′r′) and (S1, S2) ∈ RS(Δ′r′). We only have to
show that the continuations λS′n.kiSin are related by Rint�(Δ′r′). Let Δ′′r′′ �
Δ′r′ and (S′′

1 , S′′
2) ∈ RS(Δ′′r′′). The only values related by Rint(Δ′′r′′) are

(m,m) for some m ∈ N. We have (λS′n.kiSin)S′′
i m = kiSim, and, since (k1, k2) ∈

Rint�(Δ′r′) and (S1, S2) ∈ RS(Δ′r′), k1S1m = k2S2m, so we’re done.
The fact that our relation does not eliminate snapback prevents us from

proving some useful and valid contextual equivalences. For example, ; p : (unit →
Tint) → Tunit) � M =ctx N : Tunit where

M = let x⇐ref 0 in
p(λ .x := 1; 0);
let y⇐ !x in
if iszero y then val () else divergeunit

N = p (λ .divergeint)

but this is not provable with our relation, as if p is snapback, then M con-
verges and N diverges. Intuitively, the problem here is one of linearity: note that
snapback duplicates S and discards S′.

6 Discussion and Further Work

There is much related work on the semantics of Algol-like languages; we can
only pick out a few relevant highlights. Meyer and Sieber [4] gave a model for

Relational Reasoning in a Nominal Semantics for Storage 99

an Algol-like language with local integer variables which was based on a notion
of ‘support’ and a refined model based on the preservation of (unary) predicates
on stores that depend only on a finite number of locations. Reynolds [15] and
Oles [9] pioneered the functor-category, or possible-worlds approach to modelling
storage, further developed by O’Hearn and Tennent [7] and Sieber [18] to incor-
porate relational parametricity. This gives a good semantics for the locality of
local variables but, like our relation, still does not account for the irreversibil-
ity of state changes: essentially the same snapback example as we have given
above causes incompleteness. Reynolds and O’Hearn [5] gave models via trans-
lations from Algol-like languages into a predicatively polymorphic linear lambda
calculus, ruling out snapback. Pitts [10] used that idea to give an operationally-
based logical relation for an Algol-like language that is complete for contextual
equivalence. Following [5, 10], we believe a relatively small modification to the
logical relation (involving lifting of states) may rule out snapback in our model
too (strict relations over pointed cpos give a rather weak model of the poly-
morphic linear lambda calculus, but as snapback relies on both contraction and
weakening, this seems to suffice), but we have not yet worked through all the
details.

General dynamic allocation is more complex than the stack-structured local
variables of Algol. Pitts and Stark [11, 19] introduced the ν-calculus, a simply-
typed (and recursion-free) CBV lambda calculus with dynamic generation of
pure names. They present both operational logical relations and monadically-
structured denotational models, based on parametric functor categories, for the
ν-calculus. We have already mentioned their later work [12] and that of Reddy
and Yang [14], from which we drew much inspiration. Levy [3] has given an
adequate, but non-parametric, possible-worlds semantics for an ML-like language
with storage of arbitrary values, including functions. Our FM-cpo semantics for
MILler derives from a model for FreshML due to Shinwell and Pitts [17, 16].

Although most of the pieces of our model and logical relation are closely
related to ones in the literature, the way they are combined here is novel (possibly
the first domain-theoretic, parametric treatment of dynamic allocation), elegant
and, above all, elementary. Our basic model is considerably easier to work with
than a functor category, and the relational reasoning principle is easy to apply.
We believe our formulation of separation is more powerful than that of [14].

We would like to be able to reason relationally about references to values of
functional (and recursive) types. Appropriate technology seems to exist [13], but
it remains to be seen whether we can apply it successfully in our setting.

We have experimented with a simple inference system for proving expres-
sions are related. Developing this, perhaps using ideas from nominal logic, may
open the way to automated support. We have also looked at methods to prove
the soundness of the effect-based transformations we previously studied opera-
tionally (and rather unsatisfactorily) in [1]. Something can certainly be pushed
through using our current definitions, but making it work smoothly seems to
call for some interesting modifications to our logical relation. We also plan to
investigate more seriously the applications to secure information flow and the
correctness of cryptographic protocols.

100 N. Benton and B. Leperchey

References

1. N. Benton and A. Kennedy. Monads, effects and transformations. In 3rd Interna-
tional Workshop on Higher Order Operational Techniques in Semantics (HOOTS),
Paris, volume 26 of Electronic Notes in Theoretical Computer Science. Elsevier,
September 1999.

2. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. Technical report, Microsoft Research, February 2005.

3. P. B. Levy. Possible world semantics for general storage in call-by-value. In Proceed-
ings of the Annual Conference of the European Association for Computer Science
Logic (CSL), volume 2471 of Lecture Notes in Computer Science. Springer-Verlag,
September 2002.

4. A. R. Meyer and K. Sieber. Towards a fully abstract semantics for local variables:
Preliminary report. In Proceedings of the 15th Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL), January 1988.

5. P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-
calculus. Journal of the ACM, 47(1):167–223, January 2000.

6. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of the Annual Conference of the European
Association for Computer Science Logic (CSL), 2001.

7. P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. Journal of
the ACM, 42(3):658–709, May 1995.

8. P. W. O’Hearn and R. D. Tennent, editors. Algol-like Languages. Progress in
Theoretical Computer Science. Birkhäuser, 1997. Two volumes.

9. F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming Lan-
guages. PhD thesis, Syracuse University, 1982.

10. A. M. Pitts. Reasoning about local variables with operationally-based logical re-
lations. In [8], 1997.

11. A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions
that dynamically create local names, or: What’s new? In Proceedings of the 18th
International Symposium on Mathematical Foundations of Computer Science, vol-
ume 711 of Lecture Notes in Computer Science, pages 122–141. Springer-Verlag,
1993.

12. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state.
In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Techniques
in Semantics, Publications of the Newton Institute, pages 227–273. Cambridge
University Press, 1998.

13. A.M. Pitts. Relational properties of domains. Information and Computation,
127(2), 1996.

14. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, March 2004.

15. J. C. Reynolds. The essence of Algol. In Proceedings of the International Sympo-
sium on Algorithmic Languages, 1981. Reprinted in [8].

16. M. R. Shinwell. The Fresh Approach: Functional Programming with Names and
Binders. PhD thesis, Computer Laboratory, University of Cambridge, December
2004.

17. M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoretical
Computer Science, 2005. To appear.

18. K. Sieber. New steps towards full abstraction for local variables. In Proceedings of
the ACM SIGPLAN Workshop on State in Programming Languages, 1993.

Relational Reasoning in a Nominal Semantics for Storage 101

19. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, Computer Lab-
oratory, University of Cambridge, December 1994. Available as Technical Report
363.

20. E. Sumii and B. C. Pierce. Logical relations for encryption. Journal of Computer
Security, 11(4), 2003.

21. R. D. Tennent and D. R. Ghica. Abstract models of storage. Higher-Order and
Symbolic Computation, 13(1/2):119–129, 2000.

Filters on CoInductive Streams,
an Application to Eratosthenes’ Sieve

Yves Bertot

INRIA Sophia Antipolis
Yves.Bertot@sophia.inria.fr

Abstract. We present the formal description of an algorithm to filter values from
an infinite steam using a type theory based prover. The key aspect is that filters are
partial co-recursive functions and we solve the problem of expressing partiality.
We then show how to prove properties of this filter algorithm and we study an
application computing the stream of all prime numbers.

Our objective is to describe a formal proof of correctness for the following Haskell [14]
program in a type theory-based proof verification system, like the Coq system [10, 1].

sieve (p:rest) = p:sieve [r | r <- rest, r ‘rem‘ p /= 0]
primes = sieve [2..]

This program is a functional implementation of Eratosthenes’ sieve that consists in re-
moving all multiples of previously found primes from the sequence of natural numbers.
We want to prove that the expression primes is the stream containing all the prime
numbers in increasing order.

This work relies on co-inductive types [5, 12, 13] because the program manipulates
infinite lists, also known as streams. This example was used as an illustration of a pro-
gram and its proof of correctness in a language for co-routines in [15]. The exact for-
mulation of the program given here was found in [7], who describes it as a re-phrasing
of an program SASL [21]. A proof of Eratosthenes’ sieve in type theory was already
studied in 1993 [16], but their program has a different structure and does not exhibit
the filter problem that is central here. Another program computing the stream of prime
numbers is given as example in [8], which relies on a more general notion of ultra-
metric spaces to combine inductive and co-inductive aspects in recursive definitions. It
is later extended to sheaves [9].

Before performing the verification proof of such a program in type theory, we need
to be able to formulate it. This is difficult, because type theory based frameworks only
provide restricted capabilities for the definition of recursive functions, which basically
ensure that all functions are total. The Haskell program uses a filter function. This func-
tion receives a boolean predicate and a stream as argument and it is supposed to take
from the stream all the elements of the stream that satisfy the predicate and place them
in the resulting stream. Because the result is an infinite stream, it means that an infinity
of values should be found in the input, but this is not always possible and actually de-
pends on the input: filter functions are partial. Our principal contribution is actually to
find a solution to the problem a large class of partial co-recursive functions.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 102–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve 103

When computing on usual inductive structures, the termination of computation is
usually ensured by a syntactic restriction on the way functions may be defined: they
have to be “guarded-by-destructors”. Intuitively, this contraint imposes a bound on the
number of possible recursive calls using the size of the algebraic term given as input. In
spite of its apparent simplicity, this criterion is quite powerful, because inductive types
are more general than simple algebraic types: infinitely branching nodes are allowed
and it is only the absence of infinite branches that is used to restrict computation.

For functions that produce terms in co-inductive types, recursive functions are also
allowed, but this time restrictions are not placed on the way the input is used, but on
the way the output data is produced. A common syntactic criterion is to accept a recur-
sive call to a co-recursive function only if some information has been produced in the
result, in the form of a constructor . The terminology is that calls must be “guarded-by-
constructors” [12]. In their usual form, filters do not respect this syntactic criterion.

We propose to combine insights coming from reasoning techniques on linear tempo-
ral logic [4, 6] and on general recursion with partial functions, essentially the techique
advocated in [11, 2]. We transpose this technique to the Calculus of Inductive Construc-
tions, the underlying theory for the Coq system, with some added difficulties coming
from the use of two sorts. Coping with these two sorts also has advantages; we obtain
the possibility to extract our model back to conventional programming languages and
to execute the programs that were proved correct.

In a first part we give an overview of co-recursive programming techniques in the
Calculus of Constructions. In a second part we show that filters cannot be programmed
directly, mainly because not all streams are valid inputs for filters, and we describe a
few notions of linear temporal logic to characterize the valid inputs. We show that this
can be used as a basis to program a filter function. In a third part, we describe how this
adapts to the context of Eratosthene’s sieve. The fourth part concludes and underlines
the opportunities for future improvement.

1 Co-induction and Co-recursion

Co-inductive types are defined by giving together a type and a collection of construc-
tors. A pattern-matching construct expresses that all elements of a co-inductive type
are obtained through one of the constructors. However, there is no obligation that the
process of constructing a term in a co-inductive type should be finite as is the case for
inductive types [19, 12].

For instance, we can work in a context where some type A is declared and use the
type of streams of elements of A. We later instantiate A with the type Z of integers.

CoInductive str : Set := SCons: A → str → str.

A stream of typestr is like a list of elements of A: it has a first element and a tail, grouped
together using the constructor SCons. Inductive definitions of lists usually contain a
constructor for the empty list, but here there is none: all our streams are infinite.

Writing programs with streams as inputs, we have to avoid traversing the whole data
structure, because this operation never terminates. In the calculus of constructions, there
are a few safeguard that prevent this. The first safeguard is that computation of values in

104 Y. Bertot

co-inductive types is not performed unless explicitely requested by a pattern-matching
operation.

The second safeguard is that the definitions of recursive functions returning co-
inductive types must respect a few constraints, like for recursive functions over induc-
tive types, except that the constraints are not expressed in terms of using the input but in
terms of producing the output. The intuitive motto is “every recursive call must produce
some information”. In practice, every recursive call must be embedded in a constructor
of the co-inductive type, the whole expression being allowed to appear only inside a
pattern-matching construct, an abstraction, or another constructor of this co-inductive
type. We say that such a recursive function is guarded by constructors.

The criterion is theoretically justified by the fact that a co-inductive type is a final
co-algebra in the category of co-algebras associated to the collection of constructors
given in the co-inductive definition and a guarded function actually defines another co-
algebra in this category. The existence of value in the final co-algebra is a consequence
of the finality property.

Here is an example of a well-formed function, that will be used in our work (in this
example, the type A is not used implicitely anymore and we use the type of streams of
integers, str Z).

CoFixpoint nums (n : Z) : str Z := SCons n (nums (n+1))

Every recursive call produces a new element of the stream. The value “nums 2” is
exactly the model for the Haskell value [2 ..].

Proofs by co-induction are co-recursive functions whose type concludes on a co-
inductive predicate, a type with logical content (a co-inductive type in sort Prop).
When performing a proof by co-induction, we have the same constraints as when defin-
ing a co-recursive function: the co-inductive hypothesis expresses the same logical con-
tent as the whole theorem, but it can only be used to prove a statement appearing as a
premise of one of the constructors in the co-inductive predicate.

2 The Filter Problem

A filter function is a function that takes a predicate and a stream as arguments and re-
turns the stream that contains all the elements of the argument that satisfy the predicate.
It can be programmed in Haskell using the following text:

filter f (x:tl) | f x = x:(filter f tl)
filter f (x:tl) = (filter f tl)

The notation [x | x <- rest, x ‘rem‘ p /= 0] actually stands for the fol-
lowing more traditional functional expression:

filter (\x -> x ‘rem‘ p /= 0) rest

When translated into Coq, this gives the following (invalid) code:

CoFixpoint filter (f:A→Prop)(s:str) : str :=
match s with

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve 105

SCons x tl =>
match f x with

true => SCons x (filter f tl)
| false => filter f tl
end.

There are more palatable notations, this formulation emphasizes the fact that the second
recursive call appearing in this program is not valid: it is a recursive call not embed-
ded inside a constructor. The function needs to perform several recursive calls before
returning the next data and this is rejected. This is consistent with the constraint that
there should be no infinite computation: if we take a predicate and a stream where no
element satisfies the predicate, the program will loop forever without producing any
result. Understanding this counter-example gives us a key to a technique to model filter
functions.

2.1 Characterizing Valid Filter Inputs

If we want to use a filter function, we need to give it arguments that won’t make it loop.
We use the same technique as in in [11, 2]: an extra argument expresses that the input
satisfies the right conditions to ensure data production.

For a given predicate P, a stream is correct if we can find an element of the stream
that satisfies the predicate and if the sub-stream starting after that element is also correct.
We can simplify this analysis by saying that a stream is correct if we can find an element
satisfying the predicate and if its tail is also correct.

That there is one element satisfying the predicate actually is an inductive property,
not a co-inductive one, so we will characterize the correct streams for a given predicate
using both an inductive predicate and a co-inductive predicate.

This is reminiscent of linear temporal logic, viewing the different elements of the
stream as a succession of states in time. The property that the predicate is eventually
satisfied means that the property eventually P is satisfied. The property that must
be repeated for all streams is an always (eventually P). The encoding of these
linear logic predicates as inductive predicates has already been studied in [4, 6] have
already studied how these linear logic predicates can be encoded as inductive predicates.
In our case, we assume that we are working in a context where the predicate P is given,
and we encode directly the combination of always and eventually as a predicate
on streams, which we call F_infinite (the predicates always, eventually and
F_infinite are similar to the ones with the same name in [1]).

Inductive eventually : str → Prop :=
ev_b: ∀x s, P x → eventually (SCons x s)

| ev_r: ∀x s, eventually s → eventually (SCons x s).

CoInductive always : str → Prop :=
as_cons: ∀x s, P x → always s → always (SCons x s).

CoInductive F_infinite : str → Prop :=
al_cons:

106 Y. Bertot

∀x s, eventually (SCons x s) → F_infinite s →
F_infinite (SCons x s).

Now, a filter function should have the following type :

∀s, F_infinite s → s

We have shown that characterizing the correct inputs for the filter function relies on
both a co-inductive and an inductive part; this suggests that the filter function should
have both a recursive part and a co-recursive part. The recursive part is responsible for
finding the first element, making as many recursive calls as necessary without producing
any data, but being guarded by an eventually property on the input, when the first
element is found, we can produce it and have a co-recursive call, which is now valid.

Programming the Recursive Part. The recursive part of the filter function is defined
by recursion on the ad-hoc predicate eventually. It also uses a function P_dec that
is supposed to compute whether the property P is satisfied or not.

Here is a first attempt where we only produce the first value that satisfies the predi-
cate.

Fixpoint
pre_filter_i (s:str)(h:eventually s){struct h}:A :=
match s as b return s = b → A with

SCons x s’ =>
fun heq =>

match P_dec x with
left _ => x
| right hn => pre_filter_i s’

(eventually_inv s h x s’ heq hn)
end

end (refl_equal s).

The theorem eventually_inv has the following statement:

∀s, eventually s →
∀x s’, s = SCons x s’→ not(P x) → eventually s’

For this definition to be accepted, the expression eventually_inv s h x s’
heq hn must be recognized as a sub-term of h. This is achieved because this proof is
actually obtained through a pattern-matching construct on the proof h. In this pattern-
matching construct, we must ensure that the sub-expression that is returned in each
possible case is a sub-term of h. There are two cases.

1. Either the proof h was obtained with the constructor ev_r applied to three argu-
ments arguments x1, s1, and h1. In this case, s1 = s′ and h1 is a sub-term of h
that is also a proof of eventually s1. We can return h1.

2. Either the proof h was obtained with the constructor ev_b applied to x1, s1,
and hp. In this case, x1 = x and hp is a proof that P x1 holds. The fact hp is
inconsistent with the fact hn which must be a proof of not(P x). Because of this
inconsistency, we are relieved from the need to produce a sub-term proof.

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve 107

In other words, we only need to produce a sub-term proof for the consistent cases. When
the constructor that is used does not contain a sub-term proof for the recursive call, the
fact that this constructor may have been used is inconsistent.

The function pre_filter_i is not satisfactory, because we also need the recur-
sive function to produce the stream, on which filtering carries on, together with a proof
that this stream contains an infinity of satisfactory elements. Thus we want to program
a function filter_i with the following type:

∀s, eventually s → F_infinite s →
{x:A, P x}*{s’:str, F_infinite s’}

This function takes one extra argument that is a proof that all the sub-streams eventually
satisfy the predicate, it returns two pieces of data annotated with logical information.
The first piece of data is a number x and the annotation is a proof that x satisfies the
predicate P, the second piece of data is a stream s’ and the annotation is a proof that an
infinity of elements of s’ satisfy P. We do not describe the code of filter_i here,
it has the same structure as the function pre_filter_i, but it contains more code to
handle the logical information.

Programming the Co-recursive Part. Assuming the filter_i function and a the-
orem always_eventually, which indicates that any stream that satisfies the pred-
icate F_infinite also satisfies eventually, we can produce the filter func-
tion, which contains a single co-recursive call using the data returned by filter_i.

CoFixpoint filter (s : str) (hs : F_infinite s): str :=
let (a, b) := filter_i s (always_eventually s hs) hs in
let (n, hn) := a in let (s’, hs’) := b in
SCons n (filter s’ hs’).

Proving Properties of the Result Stream. Because the filter function has a recur-
sive and a co-recursive part, all proofs about the resulting stream will have an inductive
and a co-inductive part. For instance, we can prove that every property that is satis-
fied by all the elements of the initial stream is also satisfied by all the elements of the
resulting stream. To state this theorem we have to change our implicit notations: the
predicates always and F_infinite and the function filter are not implicitely
applied to P anymore. This results in extra arguments for the various predicates and
functions.

Theorem filter_keep:
∀(P Q:A → Prop)(P_dec:∀x,{P x}+{not(P x)})(s:str)
(h:F_infinite P s),
always Q s → always Q (filter P P_dec s h).

To establish this theorem, we first have to prove that the element and the stream re-
turned by filter_i satisfy the properties Q and always Q, respectively. This proof
uses an induction over a proof of eventually P s. The theorem has the following
statement:

108 Y. Bertot

Theorem filter_i_keep:
∀(P Q:A → Prop)(P_dec:∀x,{P x}+{not(P x)})(s:str)
(h:eventually P s)(ha : F_infinite P s),
always Q s →
∀x hx s’ hs’,
filter_i P P_dec s h ha =
(exist (fun n => P n) x hx,
exist (fun s => F_infinite P s) s’ hs’) →
Q x /\ always Q s’.

This proof is tricky and we have to use a maximal induction principle as described in
[1] (sect. 14.1.5).

We can also prove that all elements of the resulting stream satisfy the predicate P.

Theorem filter_always:
∀(s:str)(h:F_infinite s), always (filter s h).
Proof.
cofix.
intros s h; rewrite (st_dec_eq (filter s h)); simpl.
case (filter_i s (always_eventually s h) h).
intros [n hn][s’ hs’]; apply as_cons.
assumption.
apply filter_always.
Qed.

We give the script to perform the proof using the tactic language provided in Coq. The
cofix tactic provides an assumption that expresses exactly the same statement as the
theorem we want to prove, but this assumption can only be used after a use of as_cons
(the constructor of always). Here we need to prove that the first element satisfies P,
but this is already given in the result of filter_i, so that we do not need an extra
inductive proof.

This proof contains a rewriting step with a theorem st_dec_eq. This theorem is
used to force the evaluation of the co-inductive value (filter s h) because oth-
erwise, co-inductive values remain unevaluated. This method to force evaluation for
at least one step is described in [1], along with other techniques for proofs about co-
inductive data.

Non-local Properties. With only filter_always and filter_keep, there are
two important characteristics that we are still unable to express. The first characteristic
is that no value present in the input and satisfying P is forgotten, the second is that
the elements in the result are in the same order, with no repetition as long as there were
no repetitions in the input. These characteristics seem more complex to express because
they are not local properties of each stream element taken separately, but they are global
properties of the streams. We propose a solution to express them as properties between
consecutive elements, using a new co-inductive predicate named connected. Intu-
itively, a stream is connected by some binary relation R with respect to some value x
if any two consecutive elements of the stream are connected by R and the stream’s first
element is connected with x. Here is the co-inductive definition:

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve 109

CoInductive connected(R:A→A→Prop):A→str→Prop:=
connected_cons:
∀k x s, R k x → connected R x s →
connected R k (SCons x s).

For instance, to express that some stream contains all the natural numbers above a
given k that satisfy the property P in increasing order, we can use the following binary
relation:

Definition step_all P x y :=
x < y /\ (∀z, x < z < y → not(P z)) /\ P y

and we say that the stream satisfies the property connected (step_all P) k.
We proved the following two theorems:

Theorem step_all_always :
∀P k s, connected (step_all P) k s → always P s.

Theorem step_all_present :
∀P k s,
connected (step_all P) k s →
∀x, k < x → P x → eventually (fun y => y=x) s.

The first theorem expresses that all numbers in the stream satisfy P, and the second one
expresses that all numbers larger than k and satisfying P are in the stream.

Our main theorem for filter will simply express that it maps any connected
stream for a relation R1 to a connected stream for a relation R2, provided the relations
R1 and R2 satisfy proper conditions with respect to P.

Theorem filter_connected:
∀(R1 R2:A → A → Prop),
(∀x y z, R1 x y → not(P y) → R2 y z → R2 x z) →
(∀x y, P y → R1 x y → R2 x y) →
∀s (h:F_infinite s) x,
connected R1 x s → connected R2 x (filter s h).

The two conditions that R1 and R2 must satisfy express that if x1, . . .xk is a sequence
of values such that P x1 and P xk hold, not(P xi) holds for all the other indices i from
1 and k, and R1 xi xi+1 holds, then R2 x1 xk holds.

The theorem filter_connected sepersedes the other two theorems. The theo-
rem filter_always is a obtained with filter_connected for R1 the relation
that is always satisfied and R2 the relation of x and y that holds if and only if P y
holds. The theorem filter_keep Q is a corollary for R1 and R2 that are both the
relation of x and y that holds if and only if Q y holds.

We thus have a generic implementation of a filter function, together with a powerful
generic theorem to prove most of its properties. This package can be re-used for any
development using filters on arbitrary streams, as long as users provide the predicate, the
decision function, and proofs that the streams taken as arguments satisfy the predicate

110 Y. Bertot

infinitely many times. To perform proofs about the filtered streams, users simply need
to exhibit the relations R1 and R2 and proofs of the properties they have to satisfy. Even
though we used a clever technique to implement the filter function, it can be used and
reasoned about with much simpler proof techniques.

Some properties are not captured by the theorem filter_connected. For in-
stance, if the input stream contains several instances of the same element satisfying P
then the same number of instances will occur in the result, but this cannot be expressed
using the connected predicate only.

3 Application to Eratosthenes’ Sieve

We can now come back to our initial objective and use our filter function to model
Eratosthenes’ sieve.

3.1 The Sieve’s Specification

Defining Primality. Our model does not follow strictly the initial Haskell program in
the sense that we change our filtering predicate for a predicate not_mult m, which
accepts all numbers that are not multiples of m and we use a function mult_dec with
the following type:

∀m, m > 0 → ∀n, {not_mult m n}+{not(not_mult m n)}

We use an auxiliary notion of partial primes. We say that a number n is partially prime
up to another number m if it is not a multiple of any number larger than 1 and smaller
than m (the bounds are excluded). This notion is useful to characterize the streams that
are given as arguments to the filter function, as we see later. We then define the
notion of pre-prime numbers, which are partially prime up to themselves. The pre-
prime numbers actually are 0, 1, and the prime numbers. We prove a few theorems
around these notions:

partial_prime_le. If a number is partially prime up to m, it is partial prime up
to any positive n less than or equal to m.

partial_prime_step. If a number is partially prime up to m and not a multiple
of m, then it is partially prime up to 1 + m .

pre_prime_decompose. For every positive number n that is not pre-prime, there
exists a pre-prime divisor of n between 1 and n (bounds excluded).

infinite_primes. For every number, there exists a larger pre-prime number.

partial_prime_next. If a number is partially prime up to m and there are no pre-
prime numbers between m and n (m included, n excluded), then it is partially prime up
to n. The proof of this theorem uses the previous one.

Specifications for Input and Output Streams. Obviously the connected predicate
is well-suited to express that some stream contains all the prime numbers above a given
bound, using the following binary relation:

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve 111

Definition step_prime := step_all pre_prime.

The input must be a stream containing partial primes, so we use connected with the
following relation to describe this specification:

Definition step_partial_prime m := step_all (partial_prime m).

This gives us different binary relations for different values of m.

Main Theorems. We have two main theorems concerning the filter function. The first
theorem expresses that the filter function can be used. We need to express that the right
F_infinite property holds to use the filter function. This is expressed with the
following theorem.

Theorem partial_primes_to_F_infinite:
∀m, 1 < m →
∀k s, 1 < k → connected (step_partial_prime m) k s →
F_infinite (not_mult m) s.

The proof of this theorem relies on the basic theorem that there are infinitely many
primes. It contains both a co-inductive step to prove that the stream tail also satisfies the
F_infinite property and an inductive step to prove that we can find a number that
is not a multiple of m in the stream. The inductive part of the proof is done by general
induction over the distance to an arbitrary prime number above the first element of the
stream, this distance is bound to decrease and stay positive as we traverse the stream
while finding only multiples of m, because this arbitrary prime number is necessary in
the stream and not a multiple of m.

The second theorem about the filter function shows that when h is a proof that
m is positive the function, filter (not_mult m) (mult_dec m h) maps any
stream satisfying

connected (step_partial_prime m) k

to a stream satisfying

connected (step_partial_prime (m + 1)) k.

This theorem is not proved using any form of induction, we only need to check that
the step_partial_prime relations satisfy the right conditions for the theorem
filter_connected.

The other theorems concentrate on streams that are connected for the relations
step_partial_prime. First, the theorem partial_prime_next, which we
described in section 3.1, can be lifted to connected streams. Second, the first element of
some connected streams are prime numbers:

Theorem pre_prime_connect_partial_prime:
∀m s, 0 ≤ m →
connected (step_partial_prime(m + 1)) m s → pre_prime (hd s).

112 Y. Bertot

3.2 Obtaining the Main Function

The streams that are manipulated in the main function are the streams of all partial
primes up to m, starting at m. For this reason, we have defined another property that
characterizes the main streams.

Definition start_partial_primes s :=
1 < hd s /\ connected (step_partial_prime (hd s)) (hd s) (tl s).

After filtering out the multiples of the stream’s first element, we obtain a new stream
where the first element p is itself prime and the rest is another stream that satisfies the
property start_partial_primes. This property is the invariant that is respected
by arguments to sieve throughout the recursion, this invariant is expressed in a the-
orem named start_partial_primes_invariant. With this invariant we can
now define a Coq model for the sieve function.

CoFixpoint sieve s: start_partial_primes s → str Z :=
match s return start_partial_primes s → str Z with
SCons p rest =>
fun H : start_partial_primes (SCons p rest) =>
let (Hm, Hpprs) := H in
let Ha := partial_primes_to_F_infinite p Hm p rest Hm Hpprs
in SCons p
(sieve
(filter (not_mult p) (mult_dec p (lt1_gt0 _ Hm)) rest Ha)
(start_partial_primes_invariant p rest Ha Hm Hpprs))

end.

Although this definition is cluttered with logical information, the reader should be
convinced that this function really follows the same structure as the initial Haskell func-
tion we used as a guideline: construct a stream with the first element of the input and
then call the sieve function on the result of filtering out the multiples of this first ele-
ment. We can show that the result is connected for the property step_prime, this is
a simple proof by co-induction.

The last step is to verify that the stream of natural numbers starting from k is also
the streams of partial primes up to 2 starting from k (this theorem is called pprs2) and
can construct the stream of all prime numbers (lt12 is a proof of 1 < 2 and le22 is
a proof of 2 ≤ 3):

Definition primes := sieve (nums 2)(conj lt12 (pprs2 2 le22)).

We finally obtain the following theorem.

Theorem pre_primes: connected step_prime 1 primes.

Using the theorems step_all_always and step_all_present, we show that
all the prime numbers and only prime numbers are in the result. The proof has been
verified using the Coq system. The files are available at the following address:
ftp://ftp-sop.inria.fr/lemme/Yves.Bertot/filters.tar.gz

3.3 Code Extraction

We can map the sieve function back to Haskell code using the extraction facility
[17, 20]. The code we obtain for the sieve function is close to the one we initially

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve 113

intended to certify, except that it uses a re-defined type of streams, instead of using the
built-in type of lists.

sieve s =
case s of

SCons p rest →
SCons p (sieve (filter (\x → mult_dec p x) rest))

The code we obtain for the filter function is less easy to recognize. A simple
difference with the original code is that the extracted code uses its own datatype for
boolean values, where Left is used to represent True and Right is used to repre-
sent False. The main difference is that the function is decomposed into two recursive
functions. However, we maintain that this code is equivalent, up to the unfolding/folding
technique of [3] to the initial filter.

filter_i p_dec s =
case s of

SCons x s’ →
(case p_dec x of

Left → Pair x s’
Right → filter_i p_dec s’)

filter p_dec s =
case filter_i p_dec s of

Pair a b → SCons a (filter p_dec b)

4 Conclusion

Our first experiments was actually carried out on a more complex but very similar pro-
gram, stated as follows:

fm a n (x:l) | n < x = fm a (n+a) (x:l)
fm a n (x:l) | n = x = fm a (n+a) l
fm a n (x:l) | x < n = x:(fm a n l)

sieve (x:l) = x:(sieve (fm x (x+x) l))

primes = sieve [2 ..]

The function fm actually performs the filter step of removing all the multiples of a
number in a stream, but it avoids the computation of remainders by keeping the next
expected multiple in an auxiliary variable. This is probably closer to the initial descrip-
tion of the sieve by Eratosthenes. This function has an internal state and it does not
behave in the same manner as filter. Actually, there are streams for which filter
(not_mult m) ... behaves properly and fm does not, since this function relies
more crucially on the property that all the values found in the streams are in increasing
order. Another significant difference is that this paper presents a separation between al-
gorithm description and proof development, mostly because we believe this makes the

114 Y. Bertot

method easier to understand. In our previous work, we practiced a more “integrated”
development, where the algorithm and the proof that it satisfies its specifications were
described at the same time. In spite of these differences, defining this function and rea-
soning about it still relies on the same technique of mixing inductive and co-inductive
predicates and developing an auxiliary function that is recursive on the inductive pred-
icate. This previous work was done together with Damien Galliot as part of a student
project in 2003.

The first result of this paper is to show that we can model more general recursive
programming than what seems imposed by the basic “guarded-by-constructors” con-
straint. We believe this work describes an improvement on the domain of co-inductive
reasoning that is similar to the improvement brought by well-founded recursion when
compared to plain structural recursion. The key point was to adapt the technique of ad-
hoc predicates for partial functions to co-inductive structures while respecting the sort
constraints of the calculus of constructions. This was made possible thanks to a remark
by C. Paulin-Mohring that sub-terms were not restricted to variables. This approach can
be re-used to other more practical applications of co-inductive data. In particular, we
think it can be adapted to the co-inductive data used to implement real number arith-
metic as proposed in [18].

The second important contribution is to describe a filter function in a general form,
together with a general theorem that makes it possible to prove properties of this func-
tion’s result. While the function relies on a lot of expertise in the description of inductive
and co-inductive programs, the general theorem makes it possible to relieve users from
the task of performing inductive or co-inductive proofs, by simply coming back to re-
lations between successive elements of the input and the output. We have shown the
usability of our general theorem on the example of Eratosthenes’ sieve. It is interesting
to compare our proof to the one proposed in [15]. Our proof only uses local notions: the
properties of two consecutive elements in a stream, while their proof uses more general
notions concerning whole streams.

Acknowledgements

The author wishes to thank Pierre Castéran for teaching him the techniques of co-
induction in the Calculus of Inductive Constructions and for his remarks on early drafts
of this paper, Gilles Kahn for discussions on the sieve example, Venanzio Capretta for
sharing his knowledge on the technique of recursion on an ad-hoc predicate, Chris-
tine Paulin-Mohring for describing the extensions to the guard systems, and Laurence
Rideau and Laurent Théry for their comments on early drafts of the paper.

References

1. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development,
Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag, 2004.

2. Ana Bove. Simple general recursion in type theory. Nordic Journal of Computing, 8(1):22–
42, 2001.

3. Rod M. Burstall and John Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, 1977.

Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve 115

4. Pierre Castéran and Davy Rouillard. Reasoning about parametrized automata. In Proceed-
ings, 8-th International Conference on Real-Time System, volume 8, pages 107–119, 2000.

5. Thierry Coquand. Infinite objects in Type Theory. In Henk Barendregt and Tobias Nipkow,
editors, Types for Proofs and Programs, volume 806 of LNCS, pages 62–78. Springer Verlag,
1993.

6. Solange Coupet-Grimal. An axiomatization of linear temporal logic in the calculus of induc-
tive constructions. Journal of Logic and Computation, 13(6):801–813, 2003.

7. Antony J. T. Davie. An introduction to functional programming systems using Haskell. Cam-
bridge Computer Science texts. Cambridge University Press, 1992.

8. Pietro di Gianantonio and Marino Miculan. A unifying approach to recursive and co-
recursive definitions. In Herman Geuvers and Freek Wiedijk, editors, Types for Proofs and
Programs, volume 2646 of LNCS, pages 148–161. Springer Verlag, 2003.

9. Pietro di Gianantonio and Marino Miculan. Unifying recursive and co-recursive definitions
in sheaf categories. In Igora Walukiewicz, editor, Foundations of Software Science and Com-
putation Structures (FOSSACS’04), volume 2987 of LNCS. Springer Verlag, 2004.

10. Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy, Catherine Parent,
Christine Paulin-Mohring, and Benjamin Werner. The Coq Proof Assistant User’s Guide.
INRIA, May 1993. Version 5.8.

11. Catherine Dubois and Véronique Viguié Donzeau-Gouge. A step towards the mechanization
of partial functions: domains as inductive predicates, July 1998. www.cs.bham.ac.uk/˜
mmk/cade98-partiality.

12. Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter Dybjer,
Bengt Nordström, and Jan Smith, editors, Types for proofs and Programs, volume 996 of
LNCS, pages 39–59. Springer Verlag, 1994.

13. Eduardo Giménez. An application of co-inductive types in Coq: Verification of the alternat-
ing bit protocol. In Proceedings of the 1995 Workshop on Types for Proofs and Programs,
volume 1158 of Lecture Notes in Computer Science, pages 135–152. Springer-Verlag, 1995.

14. P. Hudak, S. Peyton Jones, P. Wadler, et al. Report on the Programming Language Haskell.
Yale University, New Haven, Connecticut, USA, 1992. Version 1.2.

15. Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress 77, pages 993–998. North-Holland, 1977.

16. François Leclerc and Christine Paulin-Mohring. Programming with streams in coq. A case
study: the sieve of Eratosthenes. In Henk Barendregt and Tobias Nipkow, editors, Types for
Proofs and Progams, volume 806 of LNCS, pages 191–212. Springer Verlag, 1993.

17. Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
TYPES 2002, volume 2646 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

18. Milad Niqui. Formalising Exact Arithmetic, Representations, Algorithms, and Proofs. PhD
thesis, University of Nijmegen, September 2004. ISBN 90-9018333-7.

19. Christine Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties.
In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed Lambda Calculi
and Applications, number 664 in Lecture Notes in Computer Science, 1993. LIP research
report 92-49.

20. Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML programs in the system
Coq. Journal of Symbolic Computation, 15:607–640, 1993.

21. David A. Turner. SASL Language Manual. St. Andrews University Department of Computer
Science, 1976.

Recursive Functions with Higher Order Domains

Ana Bove1 and Venanzio Capretta2

1 Department of Computing Science, Chalmers University of Technology,
412 96 Göteborg, Sweden

telephone: +46-31-7721020, fax: +46-31-165655
bove@cs.chalmers.se

2 Department of Mathematics and Statistics, University of Ottawa,
585 King Edward, Ottawa, Canada

telephone: +1-613-562-5800 extension 2103, fax: +1-613-562-5776
venanzio.capretta@mathstat.uottawa.ca

Abstract. In a series of articles, we developed a method to translate
general recursive functions written in a functional programming style
into constructive type theory. Three problems remained: the method
could not properly deal with functions taking functional arguments, the
translation of terms containing λ-abstractions was too strict, and par-
tial application of general recursive functions was not allowed. Here, we
show how the three problems can be solved by defining a type of partial
functions between given types. Every function, including arguments to
higher order functions, λ-abstractions and partially applied functions, is
then translated as a pair consisting of a domain predicate and a func-
tion dependent on the predicate. Higher order functions are assigned
domain predicates that inherit termination conditions from their func-
tional arguments. The translation of a λ-abstraction does not need to be
total anymore, but generates a local termination condition. The domain
predicate of a partially applied function is defined by fixing the given
arguments in the domain of the original function. As in our previous
articles, simultaneous induction-recursion is required to deal with nested
recursive functions. Since by using our method the inductive definition
of the domain predicate can refer globally to the domain predicate itself,
here we need to work on an impredicative type theory for the method to
apply to all functions. However, in most practical cases the method can
be adapted to work on a predicative type theory with type universes.

1 Introduction

In functional programming, functions can be defined by recursive equations
where the arguments of the recursive calls are not required to be smaller than the
input, hence allowing the definition of general recursive functions. Thus, the ter-
mination of a program is not guaranteed by its structure. On the other hand, in
type theory, only structurally recursive functions are allowed, that is, functions
where the recursive calls are performed only on arguments structurally smaller
than the input. Thus, some functional programs have no direct translation into
type theory.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 116–130, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Recursive Functions with Higher Order Domains 117

In a series of articles, we have developed a method to translate functional
programs into constructive type theory. Given a general recursive function, the
method consists in defining an inductive predicate that characterises the inputs
on which the function terminates. We can think of this predicate as the domain
of the function. The type-theoretic version of the function can then be defined
by structural recursion on the proof that the input values satisfy this predicate.
A similar method was independently developed by Dubois and Viguié Donzeau-
Gouge [DDG98], however they treat nested recursion in a different way and they
do not consider the issues we tackle in the present article.

Given a general recursive function f from σ to τ , its formalisation in type the-
ory following our method consists of an inductive predicate fAcc and a function
f with types

fAcc : σ̂ → Prop
f : (x : σ̂; fAcc x) → τ̂

where σ̂ and τ̂ are the type-theoretic translations of σ and τ , respectively, and
f is defined by structural recursion on its second argument.

Intuitively, if the ith recursive equation of the original program is

f(p) = · · · f(a1) · · · f(an) · · ·
calling itself recursively on the arguments a1, . . . , an, then the ith constructor
of fAcc has type

facci : (. . . ; fAcc a1; . . . ; fAcc an)(fAcc p)

and the ith structural recursive equation of f is

f p (facci · · · h1 · · · hn) = · · · (f a1 h1) · · · (f an hn) · · · .
In practise, the types of the constructors of fAcc and the structure of the equa-
tions of f may be more complex, but the idea remains the same: fAcc is induc-
tively defined so that proving fAcc on an input p requires proofs of fAcc for the
arguments of all the recursive calls that f performs when applied to p.

The method was introduced by Bove [Bov01] to formalise simple general
recursive algorithms in constructive type theory (by simple we mean non-nested
and non-mutually recursive). It was extended by Bove and Capretta [BC01] to
treat nested recursion by using Dybjer’s simultaneous induction-recursion, and
by Bove [Bov02a] to treat mutually recursive algorithms, nested or not. A formal
description of the method is given in [BC04] where we also prove a soundness
and a weak completeness theorem. The first three papers mentioned above and
a previous version of [BC04] have been put together into the first author’s Ph.D.
thesis [Bov02b]. A tutorial on the method can be found in [Bov03].

The method of [BC04] separates the computational and logical parts of the
type-theoretic versions of the functional programs. An immediate consequence
is that it allows the formalisation of partial functions: proving that a certain
function is total amounts to proving that the corresponding domain predicate is
satisfied by every input. Another consequence is that the resulting type-theoretic

118 A. Bove and V. Capretta

algorithms are clear, compact and easy to understand. They are as simple as their
counterparts in a functional programming language. However, our method has
some problems and limitations which we have already mentioned in [BC04].

The first problem concerns higher order functions, that is, functions that
take other functions as arguments. For example, let us consider the function
map : (σ → τ) → [σ] → [τ], as defined in the Haskell [Jon03] prelude, which has
a first argument in a functional type. Since map is structurally recursive on its
list argument, in [BC04] we translate it into a structurally recursive function
map in type theory with type (σ̂ → τ̂) → [σ̂] → [τ̂]. This means that the first
argument of map can only be instantiated to a total function of type σ̂ → τ̂ . But
in functional programming map could be applied to potentially non-terminating
functions. Therefore, even if map is structurally recursive, it is still liable to non-
termination since its functional argument f might be undefined on some (or all)
of the elements to which it will be applied. In other words, map inherits the
termination conditions from its functional argument. In [BC04] we had no way
to express this fact. Therefore, our translation was too restrictive with respect
to the original functional program.

Another problem is that whenever there is a λ-abstraction in the right-hand
side of an equation, the method of [BC04] translates it as a total function in
type theory. This interpretation is too strict, since the corresponding function
could diverge on arguments to which it is not actually applied during execution,
without jeopardising the termination behaviour of the program. More specifi-
cally, if under the scope of the λ-abstraction there is a call to one of the general
recursive functions we are defining in our program, let us say f, the method
inductively requires every instantiation of the argument of the λ-abstraction to
be in the domain of f. However, this constraint might be stronger than actually
needed since the λ-abstraction may just be applied to a proper subset of all the
instantiations. This problem is already present in a classical setting in the work
of Finn, Fourman, and Longley [FFL97].

The third problem is that partial applications of general recursive func-
tions are not allowed in [BC04]. When applying a recursive function f taking
m arguments a1, . . . , am, we must also provide a proof h of the accessibility
of a1, . . . , am. If f is applied to an insufficient number of arguments a1, . . . , ak

with k < m, then the accessibility condition cannot even be formulated and it
is not possible to prove that the result of the application converges. Therefore,
we barred partial applications of general recursive functions.

Here, we introduce a type of partial functions in type theory and we present
a new method to translate functional programs into their type-theoretic equiva-
lents. The method is based on the one presented in [BC04] but, now, it translates
every function in the functional side into an element of the new type of partial
functions. With this new approach, the problems we mention above disappear.

For our new method to be applicable to any function, we need to work in a
type theory with an impredicative universe Set with inductive-recursive defini-
tions à la Dybjer [Dyb00]. Both datatypes and propositions are represented as
elements of Set. Therefore, we use the Calculus of Construction [CH88] extended

Recursive Functions with Higher Order Domains 119

with a schema for simultaneous inductive-recursive definitions. A justification of
the soundness of inductive-recursive definitions in the Calculus of Constructions
is given by [Bla03] and [Cap04]. The method works also in the slightly different
type architecture used in the proof assistant Coq [Coq02]. There are in Coq two
impredicative universes, Set and Prop, both being elements of the predicative
universe Type. For the purpose of this work, it is possible to use Prop for the
domain predicate and Set for the functions. Usually, elimination of a proposition
over a set (essential in our method) is not allowed in Coq, a feature intended to
prevent mixing logical information with pure computational content. However,
Christine Paulin [Pau] devised a way around this difficulty, consisting in defin-
ing structural deconstruction functions on propositions that have the property
of uniqueness of proofs, as is the case of our domain predicates. Therefore, we
use the notation Set for datatypes and Prop for propositions, to be interpreted as
either the same impredicative universe or two distinct impredicative universes,
in which case Paulin’s method is to be used in place of structural recursion on
the proofs of accessibility. As we point out later, it would be possible to adapt
the method to work on a predicative type theory. However, we would loose gen-
erality since then the method could not be used to translate all functions (see
function itz in section 4).

An extension of type theory with a constructor A � B for partial func-
tions from A to B was already proposed by Constable and Mendler in [CM85].
Together with the type A � B they introduce a new form of canonical ele-
ments, which is not the case in our partial functions type. They are of the form
fix(f, x.F), to be intended as the functions with definition f(x) = F . From the
definition of f one can construct its domain dom(f)(x), essentially as in our
method, as a recursive predicate generated structurally by the recursive calls to
f in F . The roles of both domain predicates are however quite different. While
our functions are defined by structural recursion on their domain predicates, the
predicates in [CM85] serve only as a way to characterise the valid inputs and
the functions in [CM85] are defined independently of their domain predicates.

This paper is mainly intended for readers with some knowledge in type theory.
This said, what follows is just intended to fix the notation.

A context Γ is a sequence of assumptions Γ ≡ x1 : α1; . . . ;xn : αn where
x1, . . . , xn are distinct variables and each αi is a type that can contain occur-
rences of the variables that precede it. We call a sequence of variable assumptions
Δ a context extension of the context Γ if Γ ;Δ is a context.

If α is a type and β is a family of types over α, we write (x : α)β(x) for the type
of dependent functions from α to β. If β does not depend on values of type α we
might simply write α → β for the type of functions from α to β. Functions have
abstractions as canonical values, which we write [x : α]e. Consecutive dependent
function types and abstractions are written (x1 : α1; . . . ;xn : αn)β(x1, . . . , xn)
and [x1 : α1, . . . , xn : αn]e, respectively. In either case, each αi can contain occur-
rences of the variables that precede it. If β doest not depend on the last assump-
tion xn, then we can write (x1 : α1; . . . ;xn−1 : αn−1;αn) → β(x1, . . . , xn−1).

120 A. Bove and V. Capretta

For the sake of simplicity, we will use the same notation as much as possible
both in the functional programming side and in the type-theoretic side. In addi-
tion, names in the functional programming side will be written with typewriter
font while names in the type-theoretic side will be written with Sans Serif font.

The article has the following organisation. Section 2 briefly presents the
method of [BC04]. Section 3 defines the type of partial functions and gives a
formal definition of the new translation. Section 4 illustrates the translation on
some examples. Finally, Section 5 discusses advantages and disadvantages of the
new method.

2 Brief Summary of the Original Translation

We start from a Haskell-like functional programming language FP. The types
allowed in FP are: variable types, inductive data types, and function types.

Elements of inductive types are generated by constructors which must always
be used fully applied.

There are two kinds of functions, that is, of elements in the functional type:
those defined by structural recursion and those defined by general recursion.
Since the two kinds need to be translated differently, we distinguish them in the
functional programming notation. Structurally recursive functions acquire the
usual Haskell-like functional types, σ → τ . On the other hand, general recursive
functions must always be used fully applied. We reflect this requirement in the
syntax by assigning them a specification σ1, . . . , σm ⇒ τ rather than a proper
functional type.

The two kinds of functions give rise to two kinds of applications: those dealing
with proper functional types and those dealing with specifications.

The form of the definition of a general recursive function is:

fix f : σ1, . . . , σm ⇒ τ
f(p11, . . . , p1m) = e1

...
f(pl1, . . . , plm) = el

where the pij ’s are exclusive linear patterns of the corresponding types and the
ei’s are valid terms of type τ (see Definition 1 below). We also allow guarded
equations in the definition of a function, where the condition in the equation
must be a valid term of type Bool. In any case, the equations must satisfy the
exclusivity condition: for every particular argument, at most one equation can
apply. It is possible that, for some argument, no equation applies, in which case
the function is undefined on the given input.

Since the definition of the set of valid terms of a certain type (definition 4 in
[BC04]) is important for the understanding of this work, we transcribe it below.

Let us call F the set of all structurally recursive functions together with
their types. Then, the valid terms that we allow in the definition of a recursive
function depend on two components: (a) the set X of variables that can occur

Recursive Functions with Higher Order Domains 121

free in the terms, and (b) the set SF of functions that are being defined (we
might define several mutually recursive functions simultaneously), which can be
used in the recursive calls.

Definition 1. Let X be a set of variables together with their types. Let SF be
a set of function names together with their specifications. Let the set of names
of the variables in X , the set of names of the functions in SF , and the set of
names of the functions in F be disjoint. We say that t is a valid term of type τ
with respect to X and SF , if the judgement X ;SF � t : τ can be derived from
the rules in Figure 1. �

x : σ ∈ X
X ;SF � x : σ

f : σ → τ ∈ F
X ;SF � f : σ → τ

f : σ1, . . . ,σm ⇒ τ ∈ SF X ;SF � ai : σi for 1 � i � m

X ;SF � f(a1, . . . , am) : τ

c : τ1, . . . , τk ⇒ T c constructor of T
X ;SF � ai : τi for 1 � i � k

X ;SF � c(a1, . . . , ak) : T

(X\x)
⋃{x : σ};SF � b : τ

X ;SF � [x]b : σ → τ

X ;SF � f : σ → τ X ;SF � a : σ

X ;SF � (f a) : τ

Fig. 1. Rules for deriving valid terms judgements

Next, we briefly explain the translation of programs into type theory pre-
sented in [BC04]. Below, we call σ̂ the translation of the type σ.

Variable types and variables, and inductive data types and their constructors
are translated straightforwardly. A function type σ → τ is translated as the
total function type σ̂ → τ̂ in type theory. Structurally recursive functions are
directly translated as structurally recursive functions in type theory with the
same functional type (except for some possible changes in the notation).

As we have already mentioned in Section 1, a function f : σ1, . . . , σm ⇒ τ is
translated as a pair

fAcc : σ̂1 → . . . → σ̂m → Prop
f : (x1 : σ̂1; . . . ;xm : σ̂m; fAcc x1 · · ·xm) → τ̂

In order to complete the translation of f we need to give the types of the con-
structors of fAcc and the equations defining f.

For each equation in f (i.e., in the functional side) we define a constructor
for fAcc and an equation for f (i.e., in the type-theoretic side) as follows. Let

f(p1, . . . , pm) = e if c

be a guarded equation of f, let Γ be the context of variables occurring in the
patterns p1, . . . , pm and let Γ̂ be its type-theoretic translation. Given the term

122 A. Bove and V. Capretta

e, we define a type-theoretic context Φe which extends Γ̂ , and a type-theoretic
translation ê of e whose free variables are included in Γ̂ ;Φe. Similarly, we define
Φc and ĉ.

The type of the constructor of fAcc corresponding to the above equation is
facc : (Γ̂ ;Φc; q : ĉ = true;Φe)(fAcc p̂1 · · · p̂m)

and the corresponding equation of f is
f p̂1 · · · p̂m (facc x y q z) = ê

where x, y and z are the variables defined in Γ̂ , Φc and Φe, respectively, and
p̂i is the type-theoretic version of pi. For non-conditional equations, we simply
omit all the parts related with the condition c.

The translation of the application of a function to an argument must consider
two cases. If the function has a regular function type σ → τ , that is, it is defined
without using general recursion, then the application is translated straightfor-
wardly. When we translate the application of a general recursive function to all
its arguments, we have to make sure that the arguments are in the domain of
the function. Hence, we must add a constraint expressing this fact in the transla-
tion context of the application. Concretely, when translating a term of the form
f(a1, . . . , am), we must add an assumption (h : fAcc â1 · · · âm) to the translation
context of the application, where âi is the type-theoretic translation of ai. The
application itself is translated as (f â1 · · · âm h). The argument h is needed to
make sure that f is only applied to arguments in its domain.

The crucial part of the method in [BC04] is the definition of the context
Φa and the type-theoretic term â associated with a term a. Both Φa and â are
defined simultaneously by recursion over the structure of a.

For a formal description of the language FP and the translation of its pro-
grams into type theory, the reader can refer to [BC04].

We finish this section with the definition of the partial function my mod and
its translation into type theory following the method we have just described.
This function is such that my mod(m,n) = n mod m whenever m
= 0, where mod
is the standard modulo function defined as in the Haskell prelude.

We define the functional version of my mod as:

fix my mod : N, N ⇒ N
my mod(m,n) = n if m
= 0 ∧ n < m
my mod(m,n) = my mod(m,n − m) if m
= 0 ∧ n � m

where −, <, �,
= and ∧ are defined as expected.
This function is translated into type theory as follows:

my modAcc : N → N → Prop
my mod acc< : (m : N;n : N; q : (m
= 0 ∧ n < m) = true)(my modAcc m n)
my mod acc� : (m : N;n : N; q : (m
= 0 ∧ n � m) = true;

h : my modAcc m (n − m))(my modAcc m n)

my mod : (m : N;n : N; my modAcc m n) → N
my mod m n (my mod acc< m n q) = n
my mod m n (my mod acc� m n q h) = my mod m (n − m) h

Recursive Functions with Higher Order Domains 123

Observe that we will never be able to apply the function my mod to the
arguments 0 and i : N since we cannot construct a proof of (my modAcc 0 i).

3 New Translation of Functional Programs

We now introduce the type of partial functions in our impredicative type theory.
If α : Set and β : Set, then we define the type of partial functions as

α ⇀ β ≡ ΣD : α → Prop.(x : α;D x) → β : Set.

Thus, a partial function f : α ⇀ β is actually a pair consisting of the domain
of the function and the function itself, which depends on a proof that the input
value is in the domain of the function. The definition can be extended to consider
partial functions of several arguments. If α1, . . . , αm : Set and β : Set, we define

α1, . . . , αm ⇀ β ≡ ΣD : α1 → · · · → αm → Prop.
(x1 : α1; . . . ;xm : αm;D x1 · · · xm) → β.

If f : α1, . . . , αm ⇀ β, we write domf for (π1 f) and, if ai : αi for 1 � i � m and
(h : domf a1 · · · am), we use the notation f[h](a1, . . . , am) for (π2 f a1 · · · am h).

In the case of functions of many arguments, we may partially apply the
function to only k < m arguments. Then we write:

f(a1, . . . , ak) = 〈D′, f ′〉 : αk+1, . . . , αm ⇀ β
where D′ xk+1 · · · xm = domf a1 · · · ak xk+1 · · · xm

f ′ xk+1 · · · xm h = f[h](a1, . . . , ak, xk+1, . . . , xm)
(∗)

This definition amounts to an outline of a proof of the left-to-right direction of
the following equivalence:

α1, . . . , αm ⇀ β ∼= α1 → · · · → αk → (αk+1, . . . , αm ⇀ β).

The right-to-left direction is straightforward.
In what follows, we give a modification of the method of [BC04] that uses

the type of partial functions in place of the standard type of total functions.
First, we apply the translation method also to structurally recursive func-

tions since we want all the functions to have a partial function type. Hence,
structurally and general recursive functions are now all assigned specifications,
so now the set SF contains also the functions previously in F . As a consequence,
the second rule in Definition 1 of valid terms simply disappears.

In addition, the definition of valid terms required every occurrence of a general
recursive function to be fully applied. Now we lift this restriction and we replace
the third rule in Definition 1 by the following rule:

f : σ1, . . . , σm ⇒ τ ∈ SF X ;SF � ai : σi for 1 � i � k and k � m

X ;SF � f(a1, . . . , ak) : σk+1, . . . , σm ⇒ τ

where if k = m, σk+1, . . . , σm ⇒ τ is understood simply as τ .

124 A. Bove and V. Capretta

A similar modification has to be made to the fourth rule of the same defini-
tion, which deals with constructors, since they must also be used fully applied
in [BC04].

Next, we modify the definition of the translation into type theory.
Variable types and inductive datatypes are translated as before. The function

type σ → τ is now translated into the partial function type σ̂ ⇀ τ̂ . In our
previous work, specifications were not translated into a type. Now, given the
specification σ1, . . . , σm ⇒ τ we define its translation as the type of partial
functions σ̂1, . . . , σ̂m ⇀ τ̂ .

Constructors are assigned specifications in [BC04] rather than types. With
the translation we give of specifications, a constructor is now expected to have
a domain predicate. However, the application of a constructor to arguments of
the corresponding types should always be defined. Let c : σ1, . . . , σm ⇒ T be one
of the constructors of the inductive type T. In type theory, the corresponding
constructor would have type c : σ̂1 → · · · → σ̂m → T. The translation of c is
then defined as C = 〈cAcc, c′〉 : σ̂1, . . . , σ̂m ⇀ T with

cAcc = [x1 : σ̂1; . . . ;xm : σ̂m]T : σ̂1 → · · · → σ̂m → Prop
c′[h](a1, . . . , am) = c(a1, . . . , am)

where T is a set containing only the element tt.
Below we present the definition of the context Φa and the type-theoretic ex-

pression â associated with a term a. The cases of function calls and constructors
are now split into two cases, according to whether the function or the constructor
is fully or partially applied; this distinction was not relevant in [BC04].

Definition 2. Given a term a and a context Γ containing type assumptions for
the free variables in a, we define the context extension Φa and the type-theoretic
term â by recursion on the structure of a. Note that, since Φa extends Γ , we
should only introduce fresh variables in Φa.

a ≡ z: If the term a is the variable z, then Φa ≡ () and â ≡ z.
a ≡ f(a1, . . . , am): Here, f : σ1, . . . , σm ⇒ τ , and a1, . . . ,am are arguments of

the appropriate types. Hence, the function is fully applied. First, we deter-
mine Φa1 , . . . , Φam

and â1 . . . , âm by structural recursion. We then define

Φa ≡ Φa1 ; . . . ;Φam
; (h : fAcc â1 · · · âm) and â ≡ f[h](â1, . . . , âm)

a ≡ f(a1, . . . , ak): Let f be as above and k < m. In this case the function is not
fully applied. Under similar assumptions as in the previous case, we define
Φa ≡ Φa1 ; . . . ;Φak

and â ≡ f(â1, . . . , âk). See (∗) for the meaning of the
partial application of f to only k of its m arguments.

a ≡ c(a1, . . . , am): Let c be a constructor fully applied to arguments of the ap-
propriate types. Under similar assumptions as in the case of fully applied
functions, we define Φa ≡ Φa1 ; . . . ;Φam

and â ≡ c(â1, . . . , âm). Notice that
this is equal to c′[tt](â1, . . . , âm), so the translation is consistent with that of
recursive functions.

Recursive Functions with Higher Order Domains 125

a ≡ c(a1, . . . , ak): Let c be a constructor applied to only k of its m arguments.
This case is similar to the case of partially applied functions.

a ≡ [z]b: Let σ be the type of z. We start by calculating Φb and b̂ recursively.
Notice that now, the context with the assumptions for the free variables in b
is (Γ ; z : σ̂). We define Φ[z]b ≡ () and [̂z]b ≡ 〈gAcc, g〉 with

gAcc = [z : σ̂]ΣΦb

g = [z : σ̂;h : gAcc z]Cases h of
{

〈yΦb
〉
→ b̂

where ΣΦb is a big Σ-type defining the conjunction of all the preconditions
contained in Φb and yΦb

is the sequence of variables in Φb. If Φb is empty
then ΣΦb is simply understood as T and the whole case-expression can just
be replaced by b̂. On the other hand, if Φb contains only one assumption
then ΣΦb is simply Φb. Moreover, the case-expression can just be replaced by
b̂[yb := h], where yb is the variable assumed in Φb.

a ≡ (g b): Here g stands for any function with a functional type (not a specifi-
cation). As usual, we define Φa and â in terms of Φg, ĝ, Φb and b̂. Since g is
(potentially) a partial function, it has a partial function type in type theory,
so we have to make sure that it is only applied to elements in its domain.
Hence, we have Φa = Φg;Φb; (h : domĝ b̂) and â = ĝ[h](̂b). �

Theorem 1 of [BC04] can be strengthened: now, it states that the functional
program f and its type-theoretic translation f denote the same partial recursive
function. The proof is similar to those of Theorems 1 and 2 in [BC04] and it relies
on a correspondence between computation of terms in functional programming
and reduction of their translations in type theory. Given the application of a
general recursive function, this correspondence depends, in turn, on the corre-
spondence between the trace of the computation of the application in functional
programming and a normal form of the proof that the type-theoretic versions of
the arguments satisfy the corresponding domain predicate.

Lemma 1. Let e : τ be a valid term in FP with respect to Γ and SF , and let Γ̂
be the type-theoretic translation of Γ . Let Φe be the translation context generated
by the method, z the sequence of variables in Φe, and d an instantiation of Φe

depending only on variables in Γ̂ . Then the computation of e in FP terminates
with a term r whose type-theoretic translation r̂ is convertible with ê[z := d].

Proof. We do induction on the pair (l, e) where l is the maximum length of a
normalisation path of ê[z := d] (notice that the path is finite because type theory
enjoys strong normalisation) and the order < is the lexicographic order on pairs,
that is: (l′, e′) < (l, e) iff either l′ < l or l′ � l and e′ is structurally smaller than
e. This part of the proof does not present any substantial change with respect
to our previous work. �

Lemma 2. Let e and Φe be as in the previous lemma. If the computation of e
terminates in FP then there is an instantiation d of Φe.

126 A. Bove and V. Capretta

Proof. We do induction on the pair (l, e) where l is the length of the trace of the
computation of e and the order is the lexicographic order on pairs as in lemma 1.

The fact that we assign domain predicates also to local functions generated
by λ-abstraction entails that, when computing a local function on a specific
argument, we can generate a proof of the local termination predicate whenever
the application terminates in the functional side. This is an improvement on
[BC04], where we needed to generate a proof of totality for the local function. �

Theorem 1. Let f : σ1, . . . , σm ⇒ τ be a function in FP. Let fAcc and f be the
domain predicate for f and the type-theoretic version of f, respectively. Then,
for every sequence of values v1 : σ1, . . . , vm : σm we have that

(fAcc v̂1 · · · v̂m) is provable ⇐⇒ f is defined on v1, . . . , vm

and if (h : fAcc v̂1 · · · v̂m) is a closed proof, then

f[h](v̂1, . . . , v̂m) = ̂f(v1, . . . , vm).

Proof. Immediate by applying the previous lemmas to e ≡ f(v1, . . . , vm). �

4 Illustration of the Method

We illustrate the advantages of the new method on some examples contain-
ing the features that were problematic in our previous work. The function map
shows how to deal with functional arguments, the function sumdel illustrates
how λ-abstractions are treated, and the function is div2 shows how to deal
with partial applications.

In addition, we demonstrate that the impredicativity of the sort Prop is nec-
essary for the generality of the method, by giving an example itz that gives rise
to a polymorphic domain predicate. The example itz is also the only one with
nested recursion, so it is the only one that needs induction-recursion.

Functional Arguments: map. Functional version:

fix map : γ → δ, List γ ⇒ List δ
map(f, nil) = nil
map(f, cons(x, xs)) = cons(f x, map(f, xs))

Type-theoretic version: Map = 〈mapAcc,map〉 : (γ ⇀ δ), List γ ⇀ List δ with:

mapAcc : (γ ⇀ δ) → List γ → Prop
mapaccnil : (f : γ ⇀ δ)(mapAcc f nil)
mapacccons : (f : γ ⇀ δ;x : γ;xs : List γ;h : domf x;h1 : domMap f xs)

(mapAcc f cons(x, xs))

map : (f : γ ⇀ δ; ys : List γ; mapAcc f ys) → List δ
map f nil (mapaccnil f) = nil
map f cons(x, xs) (mapacccons f x xs h h1) = cons(f[h](x),Map[h1](f, xs))

Recursive Functions with Higher Order Domains 127

Recall that (domMap f xs) and Map[h1](f, xs) reduce to (mapAcc f xs) and
(map f xs h1), respectively. In addition, when map is applied to a concrete
partial function 〈fAcc, f〉, (domf x) and f[h](x) reduce to (fAcc x) and (f x h),
respectively. When checking the validity of the inductive-recursive definitions,
we have to expand such terms.

Abstractions: sumdel. Here, the functions +, sum and delete are all struc-
turally recursive. The function + is defined as expected, and sum and delete are
as in the Haskell prelude. Below, we assume that the mentioned functions have
already been translated into type theory. Moreover, for simplicity reasons, we
use the structurally recursive versions of these functions rather than the formal
translations we would obtain with our new method.

Functional version:

fix sumdel : List N ⇒ N
sumdel(nil) = 0
sumdel(cons(n, l)) = n + sum(map([x]sumdel(cons(n, delete(x, l))), l))

The actual value computed by the function is sumdel(n1, . . . , nk) = n1sd(k)
where sd(0) = 0 and sd(k + 1) = ksd(k) + 1.

Type-theoretic version: Sumdel = 〈sumdelAcc, sumdel〉 : List N ⇀ N with:

sumdelAcc : List N → Prop
sumdelaccnil : (sumdelAcc nil)
sumdelacccons : (n : N; l : List N;h : mapAcc G l)(sumdelAcc cons(n, l))

sumdel : (l : List N; sumdelAcc l) → N
sumdel nil sumdelaccnil = 0
sumdel cons(n, l) (sumdelacccons n l h) = n + sum Map[h](G, l)

with G ≡ 〈gAcc, g〉 : N ⇀ N where

gAcc = [x : N](sumdelAcc cons(n, (delete x l))) : N → Prop
g = [x : N;h : gAcc x]Sumdel[h](cons(n, (delete x l))) : (x : N; gAcc x) → N

Notice that G is local to Sumdel and hence, n and l are known while defining G.
The important feature of this translation, not possible in the old one, is that

we can assign a precise domain predicate gAcc to the local function generated by
the λ-abstraction. Notice that in the body of the main function, the local function
is applied only to arguments that satisfy gAcc, so termination is ensured.

Partial Application: is div2. Functional version:

fix is div2 : List N ⇒ List N
is div2(xs) = map(my mod(2), xs)

where the function my mod is the one defined at the end of Section 2. Given a
list of numbers, this function returns a list of 0’s and 1’s depending on whether
the numbers in the list are divisible by 2 or not, respectively.

128 A. Bove and V. Capretta

Observe that the type-theoretic version of my mod is the same as before since
this function does not present any of the problematic aspects on which the
method has been changed. Let My Mod = 〈my modAcc,my mod〉 : N,N ⇀ N
with my modAcc and my mod as defined on page 122.

Type-theoretic version: Is Div2 = 〈is div2Acc, is div2〉 : List N ⇀ List N with:

is div2Acc : List N → Prop
is div2acc : (xs : List N;h : mapAcc My Mod(2) xs)(is div2Acc xs)

is div2 : (xs : List N; is div2Acc xs) → List N
is div2 xs (is div2acc xs h) = Map[h](My Mod(2), xs)

Notice that the translation of the partial application my mod(2) does not
introduce any domain constrains in the type of the constructor is div2acc. Given
an element x in the list xs, the application of the function My Mod(2) to the
argument x will only be possible if we can find a proof of (my modAcc 2 x). This
is taken care of in the definition of mapAcc.

Necessity of Impredicativity: itz. The following example shows that it is
necessary to have an impredicative type theory if we want our method to apply
to every functional program. Functional version:

fix itz : N → N, N ⇒ N
itz(f, 0) = f 0
itz(f, succ(n)) = f itz(itz(f), n)

Type-theoretic version: Itz = 〈itzAcc, itz〉 : (N ⇀ N),N ⇀ N with:

itzAcc : (N ⇀ N) → N → Prop
itzacc0 : (f : N ⇀ N;h : domf 0)(itzAcc f 0)
itzaccsucc : (f : N ⇀ N;n : N;h1 : itzAcc Itz(f) n;

h2 : domf Itz[h1](Itz(f), n))(itzAcc f succ(n))

itz : (f : N ⇀ N;n : N; itzAcc f n) → N
itz f 0 (itzacc0 f h) = f[h](0)
itz f succ(n) (itzaccsucc f n h1 h2) = f[h2](Itz[h1](Itz(f), n))

We see that impredicativity is essential when we follow our method to formalise
this example. When defining itzAcc, the constructor itzaccsucc quantifies over all
partial functions f : N ⇀ N (and, therefore, over the domain predicates of all
those functions) and in the body of the constructor itzaccsucc the function Itz(f)
is itself an argument of itzAcc.

The alternative to use a predicative hierarchy of type universes U0,U1,U2, . . .
does not work in this example. Function spaces would need to be stratified too,
according to the universe in which the domain predicate lives, so we would have

A ⇀i B = ΣP : A → Ui.(x : A;P x) → B

Since we are quantifying over A → Ui, predicatively it must be A ⇀i B : Uj

with j > i. That is, we have at least A ⇀i B : Ui+1.

Recursive Functions with Higher Order Domains 129

In the case of Itz, if we try to assign universe levels, that is, if we try to give
it the type Itz : (N ⇀i N),N ⇀j N for some i and j, we reach a contradiction re-
gardless of what i and j are. To start with, we have itzAcc : (N ⇀i N) → N → Uj .
The first constructor itzacc0 contains a quantification on N ⇀i N, so its type
must be at least in Ui+1. Thus, also the universe of itzAcc must be at least
Ui+1, that is, j � i + 1. Now, in the constructor itzaccsucc we have the subterm
Itz(Itz(f), n), but this term does not type-check because Itz : (N ⇀i N),N ⇀j N
and Itz(f) : N ⇀j N with j � i+1. Hence, Itz cannot be applied to Itz(f) because
the type is not correct: it expects an argument of type N ⇀i N and it gets one
of type N ⇀j N with j � i + 1.

5 Conclusions

This article presents a method to translate functional programs into type theory
based on the one previously presented in [BC04]. The new approach relies on a
type of partial functions whose elements are pairs consisting of a domain predicate
and a function depending on a proof of the predicate. The problems that were
left open in [BC04] are now solved: functional arguments are dealt with by lifting
their domain conditions to the main call; λ-abstractions denote partial functions
with domain condition generated locally; partial application is interpreted by just
fixing the given parameters both in the domain predicate and the function.

These results are obtained at the cost of two disadvantages. First of all,
we need an impredicative type theory for the method to be applicable to all
functional programs (see example itz). This is indispensable to obtain a general
result, but in most practical cases the method could be adapted to work on a
predicative type theory with type universes.

As we have already mentioned, this paper is the last in a series of articles
[Bov01, BC01, Bov02a, Bov02b, Bov03, BC04] aimed at representing general re-
cursive functions in type theory. See the section on related work in [BC04] for
a thorough discussion of the literature regarding representations of recursive
functions in logical frameworks.

Acknowledgements. We would like to thank Thierry Coquand for his con-
structive criticism on earlier versions of this article and for useful comments
on the type of partial functions and on the use of impredicativity. We are also
grateful to Christine Paulin-Mohring for giving us a clarifying explanation of her
method to extract computational content from the accessibility predicates.

References

[BC01] A. Bove and V. Capretta. Nested general recursion and partiality in type
theory. In R. J. Boulton and P. B. Jackson, editors, Theorem Proving
in Higher Order Logics: 14th International Conference, TPHOLs 2001,
volume 2152 of Lecture Notes in Computer Science, Springer-Verlag, pages
121–135, September 2001.

130 A. Bove and V. Capretta

[BC04] A. Bove and V. Capretta. Modelling general recursion in type the-
ory. To appear in Mathematical Structures in Computer Science.
Available on the WWW: http://www.cs.chalmers.se/∼bove/Papers/
general presentation.ps.gz, May 2004.

[Bla03] Frédéric Blanqui. Inductive types in the calculus of algebraic construc-
tions. In M. Hofmann, editor, Typed Lambda Calculi and Applications:
6th International Conference, TLCA 2003, volume 2701 of LNCS, pages
46–59. Springer-Verlag, 2003.

[Bov01] A. Bove. Simple general recursion in type theory. Nordic Journal of
Computing, 8(1):22–42, Spring 2001.

[Bov02a] A. Bove. Mutual general recursion in type theory. Technical Report,
Chalmers University of Technology. Available on the WWW: http://
www.cs.chalmers.se/∼bove/Papers/mutual rec.ps.gz, May 2002.

[Bov02b] Ana Bove. General Recursion in Type Theory. PhD thesis, Chalmers
University of Technology, Department of Computing Science, Novem-
ber 2002. Available on the WWW: http://cs.chalmers.se/∼bove/
Papers/phd thesis.ps.gz.

[Bov03] A. Bove. General recursion in type theory. In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs, International Workshop TYPES
2002, The Netherlands, number 2646 in Lecture Notes in Computer Sci-
ence, pages 39–58, March 2003.

[Cap04] Venanzio Capretta. A polymorphic representation of induction-
recursion. Draft paper. Available from http://www.science.uottawa.
ca/∼vcapr396/, 2004.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Information
and Computation, 76:95–120, 1988.

[CM85] R. L. Constable and N. P. Mendler. Recursive definitions in type theory.
In Rohit Parikh, editor, Logic of Programs, volume 193 of Lecture Notes
in Computer Science, pages 61–78. Springer, 1985.

[Coq02] Coq Development Team. LogiCal Project. The Coq Proof Assistant. Ref-
erence Manual. Version 7.4. INRIA, 2002.

[DDG98] C. Dubois and V. Viguié Donzeau-Gouge. A step towards the mechaniza-
tion of partial functions: Domains as inductive predicates. In M. Kerber,
editor, CADE-15, The 15th International Conference on Automated De-
duction, pages 53–62, July 1998. WORKSHOP Mechanization of Partial
Functions.

[Dyb00] P. Dybjer. A general formulation of simultaneous inductive-recursive def-
initions in type theory. Journal of Symbolic Logic, 65(2), June 2000.

[FFL97] S. Finn, M.P. Fourman, and J. Longley. Partial functions in a total setting.
Journal of Automated Reasoning, 18(1):85–104, 1997.

[Jon03] S. Peyton Jones, editor. Haskell 98 Language and Libraries. The Revised
Report. Cambridge University Press, April 2003.

[Pau] Christine Paulin. How widely applicable is Coq? Contribution to
the Coq mailing list, 19 Aug 2002, http://pauillac.inria.fr/bin/
wilma hiliter/coq-club/200208/msg00003.html.

Elementary Affine Logic and the
Call-by-Value Lambda Calculus�

Paolo Coppola1, Ugo Dal Lago2, and Simona Ronchi Della Rocca3

1 Dipartimento di Matematica e Informatica, Università di Udine,
via delle Scienze 206, 33100 Udine, Italy

coppola@dimi.uniud.it
2 Dipartimento di Scienze dell’Informazione, Università di Bologna,

via Mura Anteo Zamboni 7, 40127 Bologna, Italy
dallago@cs.unibo.it

3 Dipartimento di Informatica, Università di Torino,
corso Svizzera 185, 101 9 Torino, Italy

ronchi@di.unito.it

Abstract. The so-called light logics [1, 2, 3] have been introduced as log-
ical systems enjoying quite remarkable normalization properties. Design-
ing a type assignment system for pure lambda calculus from these logics,
however, is problematic, as discussed in [4]. In this paper we show that
shifting from usual call-by-name to call-by-value lambda calculus allows
regaining strong connections with the underlying logic. This will be done
in the context of Elementary Affine Logic (EAL), designing a type system
in natural deduction style assigning EAL formulae to lambda terms.

1 Introduction

The so-called light logics [1, 2, 3] were all introduced as logical counterparts
of complexity classes, namely polynomial and elementary time functions. Af-
ter their introduction, they have been shown to be relevant for optimal reduc-
tion [5, 6], programming language design [3, 7] and set theory [8]. However, proof
languages for these logics, designed through the Curry-Howard correspondence,
are syntactically quite complex and can hardly be proposed as programming lan-
guages. An interesting research challenge is the design of type systems assigning
light logics formulae to pure lambda-terms, forcing the class of typable terms
to enjoy the same remarkable normalization properties which can be proved on
logical systems. The difference between β-reduction and the normalization step
in the logics, however, makes it difficult both getting the subject reduction prop-
erty and inheriting the complexity properties from the logic, as discussed in [4].
Indeed, β-reduction is more permissive than the restrictive copying discipline
governing calculi directly derived from light logics. Consider, for example, the
following expression in ΛLA (see [7]):

� The three authors are partially supported by PRIN projects PROTOCOLLO (2002)
and FOLLIA (2004).

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 131–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4

132 P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca

let M be !x in N

This rewrites to N{x/P} if M is !P , but is not a redex if M is, say, an application.
It is not possible to map this mechanism into pure lambda calculus. The solution
proposed by Baillot and Terui [4] in the context of Light Affine Logic (LAL,
see [2, 3]) consists in defining a type-system which is strictly more restrictive than
the one induced by the logic. In this way, they both achieve subject reduction
and a strong notion of polynomial time soundness. The system, however, is not
complete with respect to LAL, i.e. there are proofs that cannot be mapped into
typable terms.

Now, notice that mapping the above let expression to the application

(λx.N)M

is not meaningless if we shift from the usual call-by-name lambda calculus to
the call-by-value lambda calculus, where (λx.N)M is not necessarily a redex. In
this paper, we make the best of this idea, introducing a type assignment system,
that we call ETAS, assigning formulae of Elementary Affine Logic (EAL) to
lambda-terms. ETAS enjoys the following remarkable properties:

• Every proof of EAL can be mapped into a type derivation in ETAS.
• (Call-by-value) subject reduction holds.
• Type-inference is decidable.
• Elementary bounds can be given on the length of any reduction sequence

involving a typable term. A similar bound holds on the size of terms involved
in the reduction.

The basic idea underlying ETAS consists in partitioning premises into three
classes, depending on whether they are used once, or more than once, or they
are in an intermediate status. We believe this approach can work for other light
logics too, and some hints will be given.

The proposed system is the first one satisfying the given requirements for
light logics. A notion of typability for lambda calculus has been defined in [5, 6]
for EAL, and in [9] for LAL. Type inference has been proved to be decidable. In
both cases, however, the notion of typability is not preserved by β-reduction.

The paper is organized as follows: Section 2 recalls some preliminary notions
about EAL and lambda calculus, Section 3 introduces ETAS system, Section
4 and 5 explain ETAS main properties, namely complexity bounds and a type
inference algorithm. Section 6 presents two possible extensions, allowing to reach
completeness for elementary functions, and to apply our idea to other light logics.

2 Preliminaries

In this section we recall the proof calculus for Elementary Affine Logic, ΛEA.
Relations with the lambda calculus will be then discussed.

Definition 1. i) The set Λ of terms of the lambda calculus is defined by the
grammar M ::= x | MM | λx.M , where x ∈ Var , a countable set of vari-
ables.

Elementary Affine Logic and the Call-by-Value Lambda Calculus 133

ii) The grammar generating the set ΛEA of terms of the Elementary Lambda
Calculus is obtained from the previous one by adding rules:

M ::= ! (M)
[
M/x, . . . ,M/x

] | [M]M=x,y

and by constraining all variables to occur at most once.
iii) EA-types are formulae of Elementary Affine Logic (hereby EAL), and are

generated by the grammar A ::= α | A � A | !A where α belongs to
a countable set of basic type constants. EA-types will be ranged over by
A,B,C.

iv) EA-contexts are finite subsets of EA-type assignments to variables. Con-
texts are ranged over by Φ, Ψ . If Φ = {x1 : A1, . . . , xn : An}, then dom(Φ) =
{x1, . . . , xn}. Two contexts are disjoint if their domains have empty inter-
section.

v) The type assignment system �NEAL assigns EA-types to EA-terms. The
system is given in Table 1. With a slight abuse of notation, we will denote
by NEAL the set of typable terms in ΛEA.

Both ΛEA and Λ are ranged over by M,N,P,Q. The context should help
avoiding ambiguities. Symbol ≡ denotes syntactic identity on terms, modulo
names of bound variables and modulo permutation in the list M/x, · · · ,M/x
inside ! (M) [M/x, . . . , M/x] and in contracted variables x, y inside [M]M=x,y.

Table 1. Type assignment system for EA-terms. Contexts with different names are
intended to be disjoint

Φ, x : A �NEAL x : A A
Φ �NEAL M :!A Ψ, x :!A, y :!A �NEAL N : B

Φ,Ψ �NEAL [N]M=x,y : B
C

Φ, x : A �NEAL M : B
Φ �NEAL λx.M : A � B

I�
Φ �NEAL M : A � B Ψ �NEAL N : A

Φ,Ψ �NEAL M N : B E�

Ψ1 �NEAL M1 :!A1 · · · Ψn �NEAL Mn :!An x1 : A1, . . . , xn : An �NEAL N : B

Φ,Ψ1, . . . , Ψn �NEAL! (N)
[
M1/x1, . . . ,

Mn/xn

]
:!B

!

On Λ, both the call-by-name and the call-by-value β-reduction will be used,
according to the following definition.

Definition 2. i) The call-by-name β-reduction is the contextual closure of the
following rule: (λx.M)N →n M{N/x}, where M{N/x} denotes the capture
free substitution of N to the free occurrences of x in M ;

ii) Values are generated by the grammar V ::= x | λx.M where x ranges over
Var and M ranges over Λ. V is the set of all values. Values are denoted
by V,U,W . The call-by-value β-reduction is the contextual closure of the
following rule: (λx.M)V →v M{V/x} where V ranges over values.

134 P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca

iii) Let t ∈ {n, v}; symbols →+
t and →∗

t denote the transitive closure and the
symmetric and transitive closure of →t, respectively.

A term in ΛEA can be tranformed naturally in a term in Λ by performing the
substitutions which are explicit in it, and forgetting the modality !. Formally,
the translation function (·)∗ : ΛEA → Λ is defined by induction on the structure
of EA-terms as follows:

(x)∗ = x

(λx.M)∗ = λx.(M)∗

(MN)∗ = (M)∗(N)∗

([M]N=x1,x2)
∗ = (M)∗{(N)∗/x1, (N)∗/x2}

(! (N)
[
M1/x1, . . . ,

Mn/xn

]
)∗ = (N)∗{(M1)∗/x1, . . . , (Mn)∗/xn}

where M{M1/x1, · · · ,Mn/xn} denotes the simultaneous substitution of all free
occurrences of xi by Mi (1 ≤ i ≤ n).

The map (·)∗ easily induces a type-assignment system for pure lambda-
calculus: take NEAL and replace every occurrence of a term M by M∗ in every
rule. Normalization in EAL, however, is different from normalization in lambda-
calculus — the obtained system does not even satisfy subject-reduction. More-
over, lambda calculus does not provide any mechanism for sharing: the argument
is duplicated as soon as β-reduction fires. This, in turn, prevents from analyzing
normalization in the lambda calculus using the same techniques used in logical
systems. This phenomenon has catastrophic consequences in the context of Light
Affine Logic, where polynomial time bounds cannot be transferred from the logic
to pure lambda-calculus [4].

Consider now a different translation (·)# : ΛEA → Λ:

(x)# = x

(λx.M)# = λx.(M)#

(MN)# = (M)# (N)#

([N]M=x,y)# =
{

(N)#{M/x,M/y} if M is a variable
(λz.(N)#{z/x, z/y})(M)# otherwise

(! (N)
[
M1/x1, . . . ,

Mn/xn

]
)# =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(N)# if n = 0
(! (N)

[
M2/x2, . . . ,

Mn/xn

]
)#{M1/x1}

if n ≥ 1 and M1 is a variable
(λx1.(! (N)

[
M2/x2, . . . ,

Mn/xn

]
)#)(M1)#

if n ≥ 1 and M1 is not a variable

If lambda calculus is endowed by ordinary β-reduction, then the two translations
are almost equivalent. Indeed:

Lemma 3. For every EA-term M , (M)# →∗
n (M)∗.

Proof. By induction on M .

However, it is not certainly true that (M)# →∗
v (M)∗.

Elementary Affine Logic and the Call-by-Value Lambda Calculus 135

The map (·)#, differently from (·)∗ does not cause an exponential blowup
on the length of terms. The length L(M) of a term M is defined inductively as
follows:

L(x) = 1
L(λx.M) = 1 + L(M)
L(M N) = 1 + L(M) + L(N)

The same definition can be extended to EA-terms by way of the following equa-
tions:

L(! (M)) = L(M) + 1
L(! (M)

[
M1/x1, . . . ,

Mn/xn

]
) = L(! (M)

[
M1/x1, . . . ,

Mn−1/xn−1
]
) + L(Mn) + 1

L([M]N=x,y) = L(M) + L(N) + 1

Proposition 4. For every N ∈ ΛEA, L(N#) ≤ 2L(N).

In the following section, we describe a type-system which types all the terms
in (NEAL)#, satysfing call-by-value subject-reduction and guaranteeing bounds
on normalization time.

3 The Elementary Type Assignment System

In this section we will define a type assignment system typing lambda-terms with
EAL formulae. We want the system to be almost syntax directed, the difficulty
being the handling of C and ! rules. This is solved by splitting the context into
three parts, the linear context, the modal context, and the parking context. In
particular the parking context is used to keep track of premises which must
become modal in the future.

Definition 5. i) An EAL formula A is modal if A ≡!B for some B, it is linear
otherwise.

ii) A context is linear if it assigns linear EA-types to variables, while it is modal
if it assigns modal EA-types to variables. If Φ is a context, ΦL and ΦI denote
the linear and modal sub-contexts of Φ, respectively.

iii) The Elementary Type Assignment System (ETAS) proves statements like
Γ | Δ | Θ � M : A where Γ and Θ are linear contexts and Δ is a modal
context. The rules of the system are shown in Table 2. In what follows, Γ ,
Δ and Θ will range over linear, modal and parking contexts respectively.

iv) A term M ∈ Λ is EA-typable if there are Γ,Δ,A such that Γ | Δ | ∅ � M : A.

Rules AL and AP (see Table 2) are two variations on the classical axiom rule.
Notice that a third axiom rule

Γ | x :!A,Δ | Θ � x :!A AI

is derivable. Abstractions cannot be performed on variables in the parking con-
text. The rule E� is the standard rule for application. Rule ! is derived from the

136 P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca

Table 2. The Elementary Type Assignment System (ETAS). Contexts with different
names are intended to be disjoint

Γ, x : A | Δ | Θ � x : A AL

Γ | Δ | x : A,Θ � x : A AP

Γ, x : A | Δ | Θ �M : B
Γ | Δ | Θ � λx.M : A � B

IL
�

Γ | Δ,x : A | Θ �M : B
Γ | Δ | Θ � λx.M : A � B

II
�

Γ1 | Δ | Θ �M : A � B Γ2 | Δ | Θ � N : A
Γ1, Γ2 | Δ | Θ �M N : B

E�

Γ1 | Δ1 | Θ1 �M : A
Γ2 |!Γ1, !Δ1, !Θ1,Δ2 | Θ2 �M :!A

!

one traditionally found in sequent calculi and is weaker than the rule induced
by NEAL via (·)∗. Nevertheless, it is sufficient for our purposes and (almost)
syntax-directed. The definition of an EA-typable term takes into account the
auxiliary role of the parking context.

This system does not satisfy call-by-name subject-reduction. Consider, for
example, the lambda term M ≡ (λx.yxx)(wz). A typing for it is the following:

y :!A �!A � A,w : A �!A, z : A | ∅ | ∅ � M : A

M →n N , where N ≡ y(wz)(wz) and y :!A �!A � A,w : A �!A, z : A | ∅ | ∅
�
N : A, because rule E� requires the two linear contexts to be disjoint. Note
that both ∅ | ∅ | y :!A �!A � A,w : A �!A, z : A � M : A and ∅ | ∅ | y :!A �
!A � A,w : A �!A, z : A � N : A, but this does not imply N to be EA-typable.
Moreover, λw.M →n λw.N , but while M can be given type (A �!A) � A, N
cannot.

The subject reduction problem, however, disappears when switching from
call-by-name to call-by-value reduction.

Lemma 6 (Weakening Lemma). If Γ1 | Δ1 | Θ1 � M : A, then Γ1, Γ2 |
Δ1, Δ2 | Θ1, Θ2 � M : A.

Lemma 7 (Shifting Lemma). If Γ, x : A | Δ | Θ � M : B, then Γ | Δ | x :
A,Θ � M : B.

Lemma 8 (Substitution Lemma). Suppose Γ1 and Γ2 are disjoint contexts.
Then:
• If Γ1, x : A | Δ | Θ � M : B, Γ2 | Δ | Θ � N : A and N ∈ V, then

Γ1, Γ2 | Δ | Θ � M{N/x} : B.
• If Γ1 | Δ | x : A,Θ � M : B, Γ2 | Δ | Θ � N : A and N ∈ V, then

Γ1 | Δ | Γ2, Θ � M{N/x} : B.
• If Γ1 | Δ,x : A | Θ � M : B, Γ2 | Δ | Θ � N : A and N ∈ V, then

Γ1, Γ2 | Δ | Θ � M{N/x} : B.

Elementary Affine Logic and the Call-by-Value Lambda Calculus 137

Proof. The first point can be easily proved by induction on the derivation for
Γ1, x : A | Δ | Θ � M : B using, in particular, the Weakening Lemma. Indeed,
the hypothesis on N is not needed.

Let us prove the second point (by the same induction). The case for AP can
be proved by way of the previous lemmas. IL

� and II
� are trivial. E� comes

directly from the induction hypothesis. ! is very easy, because x cannot appear
free in M and so M{N/x} is just M .

The third point can be proved by induction, too, but it is a bit more difficult.
First of all, observe that A must be in the form !...!︸︷︷︸

n

C, with n ≥ 1. Let us

focus on rules E� and ! (the other ones can be handled easily). Notice that the
derivation for Γ2 | Δ | Θ � N : A must end with AL, AP , IL

� or II
� (depending

on the shape of N), followed by exactly n instances of the ! rule, being it the
only non-syntax-directed rule. This implies, in particular, that every variable
appearing free in N is in Δ. So the proof follows easily by induction. Using
Lemma 7 and Lemma 6, we can use the induction hypothesis and handle the
case !. �

Theorem 9 (Call-by-Value Subject Reduction). Γ | Δ | Θ � M : A and
M →v N implies Γ | Δ | Θ � N : A.

Proof. By the Substitution Lemma. �

We are now going to prove that the set of typable λ-terms coincides with
(NEAL)#. To do this we need the following lemma.

Lemma 10 (Contraction Lemma).
i) If Γ | Δ | x : A, y : A,Θ � M : B, then Γ | Δ | z : A,Θ � M{z/x, z/y} : B

ii) If Γ | x : A, y : A,Δ | Θ � M : B, then Γ | z : A,Δ | Θ � M{z/x, z/y} : B

Proposition 11. i) If Φ �NEAL M : A then ΦL | ΦI | ∅ � (M)# : A.
ii) If Γ | Δ | ∅ � M : A, there is N ∈ ΛEA such that (N)# = M and Γ,Δ �NEAL

N : A.

Proof. i) By induction on the structure of the derivation for Φ �NEAL M : A.
Let us focus on nontrivial cases.

If the last rule used is E�, the two premises are Φ �NEAL N : B � C and
Φ2 �NEAL P : B. By induction hypothesis, ΦL

1 | ΦI
1 | ∅ � (N)# : B � C, and

ΦL
2 | ΦI

2 | ∅ � (P)# : B and, by Weakening Lemma, ΦL
1 | ΦI

1, Φ
I
2 | ∅ � (N)# :

B � C, ΦL
2 | ΦI

1, Φ
I
2 | ∅ � (P)# : B Rule E� leads to the thesis.

If the last rule used is contr , the two premises are Φ1 �NEAL N :!A and
Φ2, x :!A, y :!A �NEAL P : B. By induction hypothesis, ΦL

1 | ΦI
1 | ∅ � (N)# :!A,

ΦL
2 | ΦI

2, x :!A, y :!A | ∅ � (P)# : B. By Contraction Lemma, ΦL
2 | ΦI

2, z :
!A | ∅ � (P)#{z/x, z/y} : B and so ΦL

2 | ΦI
2 | ∅ � λz.(P)#{z/x, z/y} :!A �

B By rule E� and Weakening Lemma, we finally get ΦL
1 , Φ

L
2 | ΦL

1 , Φ
I
2 | ∅ �

(λz.(P)#{z/x, z/y})(N)# : B.
ii) The following, stronger, statement can be proved by induction on π: if

π : Γ | Δ | x1 : A1, . . . , xn : An � M : A, then there is N ∈ ΛEA such

138 P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca

that (N)# = M{x1/y
1
1 , . . . , x1/y

m1
1 , . . . , xn/y

1
n, . . . , xn/y

mn
n } and Γ,Δ, y1

1 :
A1, . . . , y

m1
1 : A1, . . . , y

1
n : An, . . . , y

mn
n : An �NEAL N : A. �

We have just established a deep static correspondence between NEAL and
the class of typable lambda terms. But what about dynamics? Unfortunately,
the two systems are not bisimilar. Nevertheless, every call-by-value β-step in
the lambda calculus corresponds to at least one normalization step in ΛEA. A
normalization step in ΛEA is denoted by → (reduction rules can be found in [10]);
→+ denotes the transitive closure of →.

Proposition 12. For every M ∈ ΛEA, if (M)# →v N , then there is L ∈ ΛEA

such that (L)# = N and M →+ L.

4 Bounds on Normalization Time

In order to prove elementary bounds on reduction sequences, we need to define
a refined measure on lambda terms. We can look at a type derivation π : Γ | Δ |
Θ � M : A as a labelled tree, where every node is labelled by a rule instance.
We can give the following definition:

Definition 13. Let π : Γ | Δ | Θ � M : A.
i) A subderivation ρ of π has level i if there are i applications of the rule ! in

the path from the root of ρ to the root of π.
ii) An occurrence of a subterm N of M has level i in π if i is the maximum

level of a subderivation of π having N as subject.
iii) The level ∂(π) of π is the maximum level of subderivations of π.

Notice that the so defined level corresponds to the notion of box-nesting
depth in proof-nets [2]. The length L(M) of a typable lambda term M does not
take into account levels as we have just defined them. The following definitions
reconcile them, allowing L(M) to be “split” on different levels.

Definition 14. Let π : Γ | Δ | Θ � M : A.
i) S(π, i) is defined by induction on π as follows:

• If π consists of an axiom, then S(π, 0) = 1 and S(π, i) = 0 for every i ≥ 1;
• If the last rule in π is II

� or IL
�, then S(π, 0) = S(ρ, 0) + 1 and S(π, i) =

S(ρ, i) for every i ≥ 1, where ρ is the immediate subderivation of π;
• If the last rule in π is E� then S(π, 0) = S(ρ, 0) + S(σ, 0) + 1 and

S(π, i) = S(ρ, i) + S(σ, i) for every i ≥ 1, where ρ and σ are the im-
mediate subderivations of π;

• If the last rule in π is !, then S(π, 0) = 0 and S(π, i) = S(ρ, i−1) for every
i ≥ 1, where ρ is the immediate subderivation of π.

ii) Let n be the level of π. The size of π is S(π) =
∑

i≤n S(π, i).

The following relates S(π) to the size of the term π types:

Lemma 15. Let π : Γ | Δ | Θ � M : A. Then, S(π) = L(M).

Elementary Affine Logic and the Call-by-Value Lambda Calculus 139

Substitution Lemma can be restated in the following way:

Lemma 16 (Substitution Lemma, Revisited).
i) If π : Γ1, x : A | Δ | Θ � M : B, ρ : Γ2 | Δ | Θ � N : A and N ∈ V, then

there is σ : Γ1, Γ2 | Δ | Θ � M{N/x} : B such that S(σ, i) ≤ S(ρ, i)+S(π, i)
for every i.

ii) If π : Γ1 | Δ | x : A,Θ � M : B, ρ : Γ2 | Δ | Θ � N : A and N ∈ V, then there
is σ : Γ1 | Δ | Γ2, Θ � M{N/x} : B such that S(σ, i) ≤ S(π, i)S(ρ, 0)+S(π, i)
for every i.

iii) If π : Γ1 | Δ,x : A | Θ � M : B, ρ : Γ2 | Δ | Θ � N : A and N ∈ V, then
there is σ : Γ1, Γ2 | Δ | Θ � M{N/x} : B such that S(σ, 0) ≤ S(π, 0) and
S(σ, i) ≤ (

∑
j≤i S(π, j))S(ρ, i) + S(π, i) for every i ≥ 1.

The following can be thought of as a strenghtening of subject reduction and is
a corollary of Lemma 16.

Proposition 17. If π : Γ | Δ | Θ � M : A, and M →v N by reducing a redex
at level i in π, then there is ρ : Γ | Δ | Θ � N : A such that

∀j < i.S(ρ, j) = S(π, j)
S(ρ, i) < S(π, i)

∀j > i.S(ρ, j) ≤ S(π, j)(
∑
k≤j

S(π, k))

Proof. Type derivation ρ is identical to π up to level i, so the equality S(ρ, j) =
S(π, j) holds for all levels j < i. At levels j ≥ i, the only differences between
ρ and π are due to the replacement of a type derivation φ for (λx.L)P with
another type derivation ψ for L{P/x}. ψ is obtained by Lemma 16. The needed
inequalitites follow from the ones in Lemma 16. �
If π is obtained from ρ by reducing a redex at level i as in Proposition 17, then
we will write π →i

v ρ. Consider now a term M and a derivation π : Γ | Δ | Θ �
M : A. By Proposition 17, every reduction sequence M →v N →v L →v . . . can
be put in correspondence with a sequence π →i

v ρ →j
v σ →k

v . . . (where ρ types
N , σ types L, etc.). The following result give bounds on the lengths of these
sequences and on the possible growth during normalization.

Proposition 18. For every d ∈ N, there are elementary functions fd, gd : N →
N such that, for every sequence

π0 →i0
v π1 →i1

v π2 →i2
v . . .

it holds that
• For every i ∈ N,

∑
e≤d S(πi, e) ≤ fd(S(π0));

• There are at most gd(S(π0)) reduction steps with indices e ≤ d.

Theorem 19. For every d ∈ N there are elementary functions pd, qd : N → N
such that whenever π : Γ | Δ | Θ � M : A, the length of reduction sequences
starting from M is at most p∂(π)(L(M)) and the length of any reduct of M is at
most q∂(π)(L(M)).

Proof. This is immediate from Proposition 18. �

140 P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca

5 Type Inference

We prove, in a constructive way, that the type inference problem for ETAS
is decidable. Namely a type inference algorithm is designed giving, for every
lambda term M , a finite set of principal typings, from which all and only its
typings can be obtained. If this set is empty, then M is not typable. The design
of the algorithm is based on the following Generation Lemma.

Lemma 20 (Generation Lemma). Let Γ | Δ | Θ � M : A.
i) Let M ≡ x. If A is linear, then either {x : A} ⊆ Γ or {x : A} ⊆ Θ.

Otherwise, {x : A} ∈ Δ.
ii) Let M ≡ λx.N . Then A is of the shape !...!︸︷︷︸

n

(B � C) (n ≥ 0).

• Let n = 0. If B is linear then Γ, x : B | Δ | Θ � N : C, else Γ | Δ,x : B |
Θ � N : C.

• Let n > 0. Then ∅ | Δ | ∅ � M : A and Γ ′ | Δ′ | Θ′ � N : C, where
Δ = !...!︸︷︷︸

n

((Γ ′ ∪ Δ′ ∪ Θ′) − {x : B}).

iii) Let M ≡ PQ. Then A is of the shape !...!︸︷︷︸
n

B (n ≥ 0), Γ1 | Δ′ | Θ′ � P :

C � !...!︸︷︷︸
m

B and Γ2 | Δ′ | Θ′ � Q : C, for some m ≤ n.

• If n − m = 0, then Γ = Γ1 ∪ Γ2, Δ = Δ′ and Θ = Θ′.
• If n−m > 0, then ∅ | Δ | ∅ � M : A, where Δ = !...!︸︷︷︸

n−m

(Γ1 ∪ Γ2 ∪Δ′ ∪Θ′).

The principal typings are described through the notion of a type scheme, which
is a variation on the one used in [6] in the context of ΛEA and NEAL. Roughly
speaking, a type scheme describes a class of types, i.e. it can be transformed into
a type through a suitable notion of a substitution.

Definition 21. i) Linear type schemes and type schemes are respectively de-
fined by the grammars

μ ::= α | σ � σ

σ ::= β | μ |!pσ.

where the exponential p is defined by the grammar

p ::= n | p + p.

α and β respectively belong to NVar and MVar , two disjoint countable sets
of scheme variables, and n belongs to a countable set of literals. A generic
scheme variable is ranged over by φ, linear type schemes are ranged over by
μ, ν, type schemes are ranged over by σ, τ, ρ, and exponentials are ranged
over by p, q, r. Let T denote the set of type schemes. A type scheme !pσ is a
modal type scheme.

Elementary Affine Logic and the Call-by-Value Lambda Calculus 141

Table 3. The unification algorithm U

U(φ, φ) = 〈∅, []〉 (U1)
α does not occur in μ

U(α, μ) = 〈∅, [α �→ μ]〉 (U2)

α does not occur in μ

U(μ,α) = 〈∅, [α �→ μ]〉 (U3)
β does not occur in σ

U(β,σ) = 〈∅, [β �→ σ]〉 (U4)

β does not occur in σ

U(σ, β) = 〈∅, [β �→ σ]〉 (U5)

U(μ, ν) = 〈C, s〉
U(!p1 ...!pnμ, !q1 ...!qmν) = 〈C ∪ {p1 + ... + pn = q1 + ... + qm}, s〉 (U6)

U(σ1, τ1) = 〈C1, s1〉 U(s1(σ2), s1(τ2)) = 〈C2, s2〉
U(σ1 � σ2, τ1 � τ2) = 〈C1 ∪ C2, s1 ◦ s2〉 (U7)

In all other cases, U is undefined: for example both U(α,α � β) and
U(!pα,σ � τ) are undefined. s1 ◦ s2 is the substitution such that s1 ◦ s2(σ) =
s2(s1(σ)).

ii) A scheme substitution S is a function from type schemes to types, replacing
scheme variables in NVar by linear types, scheme variables in MVar by types
and literals by natural numbers greater than 0. The application of S to a
type scheme is defined inductively as follows:

S(φ) = A if [φ
→ A] ∈ S;

S(σ � τ) = S(σ) � S(τ);

S(!n1+...+niσ) = !...!︸︷︷︸
q

S(σ);

where q = S(n1) + ... + S(ni).
iii) A scheme basis is a finite subset of type scheme associations to variables.

With an abuse of notation, we will let Ξ,Γ,Δ,Θ range over scheme basis,
with the constraint that Γ and Θ denote scheme basis associating non-modal
schemes to variables, while Δ denotes a scheme basis associating modal type
schemes to variables.

Binary relation ≡ is extended to denote the syntactical identity between both
types and type schemes. Making clear what we said before, a type scheme can be
seen as a description of the set of all types that can be obtained from it through
a scheme substitution. So:

• a linear type scheme describes a set of linear types;
• a modal type scheme describes a subset of modal types;
• a scheme variable in NVar describes the set of all types.

142 P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca

Table 4. The type inference algorithm PT . (two 5-tuples are disjoint if and only if
they are built from different scheme variables)

PT (x) = {< x : α; ∅; ∅; α; ε >,< ∅; ∅;x : α; α; ε >,< ∅;x :!nα; ∅; !nα; ε >}

PT (λx.M) = {< Γ ;Δ;Θ; σ � τ ; C >,< ∅; !m(Γ ∪Δ ∪Θ); ∅; !mσ � τ ; C >|
(< Γ, x : σ;Δ;Θ; τ ; C >∈ PT (M)) or
(< Γ ;Δ,x : σ;Θ; τ ; C >∈ PT (M)) or
(< Γ ;Δ;Θ; τ ; C >∈ PT (M) and
σ ≡ α and x �∈ dom(Γ) ∪ dom(Δ) ∪ dom(Θ)) }

PT (MN) = {< Γ ;Δ;Θ; σ; C >,< ∅; !m(Γ ∪Δ ∪Θ); ∅; !mσ; C >|
< Γ1;Δ1;Θ1; σ1; C1 >∈ PT (M) and
< Γ2;Δ2;Θ2; σ2; C2 >∈ PT (N) (disjoint) and
dom(Γ1) ∩ dom(Γ2) = ∅ and
i �= j implies dom(Ξi) ∩ dom(Ξj) = ∅ and
U(σ1,σ2 � β) =< s,C′ > (β fresh) and
σ = s ◦ s1 ◦ ... ◦ sk(β)
where

U(s(τ1
1), s(τ1

2)) =< s1,C
′
1 > and

U(si(τ i
1), si(τ i

2)) =< si+1,C
′
i+1 > and

xi ∈ dom(Ξ1) ∪ dom(Ξ2), xi : τ i
j ∈ Ξj and

Ξ = {x : s ◦ s1 ◦ ... ◦ sk(τ) | x : τ ∈ Ξj} and
C = C′ ⋃

1≤i≤k C′
i

(1 ≤ i ≤ k, 1 ≤ j ≤ 2, Ξ ∈ {Γ,Δ,Θ}, Ξi ∈ {Γi,Δi, Θi | 1 ≤ i ≤ 2})}

In order to define the principal typing, we will use a unification algorithm for
type schemes, which is a variant of that defined in [6]. Let =e be the relation
between type schemes defined as follows: φ =e φ; σ =e σ′ and τ =e τ ′ imply
σ � τ =e σ′ � τ ′; σ =e τ implies !pσ =e!qτ . Roughly speaking, two type
schemes are in =e if and only if they are identical modulo the exponentials.

The unification algorithm, which we will present in SOS style in Table 3, is
a function U from T × T to pairs of the shape 〈C, s〉, where C (the modality
set) is a set of natural linear constraints in the form p = q, where p and q are
exponentials, and s is a substitution, replacing scheme variables by type schemes.
A set C of linear constraints is solvable if there is a scheme substitution S such
that, for every constraint n1 + ...+ni = m1 + ...+mj in C, S(n1)+ ...+S(ni) =
S(m1) + ... + S(mj). Clearly the solvability of a set of linear constraints is a
decidable problem.

The following two technical lemmas prove that, if U(σ, τ) = 〈C, s〉, then
this result supplies a more general unifier for type schemes (modulo =e) and
moreover this can be extended to types.

Elementary Affine Logic and the Call-by-Value Lambda Calculus 143

Lemma 22. i) (correctness) U(σ, τ) = 〈C, s〉 implies s(σ) =e s(τ).
ii) (completeness) s(σ) =e s(τ) implies U(σ, τ) = 〈C, s′〉 and s = s′ ◦ s′′, for

some s′′.

The extension to types must take into consideration the set of linear constraints
generated by U , which imposes some relations between the number of modalities
in different subtypes of the same type.

Lemma 23. i) (correctness) Let U(σ, τ) = 〈C, s〉. Then, for every scheme so-
lution S of C, S(s(σ)) ≡ S(s(τ)).

ii) (completeness) S(σ) ≡ S(τ) implies U(σ, τ) = 〈C, s〉, and S(σ) ≡ S′(s(σ)),
S(τ) ≡ S′(s(τ)) , for some S′ satisfying C.

The set of principal type schemes of a term is a set of tuples in the form
< Γ ;Δ;Θ;σ;C >, where Γ,Δ,Θ are scheme basis, σ is a type scheme and C is
a set of constraints. It is defined in Table 4.

Theorem 24 (Type Inference).
i) (correctness) < Γ ;Δ;Θ;σ;C >∈ PT (M) implies that, for every scheme

substitution S satisfying C, for every substitution s, S(s(Γ)) | S(s(Δ)) |
S(s(Θ)) � M : S(s(σ)).

ii) (completeness) Γ | Δ | Θ � M : A implies there is < Γ ′;Δ′;Θ′;σ;C >∈
PT (M) such that A = S(σ) and S(Ξ ′) ⊆ Ξ (Ξ ∈ {Γ,Δ,Θ}), for some
scheme substitution S satisfying C.

Proof. i) By induction on M .
ii) By induction on the derivation proving Γ | Δ | Θ � M : A, using the

Generation Lemma. �

6 Extensions

6.1 Achieving Completeness

The type-system we introduced in this paper is not complete for the class of ele-
mentary time functions, at least if we restrict to uniform encodings. One possible
solution consists in extending the type system with second order quantification.
This, however, would make type inference much harder (if not undecidable).
Another approach, consists in extending the language with basic types and con-
stants. In this section, we will sketch one possible extension going exactly in this
direction.

Suppose we fix a finite set of free algebras A = {A1, . . . ,An}. The con-
structors of Ai will be denoted as c1

Ai
, . . . , c

k(Ai)
Ai

. The arity of constructor cj
Ai

will be denoted as Rj
Ai

. The algebra U of unary integers has two constructors
c1

U
, c2

U
, where R1

U
= 1 and R1

U
= 0. The languages of types, terms and values are

extended by the the following productions

A ::= Aj

M ::= iterAj
| condAj

| ci
Aj

V ::= iterAj
| condAj

| ci
Aj

| t

144 P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca

where Aj ranges over A, i ranges over {1, . . . , k(Aj)} and t ranges over free al-
gebra terms. If t is a term of the free algebra A and M1, . . . ,Mk(A) are terms, then
t{M1, . . . ,Mk(A)} is defined by induction on t. In particular, (ci

A
t1, . . . , tRj

Ai

){M1,

. . . ,Mk(A)} will be

Mi(t1{M1, . . . ,Mk(A)}) . . . (tRj
Ai

{M1, . . . ,Mk(A)}).

The new constants receive the following types in any context:

iterA : A �!(A � . . . � A︸ ︷︷ ︸
R1

A
times

� A) � . . . �!(A � . . . � A︸ ︷︷ ︸
Rk(A)

A
times

� A) �!A

condA : A � (A � . . . � A︸ ︷︷ ︸
R1

A
times

� A) � . . . � (A � . . . � A︸ ︷︷ ︸
Rk(A)

A
times

� A) � A

ci
A : A � . . . � A︸ ︷︷ ︸

Ri
A

times

� A

New (call-by-value) reduction rules are the following ones:

iterAtV1 . . . Vk(A) →v t{V1 . . . Vk(A)}
condAc

i
A(t1 . . . tRi

A

)V1 . . . Vk(A) →v Vit1 . . . tRi
A

It is easy to check that lemma 16 continue to be true in the presence of the new
constants. Moreover, we can prove the following theorem:

Theorem 25. There is a finite set of free algebra A including the algebra U of
unary integers such that for every elementary function f : N → N, there is a
term Mf : U →!kU such that Mf,u- →∗

v ,f(u)- (where ,n- is the term in U
corresponding to the natural number n).

6.2 Adapting the System to Other Logics

We believe the approach described in this paper to be applicable to other logics
besides elementary affine logic. Two examples are Light Affine Logic [2] and Soft
Affine Logic [11]. Light Affine Logic needs two modalities. So, there will be two
rules:

Γ1 | Δ1 | Θ1 � M : A |Γ1| + |Δ1| + |Θ1| ≤ 1
Γ2 |!Γ1, !Δ1, !Θ1, Δ2 | Θ2 � M :!A

!

Γ1, Γ2 | Δ1, Δ2 | Θ1 � M : A
§Γ1, §Δ1, §Θ1, Γ3 |!Γ2, !Δ2, !Θ2, Δ3 | Θ2 � M : §A §

Soft Affine Logic is even simpler than elementary affine logic: there is just one
modality and the context is split in just two sub-contexts. The ! rule becomes:

Γ | Δ � M : A
!Γ |!Δ � M :!A

!

Elementary Affine Logic and the Call-by-Value Lambda Calculus 145

We further need a couple of rules capturing dereliction:

Γ | x : A,Δ � M : A
x :!A,Γ | Δ � M : A DL

Γ | x : A,Δ � M : A
Γ | x :!A,Δ � M : A DI

References

1. Girard, J.Y.: Light linear logic. Information and Computation 143(2) (1998)
175–204

2. Asperti, A.: Light affine logic. In: Proceedings of the 13th IEEE Syposium on
Logic in Computer Science. (1998) 300–308

3. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on
Computational Logic 3(1) (2002) 137–175

4. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-
calculus. In: Proceedings of the 19th IEEE Syposium on Logic in Computer Science.
(2004) 266–275

5. Coppola, P., Martini, S.: Typing lambda terms in elementary logic with linear
constraints. In: Proceedings of the 6th International Conference on Typed Lambda-
Calculus and Applications. (2001) 76–90

6. Coppola, P., Ronchi della Rocca, S.: Principal typing in elementary affine logic.
In: Proceedings of the 7th International Conference on Typed Lambda-Calculus
and Applications. (2003) 90–104

7. Terui, K.: Light affine lambda calculus and polytime strong normalization. In:
Proceedings of the 16th IEEE Symposium on Logic in Computer Science. (2001)
209–220

8. Terui, K.: Light logic and polynomial time computation. PhD thesis, Keio Uni-
versity (2002)

9. Baillot, P.: Checking polynomial time complexity with types. In: Proceedings of
the 2nd IFIP International Conference on Theoretical Computer Science. (2002)

10. Coppola, P., Martini, S.: Optimizing optimal reduction. a type inference algorithm
for elementary affine logic. ACM Transactions on Computational Logic (2004) To
appear.

11. Baillot, P., Mogbil, V.: Soft lambda-calculus: a language for polynomial time
computation. In: Proceedings of the 7th International Conference on Foundations
of Software Science and Computational Structures. (2004)

Rank-2 Intersection and Polymorphic Recursion

Ferruccio Damiani�

Dipartimento di Informatica, Università di Torino,
Corso Svizzera 185, I-10149 Torino, Italy

damiani@di.unito.it

Abstract. Let � be a rank-2 intersection type system. We say that a
term is �-simple (or just simple when the system � is clear from the con-
text) if system � can prove that it has a simple type. In this paper we
propose new typing rules and algorithms that are able to type recursive
definitions that are not simple. At the best of our knowledge, previous
algorithms for typing recursive definitions in the presence of rank-2 in-
tersection types allow only simple recursive definitions to be typed. The
proposed rules are also able to type interesting examples of polymorphic
recursion (i.e., recursive definitions rec {x = e} where different occur-
rences of x in e are used with different types). Moreover, the underlying
techniques do not depend on particulars of rank-2 intersection, so they
can be applied to other type systems.

1 Introduction

The Hindley-Milner type system (a.k.a. the ML type system) [5], which is the
core of the type systems of modern functional programming languages (like SML,
OCaml, and Haskell), has several limitations that prevent safe programs from
being typed. In particular, it does not allow different types to be assigned to
different occurrences of a formal parameter in the body of a function. To over-
come these limitations, various extensions of the ML system based on universal
types [7, 19], intersection types [3, 1], recursive types, and combinations of them,
have been proposed in the literature.

The system of rank-2 intersection types [16, 20, 23, 13, 6] is particularly inter-
esting since it is able to type all ML programs, has the principal pair property
(a.k.a. principal typing property [13, 22]), decidable type inference, and the com-
plexity of type inference is of the same order as in ML.

Intersection types are obtained from simple types [11] by adding the inter-
section type constructor ∧. A term has type u1 ∧u2 (u1 intersection u2) if it has
both type u1 and type u2. For example, the identity function λx.x has both type
int → int and bool → bool, so it has type (int → int) ∧ (bool → bool). Rank-2
intersection types may contain intersections only to the left of a single arrow.
Therefore, for instance, ((int → int) ∧ (bool → bool)) → int → int is a rank-2

� Partially supported by IST-2001-33477 DART and MIUR cofin’04 EOS.The funding
bodies are not responsible for any use made of the results presented here.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 146–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Rank-2 Intersection and Polymorphic Recursion 147

intersection type (as usual, the arrow type constructor is right associative), while
(((int → int) ∧ (bool → bool)) → int) → int is not a rank-2 intersection type.

The problem of typing standard programming language constructs like lo-
cal definitions, conditional expressions, and recursive definitions without losing
the extra information provided by rank-2 intersection is more difficult than one
might expect (see, e.g., [12, 13, 21, 6]).

Definition 1 (�-Simple Terms). Let � be a rank-2 intersection type system.
We say that a term is �-simple (or just simple when the system � is clear from
the context) if system � can prove that it has a simple type.

An example of non-simple term is λx.xx (which has principal type ((α1 →
α2) ∧ α1) → α2, where α1, α2 are type variables).

In previous work [6] we introduced rules and algorithms for typing non-
simple local definitions (i.e., terms of the shape letx = e0 in e1 where e0 is non-
simple) and non-simple conditional expressions (i.e., non-simple terms of the
shape if e0 then e1 else e2). In this paper we propose new rules and algorithms
for typing non-simple recursive definitions (i.e., non-simple terms of the shape
rec {x = e}). At the best of our knowledge, previous algorithms for typing recur-
sive definitions in the presence of rank-2 intersection types [12, 13, 21, 6] allow
only simple recursive definitions to be typed.

Note that, the ability of typing non-simple recursive definitions is not, a pri-
ori, a fair measure for the expressive power of a system. It fact, it might be
possible that a given system could type a term that is non-simple in the given
system only because the given system somehow prevents the term from having
a simple type. In another system that allows only simple terms to be typed, the
same term might have a simple type and therefore be simple. When designing
the new rules we will be careful to avoid such a pathological situation.

Inferring types for polymorphic recursion (i.e., recursive definitions rec {x =
e} where different occurrences of x in e are used with different types) [17, 18,
10, 15] is a recurring topic on the mailing list of popular typed programming
languages (see, e.g., [9] for a discussion of several examples). The rules proposed
in this paper are able to type interesting examples of polymorphic recursion. So,
besides providing a solution to the problem of finding decidable rules for typing
non-simple recursive definitions, the techniques proposed in this paper address
also the related topic of polymorphic recursion. Moreover (as we will point out in
Section 8), these techniques do not depend on particulars of rank-2 intersection.
So they can be applied to other type systems.

Organization of the Paper. Section 2 introduces a small functional pro-
gramming language, which can be considered the kernel of languages like SML,
OCaml, and Haskell. Section 3 introduces some basic definitions. Section 4
presents the rank-2 intersection type system (�2) for the rec-free subset of the
language. Section 5 briefly reviews the rules for typing recursive definitions in the
presence of rank-2 intersection types that have been proposed in the literature.
Section 6 extends �2 with new rules for typing non-simple recursive definitions

148 F. Damiani

and Section 7 outlines how to adapt the rules to deal with mutual recursion. We
conclude by discussing some further work.

The proofs and an on-line demonstration of a prototype implementation of
the typing algorithm are available at the url http://lambda.di.unito.it/pr.

2 A Small ML-Like Language

We consider a quite rich set of constants (that will be useful to formulate the
examples considered through the paper) including the booleans, the integer num-
bers, the constructors for pairs and lists, some logical and arithmetic operators,
and the functions for decomposing pairs (fst and snd) and lists (null, hd and tl).
The syntax of constants (ranged over by c) is as follows:

c ::= � | ι | pair | nil | cons | not | and | or | + | − | ∗ | = | < | fst | snd | null | hd | tl

where % ranges over booleans (true and false) and ι ranges over integer numbers.
Expressions (ranged over by e) are defined by the pseudo-grammar:

e ::= x | c | λx.e | e1e2 | rec {x = e} | letx = e0 in e1 | if e0 then e1 else e2,

where x ranges over variables. The finite set of the free variables of an expression
e is denoted by FV(e).

3 Basic Definitions

In this section we introduce the syntax of our rank-2 intersection types, together
with other basic definitions that will be used in the rest of the paper.

We will be defining several classes of types. The set of simple types (T0),
ranged over by u, the set of rank-1 intersection types (T1), ranged over by w ,
and the set of rank-2 intersection types (T2), ranged over by v, are defined by
the pseudo-grammar:

u ::= α | u1 → u2 | bool | int | u1 × u2 | u list (simple types)
w ::= u1 ∧ · · · ∧ un (rank-1 types)
v ::= u | w → v (rank-2 types)

where n ≥ 1. We have type variables (ranged over by α), arrow types, and a se-
lection of ground types and parametric datatypes. The ground types are bool (the
type of booleans) and int (the type of integers). The other types are pair types
and list types. Note that T0 = T1 ∩T2 (for technical convenience, following [13]
and other papers, rank-1 types are not included into rank-2 types).

The constructor → is right associative, e.g., u1 → u2 → u3 means u1 →
(u2 → u3), and the constructors × and list bind more tightly than →, e.g., u1 →
u2×u3 means u1 → (u2×u3). We consider ∧ to be associative, commutative, and
idempotent. Therefore any type in T1 can be considered (modulo elimination of
duplicates) as a set of types in T0. The constructor ∧ binds more tightly than
→, e.g., u1 ∧ u2 → u3 means (u1 ∧ u2) → u3, and less tightly than × and list
(which can be applied only to simple types).

Rank-2 Intersection and Polymorphic Recursion 149

We assume a countable set of type variables. A substitution s is a function
from type variables to simple types which is the identity on all but a finite number
of type variables. The application of a substitution s to a type t, denoted by s(t),
is defined as usual. Note that, since substitutions replace type variables by simple
types, we have that T0, T1, and T2 are closed under substitution.

An environment T is a set {x1 : t1, . . . , xn : tn} of assumptions for variables
such that every variable xi (1 ≤ i ≤ n) can occur at most once in T . The
expression Dom(T) denotes the domain of T , which is the set {x1, . . . , xn}.
We write T, x : t for the environment T ∪ {x : t} where it is assumed that
x
∈ Dom(T). The application of a substitution s to an environment T , denoted
by s(T), is defined as usual.

Definition 2 (Rank-1 Environments). A rank-1 environment A is an envi-
ronment {x1 : w1, . . . , xn : wn} of rank-1 type assumptions for variables.

Given two rank-1 environments A1 and A2, we write A1 ∧ A2 to denote the
rank-1 environment:

{x : w1 ∧ w2 | x : w1 ∈ A1 and x : w2 ∈ A2}
∪{x : w1 ∈ A1 | x �∈ Dom(A2)} ∪ {x : w2 ∈ A2 | x �∈ Dom(A1)}.

A pair is a formula 〈A; v〉 where A is a rank-1 environment and v is a rank-2
type. Let p range over pairs.

The following relation is fairly standard.

Definition 3 (Pair Specialization Relation ≤spc). The subtyping relations
≤1 (⊆ T1 × T1) and ≤2 (⊆ T2 × T2) are defined by the following rules.

(∧)
∪1≤i≤n{ui} ⊇ ∪1≤j≤m{u′

j}
u1 ∧ · · · ∧ un ≤1 u′

1 ∧ · · · ∧ u′
m

(Ref)
u ∈ T0

u ≤2 u (→) w ′ ≤1 w v ≤2 v′

w → v ≤2 w ′ → v′

Given two rank-1 environments A and A′ we write A ≤1 A′ to mean that

– Dom(A) = Dom(A′),1 and
– for every assumption x : w ′ ∈ A′ there is an assumption x : w ∈ A such that

w ≤1 w ′.

A pair 〈A; v〉 can be specialized to 〈A′; v′〉 (notation 〈A; v〉 ≤spc 〈A′; v′〉) if
A′ ≤1 s(A) and s(v) ≤2 v′, for some substitution s.

Example 4. We have 〈{y : β}; α → β〉 ≤spc 〈{y : γ}; ((γ → γ) ∧ γ) → γ〉.

Note that the relation ≤spc is reflexive and transitive.

1 The requirement Dom(A) = Dom(A′) in the definition of A ≤1 A′ is not present
in most other papers. The “usual” definition drops this requirement, thus allowing
Dom(A) ⊇ Dom(A′). We have added such a requirement since it will simplify the
presentation of the new typing rules for recursive definitions (in Section 6).

150 F. Damiani

4 Typing the “rec-Free” Fragment of the Language

In this section we introduce the type system �2 for the “rec-free” fragment of
the language (i.e., the fragment without recursive definitions). System �2 is just
a reformulation of Jim’s system P2 [13].

4.1 System �2

Following Wells [22], in the type inference system �2 we use typing judgements
of the shape �2 e : 〈A; v〉, instead of the more usual notation A �2 e : v. This
slight change of notation will simplify the presentation of the new typing rules
for recursive definitions (in Section 6). The judgement �2 e : 〈A; v〉 means “e is
�2-typable with pair 〈A; v〉”, where

– A is a rank-1 environment containing the type assumptions for the free vari-
ables of e, and

– v is a rank-2 type.

In any valid judgement �2 e : 〈A; v〉 it holds that Dom(A) = FV(e).
The typing rules of system �2 are given in Fig. 2. Rule (Spc), which is the

only non-structural rule, allows to specialize (in the sense of Definition 3) the
pair inferred for an expression.

c type(c) c type(c) c type(c)

� bool not bool → bool fst α1 × α2 → α1

ι int and, or bool× bool → bool snd α1 × α2 → α2

pair α1 → α2 → (α1 × α2) +, −, ∗ int× int → int null α list → bool
nil α list =, < int× int → bool hd α list → α
cons α → α list → α list tl α list → α list

Fig. 1. Types for constants

(Spc) � e : p
� e : p′

where p ≤spc p′
(Con) � c 〈∅; v〉

where v = type(c)
(Var) � x : 〈{x : u}; u〉

where u ∈ T0

(App)
� e : 〈A; u1 ∧ · · · ∧ un → v〉 � e0 : 〈A1; u1〉 · · · � e0 : 〈An; un〉

� e e0 : 〈A ∧A1 ∧ · · · ∧ An; v〉

(Abs) � e : 〈A, x : w ; v〉
� λx.e : 〈A; w → v〉 (AbsVac) � e : 〈A; v〉

� λx.e : 〈A; u → v〉
where x �∈ FV(e) and u ∈ T0

Fig. 2. Typing rules for the rec-free fragment of the language (system �2)

:

Rank-2 Intersection and Polymorphic Recursion 151

The rule for typing constants, (Con), uses the function type (tabulated in
Figure 1) which specifies a type for each constant. Note that, by rule (Spc), it is
possible to assign to a constant c all the specializations of the pair 〈∅; type(c)〉.

Since �2 e : 〈A; v〉 implies Dom(A) = FV(e), we have two rules for typing
an abstraction λx.e, (Abs) and (AbsVac), corresponding to the two cases x ∈
FV(e) and x
∈ FV(e). Note that, by rule (Var), it is possible to assume a
different simple type for each occurrence of the λ-bound variable.

The rule for typing function application, (App), allows to use a different pair
for each expected type of the argument (the operator ∧ on rank-1 environments
has been defined immediately after Definition 2).

To save space, we have omitted the typing rule for local definitions, which
handles expressions “letx = e0 in e1” like syntactic sugar for “(λx.e1) e0”, and
the typing rule for for conditional expressions, which handles expressions “if e0
then e1 else e2” like syntactic sugar for the application “ifc e0 e1 e2”, where ifc is
a special constant of type bool → α → α → α. Note that, according to these
rules, only simple local definitions and conditional expressions can be typed.

4.2 Principal Pairs and Decidability for �2

Definition 5 (Principal Pairs). Let � be a type system with judgements of
the shape � e : p. A pair p is principal for a term e if � e : p, and if � e : p′

implies p ≤spc p′. We say that system � has the principal pair property to mean
that every typable term has a principal pair.

System �2 has the principal pair property and is decidable (see, e.g., [13]).

5 Typing Simple Recursive Definition

In this section we briefly recall the typing rules for recursive definitions proposed
by Jim [12, 13] (see also [6]) which, at the best of our knowledge, are the more
powerful rules for typing recursive definitions in presence of rank-2 intersection
types that can be found in the literature.

In order to be able to formulate these typing rules we need some auxiliary
definitions. The set of rank-2 intersection type schemes (T∀2), ranged over by
vs, is defined by the following pseudo-grammar:

vs ::= ∀−→α .v (rank-2 schemes),

where −→α denotes a finite (possibly empty) unordered sequence of distinct type
variables α1 · · ·αm and v ∈ T2. Free and bound type variables are defined
as usual. For every type or scheme t ∈ T1 ∪ T2 ∪ T∀2 let FTV(t) denote
the set of free type variables of t. For every scheme ∀−→α .v it is assumed that
{−→α } ⊆ FTV(v). Moreover, schemes are considered equal modulo renaming of
bound type variables. Given a type v ∈ T2 and a rank-1 environment A, we write

152 F. Damiani

Gen(A, v) for the ∀-closure of v in A, that is the rank-2 scheme ∀−→α .v, where −→α
is the sequence of the type variables in FTV(v) − ∪x:w∈AFTV(w).

Definition 6 (Scheme Instantiation Relation). For every rank-2 scheme
∀−→α .v and for every rank-1 type u1 ∧ · · · ∧ un, let ∀−→α .v ≤∀2,1 u1 ∧ · · · ∧ un mean
that, for every i ∈ {1, . . . , n}, ui = si(v), for some substitution si such that
si(β) = β for all β
∈ −→α .

Example 7. We have (remember that ∧ is idempotent): ∀αβγ.((α → β) ∧ (β →
γ)) → α → γ ≤∀2,1 ((int → int) → int → int) ∧ ((bool → bool) → bool → bool).

We can now present the typing rules. All these rules type recursive definitions
rec {x = e} by assigning simple types to the occurrences of x in e (each occur-
rence may be assigned a different simple type). Therefore, they allow only simple
(in the sense of Definition 1) non-vacuous recursive definitions to be typed (we
say that a recursive definition rec {x = e} is vacuous to mean that x
∈ FV(e)).
Jim [12] proposed the following rules for typing recursive definitions:2

(Rec)
� e : 〈A, x : w ; v〉

� rec {x = e} : 〈A; v〉 (RecVac)
� e : p

� rec {x = e} : p
where Gen((A, x : w), v) ≤∀2,1 w where x �∈ FV(e)

These two rules corresponds to the two cases x ∈ FV(e) and x
∈ FV(e). Note
that the rule for non-vacuous recursion, (Rec), requires that the rank-2 type v
assigned to rec {x = e} must be such that Gen((A, x : w), v) ≤∀2,1 w . I.e., s(v) =
ui for some substitution s and simple type ui such that s(A) = A and w = u1 ∧
· · ·∧ui∧· · ·∧un (1 ≤ i ≤ n). This implies � rec {x = e} : 〈A; ui〉. Therefore, rule
(Rec) allows only simple recursive definitions to be typed. System �2+(Rec) +
(RecVac) has the principal pair property and is decidable (see, e.g., [12, 6]).

As pointed out by Jim [13], rule (Rec) might be generalized along the lines of
Mycroft’s rule (Fix′) [18]: just replace the condition Gen((A, x : w), v) ≤∀2,1 w
by the condition Gen(A, v) ≤∀2,1 w . Let us call (Rec′) the generalized rule.
Rule (Rec′) is strictly more powerful than rule (Rec) (see Section 3 of [13] for
an example) but, again, it allows only simple recursive definitions to be typed.

Jim [12] proposed also the following rule:2

(RecInt)
� e : 〈A, x : u1 ∧ · · · ∧ um; u1〉 · · · � e : 〈A, x : u1 ∧ · · · ∧ um; um〉

� rec {x = e} : 〈A; ui0〉
where i0 ∈ {1, . . . ,m}

The decidability of �2+(RecInt) is an open question (there is no obvious way
to find an upper bound on the value of m used in the rule) [12]. Note that, since
u1, · · · , um ∈ T0 (and, in particular, ui0 ∈ T0), also this rule allows only simple
recursive definitions to be typed.

2 We still give these rules the original name used in [12], but we adapt them to fit in
the type assignment system �2.

Rank-2 Intersection and Polymorphic Recursion 153

6 Typing Non-simple Recursive Definitions

In this section we extend system �2 to type non-simple recursive definitions.

6.1 System �P
2

In order to be able to type non-simple recursive definitions, we propose to adopt
the following strategy: allow one to assign to rec {x = e} any pair p that can be
assigned to e by assuming the pair p itself for x.

To implement the above strategy, we introduce the notion of pair environment
(taken from [6]).

Definition 8 (Pair Environments). A pair environment D is an environment
{x1 : p1, . . . , xn : pn} of pair assumptions for variables such that Dom(D) ∩
VR(D) = ∅, where VR(D) = ∪x:〈A; v〉∈DDom(A) is the set of variables occurring
in the range of D. Every pair p occurring in D is implicitly universally quantified
over all type variables occurring in p.3

The typing rules of system �P
2 (where “P” stands for “polymorphic”) are

given in Fig. 3. The judgement D �P
2 e : 〈A; v〉 means “e is �P

2 -typable in D
with pair 〈A; v〉”, where

– D is a pair environment specifying pair assumptions for the variables intro-
duced by a rec-binder in the program context surrounding e,

– 〈A; v〉 is the pair inferred for e, where A is a rank-1 environment containing
the type assumptions for the free variables of e which are not in Dom(D),
and v is a rank-2 type.

Let D be a pair environment, “x
∈ D” is short for “x
∈ Dom(D)∪VR(D)” and
FVD(e) = (FV(e) − Dom(D)) ∪ VR({x : p ∈ D | x ∈ FV(e)}) is the set of the
free variables of the expression e in D. In any valid judgement D �P

2 e : 〈A; v〉
it holds that Dom(D) ∩ Dom(A) = ∅ and Dom(A) = FVD(e).

Rules (Spc), (Con), (Var), (Abs), (AbsVac), and (App) are just the rules
of system �2 (in Fig. 2) modified by adding the pair environment D on the left of
the typing judgements and, when necessary, side conditions (like “x
∈ Dom(D)”
in rule (Var)) to ensure that Dom(D) ∩ Dom(A) = ∅.

Rule (RecP) allows to assign to a recursive definition rec {x = e} any pair p
that can be assigned to e by assuming the pair p for x. Note that the combined
use of rules (VarP) and (Spc) allows to assign a different specialization of p to
each occurrence of x in e.

6.2 On the Expressive Power of System �P
2

System �P
2 is able to type non-simple recursive definitions, as illustrated by the

following example (for more interesting examples see http://lambda.di.unito.it/pr).

3 To emphasize this fact the paper [6] uses pair schemes. I.e., formulae of the shape
∀−→α .p, where −→α is the sequence of all the type variables occurring in the pair p.

154 F. Damiani

(Spc) D � e : p
D � e : p′

where p ≤spc p′
(Con) D � c : 〈∅; v〉

where v = type(c)
(Var) D � x : 〈{x : u}; u〉

where u ∈ T0 and x �∈ Dom(D)

(App)
D � e : 〈A; u1 ∧ · · · ∧ un → v〉 D � e0 : 〈A1; u1〉 · · · D � e0 : 〈An; un〉

D � e e0 : 〈A ∧A1 ∧ · · · ∧ An; v〉

(Abs) D � e : 〈A, x : w ; v〉
D � λx.e : 〈A; w → v〉 (AbsVac) D � e : 〈A; v〉

D � λx.e : 〈A; u → v〉
where x �∈ D where x �∈ FV(e), u ∈ T0, and x �∈ D

(VarP) D, x : p � x : p (RecP)
D,x : 〈A; v〉 � e : 〈A; v〉
D � rec {x = e} : 〈A; v〉

where Dom(A) = FVD(rec {x = e}) and x �∈ D

Fig. 3. Typing rules of system �P
2

Example 9. The recursive definition rec {f = e}, where

e = λ g l. if (null l) then nil else cons (pair (g (hd l) 5) (g y true)) (f g (tl l)),

is non-simple since it defines a function that uses its parameter g with two
different non unifiable types. The following �P

2 -typing judgement holds.

∅ � rec {f =e} : 〈{y : α2}; ((α1→ int→β1)∧(α2→bool→β2))→ α1 list → (β1×β2) list〉.
System �P

2 has more expressive power than the system �2+(Rec)+(RecVac)
of Section 5 (and therefore of system PR

2 [13, 12]) and of the Milner-Mycroft
system [18] (see also [17]), in the sense that the set of typable terms increases,
and types express better the behaviour of terms. In particular, the following
theorems hold.

Theorem 10. If �2+(Rec)+(RecVac) e : 〈A; v〉, then ∅ �P
2 e : 〈A; v〉.

Theorem 11. If ∅ � e : u is Milner-Mycroft derivable, then ∅ �P
2 e : 〈∅; u〉.

6.3 Principal-in-D Pairs and (Un)decidability of �P
2

The following notion of principal-in-D pair (taken from [6]) adapts the notion
of principal pair (see Definition 5) to deal with the pair environment D.

Definition 12 (Principal-in-D Pairs). Let � be a system with judgements
of the shape D � e : p. A pair p is principal-in-D for a term e if D � e : p, and
if D � e : p′ implies p ≤spc p′. We say that system � has the principal-in-D pair
property to mean that every typable term has a principal-in-D pair.

We don’t know whether system �P
2 has the principal-in-D pair property. The

following theorem implies that the restriction of �P
2 which uses only simple types,

that we will call �P
0 , is undecidable (as is the Milner-Mycroft system [10, 15]).

We conjecture that also the whole �P
2 is undecidable.

Rank-2 Intersection and Polymorphic Recursion 155

Theorem 13. Let e be a let-free expression. Then ∅ �P
0 e : 〈∅; u〉 iff ∅ � e : u

is Milner-Mycroft derivable.

6.4 Systems �Pk+
2 (k ≥ 1): A Family of Decidable Restrictions of

�P
2

By taking inspiration from the idea of iterating type inference (see, e.g., [18, 17])
and by relying on the notion of principal-in-D pair (see Definition 12) we will
now design a family of decidable restrictions of rule (RecP).

For every finite set of variables X = {x1, . . . , xn} (n ≥ 0) let

– PX = {〈A; v〉 | 〈A; v〉 is pair such that Dom(A) = X}, and
– botX = 〈{x1 : α1, . . . , xn : αn}; α〉, where the type variables α1, . . . , αn, α

are all distinct.

The relation ≤spc is a preorder over PX and, for all pairs p ∈ PX , botX ≤spc p.
For every k ≥ 1, let �Pk

2 be the system obtained from �P
2 by replacing rule

(RecP) with the following rule:

(RecPk)
D,x : p0 � e : p1 · · · D,x : pk−1 � e : pk

D � rec {x = e} : pk

where x �∈ D, p0 = botFV(rec {x=e}), pk−1 = pk, and
for all i ∈ {1, . . . , k} pi is a principal-in-(D,x : pi−1) pair for e

(note that D �Pk
2 e : p implies D �Pk+1

2 e : p). For all k ≥ 1, system �Pk
2

has the principal-in-D pair property and is decidable — the result follows from
Theorem 20 (soundness and completeness of the inference algorithm for �Pk+J

2 ,
which is an extension of �Pk

2) of Section 6.5. The relation between system �Pk
2

and system �P
2 is stated by the following theorem which, roughly speaking, says

that when rule (RecPk) works at all, it works as well as rule (RecP) does.

Theorem 14. For every k ≥ 1:
1. If D �Pk

2 e : p, then D �P
2 e : p.

2. If e is �Pk
2 -typable in D and D �P

2 e : p, then D �Pk
2 e : p.

Unfortunately, for every k ≥ 1, system �Pk
2 is not able to type all the ML-

typable recursive definitions (see Example 15 below).

Example 15 (Rule (RecPk) and the ML rule are incomparable). The expression
rec {f = e} of Example 9 in Section 6.2 is non-simple, therefore it is not ML-
typable. Since

p = 〈{y : α2}; ((α1 → int → β1) ∧ (α2 → bool → β2))→ α1 list → (β1 × β2) list〉,

is both a principal-in-{f : 〈{y : α1}; α〉} and a principal-in-{f : p} pair for e in
system �P1

2 , we have that p is a principal-in-∅ pair for rec {f = e} in system �Pk
2

(for all k ≥ 1).
The expression rec {f = e ′}, where e ′ = λ g y. if true then y else g(f g y), is

ML-typable with principal pair 〈∅; (α → α) → α → α〉 and is not �Pk
2 -typable

156 F. Damiani

(for all k ≥ 1) — in fact, for every k ≥ 1, the expression e ′ has principal-in-
{f : pk−1} pair

pk = 〈∅; ((α0 → α1) ∧ (α1 → α2) ∧ · · · ∧ (αk−1 → αk))→ (α1 ∧ α2 ∧ · · · ∧ αk)→ αk〉
in system �P

2 .
Note that rec {f = e ′} is �P

2 -typable with pair 〈∅; ((α → γ)∧ (γ → α)∧ (α →
β)) → (α ∧ β ∧ γ) → β〉.

We will now show that, for all k ≥ 1, it is quite easy to modify system
�Pk

2 in order to make it to extend the ML system while preserving decidability
and principal-in-D pair property. To this aim, we will say that a typing rule for
recursive definitions (Rec) is �P

2 -suitable to mean that: the system �2 obtained
from �P

2 by replacing rule (RecP) with rule (Rec)

– is a restriction of system �P
2 (i.e., D �2 e : 〈A; v〉 implies D �P

2 e : 〈A; v〉),
– is decidable, and
– has the principal-in-D pair property.

For instance, for every k ≥ 1, rule (RecPk) is �P
2 -suitable. Theorem 14 guaran-

tees that, for all k ≥ 1, adding to system �Pk
2 a �P

2 -suitable rule (Rec) results
in a system, denoted by �Pk+

2 , with both decidability and principal-in-D pair
property. So, to extend system �Pk

2 to type all the ML typable recursive defini-
tions, we have just to add to system �Pk

2 a �P
2 -suitable rule which is at least as

expressive as the ML rule for recursive definitions. The simplest way of doing
this would be to add (a version, modified to fit into system �Pk

2 , of) the ML rule
itself:

(RecML)
D � e : 〈A, x : u; u〉

D � rec {x = e} : 〈A; u〉 where x �∈ D

(producing system �Pk+ML
2). Another possibility, is to add the following rule

(RecJ)
D � e : 〈A, x : w ; v〉

D � rec {x = e} : 〈A; v〉 where Gen((A, x : w), v) ≤∀2,1 w and x �∈ D

which corresponds to rule (Rec) of Section 5. In this way we obtain a system,
�Pk+J

2 , which is more expressive that system �2 +(Rec)+(RecVac) of Section 5
(observe that �2 +(RecVac)-typabily implies �Pk

2 -typability).

Example 16. The expression rec {f = e ′} of Example 15, which is not �Pk
2 -

typable (for all k ≥ 1), has principal-in-∅ pairs 〈∅; (α → α) → α → α〉 and
〈∅; ((α → α) ∧ (α → β)) → (α ∧ β) → β〉 in systems �P1+ML

2 and �P1+J
2 ,

respectively.

6.5 An Inference Algorithm for �Pk+J
2 (k ≥ 1)

The inference algorithm makes use of an algorithm for checking whether the ≤spc

relation (see Definition 3) holds and of an algorithm for finding a most general
solution to a ≤∀2,1-satisfaction problem (≤∀2,1 is the relation of Definition 6).

Existence of an algorithm for checking whether the ≤spc relation holds is
stated by the following theorem.

Rank-2 Intersection and Polymorphic Recursion 157

Theorem 17 (Decidability of ≤spc). There is an algorithm that, for every p
and p′, decides whether p ≤spc p′ holds.

A ≤∀2,1-satisfaction problem [13, 12] (see also [6]) is a formula ∃−→α .P , where
−→α is a (possibly empty) sequence of type variables occurring free in P , and P is
a set in which every element is either: 1) an equality between T0 types; or 2) an
inequality between a T∀2 ∪T2 type and a T1 type. A substitution s is a solution
to ∃−→α .P if there exists a substitution s′ such that: s(α) = s′(α) for all α
∈ −→α ,
s′(u1) = s′(u2) for every equality (u1 = u2) ∈ P , and s′(vs) ≤∀2,1 s′(w) (resp.
s′(∀ε.v) ≤∀2,1 s′(w)) for every inequality (vs ≤ w) ∈ P (resp. (v ≤ w) ∈ P).
We will write MGS(∃−→α .P) for the set of most general solutions to the ≤∀2,1-
satisfaction problem ∃−→α .P (a ≤∀2,1-satisfaction problem ∃−→α .P generalizes unifi-
cation and, as with unification, most general solutions are not unique). Existence
of an algorithm for finding a most general solution to a ≤∀2,1-satisfaction prob-
lem is stated by the following theorem [13, 12] (see also [6]).

Theorem 18. There is an algorithm that decides, for any ≤∀2,1-satisfaction
problem, whether it is solvable, and, if so, returns a most general solution.

The inference algorithm is presented in a style favored by the intersection type
community. For all k ≥ 1, we define a function PPk which, for every expression
e and environment D, returns a set of pairs PPk(D, e) such that

– if PPk(D, e) = ∅, then e can not be typed by �Pk+J
2 w.r.t. D, and

– every element of PPk(D, e) is a principal pair for e w.r.t. D.4

Definition 19 (The Function PPk). For every expression e and environment
D, the set PPk(D, e) is defined by structural induction on e.

– If e = x, then
• If x : 〈A; v〉 ∈ D and the substitution s is a fresh renaming of −→α =

FTV(A) ∪ FTV(v), then 〈s(A); s(v)〉 ∈ PPk(D,x).
• If x
∈ Dom(D) and α is a type variable, then 〈{x : α}; α〉 ∈ PPk(D,x).

– If e = c and type(c) = v, then 〈∅; v〉 ∈ PPk(D, c).
– If e = λx.e0 and 〈A; v〉 ∈ PPk(D, e0), then

• If x
∈ FV(e0) and α is a fresh type variable, then 〈A; α → v〉 ∈
PPk(D,λx.e0).

• If x ∈ FV(e0) and A = A′, x : w , then 〈A′; w → v〉 ∈ PPk(D,λx.e0).
– If e = e0e1 and 〈A0; v0〉 ∈ PPk(D, e0), then

• If v0 = α (a type variable), α1 and α2 are fresh type variables, 〈A1; v1〉 ∈
PPk(D, e1) is fresh, and s ∈ MGS(∃ε.{v1 ≤ α1, α = α1 → α2}, then
〈s(A0 ∧ A1); s(α2)〉 ∈ PPk(D, e0e1).

• If v0 = u1 ∧ · · · ∧ un → v, for all i ∈ {1, . . . , n} the pairs 〈Ai; vi〉 ∈
PPk(D, e1) are fresh, and s ∈ MGS(∃ε.{vi ≤ ui | i ∈ {1, . . . , n}}), then
〈s(A0 ∧ A1 ∧ · · · ∧ An); s(v)〉 ∈ PPk(D, e0e1).

4 The set PPk(D, e) does not contain all the principal pairs for e w.r.t. D. For instance,
for all k ≥ 1, 〈∅; (α1 ∧ α2) → α1〉 is a principal-in-∅ pair for λx.x in �Pk+J

2 , but
〈∅; (α1 ∧ α2)→ α1〉 �∈ PPk(∅, λ x.x).

158 F. Damiani

– If e = rec {x = e0} and 〈A; v〉 ∈ PPk(D, e0), then
• If x
∈ FV(e0), then 〈A; v〉 ∈ PPk(D, e).
• If x ∈ FV(e0), then

∗ If h is the minimum number in {1, . . . , k} such that p0 = botFV(e),
p1 ∈ PPk((D,x : p0), e0), . . ., ph ∈ PPk((D,x : ph−1), e0), and
ph ≤spc ph−1, then ph−1 ∈ PPk(D, e).

∗ Otherwise (if such an h does not exist), if A = A′, x : w and s ∈
MGS(∃ε.{Gen(A′, v) ≤ w}), then 〈s(A′); s(v)〉 ∈ PPk(D, e).

For every k ≥ 1, expression e, and environment D, the set PPk(D, e) is an
equivalence class of pairs modulo renaming of the type variables in a pair. Indeed
Definition 19 specifies an inference algorithm: to perform type inference on an
expression e w.r.t. the environment D simply follow the definition of PPk(D, e),
choosing fresh type variables and using the ≤2-satisfaction and ≤spc-checking
algorithms as necessary.

Theorem 20 (Soundness and completeness of PPk for �Pk+J
2). For every

k ≥ 1, expression e, and environment D:
(Soundness). If p ∈ PPk(D, e), then D �Pk+J

2 e : p.
(Completeness). If D �Pk+J

2 e : p′, then p ≤spc p′ for some p ∈ PPk(D, e).

7 Typing Non-simple Mutually Recursive Definitions

The results presented in Section 6 can be straightforwardly adapted to mutu-
ally recursive definitions. Let reci {x1 = e1, . . . , xn = en} (where 1 ≤ i ≤ n)
denote the i-th expression defined by the mutually recursive definition {x1 =
e1, . . . , xn = en}.

Let �P2
2 be the extension of system �P

2 to mutual recursion, obtained by
replacing rule (RecP) by the following rule:

(RecP2)

D,x1 : 〈A1; v1〉, . . . , xn : 〈An; vn〉 � e1 : 〈A1; v1〉
· · ·
D,x1 : 〈A1; v1〉, . . . , xn : 〈An; vn〉 � en : 〈An; vn〉

D � reci0 {x1 = e1, . . . , xn = en} : 〈A1 ∧ · · · ∧ An; vi0〉
where
i0 ∈ {1, . . . ,n}, x1, . . . , xn �∈ D, and (for all i ∈ {1, . . . ,n})
Dom(Ai) = FVD(ei [x1 := e1, . . . , xn := en] · · · [x1 := e1, . . . , xn := en]︸ ︷︷ ︸

n−1 times

)− {x1, . . . , xn}

The design of decidable systems �P2k
2 , �P2k+ML

2 , and �P2k+J
2 , corresponding to

the decidable systems �Pk
2 , �Pk+ML

2 , and �Pk+J
2 , is straightforward.

8 Conclusion

In this paper we have taken the system of rank-2 intersection type for the λ-
calculus and have extended it with a decidable rule for typing non-simple re-
cursive definitions. The new rules can be integrated without problems with the

Rank-2 Intersection and Polymorphic Recursion 159

rules for typing non-simple local definitions and conditional expressions that we
have proposed in previous work [6].

The technique developed in this paper does not depend on particulars of
rank-2 intersection and could therefore be applied to other type systems. To
clarify this point, we consider the following definition (taken from [22]):

A typing t for a typable term e is the collection of all the information other
than e which appears in the final judgement of a proof derivation showing
that e is typable (for instance, in system �2 a typing is a pair 〈A; v〉).

We can now describe our technique as follows:

1. Take a type system for the λ-calculus, with judgements of the shape � e : t
where t mentions exactly the variables in FV(e) (this requirement is not
restrictive, since it is always possible to adjust the judgment and the rules
of a type system in order to satisfy it), such that: system � has the principal
typing property (which is the property described by Definition 5 by replacing
pair with typing and ≤spc with a suitable relation for �, that we will call
≤

spc); it is decidable to establish whether a typing t1 can be specialized
to a typing t2 (i.e, whether t1 ≤

spc t2 holds); there is a known algorithm
that for every term e decides whether e is �-typable and, if so, returns a
principal typing for e. We also require that system � contains the analogous
of rule (Spc) (this additional requirement is not restrictive since, whenever
the previous requirements are satisfied, such a rule is admissible).

2. Modify system � by introducing a typing environment D (containing typing
assumptions for the rec-bound identifiers) and by adding typing rules anal-
ogous to (VarP) and (RecP). Let �P be the resulting system (which has
judgements of the shape D �P e : t).

3. Prove that, for every set of variables X = {x1, . . . , xn} (n ≥ 0) the relation
≤

spc is a preorder over PX = {t | the typing t mentions exactly the variables
in X} and there is a known typing botX ∈ PX such that, for all typings
t ∈ PX , botX ≤

spc t. For every k ≥ 1, define the analogous of rule (RecPk)
and prove the analogous of Theorem 14. Let �Pk denote the system obtained
from �P by replacing the analogous of rule (RecP) with the analogous of
rule (RecPk). System �Pk is guaranteed to have the principal-in-D typing
property (which is the property described by Definition 12 by replacing pair
with typing and ≤spc with ≤

spc).
4. If necessary, add to �Pk a �P-suitable (the analogous for �P of the notion of

�P
2 -suitable given in Section 6.4) rule (Rec). Let �Pk+ denote the resulting

system.

The above steps describe a procedure that transforms a type system � (without
rules for rec-expressions) enjoying the principal typing property into a system
�Pk+ (with rules for rec-expressions) enjoying the principal-in-D (and, in gen-
eral, not the principal) typing property.

It worth examining what happens when the procedure is applied to the system
of simple types [11]: the system at step 1 turns out to be �0 (the restriction of

160 F. Damiani

�2 which uses only simple types), the one obtained at step 2 is �P
0 , which is

essentially a reformulation of the Milner-Mycroft system (see Theorem 13), and
the systems obtained at step 4 by adding the ML typing rule for recursion,
�Pk+ML

0 , are of intermediate power between the let-free fragments of the ML
system and of the Milner-Mycroft system — we believe that the systems �Pk+ML

0
correspond to the family of abstract interpreters described in [8].

Further work includes, on the one side, designing more expressive decidable
extensions of systems �Pk+J

2 (we are investigating the possibility of integrating
techniques from the theory of abstract interpretation [4]). On the other, verifying
the applicability of the technique to other type systems, like the system with
rank-2 universal and intersection types proposed in [21], System P [14], and
System E [2].

Acknowledgments. I thank Viviana Bono, Sebastien Carlier, Mario Coppo,
Joe Hallet, Assaf Kfoury, Emiliano Leporati, Peter Møller Neergaard, and Joe
Wells for discussions on the subject of this paper. I also thank the TLCA’05
referees and the anonymous referees of earlier versions of this paper for many
insightful and constructive comments.

References

1. H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. J. of Symbolic Logic, 48:931–940, 1983.

2. S. Carlier, J. Polakow, J. B. Wells, and A. J. Kfoury. System E: Expansion variables
for flexible typing with linear and non-linear types and intersection types. In
ESOP’04, volume 2986 of LNCS, pages 294–309. Springer, 2004.

3. M. Coppo and M. Dezani-Ciancaglini. An extension of basic functional theory for
lambda-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

4. P. Cousot. Types as Abstract Interpretations. In POPL’97, pages 316–331. ACM,
1997.

5. L. M. M. Damas and R. Milner. Principal type schemas for functional programs.
In POPL’82, pages 207–212. ACM, 1982.

6. F. Damiani. Rank 2 intersection types for local definitions and conditional expres-
sions. ACM Trans. Prog. Lang. Syst., 25(4):401–451, 2003.

7. J. Y. Girard. Interpretation fonctionelle et elimination des coupures dans
l’aritmetique d’ordre superieur. PhD thesis, Université Paris VII, 1972.

8. R. Gori and G. Levi. Properties of a type abstract interpreter. In VMCAI’03,
volume 2575 of LNCS, pages 132–145. Springer, 2003.

9. J. J. Hallett and A. J. Kfoury. Programming examples needing polymorphic recur-
sion. In ITRS’04 (workshop affiliated to LICS’04), ENTCS. Elsevier, to appear.

10. F. Henglein. Type inference with polymorphic recursion. ACM
Trans. Prog. Lang. Syst., 15(2):253–289, 1993.

11. R. Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, London, 1997.

12. T. Jim. Rank 2 type systems and recursive definitions. Technical Report
MIT/LCS/TM-531, LCS, Massachusetts Institute of Technology, 1995.

13. T. Jim. What are principal typings and what are they good for? In POPL’96,
pages 42–53. ACM, 1996.

Rank-2 Intersection and Polymorphic Recursion 161

14. T. Jim. A polar type system. In ICALP Workshops, volume 8 of Proceedings in
Informatics, pages 323–338. Carleton-Scientific, 2000.

15. A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence of
polymorphic recursion. ACM Trans. Prog. Lang. Syst., 15(2):290–311, 1993.

16. D. Leivant. Polymorphic Type Inference. In POPL’83, pages 88–98. ACM, 1983.
17. L. Meertens. Incremental polymorphic type checking in B. In POPL’83, pages

265–275. ACM, 1983.
18. A. Mycroft. Polymorphic Type Schemes and Recursive Definitions. In International

Symposium on Programming, volume 167 of LNCS, pages 217–228. Springer, 1984.
19. J. C. Reynolds. Towards a Theory of Type Structure. In Colloque sur la Program-

mation, volume 19 of LNCS. Springer, 1974.
20. S. van Bakel. Intersection Type Disciplines in Lambda Calculus and Applicative

Term Rewriting Systems. PhD thesis, Katholieke Universiteit Nijmegen, 1993.
21. S. van Bakel. Rank 2 types for term graph rewriting. In TIP’02, volume 75 of

ENTCS. Elsevier, 2003.
22. J.B. Wells. The essence of principal typings. In ICALP’02, volume 2380 of LNCS,

pages 913–925. Springer, 2002.
23. H. Yokouchi. Embedding a Second-Order Type System into an Intersection Type

System. Information and Computation, 117:206–220, 1995.

Arithmetical Proofs of Strong Normalization
Results for the Symmetric λμ-Calculus

René David and Karim Nour

Laboratoire de Mathématiques,
Université de Savoie,

73376 Le Bourget du Lac, France
{david, nour}@univ-savoie.fr

Abstract. The symmetric λμ-calculus is the λμ-calculus introduced by
Parigot in which the reduction rule μ′, which is the symmetric of μ, is
added. We give arithmetical proofs of some strong normalization results
for this calculus. We show (this is a new result) that the μμ′-reduction is
strongly normalizing for the un-typed calculus. We also show the strong
normalization of the βμμ′-reduction for the typed calculus: this was al-
ready known but the previous proofs use candidates of reducibility where
the interpretation of a type was defined as the fix point of some increasing
operator and thus, were highly non arithmetical.

1 Introduction

Since it has been understood that the Curry-Howard isomorphism relating proofs
and programs can be extended to classical logic, various systems have been
introduced: the λc-calculus (Krivine [12]), the λexn-calculus (de Groote [6]), the
λμ-calculus (Parigot [18]), the λSym-calculus (Barbanera & Berardi [1]), the λΔ-
calculus (Rehof & Sørensen [24]), the λμμ̃-calculus (Curien & Herbelin [3]), ...

The first calculus which respects the intrinsic symmetry of classical logic is
λSym. It is somehow different from the previous calculi since the main connector
is not the arrow as usual but the connectors or and and. The symmetry of the
calculus comes from the de Morgan laws.

The second calculus respecting this symmetry has been λμμ̃. The logical part
is the (classical) sequent calculus instead of natural deduction.

Natural deduction is not, intrinsically, symmetric but Parigot has introduced
the so called Free deduction [17] which is completely symmetric. The λμ-calculus
comes from there. To get a confluent calculus he had, in his terminology, to fix
the inputs on the left. To keep the symmetry, it is enough to keep the same
terms and to add a new reduction rule (called the μ′-reduction) which is the
symmetric rule of the μ-reduction and also corresponds to the elimination of a
cut. We get then a symmetric calculus that is called the symmetric λμ-calculus.

The μ′-reduction has been considered by Parigot for the following reasons.
The λμ-calculus (with the β-reduction and the μ-reduction) has good properties
: confluence in the un-typed version, subject reduction and strong normalization

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 162–178, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Arithmetical Proofs of Strong Normalization Results 163

in the typed calculus. But this system has, from a computer science point of
view, a drawback: the unicity of the representation of data is lost. It is known
that, in the λ-calculus, any term of type N (the usual type for the integers) is β-
equivalent to a Church integer. This no more true in the λμ-calculus and we can
find normal terms of type N that are not Church integers. Parigot has remarked
that by adding the μ′-reduction and some simplification rules the unicity of the
representation of data is recovered and subject reduction is preserved, at least
for the simply typed system, even though the confluence is lost.

Barbanera & Berardi proved the strong normalization of the λSym-calculus by
using candidates of reducibility but, unlike the usual construction (for example
for Girard’s system F), the definition of the interpretation of a type needs a
rather complex fix-point operation. Yamagata [25] has used the same technic to
prove the strong normalization of the symmetric λμ-calculus where the types
are those of system F and Parigot, again using the same ideas, has extended
Barbanera & Berardi’s result to a logic with second order quantification. These
proofs are thus highly non arithmetical.

We consider here the λμ-calculus with the rules β, μ and μ′. It was known
that, for the un-typed calculus, the μ-reduction is strongly normalizing (see [23])
but the strong normalization of the μμ′-reduction for the un-typed calculus was
an open problem raised long ago by Parigot. We give here a proof of this result.
Studying this reduction by itself is interesting since a μ (or μ′)-reduction can
be seen as a way “to put the arguments of the μ where they are used” and it
is useful to know that this is terminating. We also give an arithmetical proof of
the strong normalization of the βμμ′-reduction for the simply typed calculus. We
finally show (this is also a new result) that, in the un-typed calculus, if M1, ...,Mn

are strongly normalizing for the βμμ′-reduction, then so is (x M1 ... Mn).
The proofs of strong normalization that are given here are extensions of the

ones given by the first author for the simply typed λ-calculus. This proof can be
found either in [7] (where it appears among many other things) or as a simple un-
published note on the web page of the first author (www.lama.univ-savoie.fr/
david).

The same proofs can be done for the λμμ̃-calculus and these proofs are, in
fact, much simpler for this calculus since some difficult problems that appear
in the λμ-calculus do not appear in the λμμ̃-calculus: this is mainly due to the
fact that, in the latter, there is a right-hand side and a left-hand side (the terms
and the environments) whereas, in the λμ-calculus, this distinction is impossible
since a term on the right of an application can go on the left of an application
after some reductions. The proof of the strong normalization of the μμ̃-reduction
can be found in [22]. The proof is done (by using candidates of reducibility and
a fix point operator) for a typed calculus but, in fact, since the type system is
such that every term is typable, the result is valid for every term. A proof of
the strong normalization of the λμμ̃-typed calculus (again using candidates of
reducibility and a fix point operator) can also be found there. Due to the lack
of space, we do not give our proofs of these results here but they will appear
in [11].

164 R. David and K. Nour

The paper is organized as follows. In section 2 we give the syntax of the terms
and the reduction rules. An arithmetical proof of strong normalization is given
in section 3 for the μμ′-reduction of the un-typed calculus and, in section 4, for
the βμμ′-reduction of the simply typed calculus. In section 5, we give an example
showing that the proofs of strong normalization using candidates of reducibility
must somehow be different from the usual ones and we show that, in the un-
typed calculus, if M1, ...,Mn are strongly normalizing for the βμμ′-reduction,
then so is (x M1... Mn). We conclude with some future work.

2 The Symmetric λμ-Calculus

2.1 The Un-typed Calculus

The set (denoted as T) of λμ-terms or simply terms is defined by the following
grammar where x, y, ... are λ-variables and α, β, ... are μ-variables:

E ::= x | λxT | (E T) | μαT
T ::= E | (α T)

Note that we adopt here a more liberal syntax (also called de Groote’s calcu-
lus) than in the original calculus since we do not ask that a μα is immediately
followed by a (β M) (denoted [β]M in Parigot’s notation). The definition is
given here via two sets to ensure that a μ-variable is always applied to exactly
one argument.

Definition 1. Let M be a term.

1. cxty(M) is the number of symbols occurring in M .
2. We denote by N ≤ M (resp. N < M) the fact that N is a sub-term (resp.

a strict sub-term) of M .
3. If −→

P is a sequence P1, ..., Pn of terms, (M −→
P) will denote (M P1 ... Pn).

2.2 The Typed Calculus

The types are those of the simply typed λμ-calculus i.e. are built from atomic
formulas and the constant symbol ⊥ with the connector →. As usual ¬A is an
abbreviation for A →⊥.

The typing rules are given by figure 1 below where Γ is a context, i.e. a set
of declarations of the form x : A and α : ¬A where x is a λ (or intuitionistic)
variable, α is a μ (or classical) variable and A is a formula.

Note that, here, we also have changed Parigot’s notation but these typing
rules are those of his classical natural deduction. Instead of writing

M : (Ax1
1 , ..., Axn

n � B,Cα1
1 , ..., Cαm

m)

we have written

x1 : A1, ..., xn : An, α1 : ¬C1, ..., αm : ¬Cm � M : B

Definition 2. Let A be a type. We denote by lg(A) the number of arrows in A.

Arithmetical Proofs of Strong Normalization Results 165

Γ, x : A � x : A
ax

Γ, x : A �M : B
Γ � λxM : A→ B

→i
Γ �M : A→ B Γ � N : A

Γ � (M N) : B
→e

Γ,α : ¬A �M : ⊥
Γ � μαM : A

⊥e
Γ,α : ¬A �M : A

Γ,α : ¬A � (α M) : ⊥ ⊥i

Fig. 1.

2.3 The Reduction Rules

The cut-elimination procedure (on the logical side) corresponds to the reduction
rules (on the terms) given below. There are three kinds of cuts.

– A logical cut occurs when the introduction of the connective → is immedi-
ately followed by its elimination. The corresponding reduction rule (denoted
by β) is:

(λxM N) & M [x := N]

– A classical cut occurs when ⊥e appears as the left premiss of a →e. The
corresponding reduction rule (denoted by μ) is:

(μαM N) & μαM [α =r N]

where M [α =r N] is obtained by replacing each sub-term of M of the form
(α U) by (α (U N)). This substitution is called a μ-substitution.

– A symmetric classical cut occurs when ⊥e appears as the right premiss of a
→e. The corresponding reduction rule (denoted by μ′) is:

(M μαN) & μαN [α =l M]

where N [α =l M] is obtained by replacing each sub-term of N of the form
(α U) by (α (M U)). This substitution is called a μ′-substitution.

Remarks

1. It is shown in [18] that the βμ-reduction is confluent but neither μμ′ nor
βμ′ is. For example (μαxμβy) reduces both to μαx and to μβy. Similarly
(λzx μβy) reduces both to x and to μβy.

2. The reductions on terms correspond to the elimination of cuts on the proofs.
– The β-reduction is the usual one.
– The μ-reduction is as follows. If M corresponds to a proof of ⊥ assuming

α : ¬(A → B) and N corresponds to a proof of A, then M [α =r N]
corresponds to the proof M of ⊥ assuming α : ¬B but where, each time
we used the hypothesis α : ¬(A → B) with a proof U of A → B to get
⊥, we replace this by the following proof of ⊥. Use U and N to get a
proof of B and then α : ¬B to get a proof of ⊥.

166 R. David and K. Nour

– Similarly, the μ′-reduction is as follows. If N corresponds to a proof
of ⊥ assuming α : ¬A and M corresponds to a proof of A → B, then
N [α =l M] corresponds to the proof N of ⊥ assuming α : ¬B but where,
each time we used the hypothesis α : ¬A with a proof U of A to get ⊥,
we replace this by the following proof of ⊥. Use U and M to get a proof
of B and then α : ¬B to get a proof of ⊥.

3. Unlike for a β-substitution where, in M [x := N], the variable x has disap-
peared it is important to note that, in a μ or μ′-substitution, the variable
α has not disappeared. Moreover its type has changed. If the type of N is
A and, in M , the type of α is ¬(A → B) it becomes ¬B in M [α =r N]. If
the type of M is A → B and, in N , the type of α is ¬A it becomes ¬B in
N [α =l M].

In the next sections we will study various reductions : the μμ′-reduction in
section 3 and the βμμ′-reduction in sections 4, 5. The following notions will
correspond to these reductions.

Definition 3. Let & be a notion of reduction and M be a term.

1. The transitive (resp. reflexive and transitive) closure of & is denoted by &+

(resp. &∗).
2. If M is in SN i.e. M has no infinite reduction, η(M) will denote the length

of the longest reduction starting from M and ηc(M) will denote (η(M),
cxty(M)).

3. We denote by N ≺ M the fact that N ≤ M ′ for some M ′ such that M &∗M ′

and either M &+ M ′ or N < M ′. We denote by % the reflexive closure of ≺.

Remarks
– It is easy to check that the relation % is transitive and that N % M iff

N ≤ M ′ for some M ′ such that M &∗ M ′.
– If M ∈ SN and N ≺ M , then N ∈ SN and ηc(N) < ηc(M). It follows that

the relation % is an order on the set SN .
– Many proofs will be done by induction on some k-uplet of integers. In this

case the order we consider is the lexicographic order.

3 The μμ′-Reduction Is Strongly Normalizing

In this section we consider the μμ′-reduction, i.e. M &M ′ means M ′ is obtained
from M by one step of the μμ′-reduction. The main points of the proof of the
strong normalization of μμ′ are the following.

– We first show (cf. lemma 6) that a μ or μ′-substitution cannot create a μ.
– It is easy to show (see lemma 8) that if M ∈ SN but M [σ]
∈ SN where σ is

a μ or μ′-substitution, there are an α in the domain of σ and some M ′ ≺ M
such that M ′[σ] ∈ SN and (say σ is a μ-substitution) (M ′[σ] σ(α))
∈ SN .
This is sufficient to give a simple proof of the strongly normalization of the μ-
reduction. But this is not enough to do a proof of the strongly normalization

Arithmetical Proofs of Strong Normalization Results 167

of the μμ′-reduction. We need a stronger (and more difficult) version of this:
lemma 9 ensure that, if M [σ] ∈ SN but M [σ][α =r P]
∈ SN then the real
cause of non SN is, in some sense, [α =r P].

– Having these results, we show, essentially by induction on ηc(M) + ηc(N),
that if M,N ∈ SN then (M N) ∈ SN . The point is that there is, in fact,
no deep interactions between M and N i.e. in a reduct of (M N) we always
know what is coming from M and what is coming from N .

Definition 4. – The set of simultaneous substitutions of the form [α1 =s1

P1 ..., αn =sn
Pn] where si ∈ {l, r} will be denoted by Σ.

– For s ∈ {l, r}, the set of simultaneous substitutions of the form [α1 =s P1
...αn =s Pn] will be denoted by Σs.

– If σ = [α1 =s1 P1 ..., αn =sn
Pn], we denote by dom(σ) (resp. Im(σ)) the

set {α1, ..., αn} (resp. {P1, ..., Pn}).
– Let σ ∈ Σ. We say that σ ∈ SN iff for every N ∈ Im(σ), N ∈ SN .

Lemma 5. If (M N) &∗ μαP , then either M &∗ μαM1 and M1[α =r N] &∗ P or
N &∗ μαN1 and N1[α =l M] &∗ P .
Proof . By induction on the length of the reduction (M N) &∗ μαP . �

Lemma 6. Let M be a term and σ ∈ Σ. If M [σ] &∗ μαP , then M &∗ μαQ for
some Q such that Q[σ] &∗ P .
Proof . By induction on M . M cannot be of the form (βM ′) or λxM ′. If M
begins with a μ, the result is trivial. Otherwise M = (M1 M2) and, by lemma 5,
either M1[σ]&∗μαR and R[α =r M2[σ]]&∗P or M2[σ]&∗μαR and R[α =l M1[σ]]&∗

P . Look at the first case (the other one is similar). By the induction hypothesis
M1 &

∗ μαQ for some Q such that Q[σ] &∗ R and thus M &∗ μαQ[α =r M2]. Since
Q[α =r M2][σ] = Q[σ][α =r M2[σ]] &∗ R[α =r M2[σ]] &∗ P we are done. �

Lemma 7. Assume M,N ∈ SN and (M N)
∈ SN . Then either M &∗ μαM1
and M1[α =r N]
∈ SN or N &∗ μβN1 and N1[β =l M]
∈ SN .
Proof . By induction on η(M)+ η(N). Since (M N)
∈ SN , (M N)&P for some
P such that P
∈ SN . If P = (M ′ N) where M&M ′ we conclude by the induction
hypothesis since η(M ′) + η(N) < η(M) + η(N). If P = (M N ′) where N & N ′

the proof is similar. If M = μαM1 and P = μαM1[α =r N] or N = μβN1 and
P = μβN1[β =l M] the result is trivial. �

Lemma 8. Let M be term in SN and σ ∈ Σs be in SN . Assume M [σ]
∈ SN .
Then, for some (α P) % M , P [σ] ∈ SN and, if s = l (resp. s = r), (σ(α)P [σ])
∈
SN (resp. (P [σ]σ(α))
∈ SN).
Proof . We only prove the case s = l (the other one is similar). Let M1 % M be
such that M1[σ]
∈ SN and ηc(M1) is minimal. By the minimality, M1 cannot
be λxM2 or μαM2. It cannot be either (N1 N2) because otherwise, by the
minimality, the Ni[σ] would be in SN and thus, by lemma 7 and 6, we would
have, for example, N1 &∗ μαN ′

1 and N ′
1[σ][α =r N2[σ]] = N ′

1[α =r N2][σ]
∈ SN
but this contradicts the minimality of M1 since η(N ′

1[α =r N2]) < η(M1). Then
M1 = (αP) and the the minimality of M1 implies that P [σ] ∈ SN . �

168 R. David and K. Nour

Remark
From these results it is easy to prove, by induction on the term, the strong
normalization of the μ-reduction. It is enough to show that, if M,N ∈ SN ,
then (M N) ∈ SN . Otherwise, we construct below a sequence (Mi) of terms
and a sequence (σi) of substitutions such that, for every i, σi has the form
[α1 =r N, ..., αn =r N], Mi[σi]
∈ SN and Mi+1 ≺ Mi ≺ M . The sequence (Mi)
contradicts the fact that M ∈ SN . Since (M N)
∈ SN , by lemma 7, M &∗μαM1
and M1[α =r N]
∈ SN . Assume we have constructed Mi and σi. Since Mi[σi]
∈
SN , by lemma 8, there is M ′

i ≺ Mi such that M ′
i [σi] ∈ SN and (M ′

i [σ]N)
∈ SN .
By lemmas 6 and 7, M ′

i &
∗ μαMi+1 and Mi+1[σi + α =r N]
∈ SN .

In the remark above, the fact that (M N)
∈ SN gives an infinite μ-reduction
in M . This not the same for the the μμ′-reduction and, if we try to do the same,
the substitutions we get are more complicated. In particular, it is not clear that
we get an infinite sequence either of the form ... ≺ M2 ≺ M1 ≺ M or of the
form ... ≺ N2 ≺ N1 ≺ N . Lemma 9 below will give the answer since it will
ensure that, at each step, we may assume that the cause of non SN is the last
substitution.

Lemma 9. Let M be a term and σ ∈ Σs. Assume δ is free in M but not free in
Im(σ). If M [σ] ∈ SN but M [σ][δ =s P]
∈ SN , there is M ′ ≺ M and σ′ such that
M ′[σ′] ∈ SN and, if s = r, (M ′[σ′] P)
∈ SN and, if s = l, (P M ′[σ′])
∈ SN .

Proof . Assume s = r (the other case is similar). Let Im(σ) = {N1, ..., Nk}.
Assume M, δ, σ, P satisfy the hypothesis. Let U = {U / U % M} and V =
{V / V % Ni for some i}. Define inductively the sets Σm and Σn of substitutions
by the following rules:

ρ ∈ Σm iff ρ = ∅ or ρ = ρ′+[β =r V [τ]] for some V ∈ V, τ ∈ Σn and ρ′ ∈ Σm

τ ∈ Σn iff τ = ∅ or τ = τ ′ +[α =l U [ρ]] for some U ∈ U , ρ ∈ Σm and τ ′ ∈ Σn

Denote by C the conclusion of the lemma, i.e. there is M ′ ≺ M and σ′ such that
M ′[σ′] ∈ SN , and (M ′[σ′] P)
∈ SN .
We prove something more general.
(1) Let U ∈ U and ρ ∈ Σm. Assume U [ρ] ∈ SN and U [ρ][δ =r P]
∈ SN . Then,
C holds.
(2) Let V ∈ V and τ ∈ Σn. Assume V [τ] ∈ SN and V [τ][δ =r P]
∈ SN . Then,
C holds.

The conclusion C follows from (1) with M and σ. The properties (1) and
(2) are proved by a simultaneous induction on ηc(U [ρ]) (for the first case) and
ηc(V [τ]) (for the second case).

Look first at (1)

– if U = λxU ′ or U = μαU ′: the result follows from the induction hypothesis
with U ′ and ρ.

– if U = (U1 U2): if Ui[ρ][δ =r P]
∈ SN for i = 1 or i = 2, the result follows
from the induction hypothesis with Ui and ρ. Otherwise, by lemma 6 and 7,
say U1 &

∗ μαU ′
1 and, letting U ′ = U ′

1[α =r u2], U ′[ρ][δ =r P]
∈ SN and the
result follows from the induction hypothesis with U ′ and ρ.

Arithmetical Proofs of Strong Normalization Results 169

– if U = (δ U1): if U1[ρ][δ =r P] ∈ SN , then M ′ = U1 and σ′ = ρ[δ =r P] sat-
isfy the desired conclusion. Otherwise, the result follows from the induction
hypothesis with U1 and ρ.

– if U = (α U1): if α
∈ dom(ρ) or U1[ρ][δ =r P]
∈ SN , the result follows
from the induction hypothesis with U1 and ρ. Otherwise, let ρ(α) = V [τ]. If
V [τ][δ =r P]
∈ SN , the result follows from the induction hypothesis with
V and τ (with (2)). Otherwise, by lemma 6 and 7, there are two cases to
consider.

– U1 &∗ μα1U2 and U2[ρ′][δ =r P]
∈ SN where ρ′ = ρ + [α1 =r V [τ]]. The
result follows from the induction hypothesis with U2 and ρ′.

– V &∗ μβV1 and V1[τ ′][δ =r P]
∈ SN where τ ′ = τ + [β =l U1[ρ]]. The result
follows from the induction hypothesis with V1 and τ ′ (with (2)).

The case (2) is proved in the same way. Note that, since δ is not free in the
Ni, the case b = (δ V1) does not appear. �

Theorem 10. Every term is in SN .
Proof . By induction on the term. It is enough to show that, if M,N ∈ SN , then
(M N) ∈ SN . We prove something more general: let σ (resp. τ) be in Σr (resp.
Σl) and assume M [σ], N [τ] ∈ SN . Then (M [σ] N [τ]) ∈ SN . Assume it is not the
case and choose some elements such that M [σ], N [τ] ∈ SN , (M [σ] N [τ])
∈ SN
and (η(M)+ η(N), cxty(M)+ cxty(N)) is minimal. By lemma 7, either M [σ] &∗

μδM1 and M1[δ =r N [τ]]
∈ SN or N [τ]&∗μβN1 and N1[β =l M [σ]]
∈ SN . Look
at the first case (the other one is similar). By lemma 6, M &∗ μδM2 for some M2
such that M2[σ] &∗ M1. Thus, M2[σ][δ =r N [τ]]
∈ SN . By lemma 9 with M2, σ
and N [τ], let M ′ ≺ M2 and σ′ be such that M ′[σ′] ∈ SN , (M ′[σ′] N [τ])
∈ SN .
This contradicts the minimality of the chosen elements since ηc(M ′) < ηc(M).

�

4 The Simply Typed Symmetric λμ-Calculus Is Strongly
Normalizing

In this section, we consider the simply typed calculus with the βμμ′-reduction
i.e. M & M ′ means M ′ is obtained from M by one step of the βμμ′-reduction.
To prove the strong normalization of the βμμ′-reduction, it is enough to show
that, if M,N ∈ SN , then M [x := N] also is in SN . This is done by induction
on the type of N . The proof very much looks like the one for the μμ′-reduction
and the induction on the type is used for the cases coming from a β-reduction.
The two new difficulties are the following.

– A β-substitution may create a μ, i.e. the fact that M [x := N] &∗ μαP does
not imply that M &∗ μαQ. Moreover the μ may come from a complicated
interaction between M and N and, in particular, the alternation between
M and N can be lost. Let e.g. M = (M1 (x (λy1λy2μαM4) M2 M3)) and

170 R. David and K. Nour

N = λz(z N1). Then M [x := N]&∗(M1 (μαM ′
4 M3))&∗μαM ′

4[α =r M3][α =l

M1]. To deal with this situation, we need to consider some new kind of μμ′-
substitutions (see definition 13). Lemma 16 gives the different ways in which
a μ may appear. The difficult case in the proof (when a μ is created and the
control between M and N is lost) will be solved by using a typing argument.

– The crucial lemma (lemma 18) is essentially the same as the one (lemma
9) for the μμ′-reduction but, in its proof, some cases cannot be proved “by
themselves” and we need an argument using the types. For this reason,
its proof is done using the additional fact that we already know that, if
M,N ∈ SN and the type of N is small, then M [x := N] also is in SN . Since
the proof of lemma 19 is done by induction on the type, when we will use
lemma 18, the additional hypothesis will be available.

Lemma 11. 1. If (M N) &∗ λxP , then M &∗ λyM1 and M1[y := N] &∗ λxP .
2. If (M N) &∗ μαP , then either (M &∗ λyM1 and M1[y := N] &∗ μαP) or

(M &∗ μαM1 and M1[α =r N] &∗ P) or (N &∗ μαN1 and N1[α =l M] &∗ P).

Proof. (1) is trivial. (2) is as in lemma 5. �

Lemma 12. Let M ∈ SN and σ = [x1 := N1, ..., xk := Nk]. Assume M [σ] &∗

λyP . Then, either M&∗λyP1 and P1[σ]&∗P or M&∗(xi
−→
Q) and (Ni

−−→
Q[σ])&∗λyP .

Proof. By induction on ηc(M). The only non immediate case is M = (R S). By
lemma 11, there is a term R1 such that R[σ]&∗λzR1 and R1[z := S[σ]]&∗λyP . By
the induction hypothesis (since ηc(R) < ηc(M)), we have two cases to consider.

(1) R &∗ λzR2 and R2[σ] &∗ R1, then R2[z := S][σ] &∗ λyP . By the induction
hypothesis (since η(R2[z := S]) < η(M)),

– either R2[z := S] &∗ λyP1 and P1[σ] &∗ P ; but then M &∗ λyP1 and we are
done.

– or R2[z := S] &∗ (xi
−→
Q) and (Ni

−−→
Q[σ]) &∗ λyP , then M &∗ (xi

−→
Q) and again

we are done.

(2) R &∗ (xi
−→
Q) and (Ni

−−→
Q[σ]) &∗ λzR1. Then M &∗ (xi

−→
Q S) and the result

is trivial. �

Definition 13. – An address is a finite list of symbols in {l, r}. The empty
list is denoted by [] and, if a is an address and s ∈ {l, r}, [s :: a] denotes the
list obtained by putting s at the beginning of a.

– Let a be an address and M be a term. The sub-term of M at the address
a (denoted as Ma) is defined recursively as follows : if M = (P Q) and
a = [r :: b] (resp. a = [l :: b]) then Ma = Qb (resp. Pb) and undefined
otherwise.

– Let M be a term and a be an address such that Ma is defined. Then M〈a =
N〉 is the term M where the sub-term Ma has been replaced by N .

– Let M,N be some terms and a be an address such that Ma is defined. Then
N [α =a M] is the term N in which each sub-term of the form (α U) is
replaced by (α M〈a = U〉).

Arithmetical Proofs of Strong Normalization Results 171

Remarks and Examples
– Let N = λx(α λy(x μβ(α y))), M = (M1 (M2 M3)) and a = [r :: l]. Then

N [α =a M] = λx(α (M1 (λy(x μβ(α (M1 (y M3)))) M3))).
– Let M = (P ((R (x T)) Q)) and a = [r :: l :: r :: l]. Then N [α =a M] =

N [α =r T][α =l R][α =r Q][α =r P].
– Note that the sub-terms of a term having an address in the sense given above

are those for which the path to the root consists only on applications (taking
either the left or right son).

– Note that [α =[l] M] is not the same as [α =l M] but [α =l M] is the
same as [α =[r] (M N)] where N does not matter. More generally, the term
N [α =a M] does not depend of Ma.

– Note that M〈a = N〉 can be written as M ′[xa := N] where M ′ is the term
M in which Ma has been replaced by the fresh variable xa and thus (this will
be used in the proof of lemma 19) if Ma is a variable x, (α U)[α =a M] =
(α M1[y := U [α =a M]]) where M1 is the term M in which the particular
occurrence of x at the address a has been replaced by the fresh name y and
the other occurrences of x remain unchanged.

Lemma 14. Assume M,N ∈ SN and (M N)
∈ SN . Then, either (M &∗ λyP
and P [y := N]
∈ SN) or (M &∗ μαP and P [α =r N]
∈ SN) or (N &∗ μαP and
P [α =l M]
∈ SN).

Proof . By induction on η(M) + η(N). �

In the rest of this section, we consider the typed calculus. To simplify the
notations, we do not write explicitly the type information but, when needed, we
denote by type(M) the type of the term M .

Lemma 15. If Γ � M : A and M &∗ N then Γ � N : A.

Proof . Straight forward. �

Lemma 16. Let n be an integer, M ∈ SN , σ = [x1 := N1, ..., xk := Nk] where
lg(type(Ni)) = n for each i. Assume M [σ] &∗ μαP . Then,

1. either M &∗ μαP1 and P1[σ] &∗ P .
2. or M &∗ Q and, for some i, Ni &

∗ μαN ′
i and N ′

i [α =a Q[σ]] &∗ P for some
address a in Q such that Qa = xi.

3. or M &∗ Q, Qa[σ] &∗ μαN ′ and N ′[α =a Q[σ]] &∗ P for some address a in Q
such that lg(type(Qa)) < n .

Proof . By induction on ηc(M). The only non immediate case is M = (R S).
Since M [σ] &∗ μαP , the application (R[σ] S[σ]) must be reduced. Thus there are
three cases to consider.

– It is reduced by a μ′-reduction, i.e. there is a term S1 such that S[σ]&∗ μαS1
and S1[α =l R[σ]] &∗ P . By the induction hypothesis:

- either S &∗ μαQ and Q[σ] &∗ S1, then M &∗ μαQ[α =l R] and Q[α =l

R][σ] &∗ P .

172 R. David and K. Nour

- or S &∗ Q and, for some i, Ni &
∗ μαN ′

i , Qa = xi for some address a in Q
and N ′

i [α =a Q[σ]] &∗ S1. Then M &∗ (R Q) = Q′ and letting b = [r :: a]
we have N ′

i [α =b Q′[σ]] &∗ P .
- or S &∗Q, Qa[σ]&∗μαN ′ for some address a in Q such that lg(type(Qa)) <
n and N ′[α =a Q[σ]]&∗S1. Then M &∗ (R Q) = Q′ and letting b = [r :: a]
we have N ′[α =b Q′[σ]] &∗ P and lg(type(Q′

b)) < n.
– It is reduced by a μ-reduction. This case is similar to the previous one.
– It is reduced by a β-reduction, i.e. there is a term U such that R[σ] &∗ λyU

and U [y := S[σ]] &∗ μαP . By lemma 12, there are two cases to consider.
- either R&∗λyR1 and R1[σ][y := S[σ]] = R1[y := S][σ]&∗μαP . The result

follows from the induction hypothesis sine η(R1[y := S]) < η(M).
- or R &∗ (xi

−→
R1). Then Q = (xi

−→
R1 S) and a = [] satisfy the desired

conclusion since then lg(type(M)) < n. �

Definition 17. Let A be a type. We denote by ΣA the set of substitutions of
the form [α1 =a1 M1, ..., αn =an

Mn] where the type of the αi is ¬A.

Remark
Since in such substitutions the type of the variables changes, when we consider
the term N [σ] where σ ∈ ΣA, we mean that the type of the αi is A in N i.e.
before the substitution. Also note that considering N [α =a M] implies that the
type of Ma is A.

Lemma 18. Let n be an integer and A be a type such that lg(A) = n. Let N,P
be terms and τ ∈ ΣA. Assume that,

– for every M,N ∈ SN such that lg(type(N)) < n, M [x := N] ∈ SN .
– N [τ] ∈ SN but N [τ][δ =a P]
∈ SN .
– δ is free and has type ¬A in N but δ is not free in Im(τ).

Then, there is N ′ ≺ N and τ ′ ∈ ΣA such that N ′[τ ′] ∈ SN and P 〈a = N ′[τ ′]〉
∈
SN .

Proof . Essentially as in lemma 9. Denote by (H) the first assumption i.e. for
every M,N ∈ SN such that lg(type(N)) < n, M [x := N] ∈ SN .

Let τ = [α1 =a1 M1, ..., αn =an
Mn], U = {U / U % N} and V = {V / V %

Mi for some i}. Define inductively the sets Σm and Σn of substitutions by the
following rules:

ρ ∈ Σn iff ρ = ∅ or ρ = ρ′ + [α =a V [σ]] for some V ∈ V, σ ∈ Σm, ρ′ ∈ Σn

and α has type ¬A.
σ ∈ Σm iff σ = ∅ or σ = σ′ + [x := U [ρ]] for some U ∈ U , ρ ∈ Σn, σ′ ∈ Σm

and x has type A.
Denote by C the conclusion of the lemma. We prove something more general.
(1) Let U ∈ U and ρ ∈ Σn. Assume U [ρ] ∈ SN and U [ρ][δ =a P]
∈ SN . Then,
C holds.
(2) Let V ∈ V and σ ∈ Σm. Assume V [σ] ∈ SN and V [σ][δ =a P]
∈ SN . Then,
C holds.

Arithmetical Proofs of Strong Normalization Results 173

The conclusion C follows from (1) with N and τ . The properties (1) and
(2) are proved by a simultaneous induction on ηc(U [ρ]) (for the first case) and
ηc(V [τ]) (for the second case).

The proof is as in lemma 9. The new case to consider is, for V [σ], when
V = (V1 V2) and Vi[σ][δ =a P] ∈ SN .

– Assume first the interaction between V1 and V2 is a β-reduction. If V1 &∗

λxV ′
1 , the result follows from the induction hypothesis with V ′

1 [x := V2][σ].
Otherwise, by lemma 12, V1 &

∗ (x −→
W). Let σ(x) = U [ρ]. Then (U [ρ] −→W [σ]) &∗

λyQ and Q[y := V2[σ]][δ =a P]
∈ SN . But, since the type of x is A, the
type of y is less than A and since Q[δ =a P] and V2[σ][δ =a P] are in SN
this contradicts (H).

– Assume next the interaction between V1 and V2 is a μ or μ′-reduction. We
consider only the case μ (the other one is similar). If V1 &

∗ μαV ′
1 , the result

follows from the induction hypothesis with V ′
1 [α =r V2][σ]. Otherwise, by

lemma 16, there are two cases to consider.
– V1 &∗ Q, Qc = x for some address c in Q and x ∈ dom(σ), σ(x) = U [ρ],

U &∗ μαU1 and U1[ρ][α =c Q[σ]][α =r V2[σ]][δ =a P]
∈ SN . Let V ′ = (Q V2)
and b = l :: c. The result follows then from the induction hypothesis with
U1[ρ′] where ρ′ = ρ + [α =b V ′[σ]].

– V1 &∗Q, Qc[σ][δ =a P]&∗μαR for some address c in Q such that lg(type(Qc))
< n, R[α =c Q[σ][δ =a P]][α =r V2[σ][δ =a P]]
∈ SN . Let V ′ = (Q′ V2)
where Q′ is the same as Q but Qc has been replaced by a fresh variable y and
b = l :: c. Then R[α =b V ′[σ][δ =a P]]
∈ SN . Let R′ be such that R′ ≺ R,
R′[α =b V ′[σ][δ =a P]]
∈ SN and ηc(R′) is minimal. It is easy to check that
R′ = (α R′′), R′′[α =b V ′[σ][δ =a P]] ∈ SN and V ′[σ′][δ =a P]
∈ SN where
σ′ = σ+y := R′′[α =b V ′[σ]]. If V ′[σ][δ =a P]
∈ SN , we get the result by the
induction hypothesis since ηc(V ′[σ]) < ηc(V [σ]). Otherwise this contradicts
the assumption (H) since V ′[σ][δ =a P], R′′[α =b V ′[σ][δ =a P]] ∈ SN ,
V ′[σ][δ =a P][y := R′′[α =b V ′[σ][δ =a P]]]
∈ SN and the type of y is less
than n.

�

Lemma 19. If M,N ∈ SN , then M [x := N] ∈ SN .
Proof . We prove something a bit more general: let A be a type, M,N1, ..., Nk

be terms and τ1, ..., τk be substitutions in ΣA. Assume that, for each i, Ni has
type A and Ni[τi] ∈ SN . Then M [x1 := N1[τ1], ..., xk := Nk[τk]] ∈ SN . This is
proved by induction on (lg(A), η(M), cxty(M), Σ η(Ni), Σ cxty(Ni)) where, in
Σ η(Ni) and Σ cxty(Ni), we count each occurrence of the substituted variable.
For example if k = 1 and x1 has n occurrences, Σ η(Ni) = n.η(N1).

If M is λyM1 or (α M1) or μαM1 or a variable, the result is trivial. Assume
then that M = (M1 M2). Let σ = [x1 := N1[τ1], ..., xk := Nk[τk]]. By the
induction hypothesis, M1[σ],M2[σ] ∈ SN . By lemma 14 there are 3 cases to
consider.

– M1[σ] &∗ λyP and P [y := M2[σ]]
∈ SN . By lemma 12, there are two cases
to consider.

174 R. David and K. Nour

• M1 &∗ λyQ and Q[σ] &∗ P . Then Q[y := M2][σ] = Q[σ][y := M2[σ]] &∗

P [y := M2[σ]] and, since η(Q[y := M2]) < η(M), this contradicts the
induction hypothesis.

• M1 &∗ (xi
−→
Q) and (Ni

−−→
Q[σ]) &∗ λyP . Then, since the type of Ni is A,

lg(type(y)) < lg(A). But P,M2[σ] ∈ SN and P [y := M2[σ]]
∈ SN . This
contradicts the induction hypothesis.

– M1[σ] &∗ μαP and P [α =r M2[σ]]
∈ SN . By lemma 16, there are three cases
to consider.

• M1 &
∗ μαQ and Q[σ] &∗ P . Then, Q[α =r M2][σ] = Q[σ][α =r M2[σ]] &∗

P [α =r M2[σ]] and, since η(Q[α =r M2]) < η(M), this contradicts the
induction hypothesis.

• M1 &
∗ Q, Ni[τi] &∗ μαL′ and Qa = xi for some address a in Q such that

L′[α =a Q[σ]] &∗ P and thus L′[α =b M ′[σ]]
∈ SN where b = (l :: a) and
M ′ = (Q M2).
By lemma 6, Ni&

∗μαL and L[τi]&∗L′. Thus, L[τi][α =b M ′[σ]]
∈ SN . By
lemma 18, there is L1 ≺ L and τ ′ such that L1[τ ′] ∈ SN and M ′[σ]〈b =
L1[τ ′]〉
∈ SN . Let M ′′ be M ′ where the variable xi at the address b has
been replaced by the fresh variable y and let σ1 = σ + y := L1[τ ′]. Then
M ′′[σ1] = M ′[σ]〈b = L1[τ ′]〉
∈ SN .
If M1 &+ Q we get a contradiction from the induction hypothesis since
η(M ′′) < η(M). Otherwise, M ′′ is the same as M up to the change
of name of a variable and σ1 differs from σ only at the address b. At
this address, xi was substituted in σ by Ni[τi) and in σ1 by L1[τ ′] but
ηc(L1) < ηc(Ni) and thus we get a contradiction from the induction
hypothesis.

• M &∗ Q, Qa[σ] &∗ μαL for some address a in Q such that lg(type(Qa)) <
lg(A) and L[α =a Q[σ]]&∗P . Then, L[α =b M ′[σ]]
∈ SN where b = [l :: a]
and M ′ = (Q M2).
By lemma 18, there is an L′ and τ ′ such that L′[τ ′] ∈ SN and M ′[σ]〈b =
L′[τ ′]〉
∈ SN . Let M ′′ be M ′ where the variable xi at the address b
has been replaced by the fresh variable y. Then M ′′[σ][y := L′[τ ′]] =
M ′[σ]〈b = L′[τ ′]〉
∈ SN .
But η(M ′′) ≤ η(M) and cxty(M ′′) < cxty(M) since, because of its
type, Qa cannot be a variable and thus, by the induction hypothesis,
M ′′[σ] ∈ SN . Since M ′′[σ][y := L′[τ ′]]
∈ SN and lg(type(L′)) < lg(A),
this contradicts the induction hypothesis.

– M2[σ] &∗ μαP and P [α =l M1[σ]]
∈ SN . This case is similar to the previous
one. �

Theorem 20. Every typed term is in SN .

Proof . By induction on the term. It is enough to show that if M,N ∈ SN ,
then (M N) ∈ SN . Since (M N) = (x y)[x := M][y := N] where x, y are fresh
variables, the result follows by applying theorem 19 twice and the induction
hypothesis. �

Arithmetical Proofs of Strong Normalization Results 175

5 Why the Usual Candidates Do Not Work?

In [21], the proof of the strong normalization of the λμ-calculus is done by using
the usual (i.e. defined without a fix-point operation) candidates of reducibility.
This proof could be easily extended to the symmetric λμ-calculus if we knew the
following properties for the un-typed calculus:

1. If N and (M [x := N] −→P) are in SN , then so is (λxM N
−→
P).

2. If N and (M [α =r N] −→P) are in SN , then so is (μαM N
−→
P).

3. If −→
P are in SN , then so is (x −→

P).

These properties are easy to show for the βμ-reduction but they were not
known for the βμμ′-reduction.

The properties (1) and (2) are false. Here is a counter-example. Let M0 =
λx(x P 0) and M1 = λx(x P 1) where 0 = λxλyy, 1 = λxλyx, Δ = λx(x x)
and P = λxλyλz (y (z 1 0) (z 0 1) λd1 Δ Δ). Let M = λf(f (x M1) (x M0)),
M ′ = λf(f (β λx(x M1)) (β λx(x M0))) and N = (α λz(α z)). Then,

– M [x := μαN] ∈ SN but (λxM μαN)
∈ SN .
– M ′[β =r μαN] ∈ SN but (μβM ′ μαN)
∈ SN .

This comes from the fact that (M0 M0) and (M1 M1) are in SN but (M1 M0)
and (M0 M1) are not in SN . More details can be found in [10].

The third property is true and its proof is essentially the same as the one of
the strong normalization of μμ′. This comes from the fact that, since (x M1...Mn)
never reduces to a λ, there is no “dangerous” β-reduction. In particular, the β-
reductions we have to consider in the proofs of the crucial lemmas, are uniquely
those that appear in the reductions M % M ′. We give this proof below.

Lemma 21. The term (x M1 ... Mn) never reduces to a term of the form λyM .

Proof . By induction on n. Use lemma 11. �

Definition 22. – Let M1, ...,Mn be terms and 1 ≤ i ≤ n. Then, the term M
in which every sub-term of the form (α U) is replaced by (α (x M1 ... Mi−1 U
Mi+1 ... Mn)) will be denoted by M [α =i (M1 ... Mn)].

– We will denote by Σx the set of simultaneous substitutions of the form
[α1 =i1 (M1

1 ... M1
n), ..., αk =ik

(Mk
1 ... Mk

n)] .

Remark
These substitutions are special cases of the one defined in section 4 (see definition
13). For example M [α =2 (M1 M2 M3)] = M [α =l (x M1)][α =r M3] = M [α =a

(x M1 M2 M3)] where a = [l :: r].

Lemma 23. Assume (x M1 ... Mn) &∗ μαM . Then, there is an i such that
Mi &

∗ μαP and P [α =i (M1 ... Mn)] &∗ M .
Proof . By induction on n.
- n = 1. By lemma 11, M1 &

∗ μαP and P [α =l x] = P [α =1 (M1)] &∗ M .
- n ≥ 2. Assume (x M1 ... Mn−1 Mn) &∗ μαM . By lemmas 11 and 21,

176 R. David and K. Nour

– either (x M1 ... Mn−1) &∗ μαN and N [α =r Mn] &∗ M . By the induction
hypothesis, there is an i such that Mi&

∗μαP and P [α =i (M1 ... Mn−1)]&∗N .
Then P [α =i (M1 ... Mn−1 Mn)] = P [α =i (M1 ... Mn−1)][α =r Mn] &∗

N [α =r Mn] &∗ M .
– or Mn &∗ μαN and N [α =l (x M1 ... Mn−1)] &∗ M . Then N [α =l (x M1 ...

Mn−1)] = N [α =n (M1 ... Mn−1 Mn)] &∗ M .
�

Lemma 24. Assume M1, ...,Mn ∈ SN and (x M1 ... Mn)
∈ SN . Then, there
is an 1 ≤ i ≤ n such that Mi &

∗ μα U and U [α =i (M1 ... Mn)]
∈ SN .

Proof . Let k be the least such that (x M1 ... Mk−1) ∈ SN and (x M1 ... Mk)
∈
SN . By lemmas 14 and 21,

– either Mk &∗ μαU and U [α =l (x M1 ... Mk−1)]
∈ SN . Then, i = k satisfies
the desired property since U [α =k (M1 ... Mn)] = U [α =l (x M1 ... Mk−1)]
[α =r Mk+1]...[α =r Mn].

– or (x M1 ... Mk−1)&∗μαP and P [α =r Mk]
∈ SN . By lemma 23, let i ≤ k−1
be such that that Mi &

∗ μαU and U [α =i (M1 ... Mk−1)] &∗ P . Then U [α =i

(M1 ... Mn)]
∈ SN since U [α =i (M1 ... Mn)] = U [α =i (M1 ... Mk−1)][α =r

Mk][α =r Mk+1]...[α =r Mn] reduces to P [α =r Mk][α =r Mk+1]...[α =r

Mn].
�

Lemma 25. Let M be a term and σ ∈ Σx. If M [σ]&∗μαP (resp. M [σ]&∗λxP),
then M &∗ μαQ (resp. M &∗ λxQ) for some Q such that Q[σ] &∗ P .

Proof . As in lemma 6. �
Lemma 26. Let M be a term and σ ∈ Σx. Assume δ is free in M but not free
in Im(σ). If M [σ] ∈ SN but M [σ][δ =i (P1...Pn)]
∈ SN , there is M ′ ≺ M and
σ′ such that M ′[σ′] ∈ SN and (x P1...Pi−1 M ′[σ′] Pi+1...Pn)
∈ SN .

Proof . As in lemma 9. �

Theorem 27. Assume M1, ...,Mn are in SN . Then (x M1 ... Mn) ∈ SN .

Proof . We prove a more general result: Let M1, ...,Mn be terms and σ1, ..., σn

be in Σx. If M1[σ1], ..., Mn[σn] ∈ SN , then (x M1[σ1] ... Mn[σn]) ∈ SN . The
proof is done exactly as in theorem 10 using lemmas 24, 25 and 26. �

6 Future Work

– Parigot has introduced other simplification rules in the λμ-calculus. They are
as follows : (α μβM) →ρ M [β := α] and, if α is not free in M , μα(α M) →θ

M . It would be interesting to extend our proofs to these reductions. The rule
θ causes no problem since it is strongly normalizing and it is easy to see that
this rule can be postponed (i.e. if M →∗

βμμ′ρθ M1 then M →∗
βμμ′ρ M2 →∗

θ M1

Arithmetical Proofs of Strong Normalization Results 177

for some M2). However it is not the same for the rule ρ which cannot be
postponed. Moreover a basic property (if M [α =s N]&∗μβP , then M&∗μβQ
for some Q such that Q[α =s N] &∗ P) used in the proofs is no more true
if the ρ-rule is used. It seems that, in this case, the μ can only come either
from M or from N i.e. without deep interaction between M and N and thus
that our proofs can be extended to this case but, due to the lack of time, we
have not been able to check the details.

– We believe that our technique, will allow to give explicit bounds for the
length of the reductions of a typed term. This is a goal we will try to manage.

References

1. F. Barbanera and S. Berardi. A symmetric lambda-calculus for classical program
extraction. In M. Hagiya and J.C. Mitchell, editors, Proceedings of theoretical
aspects of computer software, TACS’94. LNCS (789), pp. 495-515. Springer Verlag,
1994.

2. R. Constable and C. Murthy. Finding computational content in classical proofs.
In G. Huet and G. Plotkin, editors, Logical Frameworks, pp. 341-362, Cambridge
University Press, 1991.

3. P.L. Curien and H. Herbelin. The Duality of Computation. Proc. International
Conference on Functional Programming, September 2000, Montral, IEEE, 2000.

4. J.-Y. Girard. A new constructive logic: classical logic. MSCS (1), pp. 255-296, 1991.
5. P. de Groote. A CPS-translation of the lambda-mu-calculus. In S. Tison, editor,

19th International Colloquium on Trees in Algebra and Programming, CAAP’94,
volume 787 of Lecture Notes in Computer Science, pp 85-99. Springer, 1994.

6. P. de Groote. A simple calculus of exception handling. In M. Dezani and G. Plotkin,
editors, Second International Conference on Typed Lambda Calculi and Applica-
tions, TLCA’95, volume 902 of Lecture Notes in Computer Science, pp. 201-215.
Springer, 1995.

7. R. David. Normalization without reducibility. Annals of Pure and Applied Logic
(107), pp. 121-130, 2001.

8. R. David and K. Nour. A short proof of the strong normalization of the simply
typed λμ-calculus. Schedae Informaticae n12, pp. 27-34, 2003.

9. R. David and K. Nour. A short proof of the strong normalization of classical natural
deduction with disjunction. The Journal of Symbolic Logic n 68.4, pp. 1277 - 1288,
2003.

10. R. David and K. Nour. Why the usual candidates of reducibility do not work for
the symetric λμ-calculus. To appear in ENTCS (2005).

11. R. David and K. Nour. Arithmetical proofs of the strong normalization of the λμμ̃-
calculus. Manuscript 2004.

12. J.-L. Krivine. Classical logic, storage operators and 2nd order lambda-calculus. An-
nals of Pure and Applied Logic (68), pp. 53-78, 1994.

13. C.R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the
sixth annual IEEE symposium on logic in computer science, pp. 96-107, 1991.

14. K. Nour. La valeur d’un entier classique en λμ-calcul. Archive for Mathematical
Logic (36), pp. 461-471, 1997.

15. K. Nour. A non-deterministic classical logic (the λμ++-calculus). Mathematical
Logic Quarterly (48), pp. 357 - 366, 2002.

178 R. David and K. Nour

16. K. Nour and K. Saber. A semantical proof of the strong normalization theorem of
full propositionnal classical natural deduction. Manuscript (2004).

17. M. Parigot. Free Deduction: An Analysis of ”Computations” in Classical Logic.
Proceedings. Lecture Notes in Computer Science, Vol. 592, Springer, pp. 361-380,
1992.

18. M. Parigot. λμ-calculus: An algorithm interpretation of classical natural deduction.
Lecture Notes in Artificial Intelligence (624), pp. 190-201. Springer Verlag, 1992.

19. M. Parigot. Strong normalization for second order classical natural deduction. In
Proceedings, Eighth Annual IEEE Symposium on Logic in Computer Science, pp.
39-46, Montreal, Canada, 19–23 June 1993. IEEE Computer Society Press.

20. M. Parigot. Classical proofs as programs. In G. Gottlob, A. Leitsch, and D.
Mundici, eds., Proc. of 3rd Kurt Godel Colloquium, KGC’93, vol. 713 of Lecture
Notes in Computer Science, pp. 263-276. Springer-Verlag, 1993.

21. M. Parigot. Proofs of strong normalization for second order classical natural de-
duction. Journal of Symbolic Logic, 62 (4), pp. 1461-1479, 1997.

22. E. Polonovsky. Substitutions explicites, logique et normalisation. PhD thesis. Paris
7, 2004.

23. W. Py. Confluence en λμ-calcul. PhD thesis. University of Chambéry, 1998.
24. N.J. Rehof and M.H. Sørensen. The λΔ-calculus. In M. Hagiya and J.C. Mitchell,

editors, Proceedings of the international symposium on theoretical aspects of com-
puter software, TACS’94, LNCS (789), pp. 516-542. Springer Verlag, 1994.

25. Y. Yamagata. Strong Normalization of Second Order Symmetric Lambda-mu Cal-
culus. TACS 2001, Lecture Notes in Computer Science 2215, pp. 459-467, 2001.

Subtyping Recursive Types Modulo Associative
Commutative Products

Roberto Di Cosmo1, François Pottier2, and Didier Rémy2

1 Université Paris 7
roberto@dicosmo.org
2 INRIA Rocquencourt

{Francois.Pottier, Didier.Remy}@inria.fr

Abstract. This work sets the formal bases for building tools that help retrieve
classes in object-oriented libraries. In such systems, the user provides a query,
formulated as a set of class interfaces. The tool returns classes in the library that
can be used to implement the user’s request and automatically builds the required
glue code. We propose subtyping of recursive types in the presence of associative
and commutative products—that is, subtyping modulo a restricted form of type
isomorphisms—as a model of the relation that exists between the user’s query and
the tool’s answers. We show that this relation is a composition of the standard
subtyping relation with equality up to associativity and commutativity of products
and we present an efficient decision algorithm for it. We also provide an automatic
way of constructing coercions between related types.

1 Introduction

The study of type isomorphisms is concerned with identifying data types by abstract-
ing away from irrelevant details in the syntax of types, or—in other words—irrelevant
choices in the representation of data. The basic idea is quite simple: one wishes to iden-
tify two data types if data of one type can be transformed into data of the other type
without loss of information. Formally speaking, τ1 and τ2 are said to be isomorphic if
and only if there exist functions f : τ1 → τ2 and g : τ2 → τ1 that are mutual inverses,
in the sense that they make the following diagram commute:

τ1 τ2

f

g

idτ1 idτ2

This study has wide ramifications in different research fields, ranging from number theory
to category theory, and from λ-calculus to proof theory [14]. In particular, it helps attack
some of the problems raised by the growing complexity of today’s multi-language code
bases. Indeed, the vast majority of currently available search tools suffer from the fact
that they only allow textual searches of libraries for method or function names, while
such names are largely arbitrary. An interesting instance of this phenomenon is the
ubiquity of the fold identifier in ML-like languages, pointed out by Rittri [20].

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 179–193, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 R. Di Cosmo, F. Pottier, and D. Rémy

The key idea behind the use of type isomorphisms in information retrieval is to
forget about names altogether and to rely on types instead. Indeed, a type provides a
(possibly partial) specification of a component. Of course, types must be equated up to
type isomorphisms, so as to make queries robust against arbitrary choices on the library
implementor’s part. Which type isomorphisms to use depends on the type system, the
programming language, and the observational equivalence at hand. A large variety of
complete equational theories are known that axiomatize type isomorphisms in various
core calculi. Probably best known is the theory of isomorphisms for Cartesian Closed
Categories—the models of the simply-typed lambda calculus with products and a unit
type [23, 10]:

1. τ × τ ′ = τ ′ × τ 5. τ × 1 = τ
2. τ × (τ ′ × τ ′′) = (τ × τ ′) × τ ′′ 6. τ → 1 = 1
3. (τ × τ ′) → τ ′′ = τ → (τ ′ → τ ′′) 7. 1 → τ = τ
4. τ → (τ ′ × τ ′′) = (τ → τ ′) × (τ → τ ′′)

The type isomorphisms-based approach can help in retrieving complex software com-
ponents from large libraries of functions [13, 21, 22] or modules [25, 3] and in automat-
ically producing bridge code between different representations of a (possibly recursive)
data type in systems like Mockingbird [5, 6]. These active areas are currently attracting
the attention of many researchers. Unfortunately, the general problem of characterizing
isomorphic types for a full-fledged type system, including sums, products, polymorphic
and recursive types—such as that underlying Mockingbird [4, 8]—is extremely complex
and remains open; there are, in particular, difficulties with recursive types [1] and with
sum types [7]. In view of this difficulty, Jha, Palsberg, and Zhao [19, 18] proposed to
study a weak approximation of isomorphisms of recursive types, obtained by viewing
products as associative and commutative, which we refer to as AC-equality. This relation
may be decided in time O(N logN), where N is the sum of the sizes of the input types.
(The same time bound was obtained by Downey, Sethi and Tarjan [15] for the closely
related problem of symmetric congruence closure.) AC-equality captures a lot of the
inessential syntactic details one wants to get rid of when querying a library. Jha et al.
propose to view a collection of Java interface declarations as a collection of types, using
arrow types to encode method signatures and n-ary products to encode collections of
methods or method parameters. Of course, the types thus obtained are recursive, be-
cause Java interface declarations may mutually refer to one another. For instance, the
Java interfaces:

interface I1 { interface I2 {
float m1 (I1 a); I1 m3 (float a);
int m2 (I2 a); I2 m4 (float a);

} }

may be encoded (forgetting method names) as the mutually recursive types I1 = (I1 →
float) × (I2 → int) and I2 = (float → I1) × (float → I2). Thus, the notion of AC-
equality of recursive types gives rise to a notion of equivalence between (collections of)
Java interfaces.

However, AC-equality is not the right relation on types for searching libraries. As
noted by Thatté [24], when querying a complex object-oriented library, the actual type

Subtyping Recursive Types Modulo Associative Commutative Products 181

of the desired class or interface may be extremely complex, because it lists all of (the
types of) its methods. As a result, it is not reasonable to require the query (that is, the
type provided by the user) to be AC-equal to the actual type. Indeed, the user would have
to guess the list of (the types of) all methods in the class. It is more realistic to allow the
user to formulate a query that is only a supertype of the actual type, so for instance, a
user looking for a collection implementation may formulate the query:

public interface SomeCollection {
public void add (Object o);
public void remove (Object o);
public boolean contains (Object o);
public int size ();

}

In the Java standard library, the Collection interface has 15 methods. As a result, every
class that implements it has at least 15 methods as well, which means that no match will
be found for this query if types are compared up to AC-equality. The purpose of this
paper is to introduce a notion of AC-subtyping defined so that the Collection interface
is an AC-subtype of this query. Furthermore, even such a simple notion of isomorphism
of recursive types can give rise to very complex conversion functions. As a result, it is
quite unrealistic to expect that a user could be satisfied with a mere true or false answer.
A practical search system must be able to generate code for converting between the
search result and the search query, as already advocated by Thatté [24].

In this paper, we pursue Thatté’s seminal work and give an efficient subtyping al-
gorithm modulo AC for a core language with products, arrows, and recursive types.
The algorithm also produces coercion code when it succeeds. We believe that when the
language is extended to cover a class-based object-oriented language such as Java, our
algorithm could be combined with ideas from Thatté to synthesize adapters for existing
classes.

The paper is laid out as follows. §2 gives a comparison with related work and an
overview of our results. In §3, we recall a few basic notions about recursive types, as
well as Palsberg and Zhao’s notion of equality up to associativity and commutativity
of products [19]. In §4, we introduce the notion of AC-subtyping and prove that it
is a composition of the usual subtyping relation with AC-equality. Then, in §5, we
describe an algorithm that decides whether two types are in the subtyping relation modulo
associativity and commutativity of products. We establish its correctness and assess
its time complexity. In §6, we discuss how to generate code for coercion functions.
Throughout the paper, we consider recursive types built out of arrows, products, and the
constants ⊥ and +. In §7, we argue that this simple setting is general enough.

2 Related Work and Overview of Our Results

Two main lines of work are closely related to ours. To our knowledge, Thatté is the
first to have put forth a relaxed form of subtyping between recursive types as a model
of object-oriented retrieval tools [24]. Without relating to Thatté’s work, Palsberg et al.
have studied efficient algorithms to solve AC-equality of recursive types [19, 18].

182 R. Di Cosmo, F. Pottier, and D. Rémy

By comparison with Thatté’s work, we have taken a more foundational approach
by working directly with recursive types. We also use co-inductive techniques—which
were not yet popular at the time of Thatté’s work—to provide an efficient, deterministic
decision algorithm that improves over his exponential algorithm (essentially a variant
of Amadio and Cardelli’s original subtyping algorithm). However, some work remains
to be done to specialize our results to classed-based languages and build “adapters”, in
Thatté’s terminology, out of our coercions.

Technically, our co-inductive algorithms share a common ground with the work
of Palsberg et al. on AC-equality [19]. Indeed, co-induction is a most natural tool for
reasoning about recursive types. Unfortunately, many of the well-known algorithmic
optimizations (inspired by classic foundational work on finite automata) that are appli-
cable when dealing with equivalence relations [19, 18] break down when dealing with
an ordering. This is very well explained by Jha et al. [18–Section 6], who describe
AC-subtyping, but quickly dismiss it as not amenable to the optimizations used for AC-
equality. The authors state that this relation is decidable, but make no effort to give a
tight complexity bound or describe an actual decision algorithm. Yet, a naive general-
ization of Palsberg and Zhao’s ideas [19] to the setting of AC-subtyping—as opposed to
AC-equality—already leads to a decision procedure whose worst-case time complexity
is O(n2n′2d5/2) (1), where n and n′ count the sub-terms of the types that are being
compared and d is a bound on the arity of the products involved.

The naive procedure starts from the full relation—a graph with O(nn′) edges—and
repeatedly removes edges that are found not to be in the AC-subtyping relation. Because
it might be necessary to inspect all edges in order to remove only one of them, and
because, in the worst case, all edges have to be removed, the procedure might require
O(n2n′2) edge inspections, each of which happens to require time O(d5/2) in the worst
case.

In this paper, we improve on this naive procedure by a careful choice of the order
in which edges must be inspected. The worst-case time complexity of our improved
algorithm may be bounded by (1), which shows that it performs no worse than the naive
procedure. It may also be bounded by O(NN ′d5/2) (2), where N and N ′ are the sizes
of the types that are being compared. In practice, N and N ′ might be significantly less
than n2 and n′2, respectively. Furthermore, we show that, if the types at hand are not
recursive (that is, do not involve cycles), then our algorithm runs in timeO(nn′d5/2) (3).
One may expect the algorithm’s performance to degrade gracefully when the types at
hand involve few cycles. Last, in §5, we give worst-case complexity bounds analogous
to (2) and (3), but where the quantities O(NN ′) and O(nn′) are replaced with the
size of a certain graph. Intuition suggests that, in practice, the size of this graph might
be significantly less than quadratic. For all these reasons, we expect our algorithm to
perform well in practice, whereas an implementation of the naive algorithm would not
be realistic—even though, in rare cases, both algorithms may require the same amount
of computation.

A mild difference with Palsberg and Zhao [19] is that we allow products to be
immediately nested. Indeed, our definition of AC-equality and AC-subtyping is such
that flattening nested products is not part of equality. That is, if we write (τ1 × . . .× τn)
for Πn

i=1τi, then the types (τ1 × τ2 × τ3) and (τ1 × (τ2 × τ3)) are not AC-related. If one

Subtyping Recursive Types Modulo Associative Commutative Products 183

wishes that these types be identified, one can preprocess the input types by flattening
nested products before running our algorithm. (Of course, this is possible only in the
absence of infinite products, but this restriction makes practical sense, since “flat” infinite
products cannot exist in memory.) However, there are situations where we want to keep
these types distinct. For example, products representing persistent database information
may be kept nested, as stored on disk, while products used for passing arguments to
functions may be flattened.

To sum up, we feel our work is more in line with Thatté’s, in that we want to provide a
formal basis for actual search tools, that need AC-subtyping and the automatic synthesis
of the coercions, even if this means giving up the algorithmic optimizations that make
deciding an equivalence relation more efficient. Still, identifying types up to AC-equality
may remain useful as a preprocessing phase, in order to decrease the number of nodes
in the problem that is submitted to the AC-subtyping algorithm.

3 Recursive Types

Recursive types are usually given in concrete syntax as finite systems of contractive type
equations, which, according to Courcelle [12], uniquely define regular trees; or as finite
terms involving μ binders [16]. The process of unfolding these finite representations
gives rise to regular infinite trees.

Definition 1 (Signature). A signature is a mapping from symbols, written s, to integer
arities. In this paper, we consider a fixed signature, which consists of a binary symbol →,
an-ary symbolΠn for every nonnegative integern, and the constant symbols ⊥ and +. �
Definition 2 (Path, tree, type). A path p is a finite sequence of integers. The empty
path is written ε and the concatenation of the paths p and p′ is written p · p′. A tree is a
partial function τ from paths to symbols whose domain is nonempty and prefix-closed
and such that, for every path p in the domain of τ , p · i ∈ dom(τ) holds if and only if i
is comprised between 1 and the arity of the symbol τ(p), inclusive. If p is in the domain
of τ , then the subtree of τ rooted at p, written τ/p, is the partial function p′
→ τ(p · p′).
A tree is regular if and only if it has a finite number of distinct subtrees. (Every finite
tree is thus regular.) A recursive type (or type for short) is a regular tree. We write T
for the set of all types. We write ⊥ (resp. +) for the tree that maps ε to ⊥ (resp. +). We
write τ1 → τ2 for the tree that maps ε to → and whose subtrees rooted at 1 and 2 are τ1
and τ2, respectively. We write Πn

i=1τi for the tree that maps ε to Πn and whose subtree
rooted at i is τi for every i ∈ {1, . . . , n}. �

There are many ways to present equality of recursive types, ranging from tradi-
tional definitions based on finite approximations [2] to more modern co-inductive ap-
proaches [9, 11]. Following Brandt and Henglein, we reason in terms of simulations.

Definition 3 (Equality). A binary relation R ⊆ T 2 is a =-simulation if and only if it
satisfies the following implications:

EQ-TOP

τ R τ ′

τ(ε) = τ ′(ε)

EQ-ARROW

τ1 → τ2 R τ ′1 → τ ′2
τ1 R τ ′1 τ2 R τ ′2

EQ-PI

Πn
i=1τi R Πn

i=1τ
′
i

(τi R τ ′i)
i∈{1,...,n}

Equality = is the largest =-simulation. �

184 R. Di Cosmo, F. Pottier, and D. Rémy

Palsberg and Zhao [19] define equality up to associativity and commutativity of
products as follows; see also Downey et al. [15–section 4.1]. We write Σm

n for the set
of all injective mappings from {1, . . . ,m} into {1, . . . , n}. In particular, Σn

n is the set
of all permutations of {1, . . . , n}.

Definition 4 (AC-Equality). A binary relation R ⊆ T 2 is a =AC-simulation if and
only if it satisfies the following implications:

EQAC-TOP

τ R τ ′

τ(ε) = τ ′(ε)

EQAC-ARROW

τ1 → τ2 R τ ′1 → τ ′2
τ1 R τ ′1 τ2 R τ ′2

EQAC-PI

Πn
i=1τi R Πn

i=1τ
′
i

∃σ ∈ Σn
n (τσ(i) R τ ′i)

i∈{1,...,n}

AC-Equality =AC is the largest =AC-simulation. �
Note that a product one of whose components is itself a product is not considered AC-
equal to the corresponding “flattened” product. We come back to this point in §7.

4 Subtyping and AC-Subtyping

In this section, we define subtyping of recursive types up to associativity and commu-
tativity of products, and show that it is precisely a composition of the usual subtyping
relation with equality up to associativity and commutativity of products.

Let us first define subtyping between recursive types. This requires extending the
standard definition of subtyping from the case of binary products [9] to that of n-ary
products.

Definition 5 (Subtyping). Let ≤0 be the ordering on symbols generated by the rules:

⊥ ≤0 s s ≤0 + → ≤0 → n ≥ m

Πn ≤0 Πm

A binary relation R ⊆ T 2 is a ≤-simulation if and only if it satisfies the following
implications:

SUB-TOP

τ1 R τ2

τ1(ε) ≤0 τ2(ε)

SUB-ARROW

τ1 → τ2 R τ ′1 → τ ′2
τ ′1 R τ1 τ2 R τ ′2

SUB-PI

Πn
i=1τi R Πm

i=1τ
′
i

(τi R τ ′i)
i∈{1,...,m}

Subtyping ≤ is the largest ≤-simulation. �
This definition allows depth and width subtyping. Depth subtyping refers to the covari-
ance of products. Width subtyping refers to the fact that a product with more components
may be a subtype of a product with fewer components. Enabling width subtyping better
suits our intended applications. Furthermore, it is possible, if desired, to introduce a
distinct family of product constructors, which forbid width subtyping; see §7.

We now define subtyping of recursive types up to associativity and commutativity of
products. Its definition relaxes Definition 5 by allowing the components of a product to
be arbitrarily permuted. It is given in a slightly generalized style, introducing the notion
of simulation up to a relation; this helps state the algorithm’s invariant in §5.2.

Subtyping Recursive Types Modulo Associative Commutative Products 185

Definition 6 (AC-Subtyping). Let R ⊆ T 2 and R′ ⊆ T 2 be binary relations. R is a
≤AC-simulation up to R′ if and only if the following implications are satisfied:

SUBAC-TOP

τ1 R τ2

τ1(ε) ≤0 τ2(ε)

SUBAC-ARROW

τ1 → τ2 R τ ′1 → τ ′2
τ ′1 (R ∪ R′) τ1 τ2 (R ∪ R′) τ ′2

SUBAC-PI

Πn
i=1τi R Πm

i=1τ
′
i

∃σ ∈ Σm
n (τσ(i) (R ∪ R′) τ ′i)

i∈{1,...,m}

R is a ≤AC-simulation if and only if it is a ≤AC-simulation up to the empty relation.
AC-Subtyping ≤AC is the largest ≤AC-simulation. �

It is known that =AC is a congruence and ≤ is an ordering. We show that ≤AC is a
preorder, that is, it is reflexive and transitive.

Proposition 7. ≤AC is a preorder. �
We argue that our definition of subtyping modulo associativity and commutativity of

products is natural by establishing that it is a composition of the pre-existing relations
=AC and ≤. One may hope to prove that ≤AC coincides with =AC ◦ ≤. However, this
does not hold, because the contravariance of the arrow symbol forces =AC to be used
on both sides of ≤. This is illustrated by the pair (Π1(+) → Π2(⊥,+), Π2(⊥,+) →
Π1(+)), which is a member of ≤AC , but not a member of =AC ◦ ≤ or of ≤ ◦ =AC . As
a result, =AC must in fact be used on both sides of ≤, as stated below.

Theorem 8. The relations ≤AC and (=AC) ◦ (≤) ◦ (=AC) coincide. �

5 Deciding AC-Subtyping

Let us say that a pair of types p = (τ, τ ′) is valid if τ ≤AC τ ′ holds and invalid otherwise.
We now define an algorithm that, given a pair of types p0 = (τ0, τ ′0), determines whether
p0 is valid.

The algorithm’s complexity is assessed as a function of the following parameters.
Let T and T ′ be the sets of all subtrees of τ0 and τ ′0, respectively. Let n and n′ be the
cardinalities of these sets; they are finite. Let us view T and T ′ as directed graphs, where
every tree is a node and there is an edge from τ to τ ′ labeled i if and only if τ/i is τ ′. In
other words, there is an edge from every tree to each of its immediate subtrees. Please
note that there may be multiple edges, with distinct labels, between τ and τ ′. If τ is a
node in T or T ′, let d(τ) denote its outgoing degree, that is, the arity of the symbol τ(ε).
Let u(τ) denote its incoming degree, that is, the number of its predecessors in the graph
T or T ′. We write d for the maximum of d(τ) when τ ranges over all nodes in T and T ′.
Last, let N (resp. N ′) be the size of the graph T (resp. T ′), where every node and every
edge contributes one unit. Please note that we have: N = Στ∈T (1 + u(τ)) as well as a
similar identity concerning T ′.

The algorithm maintains sets of pairs of nodes. We assume that elementary set op-
erations can be performed in constant time. This is indeed possible by using an array of
size O(nn′), or, more realistically, a hash table.

186 R. Di Cosmo, F. Pottier, and D. Rémy

5.1 First Phase: Exploration

Specification. The first phase of the algorithm consists in constructing a (finite) set U
of pairs of types whose validity one must determine in order to be able to tell whether
p0 is valid. The universe U may be defined as the smallest set that contains p0 and is
closed under the following two rules:

EXPLORE-ARROW

(τ1 → τ2, τ
′
1 → τ ′2) ∈ U

(τ ′1, τ1) ∈ U (τ2, τ ′2) ∈ U

EXPLORE-PI

(Πn
i=1τi,Π

m
j=1τ

′
j) ∈ U

((τi, τ
′
j) ∈ U)i∈{1,...,n}, j∈{1,...,m}

The set (T × T ′) ∪ (T ′ × T) contains p0 and is closed under these rules. This ensures
that U exists and has cardinality O(nn′).

We have explained above how to view T and T ′ as graphs. It is useful to view
(T × T ′) ∪ (T ′ × T) as a graph as well. Let there be an (unlabeled) edge from a pair of
types p to a pair of types p′ if p matches the premise of EXPLORE-ARROW or EXPLORE-PI

while p′ matches one of its conclusions. In that case, we also say that p is a parent
of p′. Then, the exploration phase can be viewed simply as an explicit traversal (and
construction) of part of the graph (T × T ′) ∪ (T ′ × T), starting from the node p0. In
other words,U is the connected component ofp0 in the directed graph (T×T ′)∪(T ′×T).

The number of nodes in the graph U is clearly bounded by O(nn′). Because U is
an unlabeled graph, the number of its edges must be bounded by O(n2n′2). This yields
size(U) ≤ O(n2n′2). Furthermore, because the predecessors of a pair (τ, τ ′) are pairs
of a predecessor of τ and a predecessor of τ ′, we have u(τ, τ ′) ≤ u(τ)u(τ ′). This yields
another bound on the size of the graph U :

size(U) = Σ(τ,τ ′)∈U (1 + u(τ, τ ′)) ≤ Στ∈T, τ ′∈T ′(1 + u(τ)u(τ ′))
≤ (Στ∈T (1 + u(τ)))(Στ ′∈T ′(1 + u(τ ′))) = NN ′

In practice, we expect both of these bounds to be pessimistic. In the particular case where
the types at hand are not recursive (that is, do not involve cycles) and do not involve any
products, the size of U may be bounded by min(N,N ′). There is a lot of slack between
this optimistic bound and the worst-case bounds given above. It should be interesting to
measure the size of U in real-world situations.

Implementation. The graph U can be computed using a simple iterative procedure, as
follows.

1. Let U = ∅ and W = {p0}.
2. While W is nonempty, do:

(a) Take a pair p out of W ;
(b) If p ∈ U , continue at 2;
(c) Insert p into U ;
(d) If p is of the form (τ1 → τ2, τ

′
1 → τ ′2), then insert (τ ′1, τ1) and (τ2, τ ′2) into W ;

(e) If p is of the form (Πn
i=1τi,Π

m
j=1τ

′
j),

then insert every (τi, τ
′
j), for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, into W .

It is clear that this procedure implements the construction of U as specified above.
In step 2e, one should remove any duplicate elements from the families (τi)n

i=1 and
(τ ′j)

m
j=1 prior to iterating over them. Then, this procedure runs in time O(size(U)d). It

is dominated by the running time of the second phase.

Subtyping Recursive Types Modulo Associative Commutative Products 187

5.2 Second Phase: Fixpoint Computation

The idea behind the second phase of the algorithm is to determine the greatest subset
of U that is a ≤AC-simulation, then to check whether p0 is a member of it. In order to
build this subset, we start from the full relation U , and successively remove pairs that
violate SUBAC-TOP, SUBAC-ARROW or SUBAC-PI, until we reach a fixpoint. Whether a pair
violates SUBAC-TOP or SUBAC-ARROW may be determined in constant time. However,
in the case of SUBAC-PI, the check requires solving a matching problem in a bipartite
graph, whose time complexity may be bounded by O(d5/2), as we shall see.

A naive procedure begins by iterating once over all pairs, removing those that violate
one of the rules; this takes timeO(nn′d5/2). But one such iteration may not be enough to
reach the fixpoint, so the naive procedure repeats this step as many times as required. In
the worst case, each step invalidates only one pair, in which case up toO(nn′) successive
steps are required. Thus, the overall time complexity isO(n2n′2d5/2). Below, we propose
an enhanced approach, whose convergence is faster. Instead of blindly checking every
pair at each iteration, we check only the parents of pairs that have just been invalidated.
Downey, Sethi, and Tarjan exploit the same idea to accelerate the convergence of their
congruence closure algorithm [15].

Description. The universe U is now fixed. We maintain three sets W , S, and F , which
form a partition ofU . The setW is a worklist and consists of pairs whose validity remains
to be determined. The set S consists of suspended pairs, which are conditionally valid:
the algorithm maintains the invariant that S is a ≤AC-simulation up to W . In other
words, a pair S is known to be valid provided its (indirect) descendants in W are found
to be valid as well. The set F consists of known invalid (false) pairs.

When a pair p is found to be invalid, it is moved to the set F and all (if any) of
its parents within S are transferred to W for examination. We refer to this auxiliary
procedure as invalidating p. The time complexity of this procedure is O(1 + u(p)),
where u(p) is the incoming degree of the pair p in the graph U (see §5.1).

The second phase of the algorithm is as follows.

1. Let W = U and S = F = ∅.
2. While W is nonempty, do:

(a) Take a pair p out of W ;
(b) If p is of the form (⊥, τ ′) or (τ,+), then insert p into S;
(c) If p is of the form (τ1 → τ2, τ

′
1 → τ ′2), then

if (τ ′1, τ1)
∈ F and (τ2, τ ′2)
∈ F then insert p into S else invalidate p;
(d) If p is of the form (Πn

i=1τi,Π
m
j=1τ

′
j), then

if there existsσ ∈ Σm
n such that, for all j ∈ {1, . . . ,m}, (τσ(j), τ

′
j)
∈ F

holds, then insert p into S else invalidate p;
(e) If p satisfied none of the three previous tests, then invalidate p.

3. If p0
∈ F , return true, otherwise return false.

Correctness. Each iteration of the main loop (step 2) takes a pair p out of W and either
inserts it into S or invalidates it. In either case, it is clear that (W,S, F) remains a
partition of U .

Let us now check that S remains a ≤AC-simulation up to W . If the pair p is inserted
into S, then p satisfies SUBAC-TOP, and there exist pairs in W ∪ S (that is, outside F)

188 R. Di Cosmo, F. Pottier, and D. Rémy

whose validity is sufficient for p to satisfy SUBAC-ARROW or SUBAC-PI. So, the invariant
is preserved. If, on the other hand, the pair p is invalidated, then all of its parents within
S are transferred back to W , which clearly preserves the invariant as well.

Last, let us check that F remains a set of invalid pairs only. If the pair p is invalidated
at step 2c, then p is invalid, for otherwise, by SUBAC-ARROW, the pairs (τ ′1, τ1) and
(τ2, τ ′2) would be valid—but these pairs are members of F , a contradiction. Because p is
invalid, inserting it into F preserves the invariant. If the pair p is invalidated at steps 2d
or 2e, then p may be shown invalid analogously, using SUBAC-PI or SUBAC-TOP.

When the algorithm terminates,W is empty, soS is a≤AC-simulation, which implies
that every member of S is valid. On the other hand, every member of F is invalid. We
have established that the result returned in step 3 is correct, as stated below:

Theorem 9. If the algorithm returns true, then τ0 ≤AC τ ′0 holds. If the algorithm returns
false, then τ0 ≤AC τ ′0 does not hold. �

Termination and Complexity. Invalidating a pair transfers it from W to F . Because
pairs are never taken out of F , and because W and F remain disjoint, no pair is ever
invalidated twice.

The initial size of W is the number of nodes in U . Furthermore, when a pair p
is invalidated, the size of W increases by u(p). Thus, considering that every pair is
invalidated at most once, the total number of pairs that are ever taken out of W—that is,
the total number of iterations of step 2—is at most

(Σp∈U 1) + (Σp∈U u(p)) = Σp∈U (1 + u(p)) = size(U)

Let us now estimate the cost of a single iteration of step 2. In step 2d, determining
whether an appropriate σ exists is a matching problem in a bipartite graph with at most
2d nodes and d2 edges. Such a problem can be solved in time O(d5/2) using Hopcroft
and Karp’s algorithm [17]. The cost of invalidating a pair may be viewed as O(1) if we
consider that the price for transferring a parent from S to W is paid when that parent is
later examined. Thus, the (amortized) cost of a single iteration of step 2 is O(d5/2).

Combining these results, we find that the second phase of the algorithm runs in time
O(size(U)d5/2). This is more expensive that the first phase, so we may state

Theorem 10. The algorithm runs in time O(size(U)d5/2), which is bounded both by
O(NN ′d5/2) and O(n2n′2d5/2). �

As explained in §5.1, the size of the graph U might be significantly smaller, in
practice, than either of NN ′ and O(n2n′2), which is why we give the first complexity
bound. The second bound shows that, in the worst case, the algorithm remains linear in
each of the sizes of the input types, namelyN andN ′, with additional overheadO(d5/2),
where d is a bound on the arity of the products involved. The third bound shows that our
improved algorithm performs no worse than the naive procedure outlined in §1 and §5.2.

For comparison, Downey et al.’s symmetric congruence closure algorithm [15],
as well as Jha et al.’s decision procedure for AC-equality [18], run in time O((N +
N ′) log(N + N ′)). These algorithms compute an equivalence relation. This opens the
way to a more efficient data representation, where a relation is not stored as a set of pairs
but as a partition, and simplifies the matching problem.

Subtyping Recursive Types Modulo Associative Commutative Products 189

5.3 Further Refinements

A cheap refinement consists in modifying the first phase so that it fails as soon as it
reaches a pair p that does not satisfy SUBAC-TOP, provided the path from p0 to p never
leaves a pair of products—that is, provided the validity of p0 implies that of p. This helps
immediately detect some failures. For this refinement to be most effective, the paths in
U where immediate failure may occur should be explored first. One way of achieving
this effect is simply to give higher priority to edges that leave a pair of arrows than to
edges that leave a pair of products.

A more interesting refinement consists in specifying in what order pairs should be
taken out of the worklist W during the second phase. It is more efficient to deal with
descendants first and with ancestors last, because dealing with an ancestor too early
might be wasted work—we might decide to suspend it and later be forced to transfer
it back to the worklist because new information about its descendants has been made
available. Of course, because types are recursive, the relation “to be a parent of” is in
general only a preorder, not an ordering—that is, the graph U may exhibit cycles.

Let us remark, though, that when U is acyclic, it is indeed possible to process pairs in
order. This ensures that, when a pair is processed, none of its parents have been processed
yet, so all of them must still be in the worklist. Thus, when invalidating a pair, it is no
longer necessary to iterate over its parents. In that case, the algorithm’s time complexity
becomes O(nodes(U)d5/2), where nodes(U) counts the nodes of the graph U , but not
its edges, and is bounded by O(nn′).

It is possible to take advantage of this remark even in the presence of cycles. The
first phase, upon completion, can be made to produce an explicit representation of the
graph U . Determine its strongly connected components and topologically sort them.
Then, remove all edges whose endpoints do not belong to the same component. The cost
of this additional preprocessing is linear in the size of U . Now, run the second phase,
one component at a time, in topological order, that is, descendants first and ancestors
last. Because of the removed edges, when invalidating a pair p, only the parents of p that
belong to the same strongly connected component are checked. This is correct because
components are being processed in topological order, which ensures that the parents of
p that belong to a distinct component must still be in the worklist.

The modified algorithm runs in time O(size(U ′)d5/2), where U ′ is the result of
pruning the graph U , that is, of keeping only the edges that participate in a cycle.
Thus, its complexity may still be bounded by O(NN ′d5/2) in the worst case, but this
bound gradually decreases down to O(nn′d5/2) in the case of nonrecursive types. We
conjecture that, in practice, cycles often involve only a fraction of the type structure, so
this improvement may be significant.

Searching a Whole Library. For our purposes, a software library is a collection of
possibly mutually recursive types, which we may view as a single recursive type τL,
some distinguished subterms of which form a set TL. The programmer’s query is a
possibly recursive type τQ. The problem is to find all components in the library that
provide (at least) the requested functionality, that is, to find every τ ∈ TL such that
τ ≤AC τQ holds.

One possibility is to run the algorithm with p0 = (τ, τQ) successively for every
τ ∈ TL. However, this is inefficient. LetUτ denote the universe explored by the algorithm

190 R. Di Cosmo, F. Pottier, and D. Rémy

when run with initial pair (τ, τQ). Then, the universes (Uτ)τ∈TL
might overlap, causing

repeated work. It is more efficient to run the algorithm once with multiple initial pairs,
that is, with the family of initial pairs (τ, τQ)τ∈TL

. Extending the algorithm to deal with
a set of initial pairs {p0, . . . , pk−1} is immediate; it suffices to define the universe U
as the smallest superset of {p0, . . . , pk−1} that is closed under EXPLORE-ARROW and
EXPLORE-PI. By running the algorithm only once, we ensure that the worst-case time
complexity is bounded by O(NN ′d5/2), where N is the size of the library τL and N ′

is the size of the query τQ.
In fact, running the algorithm once with a set of initial pairs {p0, . . . , pk−1} is

equivalent to running it k times in succession, supplying the single initial pair pi to the
ith run, provided each run starts where the previous left off, that is, re-uses the sets U , S,
F computed by the previous run. With this proviso, one may, without loss of efficiency,
provide initial pairs to the algorithm one after the other.

This remark leads to an optimization. Imagine that TL is organized as a graph, with
an edge from τ to τ ′ if and only if τ ≤AC τ ′ holds. (This graph might be built during
a preprocessing phase. We may assume that it is acyclic: if it isn’t, cycles may be col-
lapsed.) Then, pick a maximal node τ , that is, a node with no successors in the graph.
Run the algorithm with initial pair (τ, τQ). If τ is found to be comparable with τQ, then,
by transitivity of ≤AC , so is every predecessor of τ in the graph. In that case, remove
τ and all of its predecessors from the graph; otherwise, remove τ alone. Then, pick a
maximal node in what remains of the graph, and proceed in the same manner. This ap-
proach offers the double advantage of being potentially more efficient and of providing
successful answers in groups, where each group contains a distinguished maximal (w.r.t.
≤AC) answer to the query and distinct groups contain incomparable answers. We believe
that the user should find this behavior natural. The actual efficiency gain remains to be
assessed.

One should point out that this optimization is but a simple way of exploiting the fact
that ≤AC is transitive. One might wonder whether it is possible to exploit transitivity
at the core of the algorithm: for instance, by directly inserting a pair into S, without
examining its descendants, if it is a transitive consequence of the pairs that are members
of S already. This issue is left for future research.

6 Building Coercions

We now discuss the coercions that witness the relation ≤AC , and how to compute them
from the simulation discovered by the algorithm, when it succeeds. We follow Brandt
and Henglein’s presentation [9], but work directly with regular trees, instead of using
the μ notation, which allows us to make “fold” and “unfold” coercions implicit.

Definition 11 (Coercions for ≤AC). Coercions are defined by the grammar
c ::= ιτ | f | fix f.c | c → c′ | Πσ

i ci | abortτ | discardτ �
Most coercion forms are taken from Brandt and Henglein’s paper, with the same typing
rules [9–figure 6]. Let us recall that a typing judgment is of the form E � c : τ → τ ′,
where the environment E maps coercion variables f to coercion types of the form
τ → τ ′. The one new coercion form is Πσ

i ci, whose typing rule is

Subtyping Recursive Types Modulo Associative Commutative Products 191

σ ∈ Σm
n (E � ci : τσ(i) → τ ′i)

i∈{1,...,m}

E � Πσ
i ci : Πn

i=1τi → Πm
i=1τ

′
i

and whose operational meaning is λp.Πm
i=1ci(πσ(i)(p)). If τ ≤AC τ ′ holds, then the

algorithm, applied to the pair (τ, τ ′), produces a finite ≤AC-simulation S that contains
(τ, τ ′). It is straightforward to turn S into a system of recursive equations that defines
one coercion for each pair within S, including, in particular, a coercion of type τ → τ ′.

Theorem 12. If τ ≤AC τ ′ holds, there exists a (closed) coercion c s. t. � c : τ → τ ′. �
The size of the equation associated with (τ, τ ′) is O(1 + d(τ ′)), where d(τ ′) is the

outgoing degree of the node τ ′ in the graph T or T ′. As a result, the total size of the
system of equations is bounded by

O(Στ∈T, τ ′∈T ′(1 + d(τ ′)) + Στ ′∈T ′, τ∈T (1 + d(τ)))
= O(n(Στ ′∈T ′(1 + d(τ ′))) + n′(Στ∈T (1 + d(τ))))
= O(nN ′ + n′N)

The system can be produced in linear time with respect to its size, so the time complexity
of producing code for the coercions is O(nN ′ +n′N). (If one applies Bekič’s theorem,
as suggested above, then the time and space complexity increases quadratically, but there
is no reason to do so in practice.)

It is worth pointing out that not all well-typed coercions have the same operational
meaning, and some user interaction is, in practice, necessary to ensure that the coercion
code suits the user’s needs.

7 Practical Considerations

In practical applications, the language of types is usually much richer than the one
considered in this paper. The grammar of types may include a set of atoms (such as
int, float, etc.), equipped with a subtyping relation, and a set of parameterized type
constructors. Each of these type constructors may have some contravariant and some
covariant parameters, may support or forbid permutations of its parameters, and may
support or forbid width subtyping.

Fortunately, it is straightforward to adapt the results of this paper to such an extended
language of types. As far as atoms and atomic subtyping are concerned, it suffices to
add appropriate clauses to the definition of a ≤AC-simulation and to the algorithms for
deciding AC-subtyping and building coercions; these new clauses are variations of the
existing clauses for ⊥ and +. As far as parameterized type constructors are concerned,
it is enough to extend our definitions by distinguishing four kinds of products that
respectively support or forbid parameter permutations and width subtyping. The rules
that describe the three new (restricted) kinds of products are special cases of our current
rules, since our current product constructor allows both parameter permutations and
width subtyping. Then, every parameterized type constructor may be desugared into a
combination of atoms, the arrow constructor (which allows encoding contravariance)
and the four product constructors.

192 R. Di Cosmo, F. Pottier, and D. Rémy

Our core language is purely functional. However, real-world languages, and object-
oriented languages in particular, often have mutable data structures and a notion of object
identity. Then, it is important that coercions preserve object identity. One might wish
the following property to hold: the program that is linked, using adapters, to a certain
library, should have the same semantics as that obtained by linking, without adapters, to
a library whose method and class names have been suitably renamed. We believe that,
combining our algorithms with the adapter model sketched by Thatté [24], it is possible
to achieve such a property. We leave this as future work.

8 Conclusion

We have introduced a notion of subtyping of recursive types up to associativity and com-
mutativity of products. We have justified our definition by showing that this relation is a
composition of the usual subtyping relation with Palsberg and Zhao’s notion of equality
up to associativity and commutativity of products. We have provided an algorithm for
deciding whether two types are in the relation. The algorithm’s worst-case time com-
plexity may be bounded by O(NN ′d5/2) and O(n2n′2d5/2); we believe it will prove
fairly efficient in practice. It is straightforward and cheap to produce coercion code when
the algorithm succeeds.

We believe this paper may constitute the groundwork for practical search tools
within libraries of object-oriented code. Indeed, as argued in §1, AC-equality alone is
not flexible enough, since it does not allow looking for only a subset of the features
provided by a library.

References

1. Martı́n Abadi and Marcelo P. Fiore. Syntactic considerations on recursive types. In IEEE
Symposium on Logic in Computer Science (LICS), pages 242–252, July 1996.

2. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575–631, September 1993.

3. Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms for module signatures.
In Symposium on Programming Language Implementation and Logic Programming (PLILP),
volume 1140 of Lecture Notes in Computer Science, pages 334–346. Springer Verlag, 1996.

4. Joshua Auerbach, Charles Barton, and Mukund Raghavachari. Type isomorphisms with
recursive types. Technical Report RC 21247, IBM Yorktown Heights, 1998.

5. Joshua Auerbach and Mark C. Chu-Carrol. The Mockingbird system: a compiler-based
approach to maximally interoperable distributed systems. Technical Report RC 20718, IBM
Yorktown Heights, 1997.

6. Joshua Auerbach, Mark C. Chu-Carrol, Charles Barton, and Mukund Raghavachari. Mock-
ingbird: Flexible stub generation from pairs of declarations. Technical Report RC 21309,
IBM Yorktown Heights, 1998.

7. Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Remarks on isomorphisms in typed
lambda calculi with empty and sum type. In IEEE Symposium on Logic in Computer Science
(LICS), July 2002.

8. Charles M. Barton. M-types and their coercions. Technical Report RC-21615, IBM Yorktown
Heights, December 1999.

Subtyping Recursive Types Modulo Associative Commutative Products 193

9. Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping. Fundamenta Informaticæ, 33:309–338, 1998.

10. Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types. Math-
ematical Structures in Computer Science, 2(2):231–247, 1992.

11. Felice Cardone. A coinductive completeness proof for the equivalence of recursive types.
Theoretical Computer Science, 275(1–2):575–587, 2002.

12. Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25(2):95–169, March 1983.

13. Roberto Di Cosmo. Deciding type isomorphisms in a type assignment framework. Journal
of Functional Programming, 3(3):485–525, 1993.

14. Roberto Di Cosmo. Isomorphisms of types: from λ-calculus to information retrieval and
language design. Progress in Theoretical Computer Science. Birkhauser, 1995.

15. Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. Journal of the ACM, 27(4):758–771, October 1980.

16. Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Recursive subtyping revealed. Jour-
nal of Functional Programming, 12(6):511–548, 2003.

17. John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, December 1973.

18. Somesh Jha, Jens Palsberg, and Tian Zhao. Efficient type matching. In International Confer-
ence on Foundations of Software Science and Computation Structures (FOSSACS), volume
2303 of Lecture Notes in Computer Science, pages 187–204. Springer Verlag, April 2002.

19. Jens Palsberg and Tian Zhao. Efficient and flexible matching of recursive types. Information
and Computation, 171:364–387, 2001.

20. Mikael Rittri. Using types as search keys in function libraries. Journal of Functional Pro-
gramming, 1(1):71–89, 1991.

21. Mikael Rittri. Retrieving library functions by unifying types modulo linear isomorphism.
RAIRO Theoretical Informatics and Applications, 27(6):523–540, 1993.

22. Colin Runciman and Ian Toyn. Retrieving re-usable software components by polymorphic
type. Journal of Functional Programming, 1(2):191–211, 1991.

23. Sergei V. Soloviev. The category of finite sets and cartesian closed categories. Journal of
Soviet Mathematics, 22(3):1387–1400, 1983.

24. Satish R. Thatté. Automated synthesis of interface adapters for reusable classes. In ACM
Symposium on Principles of Programming Languages (POPL), pages 174–187, January 1994.

25. Jeannette M. Wing, Eugene Rollins, and Amy Moormann Zaremski. Thoughts on a Larch/ML
and a new application for LP. In First International Workshop on Larch, pages 297–312, July
1992.

Galois Embedding from Polymorphic Types into
Existential Types

Ken-etsu Fujita

Department of Computer Science, Gunma University,
Kiryu 376-8515, Japan

fujita@cs.gunma-u.ac.jp

Abstract. We show that there exist bijective translations between poly-
morphic λ-calculus and a subsystem of minimal logic with existential
types, which form a Galois connection and moreover a Galois embedding.
From a programming point of view, this result means that polymorphic
functions can be represented by abstract data types.

1 Introduction

We show that polymorphic types can be interpreted by the use of second or-
der existential types. For this, we prove that there exist bijective translations
between polymorphic λ-calculus λ2 and a subsystem of minimal logic with exis-
tential types, which form a Galois connection and moreover a Galois embedding.
From a programming point of view, this result means that polymorphic functions
can be represented by abstract data types via embedding.

Peter Selinger [Seli01] has introduced control categories and established an
isomorphism between call-by-name and call-by-value λμ-calculi. The isomor-
phism reveals duality not only on propositional connectives (∧,∨) like de Morgan
but also on reduction strategies (call-by-name and call-by-value), input-output
relations (demand- and data-driven) and inference rules (introduction and elim-
ination).

Philip Wadler [Wad03] introduced the dual calculus in the style of Gentzen’s
sequent calculus LK, such that the duality explicitly appears on antecedent and
succedent in the sequent of the propositional calculus.

Our main interest is a neat connection and proof duality between polymor-
phic types and existential types. It is logically quite natural like de Morgan’s
duality, and computationally still interesting, since dual of polymorphic func-
tions with universal type can be regarded as abstract data types with existential
type [MP85]. Instead of classical systems like [Pari92], even intuitionistic sys-
tems can enjoy that polymorphic types can be interpreted by existential types
and vice versa. This interpretation also involves proof duality, such that the uni-
versal introduction rule is interpreted by the use of the existential elimination
rule, and the universal elimination by the existential introduction. Moreover,
we established not only a Galois connection but also a Galois embedding from
polymorphic λ-calculus (Girard-Reynolds) into a calculus with existential types.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 194–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Galois Embedding from Polymorphic Types into Existential Types 195

In order to establish such a Galois embedding from polymorphic λ-calculus,
we have nontrivial problems to be overcome, contrary to the simply typed case:

(1) What’s the target calculus and how to interpret polymorphic functions?
(2) What’s the denotation of types and how to obtain commutativity w.r.t.

type-substitutions?
(3) How to establish an inverse translation for the completeness?

First, we observe the well-known CPS-translations Plotkin [Plot75] and Hofmann-
Streicher [HS97]. The former constitute a sound and complete translation with
respect to β-equality, and the latter validates βη-equality as well. Following
näively the latter translation of the simply typed case, polymorphic functions
could be interpreted by the use of strong sum with projections: [[λX.M]] =
λa.(λX.[[M]])(π1a)(π2a). Then the η-rule for polymorphic functions: λX.MX →
M provided X
∈ FV (M) would also be validated. However, from Coquand’s
analysis [Coq86] on impredicative systems with strong sums, that target calcu-
lus became inconsistent.

Terms of polymorphic λ-calculus in Church-style also contain type informa-
tion, so that we have to give a denotation to types as well. According to [HS97]
again, let k be an embedding from classical logic into intuitionistic logic and ∗
be for a continuation space, that is, Ak = ¬A∗ together with X∗ = ¬X and
(A1 ⇒ A2)∗ = Ak

1 ∧ A∗
2. Then denotation of type A would be naturally defined

by A• such that A∗ = ¬A•. Then one has ¬Ak ↔ ¬A•, i.e., type for denota-
tions is in a sense equal to denotation of types. However, the existence of A•

cannot be guaranteed1, and we cannot either expect commutativity with respect
to type-substitutions like (A[X := A1])∗ = A∗[X := A•

1]. A simple solution is a
logically equivalent definition of ∗ such that (A1 ⇒ A2)∗ = ¬¬(Ak

1 ∧A∗
2), which

now preserves type-substitutions. This slight modification leads to change of all
the definition of the CPS-translation [HS97, Seli01], and then η-rule would not
be valid any more under the modification.

Plotkin’s translation [Plot75] was proved complete by the use of the Church-
Rosser property of the target. On the other hand, a bijective CPS-translation
is studied in [Fuji03] along the definition of [HS97], and the completeness of
the translation was syntactically proved by the technique in [SF93] and the
heavy use of η-rule of the source calculus, where the target is not Church-Rosser
in general. The CPS-translation together with projections makes it possible to
execute partial evaluation in the sense that projections over a continuation can
be performed even though continuation components are not given. For instance,
the translation in [HS97, Seli01] interprets the two λμ-terms [Pari92] μa.[b]z and
λx.μa.[b]z as λa.zb and λa.(λx.λa.zb)(π1a)(π2a) →+

β λa.zb, respectively. Here,
the two source terms are extensionally equal. How to distinguish the denotations
unless the source calculus is extensional? Our idea is to take a weak form of
conjunction elimination, so that let-expression blocks or suspends projections
until two components of a continuation are, in fact, given. The use of such let-
expressions (not syntactic sugar) plays an important rôle throughout this paper.

1 This point was commented by Ryu Hasegawa.

196 K. Fujita

Following the above observation concerning extensionality and polymorphism,
this paper handles non-extensional λ2 and weak products and sums. This log-
ically uniform approach to ⇒ and ∀ via let-expressions gives a neat corre-
spondence between universal and existential types, including reduction rules. Of
course our previous result [Fuji03] in the type free case can also be reformulated
more elegantly along this approach with extensionality.

2 Polymorphic λ-Calculus λ2

We give the definition of polymorphic λ-calculus à la Church as second order
intuitionistic logic, denoted by λ2. This calculus is also known as the system F.
The syntax of types is defined from type variables denoted by X, using ⇒ or ∀
over type variables. The syntax of λ2-terms is defined from individual variables
denoted by x, using term-applications, type-applications or λ-abstractions over
individual variables or type variables.

Definition 1 (Types).

A ::= X | A ⇒ A | ∀X.A

Definition 2 (Pseudo-Terms).

Λ2 � M ::= x | λx :A.M | MM | λX.M | MA

Definition 3 (Reduction Rules).

(β) (λx :A.M)M1 → M [x := M1]
(βt) (λX.M)A → M [X := A]

The one step reduction relation is denoted by →λ2. We write →+
λ2 or →∗

λ2 to de-
note the transitive closure or the reflexive and transitive closure of →λ2, respec-
tively. We employ the notation =λ2 for the symmetric, reflexive and transitive
closure of the one step reduction →λ2 defined above. We write ≡ for a syntactical
identity modulo renaming of bound variables. Let R be β or βt. Then we often
write →R to denote the corresponding subset of →λ2.

The typing judgement of λ2 takes the form of Γ � M : A, where Γ is a set
of declarations in the form of x : A with distinct variables as subjects. A set of
free type variables in each predicate of Γ is denoted by FV (Γ).

Definition 4 (Type Assignment Rules).

x :A ∈ Γ
Γ � x : A

Γ, x :A1 � M : A2

Γ � λx :A1.M : A1 ⇒ A2
(⇒ I)

Γ � M1 : A1 ⇒ A2 Γ � M2 : A1

Γ � M1M2 : A2
(⇒ E)

Γ � M : A
Γ � λX.M : ∀X.A

(∀I)� Γ � M : ∀X.A
Γ � MA1 : A[X := A1]

(∀E)

where (∀I)� denotes the eigenvariable condition X
∈ FV (Γ).

Galois Embedding from Polymorphic Types into Existential Types 197

3 Minimal Logic with Second Order Sum

Next, we introduce the counter calculus λ∃ as minimal logic consisting of nega-
tions, conjunctions and second order sums. Such a calculus seems to be logically
weak and has never been considered as far as we know. However, λ∃ turns out
strong enough to interpret λ2 and interesting to investigate polymorphism.

Definition 5 (Types).

A ::= ⊥ | X | ¬A | A ∧ A | ∃X.A

Definition 6 (Pseudo-Terms).

Λ∃ � M ::= x | λx :A.M | MM

| 〈M,M〉 | let 〈x, x〉 = M in M

| 〈A,M〉∃X.A | let 〈X,x〉 = M in M

Definition 7 (Reduction Rules).

(β) (λx :A.M)M1 → M [x := M1]
(η) λx :A.Mx → M if x
∈ FV (M)
(let∧) let 〈x1, x2〉 = 〈M1,M2〉 in M → M [x1 := M1, x2 := M2]
(let∃) let 〈X,x〉 = 〈A1,M2〉∃X.A in M → M [X := A1, x := M2]

A set of free variables in M is denoted by FV (M). A simultaneous substitu-
tion for free variables x1, x2 or X,x is denoted by [x1 := M1, x2 := M2] or
[X := A, x := M], respectively. We also write =λ∃ for the reflexive, symmetric
and transitive closure of the one step reduction →λ∃ defined above. We may
sometimes omit type annotations from terms.

Definition 8 (Type Assignment Rules).

x :A ∈ Γ
Γ � x : A

Γ, x :A � M : ⊥
Γ � λx :A.M : ¬A (¬I)

Γ � M1 : ¬A Γ � M2 : A
Γ � M1M2 : ⊥ (¬E)

Γ � M1 : A1 Γ � M2 : A2

Γ � 〈M1,M2〉 : A1 ∧ A2
(∧I)

Γ � M1 : A1 ∧ A2 Γ, x1 :A1, x2 :A2 � M : A
Γ � let 〈x1, x2〉 = M1 in M : A

(∧E)

Γ � M : A[X := A1]
Γ � 〈A1,M〉∃X.A : ∃X.A

(∃I)
Γ � M1 : ∃X.A1 Γ, x :A1 � M : A
Γ � let 〈X,x〉 = M1 in M : A

(∃E)�

where (∃E)� denotes the eigenvariable condition X
∈ FV (A,Γ).

198 K. Fujita

4 CPS-Translation and Soundness

For a CPS-translation from λ2-calculus into λ∃-calculus, we define an embed-
ding of types (types for denotations of proof terms), denoted by ¬A∗, types for
continuations, denoted by A∗, and denotation of λ2-types, denoted by A•.

Definition 9 (Types for Continuations). A∗ = ¬A•

Definition 10 (Denotation of Types).

(1) X• = X
(2) (A1 ⇒ A2)• = ¬(¬A∗

1 ∧ A∗
2)

(3) (∀X.A)• = ¬∃X.A∗

Remarked that ¬¬A∗ and ¬A• are intuitionistically equivalent. We may write
A◦ for B such that A• ≡ ¬B for non-atomic type A. For non-atomic A, ¬A∗ and
¬A◦ are intuitionistically equivalent. We note that (A1 ⇒ A2)• ↔ ¬¬(¬A•

1∨A•
2)

and (∀X.A)• ↔ ∀X.¬¬A• are intuitionistically provable. Thus the embedding
is similar to both Kolmogorov’s negative translation and Hofmann-Streicher
[HS97].

Lemma 11. (1) We have A•[X := A•
1] = (A[X := A1])•.

(2) We have (A[X := A1])∗ = A∗[X := A•
1].

Proof. (1), (2) By induction on the structure of A. /0
The definition of denotation of proof terms, denoted by [[M]], is given by induc-
tion on the typing derivation of M .

Definition 12 (Denotation of λ2-Terms).

(i) [[x]] = x if Γ � x : A
(ii) [[λx :A1.M]]

= λa : (A1 ⇒ A2)∗.a(λk : (¬A∗
1 ∧ A∗

2).(let 〈x, c〉 = k in [[M]]c))
if Γ � λx :A1.M : A1 ⇒ A2

(iii) [[M1M2]] = λa :A∗
2.[[M1]](λd :¬(¬A∗

1 ∧ A∗
2).d〈[[M2]], a〉)

if Γ � M1 : A1 ⇒ A2 and Γ � M2 : A1
(iv) [[λX.M]] = λa : (∀X.A)∗.a(λk : (∃X.A∗).(let 〈X, c〉 = k in [[M]]c))

if Γ � λX.M : ∀X.A
(v) [[MA1]] = λa : (A[X := A1])∗.[[M]](λd : (¬∃X.A∗).d〈A•

1, a〉∃X.A∗)
if Γ � MA1 : A[X := A1]

We may write simply 〈〈R,M〉〉 for λd : A•.d〈R,M〉, and 〈〈R1, R2, . . . , Rn,M〉〉
for 〈〈R1, 〈〈R2, . . . , Rn,M〉〉〉〉, where R is either A or M , and 〈〈M〉〉 ≡ M .

The definition above interprets each proof term with type A as a functional
element with type ¬A∗ (space of denotations of type A), which takes, as an ar-
gument, a continuation with type A∗. The cases of application say that continu-
ations are in the form of a pair 〈〈[[M]], a〉〉 or 〈〈A•, a〉〉 consisting of a denotation
and a continuation in this order. The cases of λ-abstraction mean that after

Galois Embedding from Polymorphic Types into Existential Types 199

the interpretation, λ-abstraction is waiting for a first component of a continu-
ation (i.e., a denotation of its argument), and the second component becomes
a rest continuation to the result. It should be remarked that (∀I) and (∀E)
are respectively interpreted by the use of dual (∃E) and (∃I), we call proof
duality.

Example 13. Let xM1 · · ·Mn be with type Am+1 and A be A1 ⇒ · · · ⇒ Am+1:

[[λx1 :A1 . . . λxm :Am.xM1 · · ·Mn]]
→+

β λc0 :A∗.c0(λk1. let 〈x1, c1〉 = k1 in

c1(λk2. let 〈x2, c2〉 = k2 in

. . .

cm−1(λkm. let 〈xm, cm〉 = km in x〈〈[[M1]], . . . , [[Mn]], cm〉〉) . . .))
where ki : Ak

i ∧ (Ai+1 ⇒ · · · ⇒ Am+1)∗

Lemma 14. We have [[M [x := N]]] = [[M]][x := [[N]]] and
[[M [X := A]]] = [[M]][X := A•].

Proof. By induction on the structure of M together with Lemma 11. /0
Proposition 15 (Soundness).

(i) If we have Γ �λ2 M : A, then ¬Γ ∗ �λ∃ [[M]] : ¬A∗.
(ii) For well-typed M1,M2 ∈ Λ2, if we have M1 →λ2 M2 then [[M1]] →+

λ∃ [[M2]].

Proof. If we have Γ � M : A, then ¬Γ ∗ � [[M]] : ¬A∗ by induction on the
derivation together with Definition 12. We show two cases of (1) λX.M and (2)
MA.
(1) Suppose the following figure of λ2, where X is never free in the context Γ .

M : A
λX.M : ∀X.A

(∀I)�

Then we have the proof figure of λ∃, where the eigenvariable condition of (∃E)
can be guaranteed by that of (∀I).

[a : (∀X.A)∗]

[k : ∃X.A∗]
[[M]] : ¬A∗ [c : A∗]

[[M]]c : ⊥
let 〈X, c〉 = k in [[M]]c : ⊥ (∃E)�

λk : (∃X.A∗).(let 〈X, c〉 = k in [[M]]c) : ¬∃X.A∗

a(λk : (∃X.A∗).(let 〈X, c〉 = k in [[M]]c)) : ⊥
λa : (∀X.A)∗.a(λk : (∃X.A∗).(let 〈X, c〉 = k in [[M]]c)) : ¬(∀X.A)∗

(2) Suppose that
M : ∀X.A

MA1 : A[X := A1]
(∀E)

200 K. Fujita

Then we have the following proof figure:

[[M]] : ¬(∀X.A)∗

[d : ¬∃X.A∗]
[a : (A[X := A1])∗ = A∗[X = A•

1]]
〈A•

1, a〉∃X.A∗ : ∃X.A∗ (∃I)

d〈A•
1, a〉∃X.A∗ : ⊥

λd : (¬∃X.A∗).d〈A•
1, a〉∃X.A∗ : ¬¬∃X.A∗

[[M]]〈〈A•
1, a〉〉 : ⊥

λa : (A[X := A1])∗.[[M]]〈〈A•
1, a〉〉 : ¬(A[X := A1])∗

The other cases for (⇒ I) and (⇒ E) are the same as above.
Next, we can prove that if we have M1 →λ2 M2 then [[M1]] →+

λ∃ [[M2]] by
induction on the derivation of well-typed terms. We show the case of (3) (βt)
where λX.M : ∀X.A.

(3) [[(λX.M)A1]]
= λa : (A[X := A1])∗.

(λa : (∀X.A)∗.a (λk : (∃X.A∗).(let 〈X, c〉 = k in [[M]]c))) 〈〈A•
1, a〉〉

→+
β λa : (A[X := A1])∗.(let 〈X, c〉 = 〈A•

1, a〉∃X.A∗ in [[M]]c)
→let∃ λa : (A[X := A1])∗.[[M]][X := A•

1]a
= λa : (A[X := A1])∗.[[M [X := A1]]]a from Lemma 14
→η [[M [X := A1]]] /0

5 Inverse Translation and Galois Embedding

We introduce a key definition, an inductive generation rule of R à la [SF93],
which describes the image of the CPS-translation closed under the reduction
rules. We write R ∈ R,R• for both R ∈ R and R ∈ R•, and R1, . . . , Rn ∈ R for
Ri ∈ R (1 ≤ i ≤ n).

Definition 16 (Inductive Generation of R).

1.
x ∈ R,R• A• ∈ R•

2.
R ∈ R R1, . . . , Rn ∈ R• a
∈ FV (RR1 . . . Rn) n ≥ 0

λa.R〈〈R1, . . . , Rn, a〉〉 ∈ R,R•

3.

λa.W,R1 ∈ R R2, . . . , Rn ∈ R• b
∈ FV (R1 . . . RnW) n ≥ 0
λb.〈〈R1, . . . , Rn, b〉〉(λk.let 〈x, a〉 = k in W) ∈ R,R•

λa.W ∈ R A•
1, R2, . . . , Rn ∈ R• b
∈ FV (R2 . . . RnW) n ≥ 0

λb.〈〈A•
1, R2, . . . , Rn, b〉〉(λk.let 〈X, a〉 = k in W) ∈ R,R•

Galois Embedding from Polymorphic Types into Existential Types 201

4.

λa.W,R ∈ R R1, . . . , Rn ∈ R• b
∈ FV (RR1 . . . RnW) n ≥ 0
λb.(λk.let 〈x, a〉 = k in W)〈R, 〈〈R1, . . . , Rn, b〉〉〉 ∈ R,R•

λa.W ∈ R R1, . . . , Rn ∈ R• b
∈ FV (R1 . . . RnW) n ≥ 0
λb.(λk.let 〈X, a〉 = k in W)〈A•, 〈〈R1, . . . , Rn, b〉〉〉∃X.A∗ ∈ R,R•

5.

λa.W,R ∈ R R1, . . . , Rn ∈ R• b
∈ FV (RR1 . . . RnW) n ≥ 0
λb.(let 〈x, a〉 = 〈R, 〈〈R1, . . . , Rn, b〉〉〉 in W) ∈ R,R•

λa.W ∈ R R1, . . . , Rn ∈ R• b
∈ FV (R1 . . . RnW) n ≥ 0
λb.(let 〈X, a〉 = 〈A•, 〈〈R1, . . . , Rn, b〉〉〉∃X.A∗ in W) ∈ R,R•

From the inductive definition above, R ∈ R is in the form of either x or λa.W
for some W . It is important that terms with the pattern of λa.W ∈ R have the
form such that the continuation variable a appears exactly once in W (linear
continuation), since our source calculus is intuitionistic. To save the space, we
omit here the typing rules for R ∈ R; ¬Γ ∗ �λ∃ x : ¬A∗ if x :¬A∗ ∈ ¬Γ ∗, etc.

Lemma 17 (Subject reduction w.r.t. R). The category R is closed under
the reduction rules of λ∃.

Proof. Substitutions associated to the reduction rules are closed with respect to
the category. /0
Lemma 18 (Subject reduction w.r.t. types). If we have R : ¬A∗ together
with R →∗

λ∃ R1, then we also have R1 : ¬A∗.

Proof. The calculus λ∃ has the subject reduction property. /0
Let (η−a) be an η-expansion: R → λa :A∗.Ra where a
∈ FV (R) and R ∈ R.

Definition 19 (Universe of the CPS-Translation).

Univ
def= {P ∈ Λ∃ | [[M]] →∗

λ∃η−
a
P for some well-typed M ∈ Λ2}

Proposition 20. Univ is generated by R, i.e., Univ ⊆ R.

Proof. For well typed M ∈ Λ2, we have [[M]] ∈ R, and moreover R is closed
under (η−a) and the reduction rules by Lemma 17. /0
Lemma 21. For any P ∈ Univ, we have some Γ and A such that ¬Γ ∗ �λ∃ P :
¬A∗.

Proof. From the definition of Univ, Proposition 15 and Lemma 18. /0
Following the patterns of λa.W ∈ R, we now give the definition of the inverse

translation ' as (λa.W)� = W �.

202 K. Fujita

Definition 22 (Inverse Translation ' for R).

(i) x� = x; (A•)� = A

(ii) (R〈〈R1, . . . , Rn, a〉〉)� = R�R�
1 . . . R

�
n

(iii) – (〈〈R1, . . . , Rn, a〉〉(λk : (¬A∗
1 ∧ A∗

2).(let 〈x, c〉 = k in W)))�

= (λx :A1.W
�)R�

1 . . . R
�
n

– (〈〈R1, . . . , Rn, a〉〉(λk : (∃X.A∗).(let 〈X, c〉 = k in W)))�

= (λX.W �)R�
1 . . . R

�
n

(iv) – ((λk : (¬A∗
1 ∧ A∗

2).(let 〈x, c〉 = k in W))〈R, 〈〈R1, . . . , Rn, a〉〉〉)�

= (λx :A1.W
�)R�R�

1 . . . R
�
n

– ((λk : (∃X.A∗).(let 〈X, c〉 = k in W))〈R, 〈〈R1, . . . , Rn, a〉〉〉)�

= (λX.W �)R�R�
1 . . . R

�
n

(v) – (let 〈x, c〉 = 〈R, 〈〈R1, . . . , Rn, a〉〉〉 in W)�

= (λx :A1.W
�)R�R�

1 . . . R
�
n for R : ¬A∗

1
– (let 〈X, c〉 = 〈R, 〈〈R1, . . . , Rn, a〉〉〉 in W)�

= (λX.W �)R�R�
1 . . . R

�
n

Proposition 23 (Completeness 1). For any P ∈ Univ, there exist some Γ,A
such that Γ � P � : A in λ2.

Proof. From Lemma 21, it is enough to show Γ �λ2 P � : A if we have ¬Γ ∗ �λ∃

P : ¬A∗. By induction on the length of the derivation ¬Γ ∗ �λ∃ P : ¬A∗,
following the case analysis on well-typed P ∈ R. /0
Proposition 24. (1) Let M ∈ Λ2 be well-typed. Then we have that [[M]]� ≡ M .
(2) Let P ∈ R be well-typed. Then we have that [[P �]] →∗

βη−
a
P .

(3) If P ∈ R is a normal form of λ∃, then P � is a normal form of λ2.

Proof. (1) By induction on the structure of well-typed M ∈ Λ2.
(2) By case analysis on P ∈ R, following the definition of '.
(3) Following case analysis on P ∈ R.

– Case P of λa :A∗.R〈〈R1, . . . , Rn, a〉〉:
Since P is a normal form of λ∃, we have R ≡ x and Ri is also in normal,
to say, Rnf

i . Then we have normal P � = x(Rnf
1)� . . . (Rnf

n)�.
– Case P of λa :A∗.a(λk.(let 〈x, c〉 = k in W)):

Since P is in normal, so is W , to say, Wnf . Then we have normal P � =
λx :A1.(Wnf)�. /0

Proposition 25. We have Univ = R with respect to well-typed terms.
Proof. We have Univ ⊆ R from Proposition 20. Let P ∈ R be well-typed. Then
P � ∈ Λ2 is well-typed from the proof of Proposition 23. Proposition 24 implies
that [[P �]] →∗

βη−
a
P , and hence P ∈ Univ. Therefore we have R ⊆ Univ. /0

Lemma 26. (W [a := 〈〈R1, . . . , Rm, b〉〉])� = W �R�
1, . . . , R

�
n provided a ∈ FV (W).

Proof. Following the case analysis on W . We show one case of W = aD where
D = (λk.let 〈x, c〉 = k in W ′). Let θ be [a := 〈〈R1, . . . , Rn, b〉〉]. We have
Wθ = (aD)θ = 〈〈R1, . . . , Rm, b〉〉D, and then we have
(Wθ)� = (λx.W ′�)R�

1 . . . R
�
m = W �R�

1 . . . R
�
m. /0

Galois Embedding from Polymorphic Types into Existential Types 203

Proposition 27 (Completeness 2). Let P,Q ∈ R.

(1) If P →β Q then P � ≡ Q�.
(2) If P →η Q then P � ≡ Q�.
(3) If P →let∧ Q then P � →β Q�.
(4) If P →let∃ Q then P � →βt

Q�.

Proof. By induction on the derivations. The cases (1,2) are straightforward. We
show the case of (4):

Let P be λa.let 〈X, c〉 = 〈A•, 〈〈R1, . . . , Rn, a〉〉〉 in W .

P � = (λX.W �)(A•)�R�
1 . . . R

�
n

→βt W �[X := A]R�
1 . . . R

�
n

= (W [X := A•])�R�
1 . . . R

�
n = (W [X := A•][c := 〈〈R1, . . . , Rn, a〉〉])� /0

Theorem 28. (i) Γ �λ2 M : A if and only if ¬Γ ∗ �λ∃ [[M]] : ¬A∗.
(ii) P ∈ Univ if and only if Γ �λ2 P � : A for some Γ,A.
(iii) Let M1,M2 be well-typed λ2-terms.

M1 =λ2 M2 if and only if [[M1]] =λ∃ [[M2]].
In particular, M1 →λ2 M2 if and only if [[M1]] →+

β →let→η [[M2]].
(iv) Let P1, P2 ∈ Univ. P1 =λ∃ P2 if and only if P �

1 =λ2 P �
2 .

Proof. (i, ii) From Propositions 15 and 23. (iii, iv) From Propositions 15 and 27.
/0

Corollary 29. The inverse translation ' : Univ → Λ2 is bijective, in the follow-
ing sense:

(1) If we have P �
1 =λ2 P �

2 then P1 =λ∃ P2 for P1, P2 ∈ Univ.
(2) For any well-typed M ∈ Λ2, we have some P ∈ Univ such that P � ≡ M .

Proof. For (2), we can take P as [[M]] from Proposition 24. /0
Definition 30 (Galois Connection). Let →∗

S and →∗
T be pre-orders on S

and T respectively, and f : S → T and g : T → S be maps. Two maps f and g
form a Galois connection between S and T whenever f(M) →∗

T P if and only if
M →∗

S g(P), see also [SW97].

It is known that the definition above is equivalent to the following clauses:

(i) M →∗
S g(f(M))

(ii) f(g(P)) →∗
T P

(iii) M1 →∗
S M2 implies f(M1) →∗

T f(M2)
(iv) P1 →∗

T P2 implies g(P1) →∗
S g(P2)

Definition 31 (Galois Embedding). Two maps f and g form a Galois em-
bedding into T if they form a Galois connection and g(f(M)) ≡ M .

204 K. Fujita

Theorem 32. The translations [[]] and ' form a Galois connection between λ2
and Univ, and moreover, they establish a Galois embedding into Univ.

Proof. From Propositions 15, 24, and 27. /0
It is remarked that a Galois embedding is the dual notion of a reflection: f and g
form a reflection in S if they form a Galois connection and f(g(P)) ≡ P . In fact,
let M →− N (expansion) be N → M (reduction). Then →−∗ is a pre-order, and
〈', [[]],→−∗

λ∃ ,→−∗
λ2 〉 forms a reflection.

Let 'Univ be {P � | P ∈ Univ}. Let [['Univ]] be {[[M]] | M ∈ 'Univ}.
Corollary 33 (Kernel of Λ2). For any P ∈ [['Univ]], we have P ≡ [[P �]].

Proof. Let Λ2 be a set of well-typed λ2-terms. Then we have 'Univ = Λ2 and
[['Univ]] = [[Λ2]]. Hence, any P ∈ [[Λ2]] is in the form P ≡ [[M]] for some M ∈ Λ2,
such that [[P �]] ≡ [[[[M]]�]] ≡ [[M]] ≡ P . /0
Corollary 34 (Normalization of Λ2). The weak normalization of λ2 is in-
herited from that of λ∃. Moreover, the strong normalization of λ2 is implied by
that of λ∃.

Proof. The weak normalization of λ2 is implied by Theorem 32 ([[]] and ' form a
Galois connection) together with Proposition 24 (3). The strong normalization
of λ2 is implied by Proposition 15 (soundness). /0
Corollary 35 (Church-Rosser of Λ2). The Church-Rosser property of λ2 is
inherited from that of λ∃.

Proof. The Church-Rosser property of λ2 is implied by Theorem 32. /0
We remark that the system λ∃ can be regarded logically as a subsystem of F, in
the sense that the connectives ∧ and ∃ together with the reduction rules can be
coded by universal types of F [GTL89]. Our result, in turn, means that universal
types can be interpreted by the use of existential types. Moreover, proof duality
appears in the proof such that (∀I) ↔ (∃E) and (∀E) ↔ (∃I).

6 Proof Duality Between Polymorphic Functions and
Abstract Data Types

We discuss the proof duality in detail. If we have Γ �λ2 A in λ2, then classical
logic has A∗ � Γ ∗. In terms of minimal logic, we can expect that ¬Γ ∗, A∗ � ⊥.
In fact, we obtain ¬Γ ∗, a :A∗ �λ∃ M : ⊥ if Γ �λ2 M : A, under the following
definition.

Definition 36 (Modified CPS-Translation).

(i) x = xa
(ii) λx :A1.M = a(λk : (¬A∗

1 ∧ A∗
2).let 〈x, a〉 = k in M)

for λx :A1.M : A1 ⇒ A2

Galois Embedding from Polymorphic Types into Existential Types 205

(iii) M1M2 = M1[a := 〈〈λa :A∗
1.M2, a〉〉] for M2 : A1

(iv) λX.M = a(λk : (∃X.A∗).let 〈X, a〉 = k in M) for λX.M : ∀X.A
(v) MA1 = M [a := 〈〈A•

1, a〉〉]

Lemma 37. Let M ∈ Λ2 be a well-typed term.

(1) We have [[M]]a →∗
βη−

a
M and [[M]] →∗

βη−
a
λa.M .

(2) [[M]]� = (M)� ≡ M

(3) If M is a normal form of λ2, then M is a normal form of λ∃ without (ηa).

Proof. By induction on the structure of M together with Proposition 24. /0
The notion of path is defined as in Prawitz [Pra65], and dual path is intro-

duced here to investigate relationship between λ2-proofs and λ∃-proofs.

Definition 38 (Path). A sequence consisting of formulae and inference rules
A1(R1)A2(R2) . . . An−1(Rn−1)An is defined as a path in the deduction Π of λ2,
as follows:

(i) A1 is a top-formula in Π;
(ii) Ai (i < n) is not the minor premise of an application of (⇒ E), and Ai+1 is

the formula occurrence immediately below Ai by an application of (Ri);
(iii) An is either a minor premise of (⇒ E) or the end-formula of Π.

Definition 39 (Dual Path). A sequence consisting of formulae and inference
rules A1(R1)A2(R2) . . . An−1(Rn−1)An is defined as a dual path in the deduction
Σ of λ∃, as follows:

(i) A1 is a top-formula in Σ;
(ii) Ai (i < n) is not the major premise of an application of (¬E), and either

1) Ai is not a major premise of (∧E) or (∃E), and Ai+1 is the formula
occurrence immediately below Ai by an application of (Ri), or
2) Ai is the major premise of an application of (∧E) or (∃E), and Ai+1 is
the assumption discharged in Σ by (∧E) or (∃E), to say, (Ri);

(iii) An is either a major premise of (¬E) or the end-formula of Σ.

We write (I) for either (⇒I) or (∀I), and (E) for either (⇒E) or (∀E). We also
define inference rule correspondence as follows: (⇒I)∗ = (∧E), (⇒E)∗ = (∧I),
(∀I)∗ = (∃E), (∀E)∗ = (∃I).

Theorem 40 (Proof duality). Let Π be a normal deduction of Γ �λ2 M : A,
and let π be a path A1(E1)A2(E2) . . . Ai(Ei)Ai+1(Ii+1) . . . An−1(In−1)An in the
normal deduction. Then, in the deduction of ¬Γ ∗, a :A∗ �λ∃ M : ⊥, there exist
dual paths πd

n, . . . ,π
d
(i+2), as follows:

πd
n = A◦

n(In−1)∗A∗
n−1,

πd
(n−1) = A◦

n−1(In−2)∗A∗
n−2, . . .,

πd
(i+3) = A◦

i+3(Ii+2)∗A∗
i+2, and

πd
(i+2) = A◦

i+2(Ii+1)∗A∗
i+1(Ei)∗A◦

i (¬E)⊥(¬I)A∗
i (Ei−1)∗A◦

i−1(¬E)⊥(¬I)A∗
i−1

. . . (E1)∗A◦
1(¬E)⊥(¬I)A∗

1(¬E)⊥.

206 K. Fujita

Proof. By induction on the normal derivation of Γ �λ2 M : A.
From Proposition 24, the form of normal M without (ηa) is described as

follows:

NF ::= xa

| a(λk.let 〈χ, a〉 = k in a(λk.let 〈χ, a〉 = k in . . .

a(λk.let 〈χ, a〉 = k in x〈〈Nf, . . . , Nf, a〉〉) . . .))

where Nf ::= A• | λa.NF , and we write χ for either x or X.
We show here some of the cases:
(1) An (n = i + 1) is derived by an elimination rule.
Case of (⇒ E):
From a normal deduction Π, (B ⇒ An) cannot be derived by an introduction

rule:
Π1

M1 : B ⇒ An

Π2
M2 : B

M1M2 : An
(⇒ E)

Then we have a dual path πd
1 from (B ⇒ An)∗ to ⊥, corresponding to the path

π1 to (B ⇒ An):
a : (B ⇒ An)∗

Σ1
M1 : ⊥

a : B∗
Σ2

M2 : ⊥
The figure below says that we have a dual path

πd = A∗
n(⇒E)∗(B ⇒ An)◦(¬E)⊥(¬I)πd

1 :

[d : ¬(¬B∗ ∧ A∗
n)]

[a : B∗]
Σ2

M2 : ⊥
λa.M2 : ¬B∗ (¬I)

a : A∗
n

〈λa.M2, a〉 : ¬B∗ ∧ A∗
n

(∧I)

d〈λa.M2, a〉 : ⊥ (¬E)

〈〈λa.M2, a〉〉 : (B ⇒ An)∗
(¬I)

Σ1[a := 〈〈λa.M2, a〉〉]
M1[a := 〈〈λa.M2, a〉〉] : ⊥

(2) An (n > i + 2) is derived by an introduction rule.

Π1
An−2

An−1
(In−2)

M : An
(In−1)

From the form of normal terms in the dual path corresponding to the I-part
of the path to An, we have M : ⊥ as the following form together with type
annotations:

Galois Embedding from Polymorphic Types into Existential Types 207

a(λk :A◦
n.let 〈χ, a :A∗

n−1〉 = k in a(λk :A◦
n−1.let 〈χ, a :A∗

n−2〉 = k in . . .

a(λk.let 〈χ, a〉 = k in x〈〈Nf, . . . , Nf, a〉〉) . . .))

Hence, we have the dual paths A◦
n(In−1)∗A∗

n−1, and at least, A◦
n−1(In−2)∗A∗

n−2,
which correspond to the tail parts of the path to An. /0

Let π be a path A1(R1)A2(R2) . . . An−1(Rn−1)An. Then we define a sequence of
inference rules |π| = (R1)(R2) . . . (Rn−1), and |π|− = (Rn−1) . . . (R2)(R1). Let
πd be a dual path A1(R1)A2(R2) . . . An−1(Rn−1)An. Then we define a sequence
of inference rules ‖πd‖ deleting (¬I) and (¬E), as follows:

‖πd‖ =
{ ‖A2(R2)A3 . . . (Rn−1)An‖ if (R1) = (¬I) or (¬E);

(R1)‖A2(R2)A3 . . . (Rn−1)An‖ otherwise.
We write |π|− � ‖πd‖ for |π|− = ‖πd‖ under the correspondence between

(⇒I) and (∧E); (⇒E) and (∧I); (∀I) and (∃E); (∀E) and (∃I).

Corollary 41. Let Π be a normal deduction of Γ �λ2 M : A, and let π be a
path in the normal deduction. Then there exist dual paths πd

n, . . . ,π
d
i+2 in

¬Γ ∗, a :A∗ �λ∃ M : ⊥, such that |π|− � ‖πd
n‖ . . . ‖πd

i+2‖.

It is remarked that in the simply typed case, the definitions of [[]] and can be
simplified, so that the theorem above becomes straightforward |π|− � ‖πd‖.

7 Concluding Remarks

The calculus λ∃ can be regarded as a subsystem of λ2, in the sense that ∧ and ∃
with reduction rules can be impredicatively coded in λ2. We have established a
Galois embedding from polymorphic λ2 into λ∃, in which proof duality appears
such that polymorphic functions with ∀-type can be interpreted by abstract data
types with ∃-type [MP85] and vice versa. Moreover, inference rules in a path of
normal deductions of λ2 are reversely applied in the corresponding dual paths
of λ∃, under the correspondence between (∀I) and (∃E); (∀E) and (∃I); etc.
The involved CPS-translation is similar to that of [Plot75], [HS97], [Seli01] or
[Fuji03]. However, relating to extensionality, the case of conjunction-elimination
is essentially distinct from them, and this point is important for the complete-
ness. Although none of two through [Plot75], [HS97] and ours in this paper are
βη-equal, we remark that they are isomorphic to each other in the simply typed
case, from the work on answer type polymorphism by Thielecke [Thie04]. Our
definition of the CPS-translation can work even for polymorphic λμ-calculus
[Pari92].

After completing this work, Masahito Hasegawa commented another def-
inition of denotation of λ2-types such that (A1 ⇒ A2)∗ = ¬A∗

1 ∧ A∗
1 and

(∀X.A)∗ = ∃X.A∗, where the denotation of types is syntactically equal to type
for continuations. His definition makes every theorem in this paper valid as well,
and theorem 40 (proof duality) becomes more natural under this definition. This
topics will be discussed in the revised and extended version of this paper. We

208 K. Fujita

think that our minimal logic λ∃ is interesting to investigate fundamental prop-
erties of calculi including the system F, e.g., F-algebras under parametricity,
duality between initial and terminal fixed points, etc.

Acknowledgements I am grateful to Thierry Coquand, Peter Dybjer, Masa-
hito Hasegawa, Ryu Hasegawa, Per Martin-Löf and Masahiko Sato for helpful
discussions. The author is also grateful to the TLCA ’05 programme chair and
the referees for their constructive comments. This research has been supported
by Grants-in-Aid for Scientific Research (C)(2)14540119, Japan Society for the
Promotion of Science and by the Kayamori Foundation of Informational Science
Advancement.

References

[Coq86] Th. Coquand: An analysis of Girard’s paradox, Proc. the Annual IEEE Sym-
posium on Logic in Computer Science (1986) 227–236

[Fuji03] K. Fujita: A sound and complete CSP-translation for λμ-Calculus, Lecture
Notes in Computer Science 2701 (2003) 120–134

[GTL89] J-Y. Girard, P. Taylor, and Y. Lafont: Proofs and Types, Cambridge Univer-
sity Press (1989)

[HS97] M. Hofmann and T. Streicher: Continuation models are universal for λμ-
calculus, Proc. the 12th Annual IEEE Symposium on Logic in Computer Sci-
ence (1997) 387–395

[MP85] J. C. Mitchell and G. D. Plotkin: Abstract types have existential type, Proc.
the 12th Annual ACM Symposium on Principles of Programming Languages
(1985) 37–51

[Pari92] M. Parigot: λμ-Calculus: An Algorithmic Interpretation of Classical Natural
Deduction, Lecture Notes in Computer Science 624 (1992) 190–201

[Plot75] G. Plotkin: Call-by-Name, Call-by-Value and the λ-Calculus, Theoretical
Computer Science 1 (1975) 125–159

[Pra65] D. Prawitz: Natural Deduction, A Proof Theoretical Study, Almqvist & Wik-
sell, Stockholm (1965)

[Seli01] P. Selinger: Control Categories and Duality: on the Categorical Semantics of
the Lambda-Mu Calculus, Math. Struct. in Compu. Science 11 (2001) 207–
260

[SF93] A. Sabry and M. Felleisen: Reasoning about Programs in Continuation-
Passing Style, Lisp and Symbolic Computation: An International Journal 6
(1993) 289–360

[SW97] A. Sabry and Ph. Wadler: A reflection on call-by-value, ACM Transactions
on Programming Languages and Systems 19-6 (1997) 916–941

[Thie04] H. Thielecke: Answer type polymorphism in call-by-name continuation pass-
ing, Lecture Notes in Computer Science 2986 (2004) 279–293

[Wad03] Ph. Wadler: Call-by-value is dual to call-by-name, International Conference
on Functional Programming, August 25-29, Uppsala (2003)

On the Degeneracy of Σ-Types in Presence
of Computational Classical Logic

Hugo Herbelin

LIX - INRIA-Futurs - PCRI,
École Polytechnique,

F-91128 Palaiseau Cedex
Hugo.Herbelin@inria.fr

Abstract. We show that a minimal dependent type theory based on Σ-
types and equality is degenerated in presence of computational classical
logic. By computational classical logic is meant a classical logic derived
from a control operator equipped with reduction rules similar to the ones
of Felleisen’s C or Parigot’s μ operators. As a consequence, formalisms
such as Martin-Löf’s type theory or the (Set-predicative variant of the)
Calculus of Inductive Constructions are inconsistent in presence of com-
putational classical logic. Besides, an analysis of the role of the η-rule for
control operators through a set-theoretic model of computational classi-
cal logic is given.

1 Introduction

1.1 Computational Classical Logic

The call-with-current-continuation operator is a construct that has been
introduced in Scheme a few decades ago. Numerous variants of the original
call-with-current-continuation have been considered. Felleisen introduced
the operators C, K and A and studied calculi based on these operators [4]. The
SML language introduced the callcc and throw operators, all equipped with
comparable reduction rules.

Griffin [5] showed that Felleisen’s C operator was typable under some con-
ditions of type ¬¬A → A in a simply typed framework, thus extending the
Curry-Howard correspondence to classical logic.

Parigot [7] introduced a distinction between the (ordinary) variables and
the continuation variables, together with operators μ and brackets, leading to
the elegant λμ-calculus. A variant of λμ-calculus based on SML callcc (there
renamed catch) and throw has been given in Crolard [3].

Basically, computational classical calculus comes with commutation rules
(called structural rules or ζ rules in the context of λμ-calculus), an elimina-
tion rule (also called simplification or ημ rule in the context of λμ-calculus), and
an idempotency rule (also called renaming or βμ rule) .

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 209–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 H. Herbelin

As an introduction to computational classical logic, we here describe λμ-
calculus:

t, u ::= λx.t | tu | x | μα.c terms
c ::= [α]t commands

To express the reduction rules, we need to define the notion of substitution
of a continuation variable α by an evaluation context C for commands (i.e. a
command with a placeholder { }):

x[C/α] = x
(λx.t)[C/α] = λx.(t[C/α])
(tu)[C/α] = t[C/α]u[C/α]
(μβ.c)[C/α] = μβ.(c[C/α])
([α]t)[C/α] = C{t[C/α]}
([β]t)[C/α] = [β](t[C/α]) α
= β

where x in the second rule and β in the fourth rule are chosen such that no
capture of free variables in C happens.

In a call-by-name setting, the reduction rules express as:

(λx.t)u → t[u/x] β
(μα.c)t → μα.(c[[α]({ }t)/α]) ζapp
[β]μα.c → c[[β]{ }/α] βμ

μα.[α]t → t (α not free in t) ημ

Thanks to computational classical logic, classical proofs of simple formulae
such as Σ0

1 formulae eventually normalise to proofs which are (essentially) intu-
itionistic.

Actually, it is worth to notice that reduction rules close to the rules above
were already present in Prawitz’ proof of normalisation of the classical extension
of natural deduction [9]. What was apparently missing, even after the emergence
of the intuitionistic part of the proof-as-program paradigm, was the conviction
that they were computationally meaningful in practise.

1.2 Computational Versus Platonistic Classical Logic

We oppose computational classical logic to Platonistic classical logic. In Platon-
istic classical logic, computationally undecidable properties are transcendentally
decided by an oracle which transgresses the infinity of time. A Platonistic inter-
pretation of classical logic is given in Sect. 2.5.

1.3 Classical Logic, Axiom of Choice and Definite Description

The axiom of choice (in its functional form) strongly interacts with classical
logic. Coquand [2] showed that their conjunction forces propositions to be em-
beddable in the booleans, thus forbidding non trivial realisability models of the
propositional world. Especially, predicative logics with quantification over func-
tions become impredicative in presence of the axiom of choice in its functional
form and classical logic (observation attributed to Spector [11]). Also, logics with

On the Degeneracy of Σ-Types in Presence of Computational Classical Logic 211

non degenerated impredicative sets such as the Calculus of Inductive Construc-
tions are inconsistent in presence of the axiom of choice in its functional form
and classical logic.

More precisely, what strongly modifies the semantics of a classical logic is not
strictly speaking the (functional form of the) axiom of choice but its underlying
principle of definite description (also called axiom of unique choice or function
construction principle), as shown by Pottinger [8]. Indeed, the functional form
of the axiom of choice in type theory

(∀x : A,∃y : B,R(x, y)) → ∃f : A → B,∀x : A,R(x, f(x))

can be shown equivalent in impredicative type theory to the conjunction of its
relational form

(∀x : A,∃y : B,R(x, y)) → ∃R′ ⊂ R, ∀x : A,∃!y : B,R′(x, y)

and of the principle of definite description

(∀x : A,∃!y : B,R(x, y)) → ∃f : A → B,∀x : A,R(x, f(x)) .

In presence of classical logic, the principle of definite description alone is enough
to force propositions to be embedded in the booleans.

1.4 Computational Classical Logic and Strong Existential
Quantification

Classical logic inherits a computational interpretation through the reduction
rules assigned to control operators. The functional form of the axiom of choice
also inherits a computational interpretation through the reduction rules of strong
existential quantification, which is existential quantification equipped with its
first and second projections, the type of the second projection being dependent
on the first projection.

It is a natural question to study their interaction at a computational level,
knowing that they imply at the logical level the existence of a retraction from
propositions to the booleans [2].

The computational analysis of the proof of embedding of the propositions
within the booleans shows a failure of subject reduction which is due to the
dependency of the type of the second projection of the strong existential in the
first projection, making untypable the commutation rule of the control operator
used for the interpretation with the second projection of the strong existential.

Subject reduction can be restored to the price of assuming proof-irrelevance.
Concurrently, it can be shown that the commutation rule of the control oper-
ator used for the interpretation with the first projection itself leads to proof-
irrelevance, or, more generally, to the degeneracy of the quantification domain.
This is the purpose of the current paper.

212 H. Herbelin

2 The Degeneracy of Computationally Classical Type
Theory with Σ-Types

In this section, we use the terminology Σ-types to denote indifferently strong
existential quantification or usual Σ-types with both projections (also referred
to as strong sums).

2.1 A Minimal Logic of Σ-Types and Equality

We consider a type theory TTΣ based on strong existential quantification (i.e.
Σ-types) over a unique domain. We use the variable names x, y, ... to range over
the elements of the domain. The syntax of proofs and terms is mutually given
by

t, u ::= x | wit π
π ::= (t,π) | prf π | refl

The syntax of formulae is given by

A,B ::= t = u | Σx.A

The set FV (A) of free variables of A is defined as usual.
This theory is equipped with a single reduction rule on the language of terms.

wit(t,π) → t (ιwit)

The inference rules are on Fig. 1.

� π : A(t)

� (t, π) : Σx.A(x)

� π : Σx.A(x)

� prf π : A(wit π)

t→ u

� refl : t = u

� π1 : t = u � π2 : A(t)

� subst π1 π2 : A(u)

Fig. 1. Inference rules of TTΣ

Proposition 1. TTΣ is not degenerated, i.e., for distinct variables x and y,

� x = y.

This is direct by interpreting Σ-types on a domain D with (at least) two
distinct elements a
= b. For distinct elements in D, equality is interpreted as the
empty set, otherwise as a singleton set with the unique element interpreting the
reflexivity proof. The construction (t,π) is interpreted as pairing and wit and prf
as the first and second projections so that wit (t,π) and t are identical through
the interpretation and the reflexivity rule is valid.

On the Degeneracy of Σ-Types in Presence of Computational Classical Logic 213

If our only reduction rule is ιwit, it is because it is enough to infer the results
shown in the next subsections. We would have got a better-behaved reduction
system by adding the rules prf(t,π) → π and subst π1 (t,π2) → (t, subst π1 π2)).
Moreover, with the premise of the reflexivity rule generalised to the congruent
reflexive-symmetric-transitive closure of →, and the extra rule subst refl refl →
refl added, we would have got normalisability of the proofs, and, as a consequence,
the subformula property and a syntactic evidence of the non-derivability of the
degeneracy of the domain.

2.2 ... and Its Computationally Classical Extension TTccΣ

We now extend the type theory with classical logic. To allow reasoning by con-
tradiction on a formula A, we add the operator cck π that tries to prove A under
the assumption k : ¬A. A contradiction is derived at any point of the derivation
by applying the new operator th k π to any proof π of A in the context k : ¬A.
We thus extend the syntax of proofs with

π ::= . . . | cck π | th k π

where k ranges over a set of continuation variables. The operators cc and th are
similar to the catch and throw operators studied in Crolard [3]. In terms of the
λμ-calculus, cck π and th k π are essentially the same as μk.[k]π and μ .[k]π
where denotes a fresh continuation variables that do not occur in π.

The associated inference rules involved contexts of negated formulae. The
rules for cc and th are reminiscent of Peirce’s law and negation elimination.
The full resulting set of inference rules is given on Fig. 2.

Γ � π : A(t)

Γ � (t, π) : Σx.A(x)

Γ � π : Σx.A(x)

Γ � prf π : A(wit π)

t→ u

Γ � refl : t = u

Γ � π1 : t = u Γ � π2 : A(t)

Γ � subst π1 π2 : A(u)

Γ, k : ¬A � π : A

Γ � cck π : A

Γ, k : ¬A � π : A

Γ, k : ¬A � th k π : B

Fig. 2. Inference rules of TTccΣ

Since proofs occur in terms and that we want the classical extension to be
computational, we also extend the syntax of terms. This extension requires to
extend also the syntax of proofs with a construction which actually occurs only
as argument of wit in terms.

t ::= . . . | cck t
π ::= . . . | th k t

214 H. Herbelin

We want this classical extension to be computational. We add a subset of the
standard computation rules for cc and th [3], but adapted to Σ-types. It is just
enough to be able to derive the degeneracy of the domain.

wit(cck π) → cck wit(π[k(wit { })/k]) (ζwit)
cck t → t k not free in t (ηcc)

where [k(wit { })/k] denotes the capture-free substitution which replaces every
occurrence of th k t with th k (wit t). Notice that rule ηcc is identical to ημ

along the interpretation of cck t as μk.[k]t.
The terms and proofs of TTccΣ contain a context binder (the operator cc)

but do not include any term or proof binder. Hence, the reduction rules of TTccΣ

do not commit to a call-by-name or call-by-value discipline of reduction. This
is in contrast with λμ-calculus where the presence of a term binder (the λ-
abstraction) introduces a critical pair (observable on the redex (λx.t)(μα.c))
that can be resolved by committing the reduction system either to a call-by-
name or a call-by-value discipline.

2.3 Deriving the Collapse of the Quantification Domain

The domain of terms in TTccΣ is degenerated. Indeed, we have

Proposition 2. For any two variables x and y, x = y is derivable in TTccΣ .

The proof proceeds as follows.

– First prove Σz.z = x using the artificially classical proof

π0 � cck (x, th k (x, refl)) .

– Deduce wit π0 = x whose proof is π1 � prf π0.
– Observe that

wit π0 → cck(wit(x, th k wit(x, refl))) (ζwit)→ cck x (ιwit)

so that
π2 � subst refl π1

is a proof of cck x = x.
– Show then Σz.z = y using the artificially classical proof

π3 � cck (x, th k (y, refl)) .

– Observe also that

wit π3 → cck (wit(x, th k wit(y, refl))) (ζwit)→ cck x (ιwit)

to conclude that
π4 � subst refl (prf π3)

is a proof of cck x = y.

On the Degeneracy of Σ-Types in Presence of Computational Classical Logic 215

– Conclude that
subst π3 π4

is a proof of x = y.

Notice that we only used the ζwit and ιwit rules. The next section shows that
for typed control operators, one can exhibit a set-theoretic model of the system.

2.4 Explicit Typing of cc and th: System TTccT

Σ

We now consider explicitly typed cc and th. The new syntax of terms is

t, u ::= x | wit π | ccx.A
k t

π ::= (t,π) | prf π | refl | cck:¬A π | thB k π | thB k t

The typing rules are similar: just add the constraint for typing cck:¬A π
that ¬A is the type of k in the context and add the constraint that the type of
thB k π is B. The new reduction rules now take care of types.

wit(t,π) → t (ιwit)
wit(cck:¬Σx.A π) → ccx.A

k wit(π[k(wit { })/k]) (ζwit)
ccx.A

k t → t k not free in t (ηcc)

Thanks to the explicit typing, the previous proof of degeneracy do not work
any longer. Indeed, the two occurrences of cck x now appear as ccz.z=x

k x and
ccz.z=y

k x so that they are not convertible any more. The next section shows that
ιwit and ζwit together with explicitly typed cc and th do not allow to derive
the degeneracy of the quantification domain.

2.5 A Set-Theoretic Model of TTccT

Σ Without ηcc

Let D be a non empty domain and d0 be an element of D. To distinguish the
different roles we give to ∅, we use the abbreviation • to denote ∅ when seen as
an element rather than as a set. We interpret the formulae of TTccT

Σ by sets in
T where T is defined by

T0 = {∅, {•}}
Tn+1 = {Σa∈DTa|(Ta)a∈D ∈ T D

n }
T =

⋃
n Tn

where Σa∈DTa = {(a, p)|p ∈ Ta}.
For each inhabited ΣaTa, we let dΣaTa

be a canonical witness of the set, i.e. a
constant in D such that TdΣaTa

is inhabited (we need the axiom of choice if the
domain is not countable). For empty ΣaTa, we let dΣaTa

be d0. To each T ∈ T ,
we associate a canonical witness ε(T) (which is the same for all empty T). It is
defined by

ε(∅) = ε({•}) = •
ε(ΣaTa) = (dΣaTa

, ε(TdΣaTa
))

216 H. Herbelin

and it satisfies ε(T) ∈ T for non empty T . We use the letter ρ to denote substitu-
tions from the set of variables of the logic to D. The notation ρ, (x ← a) denotes
the substitution which binds (or rebinds) x to a. For a given substitution ρ, we
define the interpretations of terms, proofs and formulae as follows:

[[x]]ρ = ρ(x)
[[ccx.A

k t]]ρ = d[[Σx.A]]ρ
[[wit π]]ρ = fst([[π]]ρ)

[[refl]]ρ = •
[[subst π1 π2]]ρ = [[π2]]ρ
[[(t,π)]]ρ = ([[t]]ρ, [[π]]ρ)
[[prf π]]ρ = snd([[π]]ρ)
[[ccA

k π]]ρ = ε([[A]]ρ)
[[thB k π]]ρ = ε([[B]]ρ)

[[t = u]]ρ = {•} if [[t]]ρ = [[u]]ρ
[[t = u]]ρ = ∅ otherwise
[[Σx.A(x)]]ρ = Σa∈D[[A(x)]]ρ,(x←a)

Notice that we don’t need to define [[th k t]]ρ since this pattern occurs only
within proofs π occurring in terms of the form cck (wit (t′,π)).

Lemma 3. The interpretation validates the reduction rules ιwit and ζcc.

[[wit(t,π)]]ρ = [[t]]ρ
[[wit(cck:Σx.A(x) π)]]

ρ
= [[ccx.A(x)

k wit(π[k(wit { })/k])]]
ρ

Moreover,

[[A(x)]]ρ,(x←[[t]]ρ) = [[A(t)]]ρ

Proposition 4 (Soundness). If Γ � π : A then, forall ρ ∈ FV (A) → D, if
forall ki : ¬Ai in Γ , [[Ai]]ρ is empty, then [[π]]ρ ∈ [[A]]ρ

Proof. The proof is by induction.

– If Γ � refl : t = u with t → u then by validity of the reduction rules,
[[t]]ρ = [[u]]ρ and [[t = u]]ρ = {•}.

– If Γ � (t,π) : Σx.A(x) with Γ � π : A(t) then, by induction [[π]]ρ ∈ [[A(t)]]ρ =
[[A(x)]]ρ,(x←[[t]]ρ), hence [[(t,π)]]ρ = ([[t]]ρ, [[π]]ρ) ∈ [[Σx.A(x)]]ρ.

– If Γ � prf π : A(wit π) with Γ � π : Σx.A(x) then, by induction, we
get [[π]]ρ ∈ [[Σx.A(x)]]ρ, so that there exists c and p such [[π]]ρ = (c, p)
and p ∈ [[A(x)]]ρ,(x←c). Since c = fst([[π]]ρ) = [[wit π]]ρ, we have [[prf π]]ρ =
snd((c, p)) = p ∈ [[A(x)]]ρ,(x←c) = [[A(wit π)]]ρ.

On the Degeneracy of Σ-Types in Presence of Computational Classical Logic 217

– If Γ � subst π1 π2 : A(u) with Γ � π1 : t = u and Γ � π2 : A(t) then, by
induction, [[π1]]ρ ∈ [[t = u]]ρ, so that [[t = u]]ρ is not empty and [[t]]ρ = [[u]]ρ.
Also, [[π2]]ρ ∈ [[A(t)]]ρ so that we have [[subst π1 π2]]ρ = [[π2]]ρ ∈ [[A(t)]]ρ =
[[A(x)]]ρ,(x←[[t]]ρ) = [[A(x)]]ρ,(x←[[u]]ρ) = [[A(u)]]ρ.

– If Γ � cck π : A with Γ, k : ¬A � π : A then, [[A]]ρ is either empty or
inhabited. If it is inhabited, then ερ(A) ∈ [[A]]ρ, hence [[cck π]]ρ ∈ [[A]]ρ.
Otherwise, we can apply the induction hypothesis and get [[π]]ρ ∈ [[A]]ρ,
which is contradictory with the assumption that [[A]]ρ is empty.

– If Γ, k : ¬A � kπ : B with Γ, k : ¬A � π : A then, by induction, we get
[[π]]ρ ∈ [[A]]ρ which contradicts the assumption that [[A]]ρ is empty.

Taking for D a domain with at least two elements, we get the following
corollary.

Corollary 5. TTccT

Σ without the ηcc rule is not degenerated, i.e. for distinct
variables x and y, we have
� x = y.

2.6 Deriving the Collapse of the Quantification Domain with
Explicitly Typed Control Operators

Though TTccT

Σ without the ηcc rule is not degenerated, it gets degenerated by
considering the ηcc rule. Indeed, we have again

Proposition 6. For any two variables x and y, x = y is derivable in TTccT

Σ .

The new proof proceeds as follows.

– First prove Σz.x = z using the artificially classical proof

π0 � cck:Σz.x=z (y, th k (x, refl)) .

– Then observe that

wit π0 → cck:Σz.x=z (wit(y, th k wit(x, refl))) (ζwit)→ ccz.x=z
k y (ιwit)→ y (ηcc)

– Conclude that
subst refl (prf π0)

is a proof of x = y.

2.7 Inconsistency of Martin-Löf ’s Type Theory Extended with
Computational Classical Logic

Since Martin-Löf’s type theory [6] has Σ-types in Set, its extension with com-
putational classical logic is inconsistent. We first extend the syntax of terms:

t ::= . . . | cck t

218 H. Herbelin

Then, we let ¬A � A → N0 and we add the following inference rules:

(k ∈ ¬A)
t ∈ A

cck t ∈ A

(k ∈ ¬A)
t = u ∈ A

cck t = cck u ∈ A

For equality, we restrict the commutation of cc with the elimination operator
E for Σ-types to the non dependent case, i.e. to the case where x and y do not
occur free in C:

(k ∈ ¬(Σx ∈ A)B(x))
t ∈ (Σx ∈ A)B(x)

(x ∈ A, y ∈ B(x))
u ∈ C

E(cck t, (x, y)u) = cck (E(t[k(E({ }, (x, y)u))/k], (x, y)u)) ∈ C

t ∈ A k not free in t

cck t = t ∈ A

Without universes, one can only show that the theory is proof-irrelevant, as
enforced by Smith’s result on the independence of Peano’s fourth axiom in the
theory without universes [10]. With one universe, ¬0 = 1 is provable and the
computational classical theory is inconsistent.

2.8 Inconsistency of the Set-Predicative Calculus of Inductive
Constructions Extended with Computational Classical Logic

Since the Calculus of Inductive Constructions [1] has Σ-types in Set and non
degenerated datatypes, its extension with computational classical logic in Set,
even in its Set-predicative version that Coq version 8 implements, is inconsistent.

We let ⊥ � ∀C : Set.C and ¬A � A → ⊥. To get computational classical
logic, the syntax of terms is extended with the following construction

t ::= . . . | cck:¬A t

The new inference rule is
Γ, k : ¬A � t : A

Γ � cck t : A

And the new set of reduction rules, at least, contains ηcc and a commutation
rule for non dependent case analysis.

caseP (cck:¬A t) of t1 . . . tn
→ cck:¬P (caseP (t[k(caseP { } of t1 . . . tn)/k]) of t1 . . . tn)

cck:¬A t → t k not free in t

Of course, one would expect of a fully-fledged computationally classical Cal-
culus of Inductive Constructions commutation rules of cc for all kinds of con-
structors (application, inductive types, constructors of inductive types, ...) and
only for a given reduction semantics (call-by-name of call-by-value), so as to
preserve confluence. But to get an inconsistency, commutation of cc with case
analysis (which is the construction needed for defining wit and prf) is enough.

On the Degeneracy of Σ-Types in Presence of Computational Classical Logic 219

3 Remarks

3.1 Commutation of cc with Respect to prf

We did not consider the commutation rule of cc with respect to prf though it
would be needed for completion of the reduction system. The reason was that it
was not necessary in order to derive the degeneracy of the quantification domain
of the logic. In fact, the naive formulation of this rule

prf(cck π) → cck′ prf(π[k′(prf { })/k]) (ζprf)

is problematic since it does not satisfy subject reduction. Indeed, if k has type
Σx.A(x) on the left-hand-side, then, on the right-hand-side, it maps to a con-
tinuation variable k′ (we chose a different name to emphasise the difference of
types) that cannot be typed consistently in the general case. The binding oc-
currence of k′ is intended to have type A(wit(cck π) while each place of the
form th k′ (prf π′) where it occurs bound expects it to be of type A(wit(cck π′)
for π′ a strict subproof of π. There is no reason that each of the wit(cck π′)
(that reduce to ccx.A

k wit(π′[k(wit { })/k])), and also wit(cck π) (that reduces
to ccx.A

k wit(π[k(wit { })/k])), all are convertible (and there are effectively not
convertible for the degeneracy proofs given in Sect. 2.3 and 2.6).

The mismatch can be solved by inserting a coercion that derives A(ccx.A(x)
k π)

from A(t) for any A, t and π. It may be worth to notice that along the interpreta-
tion in section 2.5 that throws away the argument of each typed cc and see it as
an Hilbert-style ε operator, the coercion simply corresponds to the characteristic
axiom of this ε operator.

3.2 Intuitionistic Uses of cc

The degeneracy proof needs that some calls to the continuation variables are
done to inhabit a priori non inhabited types, such as x = y for distinct variables
x and y.

Since cc can still be interesting from a computational point of view even in
an non essentially classical framework (typically to reason intuitionistically on
algorithms that “backtracks” thanks to cc), it can be interesting to restrict the
call to continuation variables set up by cc only on inhabited types.

By this way, any derivation using cc can trivially be translated into an intu-
itionistic one: just replace each occurrence of th k t of type B by b0 where b0 is
an inhabitant of B. Hence the logic is non degenerated. The soundness of this re-
placement remains to be investigated in presence of the (expected) commutation
rule ζprf.

3.3 Axiom of Choice versus Principle of Definite Description

For simplicity (since definite existential quantification is heavier to deal with than
indefinite existential quantification), we only considered ordinary (indefinite)
existential quantification.

However, we believe that the results still hold with Σ! instead of Σ. Especially,
all witnesses occurring in the proofs we considered were unique witnesses.

220 H. Herbelin

Acknowledgements

I thank Freek Wiedijk for helpful discussions on the set-theoretic interpretation
of the functional space ¬¬A → A.

References

1. The Coq development team: The Coq Proof Assistant Reference Manual, Ver-
sion 8.0. (2004). Available at http://coq.inria.fr/doc.

2. Coquand, T.: Metamathematical investigations of a calculus of constructions. In
Odifreddi, P., ed.: Logic and Computer Science. Apic Series 31. Academic Press
(1990) 91–122. Also INRIA Research Report number 1088, sept 1989.

3. Crolard, T.: A confluent lambda-calculus with a catch/throw mechanism. Journal
of Functional Programming 9(6) (1999) 625–647

4. Felleisen, M., Friedman, D.P., Kohlbecker, E., Duba, B.F.: Reasoning with con-
tinuations. In: First Symposium on Logic and Computer Science. (1986) 131–141

5. Griffin, T.G.: The formulae-as-types notion of control. In: Conf. Record 17th
Annual ACM Symp. on Principles of Programming Languages, POPL ’90, San
Francisco, CA, USA, 17-19 Jan 1990, ACM Press, New York (1990) 47–57

6. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
7. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical nat-

ural deduction. In: Logic Programming and Automated Reasoning: International
Conference LPAR ’92 Proceedings, St. Petersburg, Russia, Springer-Verlag (1992)
190–201

8. Pottinger, G.: Definite descriptions and excluded middle in the theory of construc-
tions (1989). Communication to the TYPES electronic mailing list.

9. Prawitz, D.: Natural Deduction - A Proof-Theoretical Study. Almqvist & Wiksell,
Stockholm (1965)

10. Smith, J.M.: The independence of Peano’s fourth axiom from Martin-Löf’s type
theory without universes. Journal of Symbolic Logic 53 (1988) 840–845

11. Spector, C.: Provably recursive functionals of analysis: a consistency proof of anal-
ysis by an extension of principles in current intuitionistic mathematics. In: Recur-
sive Function Theory: Proc. Symposia in Pure Mathematics. Volume 5., American
Mathematical Society (1962) 1–27

Semantic Cut Elimination in the Intuitionistic
Sequent Calculus

Olivier Hermant

Projet LogiCal,
Pôle Commun de Recherche en Informatique du plateau de Saclay, CNRS,

École Polytechnique, INRIA, Université Paris-Sud
ohermant@pauillac.inria.fr

http://pauillac.inria.fr/~ohermant

Abstract. Cut elimination is a central result of the proof theory. This
paper proposes a new approach for proving the theorem for Gentzen’s
intuitionistic sequent calculus LJ, that relies on completeness of the cut-
free calculus with respect to Kripke Models. The proof defines a general
framework to extend the cut elimination result to other intuitionistic de-
duction systems, in particular to deduction modulo provided the rewrite
system verifies some properties. We also give an example of rewrite sys-
tem for which cut elimination holds but that doesn’t enjoys proof nor-
malization.

Keywords: intuitionistic sequent calculus, Kripke Structure, semantic,
deduction modulo, cut admissibility, cut elimination property.

1 Introduction

Since Gentzen’s result [1], the cut elimination theorem has been a central result
of Proof Theory. Proving the cut elimination theorem is the key to the good
properties of deduction systems, such as consistency, or the disjunction and
the witness property for the intuitionistic framework. It allows also to prove the
decidability of some logical fragments (as the propositional case), and is essential
for proving completeness of proof search methods such as tableaux or resolution
[2, 3, 4].

Two main approaches can be used to establish the result. One way is a
syntactic one, proving termination of a certain cut-elimination process, as in the
original proof of Gentzen [1]. A modern way to prove the result uses proof terms
[5] and reducibility method.

The other way is to prove the admissibility (or redundancy) of the cut rule
[6, 7, 8], proving completeness of the cut-free calculus with respect to some notion
of model. This is known since Beth, Hintikka and others [9], and this has been
recently used by De Marco and Lipton [10] to prove cut elimination of the
Intuitionistic Higher-Order Logic, and by Okada [11] for intuitionistic Linear
Logic (first and higher-order).

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 221–233, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 O. Hermant

An interesting field of research is to try to understand the links between
these two methods. In particular, one may ask if all formalisms verifying cut
admissibility are normalizing under proof reduction.

A first difficulty for this study is that intuitionistic logic seems to be a better
framework for proof normalization, whereas classical logic is easier to use when
dealing with semantic methods. There are two manners to bridge the gap: either
study proof normalization for a classical logic, either, as we do here, establish
semantic methods for the intuitionistic logic.

In this paper, we thus describe a semantic method to prove cut admissibility
in the intuitionistic sequent calculus. Although the result is not new, the method
seems not to have been used yet. Moreover, it extends easily to sequent calculus
modulo several congruences, as we will see in the last part of the paper. This is
an important extension for two reasons. First, it shows cut-elimination for many
axiomatic theories, without considering ad-hoc axiomatic cuts. Then, Deduction
Modulo is a good framework to understand the links between semantic and syn-
tactic approaches, since Dowek and Werner have defined in [5] general syntactic
methods for proving termination of proof reduction, based on pre-models and
reducibility candidates.

Our model construction is obtained by transforming Gödel’s completeness
theorem for first-order classical logic. We prove completeness of the cut-free se-
quent calculus with respect to some notion of model. The construction is similar
in many aspects to Gödel’s, but differs on several important points. First, we
consider here intuitionistic logic instead of classical logic, thus our models will
have a different form. Then - and this is the most important point - we con-
sider a cut-free calculus. This leads to many technical difficulties. In particular
it requires to introduce new definitions of consistency and completeness of a
theory.

Unlike classical logic, intuitionistic logic has many different notions of models,
among which Kripke Structure [12] and Heyting Algebras [13]. Recently, an
extension of Heyting Algebra have been used by De Marco and Lipton [10] to
prove cut redundancy for Intuitionistic Higher-Order Sequent Calculus. Okada,
in [11], uses phase semantics, that reduce to Heyting Algebra in the Intuitionistic
Logic subcase. In this paper, we will use Kripke Structure. We believe that Kripke
Structures lead to much simpler proofs, in particular they seem to extend rather
straightforwardly techniques already used in classical logic ([14, 8]).

In the last section, we discuss shortly the extension of the result to the Deduc-
tion Modulo. An example is given, where the cut-elimination proof appears to be
a very simple modification of the former. We also present a terminating, conflu-
ent rewrite system such that deduction modulo this rule enjoys cut-elimination,
although the cut-elimination process using reduction of proof-terms fails [5].

In the later, we will consider, unless specified, the cut-free intuitionistic se-
quent calculus, this is the calculus as defined in figure 1 minus the cut rule. In
a sequent Γ � P , Γ is a finite multiset of proposition (a proposition can appear
several times). So we can always find a fresh constant (provided the language
has a countable set of constants) to introduce in the rules ∀-right and ∃-left.

Semantic Cut Elimination in the Intuitionistic Sequent Calculus 223

Γ, P � P
axiom

Γ, P � Q Γ � P

Γ � Q
cut

Γ, P, P � Q

Γ,P � Q
contr-l

Γ,⊥ � Q
⊥-l

Γ � Q

Γ,P � Q
weak-l

Γ �
Γ � P

weak-r

Γ, P,Q � R

Γ,P ∧Q � R
∧ -l

Γ � P Γ � Q

Γ � P ∧Q
∧ -r

Γ, P � R Γ,Q � R

Γ,P ∨Q � R
∨ -l

Γ � P

Γ � P ∨Q
∨ -r

Γ � Q

Γ � P ∨Q
∨ -r

Γ � P Γ,Q � R

Γ,P ⇒ Q � R
⇒ -l

Γ, P � Q

Γ � P ⇒ Q
⇒ -r

Γ � P

Γ,¬P �¬-l
Γ, P �
Γ � ¬P ¬-r

Γ, {t/x}P � Q

Γ,∀xP � Q
∀-l Γ � {c/x}P

Γ � ∀xP ∀-r, c fresh constant

Γ, {c/x}P � Q

Γ,∃xP � Q
∃-l, c fresh constant

Γ � {t/x}P
Γ � ∃xP ∃-r

Fig. 1. Deduction rule of intuitionistic sequent calculus (with the cut rule)

These two rules are usually (equivalently) formulated with fresh variables in-
stead of constants. Here we prefer this formulation, that avoid considerations
over α-equivalence of propositions.

To recall that we are working in the cut-free sequent calculus, we will write
a sequent Γ �cf P

2 Definitions

In [10], De Marco and Lipton discuss the reason why Henkin’s completion process
[12] fails when we disallow the use of the cut rule. This is the case because the
completion process is done with a heavy use of the cut rule. Then, the authors
discard the usual completeness notion, and build downward complete sets (with
respect to the subformula property), in defining a very nice tableau construction
for intuitionistic logic.

Here, we propose a different approach, that keeps the notion of a complete
theory. In fact, we adapt the notion of complete theory to the cut-free calculus
in a very simple way. The reader can check that when the cut rule is allowed,

224 O. Hermant

the two completeness notions are equivalent. But when it is not, the two notions
split.

Our construction, and the completion process that follows have the advantage
to preserve the maximality of the constructed theories. Moreover, they stick to
more usual completeness construction [12] used to define the semantic of sequent
calculi (with the cut rule).

We also need a larger understanding of completeness and consistency, because
we are in an intuitionistic framework. So, we are led to define A-consistency and
A-completeness, where A is a formula. From these definitions, it becomes simple
to prove the completeness theorem, following the lines of Gödel’s proof, applying
it to Kripke Structures.

Definition 1 (A-Consistency). Let A be a proposition. A set of propositions
(theory) Γ is said to be A-consistent iff Γ �cf A.

Definition 2 (A-Completeness). Let A be a proposition. A set of propo-
sitions (theory) Γ is said to be A-complete iff for any proposition P , either
Γ, P �cf A, or P ∈ Γ .

Definition 3 (A-Henkin Witnesses). Let A be a proposition. A set of propo-
sitions (theory) Γ is said to admit A-Henkin witnesses if for any proposition of
the form ∃xP such that Γ, ∃xP �cf A, there exists a constant c such that
{c/x}P ∈ Γ .

These definitions are different from from those used in the classical case
[14], because we are now in the intuitionistic framework: in particular, we don’t
have symmetry between the left and the right parts of a sequent, so we lose
symmetry between ∀ and ∃ quantifiers, and we can’t have Henkin witnesses for
both of them. Another point is that instead of considering only consistency, we
have to consider A-consistency, so sets of propositions become smaller, although
they still possess all the good properties we need, as shown in section 3.2

Definition 4 (Kripke Structure).
A Kripke Structure K is a quadruple 〈K,≤, D,�〉, such that K is a set (the

set of nodes, or worlds), ≤ is a partial order on K, D a function (called the
domain) from K to non empty sets, that is monotone w.r.t. ≤ (if α ≤ β then
D(α) ⊆ D(β)). And � is a relation between elements α ∈ K and the closed
propositions over D(α), such that:

1. for any A(x1, ..., xn) atomic, any worlds α ≤ β, any a1, ..., an ∈ D(α),
α � A(a1, ..., an) implies β � A(a1, ..., an)

2. α � A ∨ B iff α � A or α � B.
3. α � A ∧ B iff α � A and α � B.
4. α � A ⇒ B iff for any β ≥ α, β � A implies β � B.
5. α � ¬A iff for any β ≥ α, β � A.
6. α � ∃xA iff there exists a ∈ D(α) such that α � {a/x}A.
7. α � ∀xA iff for any β ≥ α, for any a ∈ D(β), β � {a/x}A.

Semantic Cut Elimination in the Intuitionistic Sequent Calculus 225

With respect to Kripke Structures, we should first prove soundness of the
Intuitionistic Sequent Calculus with cut.

Theorem 5 (Soundness). Let Γ be a set of propositions, and P be a proposi-
tion. If Γ � P (with possible use of the cut rule), then for any Kripke Structure
〈K,≤, D,�〉, for any node α ∈ K, if α � Γ then α � P .
We write Γ |= P if P is valid at any node that validates Γ .

Proof. We check that all the derivation rules are valid as in [15]. The result holds
also for the cut-free sequent calculus, but this is not relevant here. �

The difficult part is to prove the converse, namely the completeness theorem.
In our case, we have to prove completeness of the cut-free calculus with respect
to Kripke Structures.

3 Completion of a Theory and Basic Results

First, given a theory T and a proposition A such that T is A-consistent, we
describe how to get an A-complete, A-consistent set Γ containing T , admitting
A-Henkin witnesses. Then, we will describe the properties of Γ .

3.1 Completion

Let L be a language, T a theory in L, and A a proposition such that T �cf A. We
consider an infinite set of constants C disjoint from L, and we define L′ = L∪C.

We consider an enumeration of the propositions of L′: P0, ..., Pn, ... and we
let Γ0 = T . We define Γn by induction:

– if Γn, Pn �cf A and Pn is not of the form ∃xQ we let Γn+1 = Γn ∪ {Pn}.
– if Γn, Pn �cf A and Pn is of the form ∃xQ, we let Γn+1 = Γn∪{Pn, {c/x}Q},

where c ∈ C is a constant that doesn’t occur in Γn.
– otherwise we let Γn+1 = Γn

Notice that in the first case, if Pn is of the form ∃xQ,we have Γn, {c/x}Q �cf

A since c is fresh. So we don’t lose the A-consistency of Γn+1.
Finally, we let Γ =

⋃∞
i=0 Γi.

3.2 Properties of the Completed Theory

Proposition 6. Γ is A-consistent, A-complete, and admits A-Henkin witnesses.

Proof. Let’s see the proof for A-completeness: suppose Γ is not A-complete, so
there exists a proposition P such that Γ, P �cf A and P /∈ Γ . By the former
enumeration, there exists a n such that P = Pn. We have Γn ⊆ Γ , so Γn, Pn �cf

A. We get a contradiction, since by construction Pn ∈ Γn+1 ⊆ Γ .
The two other properties are proved in the same way. �

An important property of any A-consistent, A-complete theory admitting
A-Henkin witnesses is that it enjoys some form of the subformula property.

226 O. Hermant

Proposition 7. Let A be a proposition and Γ an A-complete, A-consistent set
of propositions that admits A-Henkin witnesses. Then:

1. if P ∧ Q ∈ Γ then P ∈ Γ and Q ∈ Γ
2. if P ∨ Q ∈ Γ then P ∈ Γ or Q ∈ Γ
3. if ∃xP ∈ Γ then {c/x}P ∈ Γ for some c
4. if ∀xP ∈ Γ then {t/x}P ∈ Γ for any t
5. if P ⇒ Q ∈ Γ then either Q ∈ Γ , either Γ �cf P
6. if ¬P ∈ Γ then Γ �cf P

7. if Γ �
cf

P ∧ Q then Γ �
cf

P or Γ �
cf

Q
8. if Γ �cf P ∨ Q then Γ �cf P and Γ �cf Q
9. if Γ �cf ∃xP then for any term t, Γ �cf {t/x}P

10. if Γ �cf P ⇒ Q then Γ, P �cf Q
11. if Γ �cf ¬P then Γ, P �cf

Proof. It relies essentially on the arguments that Γ is A-complete, A-consistent,
admits A-Henkin witnesses, and on the fact that we can use in a reversed way
the rules of sequent calculus of figure 1.

Let’s see some examples:

– 3 is the A-Henkin witnesses property.
– In 5, P ⇒ Q ∈ Γ means in particular that Γ, P ⇒ Q �cf A. We can not

have at the same time Γ,Q �cf A and Γ �cf P (otherwise we could apply
⇒-left rule). So, we have either Q ∈ Γ (by A-completeness), or Γ �cf P . �

Notice that there are already links with Kripke Structures in this definition:
at point 5, Γ �cf P can be understood as the following: we can (in a richer
language) complete Γ in Δ, P -complete, P -consistent, and that admits P -Henkin
witnesses, in the same way as in section 3.1. So proposition 7 gives us a very
easy way to construct a Kripke Structure, ordered by inclusion. This will be the
object of next section.

4 Completeness Theorem and Cut Redundancy

We are now ready to prove the completeness theorem. In fact, we will prove
another equivalent formulation.

Theorem 8 (Completeness). Let T be a theory and A a proposition, both
expressed in some language L0.
If T �cf A then there exists a Kripke Structure, and a world α such that α � T
and α � A

Proof. First consider Cn a countable family of countable sets of new constants.
We form the family of languages Ln+1 = Ln ∪ Cn.

In the rest of the proof, we consider the Kripke Structure defined as follows:

– K = {Γ | B-complete, B consistent, B-Henkin, expressed in Li for some i
and B ∈ Li}

Semantic Cut Elimination in the Intuitionistic Sequent Calculus 227

– the order over K, ≤ is the large inclusion ⊆
– D(Γ) is the set of closed terms of the language Li in which is expressed Γ .
– the forcing relation � defined by induction on the size of propositions. For

atomic propositions we let Γ � C iff C ∈ Γ . We extend this forcing relation
to non atomic propositions thanks to the clauses 2 − 7 of definition 4.
It still remains to be checked that the first clause of the forcing relation holds:
for any atom C, if Γ � C, let Δ ⊇ Γ , we have to show that Δ � C. This
is immediate since C ∈ Δ, so we straightforwardly use the forcing relation
definition. Finally, we have checked all the clauses, and � is a forcing relation.

By the completion procedure, we know the existence of a world Γ , expressed
in Li, such that T ⊂ Γ , and Γ is A-consistent, A-complete and admits A-Henkin
witnesses. It remains to prove that Γ � T and Γ � A. More generally, we will
prove the following:

For any proposition P , for any world Γ , P ∈ Γ implies Γ � P and Γ �cf P
implies Γ � P .

By an induction on the size of the proposition P :

– the atomic case is immediate: if A ∈ Γ so Γ � A. And if Γ �cf A, then
A /∈ Γ , so by definition of the forcing relation Γ � A.

– if A ∨ B ∈ Γ , we use proposition 7 and get A ∈ Γ or B ∈ Γ , hence by
induction hypothesis Γ � A or Γ � B. Thus Γ � A ∨ B.
if Γ �cf A ∨ B, by proposition 7, we have Γ �cf A and Γ �cf B, so by
induction hypothesis Γ � A and Γ � B, hence Γ � A ∨ B.

– if A ⇒ B ∈ Γ , let Δ ⊇ Γ . Obviously A ⇒ B ∈ Δ. By proposition 7, either
Δ �cf A, either B ∈ Δ. If the former holds, by induction hypothesis, we must
have Γ � A. In the other case, we have Δ � B by induction hypothesis. So
in both cases: Δ � A implies Δ � B.
if Γ �cf A ⇒ B, then by proposition 7, we have Γ,A �cf B. Let Lj the
language in which is expressed Γ . By the completion procedure of section
3.1, we can define in the language Lj+1 a theory Δ ⊇ Γ that is B-consistent,
B-complete and admits B-Henkin witnesses. This Δ is also a world of the
Kripke Structure considered. And by induction hypothesis, Δ � A and Δ �
B, so we must have Γ � A ⇒ B.

– if ∃xP ∈ Γ , then by the Henkin witnesses property, we have {c/x}P ∈ Γ ,
so by induction hypothesis, Γ � {c/x}P , and then Γ � ∃xP .
if Γ �cf ∃xP , then, for any term t, Γ �cf {t/x}P , by proposition 7. So for
any t, Γ � {t/x}P by induction hypothesis. Hence Γ � ∃xP .

– if ∀xP ∈ Γ , then for any Δ ⊇ Γ , ∀xP ∈ Δ, and we use the same arguments
as in the previous case to prove that Δ � {t/x}P for any t. So Γ � ∀xP .
If Γ �cf ∀xP , then let Li the language of Γ ∪ {∀xP}. Let c ∈ Ci. c is fresh
w.r.t Γ and P by construction of the set Ci. So, we have Γ �cf {c/x}P . By
the completion procedure of 3.1, we get the existence of a world Δ, {c/x}P -
complete, {c/x}P -consistent admitting P -Henkin witnesses. So by induction
hypothesis, Δ � {c/x}P , hence Γ � ∀xP .

– the other cases are treated in a similar way. �

228 O. Hermant

As a corollary, we get the cut-elimination theorem:

Theorem 9 (Cut-elimination). If Γ � P , then Γ �cf P .

Proof. Proof: Suppose Γ � P . By soundness, Γ |= P , so there is no node α of
any Kripke Structure such that α � Γ and α � P . Hence by the completeness
theorem, we must have Γ �cf P . �

5 Adding Rewrite Rules

In this section, we show briefly how the result extends to deduction modulo in
a straightforward way, provided the rewrite system verifies some conditions. We
recall briefly the context of Deduction Modulo, but we suppose that the reader
of this section is familiar with it, or at least with rewrite rules. For further
informations, see for example [5, 4].

Definition 10. A term rewrite rule is a pair of terms l → r such that all the
variables of r appears in l.
A propositional rewrite rule is a pair of propositions l → r such that l is atomic
and all free variables of r appears in l.

An example of a term rewrite rule is:

x × 0 → 0

An example of a propositional rewrite rule is:

x × y = 0 → (x = 0) ∨ (y = 0)

In this case, we notice that an atomic proposition can rewrite on a non-atomic
proposition.

A rewrite system R is a set of propositional and term rewrite rules.
The deduction system is transformed in such a way that active propositions

should be equal modulo the rewrite system considered. For example the new
axiom rule will be:

Γ,A �R B
axiom, with A ≡R B

All definitions are transformed in a straightforward way, using cut-free prov-
ability modulo the rewrite rules �cf

R instead of cut-free provability �cf .
We introduce the notion of the validity of a rewrite system in a Kripke Struc-

ture.

Definition 11. A rewrite system R is valid in a Kripke Structure iff the follow-
ing property for any world α and propositions A,B holds:

if A ≡R B then α � A ⇔ α � B

When a Kripke Structure validates a rewrite system R, we write the forcing
relation �R.

Semantic Cut Elimination in the Intuitionistic Sequent Calculus 229

We check that, given a confluent rewrite system, the proof of soundness theo-
rem (w.r.t. Kripke Structure in which the rewrite system is valid), the completion
process of section 3.1, and the proposition 7 still hold.

The only stage that differs from the former proof of the cut-elimination the-
orem is the construction of the Kripke Structure for A-complete, A-consistent
theories that admit A-Henkin witnesses. Indeed, since the expressiveness of de-
duction modulo goes beyond first-order, we must have a stage in which the logical
complexity appears.

So for different kinds of rewrite systems, we will have different model con-
structions. In some cases, these constructions can directly be derived from that
described in section 4, as we will shall see now.

5.1 An Order Condition

We will prove the cut-elimination theorem for all the rewrite systems verifying
the following order condition. We consider a confluent rewrite system and a
well-founded order ≺ such that:

– if P →R Q then Q ≺ P .
– if A is a subformula of B then A ≺ B.

This order condition was first introduced by Stuber [3] for proving complete-
ness of Resolution Modulo (ENAR) with respect to Classical Sequent Calculus
Modulo. Since we have this order, we can show that the rewrite system is nor-
malizing, in the sense that every term has a normal form.

The Kripke Structure considered is the same as that of the proof of theorem
8, which worlds are A-complete, A-consistent theories that admit A-Henkin wit-
nesses, ordered by inclusion. The only slight difference is in the definition of the
forcing relation �R. We first define it on normal atoms:

Γ �R B iff B ∈ Γ

We extend �R on propositions following clauses 2−7 of the definition 4, and on
non-normal atoms by Γ �R B if Γ �R B ↓. This has to be done simultaneously.

The definition is well founded, since the order is well-founded, and at every
step, we decrease the order.

We yet have to check that we really defined a forcing relation. The only point
to present a difficulty is the first axiom of a forcing relation. Indeed, if an atom A
is non-normal, this is not self-evident to prove that Γ �R A implies Δ �R A for
Δ ⊇ Γ . As usual, we have to show a more general result, that for any proposition
P , for any Δ ⊇ Γ :

Γ �R P implies Δ �R P

This is done by a straightforward induction over the well-founded order, rewrit-
ing non-normal atoms into their normal form. �

Once we have the fact that we really have constructed a Kripke Structure,
we remark that this is a Kripke Structure for the rewrite system. This is true

230 O. Hermant

by construction on the atoms, and we extend it to any proposition by induction
over the proposition structure. �

The last point to prove is that Γ �R Γ and Γ �R P (when Γ is P -consistent).
This is done exactly in the same way as in section 4. �

So, by the very same arguments as in section 4 the cut-elimination theorem
holds for confluent rewrite systems compatible with a well-founded order. As an
example, the following rewrite system is compatible with such an order:

x ∗ y = 0 →R (x = 0) ∨ (y = 0)
x ∗ 0 →R 0
x + 0 →R x

in a general way, all the confluent, terminating, quantifier-free rewrite systems
described in [5] are compatible with such an order. Stuber in [3] gives a more
detailed example.

5.2 A Non-normalizing Theory

In this section, we transform a result of Dowek and Werner, that found a con-
fluent and terminating rewrite system that doesn’t enjoys the cut-elimination
property. Here, we exhibit a confluent terminating rewrite system that enjoys
cut-elimination, but that doesn’t have proof normalization.

In [5], a non-normalizing confluent terminating rewrite system is presented.
It is defined by the following rule, with y � z standing for ∀x(y ∈ x ⇒ z ∈ x):

R ∈ R →R ∀y (y � R ⇒ ¬y ∈ R)

Modulo this rewrite rule, we can prove both sequents R ∈ R �cf
R and �cf

R R ∈
R, so we can prove, using the cut rule, the sequent �R (the rewrite system is
then inconsistent).

The idea is to modify slightly this rule, to get a consistent rewrite system,
that we call R:

R ∈ R →R ∀y(y � R ⇒ (y ∈ R ⇒ C)) (1)

The same derivations lead this time to proofs of R ∈ R �cf
R C and of �cf

R
R ∈ R. Proof terms are the same as in [5]. These two proofs can be combined
with a cut and we get a proof of the sequent �R C. We cannot eliminate the
cut by the normalization method, because applying one proof term to the other
leads by reductions to the same proof term. And in fact, any reduction-based
cut-elimination will fail, since �cf

R C is not provable (what kind of rule could be
the first rule, if not the cut rule ?).

So, the rewrite system R doesn’t normalize.
Let’s now replace in (1) C by a well-known intuitionistic tautology: A ⇒ A.

We get a new set of rewrite rules R∗. Of course, we can prove �cf
R∗ A ⇒ A

Semantic Cut Elimination in the Intuitionistic Sequent Calculus 231

without the cut rule. But the former analysis is still valid, any normalization
process fails if we try to eliminate cut from the following proof:

R ∈ R �cf
R∗ A ⇒ A �cf

R∗ R ∈ R

�R∗ A ⇒ A
cut

In fact, a normalization procedure can’t make the difference between the two
rewrite rules (with C and with A ⇒ A), since proof terms are exactly the same
in the two cases.

So this rewrite system doesn’t enjoy normalization, however, we here show
that it has the cut-elimination property, using the completeness method:

Proposition 12. The sequent calculus modulo R∗ admits cut.

Proof. The principle is the same as in previous sections: we first prove the com-
pleteness theorem. Given a B-complete, consistent theory Γ , we construct a
Kripke Structure that validates R∗, and a node forcing Γ and not forcing B.

The Kripke structure is defined as usual: K is the set of all C-complete,
consistent theories admitting C-Henkin witnesses, for some C, both expressed
in one of the languages Li. K is ordered by inclusion, and the domain D(Γ) is
the closed terms of Li.
The forcing relation is defined on atoms, no matter whether Δ,D �cf

R∗ or not:

Δ � D iff Δ �cf
R∗ D

This is extended over all the propositions. With this method, we are sure that
we define a Kripke Structure. We check, as in section 4, that Γ � Γ and that
Γ � B (when Γ is B-consistent).

It remains yet to prove that we have defined a Kripke Structure for the
rewrite rule. All we have to check is that the interpretation of R ∈ R and of
∀y(y � R ⇒ (y ∈ R ⇒ (A ⇒ A))) is the same for any world Δ.

Since �cf
R∗ R ∈ R, we have for any world Δ � R ∈ R (this is an atomic

proposition). It remains to prove that Δ � ∀y(y � R ⇒ (y ∈ R ⇒ (A ⇒ A))).
Let Δ′ ⊇ Δ, and t ∈ D(Δ′). Moreover, suppose Δ′ � t � R. We now have to

prove Δ′ � t ∈ R ⇒ (A ⇒ A). This is trivial since Γ ′ � A ⇒ A for any Γ ′. �

So the Kripke Structure constructed is a Kripke Structure for R∗, the com-
pleteness theorem is proved and the announced result holds: this rewrite system
enjoys cut-elimination. �

The key to understand this result is that while proving the cut-elimination
theorem we strongly need a semantic information, namely: A ⇒ A is an intu-
itionistic tautology. This information is of course not available when defining a
proof reduction process, and when trying to prove the termination of it. Another
point that should be stressed is that the cut-free proof has nothing to do with
the original proof.

232 O. Hermant

6 Conclusion and Further Work

We have shown how to get the cut-elimination theorem by semantic methods,
proving completeness of the cut-free intuitionistic calculus modulo with respect
to Kripke Structures. Then we showed how this result extends to Deduction
Modulo for an order condition on the rewrite system.

In our study of the links between proof normalization and cut admissibility,we
have found a counterexample to the fact that proof normalization is equivalent
to the redundancy of the cut rule. In [11], Okada gives a hint about a correspon-
dence between his method (for Higher-Order Logic) and Girard’s Reducibility
Candidates, but doesn’t gives any further information. We think that thanks to
our negative result, there is no way to give such a correspondence without giving
more information that we get with our model construction.

We should extend the semantic cut-elimination result to other theories mod-
ulo, such as the positive theories of [5], or to the formulation of Higher-Order
Intuitionistic Sequent Calculus in Deduction Modulo. Then, it seems that one
could add positive rules to the order condition, preserving the cut-elimination
theorem. Finally, we can try to bridge the gap between semantic and syntactic
proofs.

References

1. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift 39 (1934) 176–210, 405–431

2. Bachmair, L., Ganzinger, H.: 11. In: Associative-commutative superposition.
Kluwer (1998) 353–397

3. Stuber, J.: A model-based completeness proof of extended narrowing and resolu-
tion. In: First International Joint Conference on Automated Reasoning (IJCAR-
2001). Volume 2083 of LNCS., Springer (2001) 195–210

4. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31 (2003) 33–72

5. Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic
Logic 68 (2003) 1289–1316

6. Prawitz, D.: Hauptsatz for higher order logic. The Journal of Symbolic Logic 33
(1968) 452–457

7. Takahashi, M.o.: A proof of cut-elimination theorem in simple type-theory. Journal
of the Mathematical Society of Japan 19 (1967) 399–410

8. Andrews, P.B.: Resolution in type theory. The Journal of Symbolic Logic 36
(1971) 414–432

9. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press (1996)

10. De Marco, M., Lipton, J.: Cut elimination and completeness in church’s intuition-
istic theory of types. To appear (2003)

11. Okada, M.: A uniform semantic proof for cut-elimination and completeness of
various first and higher order logics. Theoretical Computer Science 281 (2002)
471–498

12. Troelstra, A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis. Springer-Verlag (1973)

Semantic Cut Elimination in the Intuitionistic Sequent Calculus 233

13. Rasiowa, H., Sikorski, R.: The mathematics of metamathematics. PWN, Polish
Scientific Publishers, Warsaw (1963)

14. Hermant, O.: A model-based cut elimination proof. 2nd St-Petersburg Days of
Logic and Computability (2003)

15. Kripke, S.: Semantical analysis of intuitionistic logic. In Crossley, J.N., Dummett,
M.A.E., eds.: Formal systems and recursive function. North-Holland (1965) 92–130

16. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction.
North-Holland (1988)

17. Szabo, M.E., ed.: Collected Papers of Gerhard Gentzen. Studies in Logic and the
Foundation of Mathematics. North Holland (1969)

The Elimination of Nesting in SPCF

J. Laird

Dept. of Informatics, University of Sussex, UK
jiml@sussex.ac.uk

Abstract. We use a fully abstract denotational model to show that
nested function calls and recursive definitions can be eliminated from
SPCF (a typed functional language with simple non-local control oper-
ators) without losing expressiveness. We describe — via simple typing
rules — an affine fragment of SPCF in which function nesting and recur-
sion (other than iteration) are not permitted. We prove that this affine
fragment is fully expressive in the sense that every term of SPCF is
observationally equivalent to an affine term.

Our proof is based on the observation of Longley — already used to
prove universality and full abstraction results for models of SPCF —
that every type of SPCF is a retract of a first-order type. We describe
retractions of this kind which are definable in the affine fragment. This
allows us to transform an arbitrary SPCF term into an affine one by
mapping it to a first-order term, obtaining an (affine) normal form, and
then projecting back to the original type. In the case of finitary SPCF,
the retraction is based on a simple induction, which yields bounds for the
size of the resulting term. In the infinitary case, it is based on an analysis
of the relationship between SPCF definable functions and strategies for
computing them sequentially.

1 Introduction

One of the important sources of expressive power in functional languages is the
nesting of function calls, both explicitly, and in recursive definitions. With this
expressive power comes subtle and complex behaviour, which complicates the
implementation and analysis of functional programs. In this paper, we will show
that simple non-local control operators can be used to eliminate nesting from
functional programs: we show that every program of SPCF (a prototypical func-
tional language with control) is observationally equivalent to a term containing
no function-nesting, and in which all loops take the form of iterations.

To highlight the key role that non-local control plays in this result, we observe
that a simple example suffices to prove that nesting cannot be eliminated in the
purely functional language PCF: there is no term of boolean PCF equivalent to
G(f) = ((f tt) ((f ff) tt)) : bool which does not contain a nested call to f (for
proof see the Appendix). However, in (call-by-name) SPCF we may use control
operators to define tests such as strict(g), which returns tt if g : bool ⇒ bool
evaluates its argument, and false otherwise, and so define a term equivalent to

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 234–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Elimination of Nesting in SPCF 235

G(f) without nesting, for example:

If strict(f tt)
then (If ((f ff) tt) then ((f tt) tt) else ((f tt) ff))
else ((f tt) tt)

Formally, we use a simple linear affine typing system to identify a class of
SPCF terms which are free of nesting, based on the requirement that in the
application of M to N , M and N should not share any free variables. Sharing
of variables is permitted in the sequential composition of M with N , since eval-
uation of M is completed before evaluation of N can start. This distinction is
the basis of Reynolds’ Syntactic Control of Interference typing system for func-
tional languages with state [13], for example. In these settings, affinity is not a
reqquireement to use resources at most once, but to use at most one copy of each
resource at a time. We may contrast our results with research into type-theories
for functional languages and λ-calculi which are used to guarantee polynomial-
time normalization of all typable terms [6, 1, 7]. The use of higher-order proce-
dures appears in some senses more constrained in our affine type theory, but it
is fully expressive at all types because we allow unlimited sequential uses of pro-
cedures, (in particular, we can define all partial recursive first-order functions).

The proof of nesting elimination proceeds via analysis of the fully abstract
denotational semantics of SPCF. This can be described in two styles: intensional
and extensional. In the intensional presentation [4, 5], types are interpreted as
sequential data structures or games, and programs as sequential algorithms or
strategies. In the extensional presentation [9], types are interpreted as “bistable
biorders” and programs as bistable functions. In this paper, we shall use bistable
functions as a simple representation of observational equivalence classes of SPCF
programs. We also give a self-contained account of the relationship between
bistable functions and evaluation strategies for a small fragment of the SPCF (a
general account appears in [10]).

The basis for our proof is the observation by John Longley [11, 12], that in
SPCF, the type of first-order functions on the natural numbers is universal.
That is, for any type T there is an embedding from T to into this type, and
a projection back into T , the composition of which is the identity on T . This
gives a faithful, internally definable representation of higher-order functionals as
first-order functions, which can be thought of as a compilation of a functional
program down into a low-level representation as a list of numerals f(0), f(1),
The significance for this paper is that (computable) first order functions can
always be defined without nesting, and thus we can prove elimination of nesting
by developing refined versions of the retractions themselves, which are definable
in both finitary and infinitary versions of our affine version of SPCF.

2 SPCF and Its Semantics

SPCF, or sequentially observable PCF [3] is an applied simply-typed λ-calculus
(PCF) with a basic form of non-local control operator allowing a program to

236 J. Laird

jump back to a declared label, and possibly some unrecoverable errors, (these
do not affect our result; we find it useful to include one, called +). Although our
version of the language is basically call-by-name, we include types for strict (or
call-by-value) functions taking ground-type values as arguments. Thus the types
of SPCF are given by the following grammar:

σ, τ ::= B | σB | σ ⇒ τ | σ × τ

where B is a set of basic types of the form n, where n is a countable cardinal, this
being the type of natural numbers less than n (so the type of natural numbers
itself is ω). A type is bounded if its basic subtypes are all finite. The strict
function-space τn may also be thought of as a n-fold product of copies of τ (in
the finitary case, it is isomorphic to the corresponding product type).

To the simply-typed λ-calculus with products, we add the following opera-
tions and constants:

Sequential Composition. From M : B, and N : τB , form M · N : τ which
evaluates M to an atomic value and supplies it to N (we may think of this as
an infix form of a “case” operator case : B × τB → τ , which is definable using
the standard If . . . then . . . else, or as call by value application of N to M).

Pattern Matching. From M : τ and N : τn form (M,N) : τn+1 — the strict
function which evaluates M if its input is 0 or n · N if its input is n + 1.

Forcing. A constant force : (B ⇒ τ) ⇒ τB which converts a non-strict (call-
by-name) function to a strict function by forcing evaluation of its argument —
so v · (forceM) −→ M v. We will write δx.M for force (λx.M).

Error and Divergence. +,⊥ : τ .

Recursion. Fixpoint combinators Yτ : (τ ⇒ τ) ⇒ τ for each type τ .

Iterated Sequential Composition. From M : ωω form M∗ : 0ω. This is
expressible in full SPCF as Y λx.λv.((v · M) · x).

Numerals. Constants 0 : n and succ : n + 1n.

Value Pairing and Projection. From M : ω and N : ω form M ∗N : ω, which
evaluates M to v, N to u, and represents the pair of values as e.g. 2v.(2u + 1).
The corresponding projections are fst, snd : ωω.

Control. A control operator label : (τn ⇒ 0) ⇒ n, with which to declare
labels to which a program may subsequently jump back. This is a simple form
of Cartwright and Felleisen’s catch [3], which sends a functional program strict
in its nth argument to the numeral n. Having declared a label k in M with
label λk.M , whenever we call k with a value v (as v · k) we exit M with the
value v.

The operational semantics for SPCF programs — closed terms of basic type
— is given in Table 1. It is based on evaluation contexts, which are given by the
grammar:

The Elimination of Nesting in SPCF 237

E[·] ::=
[·] | E[·]M | labelE[] | λk.E[] | πi E[·] | E[] ·M | v ·E[] | E[] ∗M | v ∗E[]
(Where a value v is a term of the form 0·succn.) We write Ek[] for an evaluation
context which does not capture the variable k.

Table 1. “Small-step” operational semantics for SPCF programs

E[] −→
E[(λx.M) N] −→ E[M [N/x]]
E[πi(〈M1,M2〉)] −→ E[Mi]

E[0 · (M,N)] = E[M]
E[(v · succ) · (M,N)] −→ E[v ·N]
E[label λk.Ek[v · k]] −→ E[v]
E[v · (forceM)] −→ E[M v]
E[Y M] −→ E[M (Y M)]

E[v ·M∗] −→ E[(v ·M) ·M∗]
E[(2m.2n + 1) · fst] −→ E[m]
E[(2m.2n + 1) · snd] −→ E[n].

For a program M we write M ⇓ if there exists a value v such that M 	 v. We
adopt a standard definition of observational equivalence: given terms M,N : τ ,
M � N if for all compatible program contexts C[·], C[M] ⇓ if and only if C[N] ⇓.

2.1 Denotational Semantics of SPCF

We will now briefly describe the fully abstract denotational semantics of SPCF
[8, 9] in the category of bistable bicpos and bistable and continuous functions. A
bistable bicpo may be presented as a cpo with an equivalence relation (bistable
coherence); two functions are equivalent essentially if they explore their argu-
ments in the same way, but may fail (either through error or divergence) in
different ways.

Definition 1. A bistable biorder consists of a partial order (D,�) and an equiv-
alence relation 3 on D such that:

– (D,�) has least and greatest elements ⊥,+, such that ⊥ ↑↓ +
– for any element a, the equivalence class of a with respect to 3, ordered by

�, is a distributive lattice, and if a 3 b then a ∧ b, a ∨ b are a greatest lower
bound and least upper bound for {a, b} in (D,�).

Given �-directed sets X,Y , we say that X ↑↓ Y if for all x ∈ X and y ∈ Y there
exists x′ ∈ X and y′ ∈ Y such that x � x′, y � y′ and x′ 3 y′.

A bistable bicpo is a bistable biorder D such that (|D|,�) is a cpo and if
X ↑↓ Y then

⊔
X ↑↓ ⊔Y and

⊔
X ∧⊔Y =

⊔{x ∧ y | x ∈ X ∧ y ∈ Y ∧ x 3 y}
A function f : D → E is bistable if its restriction to each 3-equivalence classs

is a lattice homomorphism — i.e. if x 3 y, then f(x) 3 f(y), f(x∧y) = f(x)∧f(y)
and f(x ∨ y) = f(x) ∨ f(y).

238 J. Laird

Proposition 1 ([9, 8]). Bistable bicpos and bistable and continuous functions
form a cpo-enriched CCC.

Proof. For details, we refer to [9]. The product is defined pointwise, in standard
fashion, and the exponential A ⇒ B consists of the bistable and continuous func-
tions from A to B, with the extensional (Scott) ordering, and bistable coherence
defined by f ↑↓ g if x ↑↓ y implies f(x) ↑↓ g(y), and f(x) ∧ g(y) = f(y) ∧ g(x) and
f(x) ∨ g(y) = f(y) ∨ g(x).

Thus we may interpret the λ-calculus with pairing, and fixpoint combinators,
in standard fashion. To interpret the ground types, for each set X we have a
“flat” bistable biorder X�

⊥ consisting of the elements of X, together with +
and ⊥ elements such that x � y iff x = y or x = ⊥ or y = +, and x 3 y iff
x = y or x, y ∈ {+,⊥}. We write Σ for ∅�

⊥. The atomic type n is intepreted
as a {i | 0 ≤ i < n}�⊥, and the type τn as the n-fold product Πi<n[[T]]. Thus
sequential composition is interpreted as composition with the function which
sends the numeral i to the ith projection, pattern matching as pairing, and
forcing as composition which sends f : [[n]] → [[τ]] to 〈f(i) | i ∈ [[n]]〉.

The interpretation of the control operator label is based on the observation
that bistable and monotone/continuous functions are observably sequential in
the following sense.

Definition 2. A function f : An → B is i-strict if πi(e) = + implies f(e) = +
and πi(e) = ⊥ implies f(e) = ⊥. (So f is simply strict if f(+) = + and
f(⊥) = ⊥).

Proposition 2. Any strict, bistable and continuous function f : An → Σ is
either constant, or i-strict for some unique i ≤ n.

Proof. We consider the case n = 2, which generalises to arbitrary n. Since f
is strict and bistable, f(+,⊥) ∧ f(⊥,+) = f(〈+,⊥〉 ∧ 〈⊥,+〉) = f(⊥,⊥) = ⊥,
and similarly f(+,⊥) ∨ f(⊥,+) = f(+,+) = +. Hence either f(⊥,+) = +
and f(+,⊥) = ⊥ — in which case f is right-strict — or f(+,⊥) = + and
f(⊥,+) = + — in which case f is left-strict.

Thus for any biorder A and integer n, we have a strict bistable function catch
from An ⇒ Σ to [[n]] which sends each i-strict function to the value i, and with
which we interpret label. (In particular, note that Σn ⇒ Σ is isomorphic to
[[n]].) By showing that all compact elements of the model (which is algebraic)
are definable, we prove full abstraction.

Theorem 1 ([9]). M � N if and only if [[M]] = [[N]].

3 Elimination of Nesting

We capture a class of nesting-free terms of SPCF as a sublanguage ASPCF,
defined using simple typing rules based on affine intuitionistic type-theory, for
deriving terms in contexts (which are multisets of typed variables). Thus a term

The Elimination of Nesting in SPCF 239

Table 2. Typing judgements for ASPCF

Γ,x:σ�x:σ
Γ,x:σ�M :τ

Γ�λx.M :σ⇒τ
Γ�M :σ⇒τ Δ�N :σ

Γ,Δ�M N :τ

Γ�force:(B⇒τ)⇒τB
Γ�M :σ Γ�N :σn

Γ�(M,N):σn+1
Γ�M :B Γ�N :σB

Γ�M ·N :σ

Γ�label:(τn⇒0)⇒n
Γ�M :σ Γ�N :τ
Γ�〈M,N〉:σ×τ

Γ�M :σ1×σ2
Γ�πi(M):σi

i ∈ {1, 2}

Γ�M :ω Γ�N :ω
Γ�M∗N :ω Γ�fst:ωω Γ�snd:ωω

Γ�0:n Γ�succ:n+1n Γ�+:τ

Γ�M :ωω

Γ�M∗:0ω Γ�⊥:τ

of SPCF is in ASPCF if the judgement Γ � M : T is derivable according to the
rules in Table 2.

We note that the typing rule for application is multiplicative with respect to
contexts, whilst all of the others are additive — in particular, in the sequential
composition, M ·N , the two terms may share variables, because the computation
of M must be completed before the computation of N may commence. If we
think of sequential composition as a variant on the conditional in PCF, then
this contrasts with the multiplicative rules for If . . . then . . . else in accounts of
linear PCF such as [2]. Instead, our calculus is based on the same typing rules as
Syntactic Control of Interference (SCI) [13], in which nesting is excluded because
it can lead to interference between imperative variables. Note also that the Y
combinator is not typable at all in ASPCF — in general, evaluating it violates
subject reduction.1

3.1 Elimination of Nesting at Bounded Types

We will now show that every term of SPCF of bounded type is contextually
equivalent to a term of ASPCF. By Theorem 1, this is equivalent to showing that
for every term of SPCF, there is a term of ASPCF with the same denotation.
First note that we may replace each instance of the Y combinator on a bounded
type with an equivalent Y -free term.

Lemma 1. For every bounded type τ , there exists n such that Y � λf.fn ⊥.

Proof. In the bistable model, [[Y]] is the least upper bound of the chain {[[λf.f i ⊥]]
| i ∈ N}, but since the denotation of (τ ⇒ τ) ⇒ τ is finite, [[Y]] = [[λf.fn ⊥]] for
some n, and hence Y � λf.fn ⊥.

1 We could resolve this problem by requiring that Y is applied only to closed terms,
but Y still effectively creates nested calls to its argument.

240 J. Laird

To eliminate nesting of function calls, we use the notion of definable retraction.

Definition 3. Given types σ, τ , an ASPCF-definable retraction from σ to τ is
a pair of terms: inj : σ ⇒ τ and proj : τ ⇒ σ which denote a retraction —
i.e. [[λx : σ.proj(inj(x))]] = [[λx : σ.x]]. We write σ � τ if there is a definable
retraction from σ to τ (σ ∼= τ if it is an isomorphism).

We now show that that every type is an ASPCF-definable retract of a type of
the form nm. The key to our proof is to show that this holds for types of the
form nm ⇒ 0, since we can then show that each higher type is a retract of one at
lower order, using the fact that the relation � forms a precongruence on types.

Lemma 2. If τ1 � τ2 and σ1 � σ2, then σB
1 � σB

2 , σ1 × τ1 � σ2 × τ2, and σ1 ⇒
τ1 � σ2 ⇒ τ2

Proof. For example, the terms λfx.injτ (f (projσ x) and λfx.projτ (f (injσx))
define a retraction from σ1 ⇒ τ1 to σ2 ⇒ τ2.

Given elements e ∈ An, and a ∈ A, let e&a'i ∈ An+1 denote the insertion of
a at position i in e — i.e. π0(e) × . . . × πi−1(e) × a × πi(e) × . . . × πn−1(e). For
any j < n, let ,e-j denote the tuple obtained by removing the jth element of e
— i.e. π0(e) × . . . × πj−1(e) × πj+1(e) × . . . × πn−1(e).

The corresponding ASPCF terms insertm(x, y, z) and remove(x, y) denoting
the functions sending 〈e, i, j〉 to e&i'j , and 〈e, j〉 to ,e-j are readily definable.

Lemma 3. For any n > 0, nm+1 ⇒ 0 � m + 1 × (nm ⇒ 0)n.

Proof. The strict map in from [[n]]m+1 ⇒ Σ to [[m + 1]] × ([[n]]m ⇒ Σ)n which
sends each i-strict function f to 〈i, 〈λx.f(x&j'i) | j < n〉〉 is the denotation of
the term

λf.(label f) · δj.〈j, δk.λx.f insert(x, k, j)〉
The strict map out from [[m + 1]] × ([[n]]m ⇒ Σ)n to [[n]]m+1 ⇒ Σ such that
out(〈i, 〈gj | j < n〉)(e) = + iff πi(e) = +, or πi(e) = j and gj(,e-i) = +, is
definable as

λxy.π1(x) · δi.i · y · δj.((j · π2(x)) remove(y, i))

Moreover, for all f , out(in(f)) = f : this holds by strictness if f is constant,
otherwise, suppose f is i-strict. Then for any e, if out(in(f))(e) = + then
out(〈i, 〈λx.f(x&j'i) | j < n〉 = + and πi(e) = + (and hence f(e) = + by i-
strictness) or πi(e) = j and f(,e-i&j'i) = f(e) = +. Similarly, if (out(in(e)) = ⊥,
then f(e) = ⊥ and so out(in(f)) = f as required.

Corollary 1. For n > 0, nm ⇒ 0 � mnm.m

Proof. By induction on m, for which the base case is trivial. For the inductive
case, nm+1 ⇒ 0�m + 1×(nm ⇒ 0)n�m + 1×(mnm.m)n�m + 1×m + 1nm+1.m�

m + 1nm+1.(m+1).

The Elimination of Nesting in SPCF 241

Lemma 4. For any m, 0m ⇒ n ∼= m + n.

Proof. In the bistable model we have [[0m ⇒ n]] ∼= Σm ⇒ Σn ⇒ Σ ∼= Σm+n ⇒
Σ ∼= [[m + n]]. The defining terms for the isomorphism are λf.label λk.(f (δx.(x+
n) · k)) · k and λx.λy.label λk.x · (0 · y, (1 · y, (. . . (m · y, k) . . .)))

Proposition 3. For every bounded type τ there exist integers n(τ),m(τ) such
that τ � n(τ)m(τ).

Proof. By induction on type-structure: for example, if τ = ρ ⇒ σ, then ρ ⇒
σ � n(ρ)m(ρ) ⇒ n(σ)m(σ)

∼= n(ρ)m(ρ) ⇒ (0n(σ) ⇒ 0)m(σ)

∼= (0n(σ) ⇒ n(ρ)m(ρ) ⇒ 0)m(σ)

� (0n(σ) ⇒ m(ρ)n(ρ)m(ρ).m(ρ))m(σ)

∼= (n(σ) + m(ρ))n(ρ)m(ρ).m(ρ).m(σ).

Theorem 2. Every SPCF term of bounded type is equivalent to a term of AS-
PCF.

Proof. Given any (closed) SPCF term M : τ , by Proposition 3 there exist n,m
such that τ � nm. [[injM]] is a m-tuple of elements of [[n]] and is therefore
definable as a term N of ASPCF (a tuple composed of numerals, +, and ⊥).
Hence M is observationally equivalent to the ASPCF term projN .

3.2 Unbounded SPCF: Recursion Versus Iteration

We now extend our results to prove eliminability of nesting over unbounded
types. In addition to eliminating explicit instances of nesting, we now need to
remove those which are introduced by the Y combinator: we will show that we
can eliminate both in favour of iteration. We first note that (in combination
with the surjective pairing operation ∗ , this is sufficient to define all partial
recursive functions — for example, the minimization μx.M(x) = 0 is represented
as label k.0 · (δy.y · (δx.M) · ((y · k), δw.(y · succ)))∗. We also note that we may
use surjective pairing to represent a finite list of numerals n1, . . . , nk uniquely
as the numeral n1 ∗ (n2 ∗ . . . ∗ (nk ∗ 0)).

As in the bounded case, we show expressiveness of ASPCF by proving that
every type has an ASPCF-definable retraction into a universal type, in this
case the type ωω of infinite (lazy) lists of natural numbers, or strict partial
functions from N to N. The proof is based on an ASPCF-definable retraction
ωω ⇒ 0 � ωω. In SPCF, such a retraction can be defined as the fixpoint of
a series of approximants defined using the terms given in Lemma 3. However,
this requires the use of recursion. Our definition of the required retraction using
only iteration is based on representing bistable functions from (N�

⊥)ω to Σ as
strategies for the first player in a two-player game in which players alternately
choose natural numbers (or terminate the game by choosing + or ⊥). Thus we

242 J. Laird

define a strategy to be a partial function σ : (N × N)∗ → N�
⊥ giving the first

player’s response to each finite sequence of pairs of moves. A bistable function f :
(N�

⊥)ω ⇒ Σ is represented as a strategy for sequentially evaluating its application
to an argument; the first player chooses a component of the argument, the second
player must return the value of that component, then the first player chooses
another component and so on. Note that a strategy may contain responses for
positions which are not reachable in the evaluatation of a function. (Since the
representation is used to define a retraction rather than an isomorphism.)

Definition 4. Given a pair of natural numbers i, j, and a tuple e ∈ (N�
⊥)ω,

let e[i, j] denote the tuple obtained by substuting j for the ith element of e. A
finite sequence s ∈ (N × N)∗ acts on the tuple e ∈ (N�

⊥)ω as the corresponding
series of substitutions — i.e. we define e[s] ∈ N�

⊥ by induction: e[ε] = e and
e[s(i, j)] = e[s][i, j].

Thus we define a strategy for each bistable function f : (N�
⊥)ω → Σ:

strat(f)(s) = catch(λe.f (e[s])).

From each strategy κ, we may recover a function fun(κ) : (N�
⊥)ω → Σ by recon-

structing a series of sequentializations for each argument.

Definition 5. Given a strategy κ and an element e ∈ (N�
⊥)ω, we define a series

of elements seqi(κ, e) in ((N × N)∗)�⊥
seq0(κ, e) = ε
seqn+1(κ, e) = +, if seqn(κ, e) = +, or seqn(κ, e) = s and κ(s) = + or κ(s) = i
and πi(e) = +,
seqn+1(κ, e) = s(i, j) if seqn(κ, e) = s, κ(seqn(κ, e)) = i and πi(e) = j. seqn+1(s)=
⊥, otherwise.

Thus we define fun(κ) : (N�
⊥)ω → Σ:

fun(κ)(e) = + if there exists n such that seqn(κ, e) = +,
fun(κ)(e) = ⊥, otherwise.

Lemma 5. For any f , fun(strat(f)) = f .

Proof. We show by straightforward induction that if s = seqn(κ, e), then e[s] = e.
So suppose fun(strat(f))(e) = +. Then there exists n such that seqn(strat(f), e) =
s, and either strat(f)(s) = +, or strat(f)(s) = i, and πi(e) = +. In the former
case, we have + = (λx.f(x[s])) ⊥ = f(⊥[s]) � f(e[s]) = f(e). In the latter case
λx.f(x[s]) is i-strict, and πi(e) = +, and so + = (λx.f(x[s])) e = f(e[s]) = f(e).

To prove the converse, we first observe that if strat(f)(s) = i, then there is no
pair of the form (i, j) already ocurring in s. Therefore, if seqn+1(strat(f), e) =
s(i, j), then ⊥[s] < ⊥[s(i, j)]. So if e is compact, then there exists n such that
seqn(strat(f), e) = +, or seqn(strat(f), e) =⊥, since otherwise ⊥[seqn(strat(f), e)]
forms a strictly increasing infinite sequence of elements bounded above by e, con-
tradicting compactness of e.

Now suppose f(e) = +. Then there exists a compact e′ � e such that f(e′) =
+. By compactness of e′, there exists (a smallest)n such that seqn+1(strat(f), e′)=
+, or seqn+1(strat(f), e) = ⊥. In the former case, fun(strat(f))(e) = + as re-
quired. In the latter case, seqn(strat(f), e′) = s and either strat(f)(s) = ⊥ —

The Elimination of Nesting in SPCF 243

but then f(e′) = f(e′[s]) � f(+[s]) = (λx.f(x[s]) + = ⊥, which is a contradic-
tion — or else strat(f)(s) = i, and πi(e′) = ⊥ — but then λx.f(x[s]) is i-strict
but λx.f(x[s]) e′ = f(e′) = +, which is also a contradiction.

We may prove directly that strat and fun are bistable functions (the general
relationship between strategies and bistable functions is studied in [10]) but
here it suffices to observe that they are definable in ASPCF. For any strategy
κ, let κ be the strict function from N to N�

⊥ obtained by precomposing κ with
the projection from N to (N × N)∗ corresponding to the representation of finite
sequences of pairs as elements of N.

Proposition 4. The map sending f to strat(f) is an ASPCF definable retrac-
tion.

Proof. Assuming an equality test M = N : 2 which returns 0 if M and N eval-
uate to the same numeral, and 1 otherwise, we define:
strat = λf.δi.label λk.f (δj.label λl.subs(i, j, k, l))
where
subs(i, j, k, l) = i·(j·k, (succ·δv.((v·fst)·fst = j)·(((v·fst)·snd)·l, δx.v·snd)))∗.
fun = λxy.0 · (δu.u · x · (δv.v · y · (δw.(v ∗ w) ∗ u)))∗.

It is straightforward to prove that [[strat]](f) = strat(f) and [[fun]](κ) =
fun(κ) by showing that δj.label λl.subs(i, j, k, l) computes the substitution of
the (coded) sequence i into an element of (N�

⊥)ω, and jumps to k when it has
finished, and that n-fold iteration of δu.u · x · (δv.v · y · (δw.(v ∗ w) ∗ u)) in fun
computes seqn.

Proposition 5. Every type of unbounded SPCF is an ASPCF-definable retract
of ωω.

Proof. This follows precisely the proof of Proposition 3, replacing the finite
bounds with ω in each case.

Theorem 3. Every SPCF term M is observationally equivalent to a term of
ASPCF.

Proof. As in the finite case, we apply the definable retraction, to obtain an el-
ement inj([[M]]) of (N�

⊥)ω, corresponding to a function from N to N�
⊥. At this

point, we may appeal to the Church-Turing thesis. This function is clearly effec-
tively computable (by the associated term [[injM]] of SPCF) and is therefore
representable as a program N : ωω of (first-order) ASPCF2. Hence M is obser-
vationally equivalent to the ASPCF term projM .

To give a more constructive proof, it would be necessary to give a translation
from SPCF programs into ASPCF. This can be done either by directly describing

2 We may choose either of two ways to incorporate into the notion of partial recur-
sive function — either as a unrecoverable error (in which case the partial recursive
functions correspond to the first-order SPCF-computable functions) or by encoding
N

�
⊥ in N⊥ by representing as a natural number.

244 J. Laird

a compilation of SPCF into its first-order fragment (see e.g. [14]) or else by a
representation of (an effective version of) the denotational semantics. Another
possibility would be to use the retractions of SPCF types into ωω to define a
λ-algebra of ASPCF terms [12].

4 Conclusions

In this paper, we have described an example of the use of a denotational model
to eliminate nesting in an applied λ-calculus with control operators. It remains
to be seen whether this result has any application in the design, implementa-
tion or analysis of functional programming languages. In general, elimination of
nesting will reduce the space required for program evaluation in a stack-based
implementation, since the size of the allocation stack for an ASPCF program
can be bounded in the size of the types of the variables. However, this comes at
the cost of increase in the size of the program itself (unless the original program
is unnecessarily large). Similarly, with regard to time-efficiency, we may observe
that optimal reduction techniques such as graph reduction are much easier to
apply to terms without nesting, but this must be set against their increased
size. One possibility would be to apply de-nesting locally, to eliminate particular
nested calls or recursive definitions, as these may only occur in a small fragment
of a program.

If the priority is reasoning correctly about programs, rather than evaluating
them efficiently, then ASPCF does appear to offer potential advantages. For
example, much of the difficulty of the higher-order matching problem stems
from the presence of nesting; we are investigating a simple procedure for solving
it in ASPCF.

The nesting elimination results for the bounded and unbounded languages
may be contrasted in the following respect. In the bounded case, we can nor-
malize the de-nested program, removing all trace of the original; for instance,
we can derive bounds on the size of the de-nested program from its type, based
on the bounds for the size of the first-order type of which it is a retract in
Proposition 3 (essentially, a tower of exponentials proportional in height to the
depth of the type). In the unbounded case, a de-nested program will contain a
representation of the original program, together with a compiler from SPCF into
(first-order) ASPCF. Thus any evaluation or analysis of the de-nested program
may be viewed as operating on the original program via this compilation.

In the presence of effects, such as state, which allow nested function calls
to be observed, de-nesting is not possible in the strong sense described here
(up to observational equivalence). On the other hand, access to state allows
many functions to be written more efficiently without nesting — for example,
the retractions defined in this paper. By adding control operators to Reynolds’
(basic) SCI, for example, we arrive at a language which is at least as expressive
as SPCF (since it contains ASPCF), but retains the advantage of using state in
an interference-controlled form.

The Elimination of Nesting in SPCF 245

References

1. A. Asperti. Light affine logic. In Proceedings of LICS ’98. IEEE press, 1998.
2. T. Braüner. An axiomatic approach to adequacy. PhD thesis, BRICS, 1996.
3. R. Cartwright and M. Felleisen. Observable sequentiality and full abstraction. In

Proceedings of POPL ’92, 1992.
4. R. Cartwright, P.-L. Curien and M. Felleisen. Fully abstract semantics for observ-

ably sequential languages. Information and Computation, 1994.
5. P.-L. Curien. On the symmetry of sequentiality. In Mathematical Foundations of

Computer Science, number 802 in LNCS. Springer, 1993.
6. A. Scedrov J.-Y. Girard and P. Scott. Bounded linear logic: A modular approach

to polynomial-time computability. Theoretical Computer Science, 97:1–66, 1992.
7. Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,

2004. To appear.
8. J. Laird. Bistability: an extensional characterization of sequentiality. In Proceedings

of CSL ’03, number 2803 in LNCS. Springer, 2003.
9. J. Laird. Bistability: A sequential domain theory. Available from

http://www.cogs.susx.ac.uk/users/jiml, 2004.
10. J. Laird. Locally boolean domains. To appear in Theoretical Computer Science,

2005.
11. J. Longley. The sequentially realizable functionals. Annals of Pure and Applied

Logic, 1998.
12. J. Longley. Universal types and what they are good for. In Domain Theory, Logic

and Computation: Proceedings of the 2nd International Symposium on Domain
Theory. Kluwer, 2004.

13. J. Reynolds. Syntactic control of interference. In Conf. Record 5th ACM Sympo-
sium on Principles of Programming Languages, pages 39–46, 1978.

14. Jon G. Riecke. The Logic and Expressibility of Simply-Typed Call-by-Value and
Lazy Languages. PhD thesis, Massachusetts Institute of Technology, 1991. Avail-
able as technical report MIT/LCS/TR-523 (MIT Laboratory for Computer Sci-
ence).

Appendix

Here we sketch a proof that nesting is not eliminable in PCF by showing that
there is no term of boolean PCF which is equivalent to G(f) = ((f tt) ((f ff) tt))),
and free of nesting (i.e. typable in ASPCF).
Lemma 6. Any nesting free term F (f : bool ⇒ bool) of boolean PCF is not
(PCF) observationally equivalent to G(f).

Proof. (sketch) We may assume that F is of the form If ((f s1) s2) then t1 else t2,
since it is straightforward to show that every term is equivalent to one in such
a form to such a form. Moreover, since F contains no nestings, s1 and s2 are
closed terms, and we may therefore assume that they are either tt, ff or ⊥. We
show by case analysis that there is always a term N : bool ⇒ bool ⇒ bool such
that G(N) ⇓, and F (N)
⇓. (So it suffices to consider cases in which s1 and s2
are non-⊥.)

– If s1 = ff , then let N = λxy.If x then tt else⊥.
– If s1 = tt and s2 = tt, then let N = λxy.If x then (If y then⊥ else tt) elseff .
– If s1 = tt and s2 = ff , then let N = λxy.If x then (If y then tt else⊥) else tt.

Naming Proofs in Classical Propositional Logic

François Lamarche1 and Lutz Straßburger2

1 LORIA & INRIA-Lorraine, Projet Calligramme,
615, rue du Jardin Botanique, 54602 Villers-lès-Nancy — France

http://www.loria.fr/~lamarche
2 Universität des Saarlandes, Informatik — Programmiersysteme,

Postfach 15 11 50, 66041 Saarbrücken — Germany
http://www.ps.uni-sb.de/~lutz

Abstract. We present a theory of proof denotations in classical propo-
sitional logic. The abstract definition is in terms of a semiring of weights,
and two concrete instances are explored. With the Boolean semiring we
get a theory of classical proof nets, with a geometric correctness criterion,
a sequentialization theorem, and a strongly normalizing cut-elimination
procedure. This gives us a “Boolean” category, which is not a poset. With
the semiring of natural numbers, we obtain a sound semantics for classical
logic, in which fewer proofs are identified. Though a “real” sequential-
ization theorem is missing, these proof nets have a grip on complexity
issues. In both cases the cut elimination procedure is closely related to
its equivalent in the calculus of structures.

1 Introduction

Finding a good way of naming proofs in classical logic—a good theory of proof
terms, or proof nets, or whatever—is a notoriously difficult question, and the
literature about it is already quite large, and still increasing.

Other logics have been helped enormously by the presence of good semantics,
where by semantics we mean mathematical objects that have an independent
existence from syntax. Linear logic was found through the observation of the
category of coherence spaces and linear maps. For intuitionistic logic, it has been
obvious for a long time that all it takes to give an interpretation of formulas and
proofs à la Brouwer-Heyting-Kolmogorov-Curry-Howard is a bi-cartesian closed
category. . . and cartesian closed categories abound in nature.

But if we try to extend naively these semantics to classical logic, it is well-
known that everything collapses to a poset (a Boolean algebra, naturally) and
we are back to the old semantics of provability. Clearly something has to be
weakened, if we ever want classical logic to have a meaning beyond syntax. Very
recently, it was found [17] that a class of algebras from geometry permits relevant
interpretations of classical proofs; in addition proposals for abstract categorical
frameworks has been made; the one in [10, 11] is based on the proof nets of [24]
(which avoids poset collapse is by not identifying arrow composition with cut-

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 246–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Naming Proofs in Classical Propositional Logic 247

elimination), and the one in [9] extends the tradition of “coherence” results in
category theory, which predates linear logic by decades.

Let us describe succinctly the view when this problem is approached from
the other end, that of syntax. We use the sequent calculus as our main proof
paradigm, but what we say is presented so as to apply to natural deduction as
well. It is well known that problems begin when a proof contains redundancies
and has to be normalized. Let us represent this situation in the following manner

��
��

������
π1

� Γ,A
��

��
������

π2

� Ā,Δ
cut .� Γ,Δ

Here, we use one-sided notation for sequents for the sake of generality, and
an expression like A could be a formula with some polarity information added,
instead of just a formula. The π1 and π2 represent the proofs that led to the
sequents: they could be sequent calculus trees, proof terms or proof nets. Sim-
ilarly, the expression Ā is a formal negation for A; this notation could be used
for instance in a natural deduction context like the λμ-calculus [22], where the
“cut” inference above would just be a substitution of a term into another, the
negated Ā meaning that it is on the side of the input/premises/λ-variables.
But nonetheless the following have for a long time been identified as Desirable
Features:

1. Ā is the logical negation of A,
2. ¯̄A is structurally equivalent (isomorphic) to A.

These additional symmetries simplify life enormously, allowing things like struc-
tural de Morgan duals. The second feature will not happen, for example, when
negation is an introduced symbol, as in the case for two-sided sequent calculi or
the λμ-calculus (for which the first feature does not hold either).

The problem of cut-elimination (or normalization) is encapsulated in two
cases, called weakening-weakening and contraction-contraction in [12], which
hereafters will be written as weak-weak and cont-cont:

��
��

������
π1

� Γ
weak � Γ,A

��
��

������
π2

� Δ
weak � Ā,Δ

cut and� Γ,Δ

��
��

������
π1

� Γ,A,A
cont � Γ,A

��
��

������
π2

� Ā, Ā,Δ
cont � Ā,Δ

cut .� Γ,Δ

It is well known [13, 12] that both reductions cannot be achieved without
choosing a side, and that the outcome is very much dependent on that choice.

The most standard way to resolve these dilemmas is to introduce asymmetry
in the system (if it is not already there), by the means of polarity information
on the formulas, and using this to dictate the choices. Historically, the first
approaches to polarization were closely aligned on the premiss/conclusion duality
we have mentioned. One reason for this is that they were derived from double-
negation style translations of classical logic into intuitionistic logic. If a classical

248 F. Lamarche and L. Straßburger

proof can be turned into an intuitionistic one, then in every sequent in the history
of that proof there will be a special formula: the conclusion of the corresponding
intuitionistic sequent. This is what is done, for example, mutatis mutandis, in
the λμ-calculus.

This left-right asymmetry is also at the bottom of Coquand’s game seman-
tics [6], where it translates as the two players.

In [12] Girard presented System LC, where the sequents have at most one
special formula. Not only are there both positive and negative formulas—this
time an arbitrary number of each—but in addition there is a stoup, which is
either empty or contains one formula, which has to be positive. Then when a
choice has to be made at normalization time, the presence or absence of the
positive formula in the stoup is used in addition to the polarity information.
This calculus has very nice properties; in particular both Desirable Features
above are present. System LC was discovered by the means of a translation into
a bi-cartesian closed category C , but something much weaker can be used. Our
story would be over if everything had been solved by that approach; but semantic
cut-elimination (composition of denotations of proofs) is not associative here in
general; this is shown by a case analysis on the polarities. Thus normal forms are
still dependent somehow on the history of the proof’s construction. Viewed from
another angle this says that the category C cannot inherently be a model for
classical logic (composition in categories is associative. . .), it is more a vehicle
for a translation.

This direction of research has nonetheless been extremely fruitful. It has given
a systematic analysis of translations of classical logic into linear logic [7]. More-
over LC’s approach to polarities was extended to the formulation of polarized
logic LLP [19]. It has the advantage of a much simpler theory of proof nets (e.g.,
for boxes) and produces particularly perspicuous translations of more traditional
logics. This new proof net syntax has been used to represent proofs in LC [19]
and the λμ-calculus [20].

Let us go back to the weak-weak and cont-cont problems. It is well-known
(e.g., [8]) that one way of solving weak-weak is to permit the system to have a
mix rule. As for the cont-cont problem, the proof formalism of the calculus of
structures [15, 2] has permitted the emergence of a novel solution: through the
use of deep inference a proof can always be transformed into one whose only
contractions are made on constants and atomic formulas.

In this paper we exploit these two ideas to construct two systems of proof
denotations for classical logic, which are at the border of syntax and semantics,
and which possess both Desirable Features as well as one of the main features of
proof nets, since a proof of a formula is represented as a graph structure on on
its set of atoms, the edges being directly related to the axioms of a correspond-
ing sequent proof. But other standard features of non-multiplicative proof nets
(boxes and explicit contraction links) are absent—we hasten to say that it has
been shown in [16] that multiplicative-additive linear logic can be presented in
the same manner as we do, strictly as additional structure on the atomic formu-
las, without explicit contractions. The most important of the two systems here

Naming Proofs in Classical Propositional Logic 249

is the first one; it benefits from a full completeness theorem—in other words,
a correctness criterion and a sequentialization theorem—and so it can be used
directly to represent proofs, without recourse to other syntactical formalisms.
Moreover strong normalization holds, in the most general sense. The other sys-
tem conveys both more and less information at the same time: the number of
times an axiom link is used in a proof is counted, but since we do not have (as of
yet) a sequentialization theorem, it is closer to a semantics, in particular to the
Geometry of Interaction. Issues of normalization are much more delicate in this
latter system, but it has a definite interest from the point of view of complexity.

One important aspect of the first system is that it seems to contradict some
widely held ideas about proof terms: it is a collection of term-like objects (nets)
with a notion of composition (cut) and for which we have a strong normalization
theorem. But it cannot be said to come from the Curry-Howard tradition. In
other words the cut-elimination procedure cannot be used as a paradigm of
computation. There is more research to be done on this issue. It could be that
polarities also introduce another distinction: that between data and program.

Remarkably the idea of using axiom links to capture a proof in classical logic
(including the correctness criterion!) has been around since Andrews’ paper of
1976 [1], and his use of the term “essence of a proof” clearly shows that he
understood what was at stake. But since he was working on proof search, he
never explored the possibility of composing these “essences”. The idea of keeping
all axiom links that appear in a sequent proof is already present in Buss’ logical
flow graphs [3, 4].

2 Cut Free Proof Nets for Classical Propositional Logic

Let A = {a, b, . . . } be an arbitrary set of atoms, and let Ā = {ā, b̄, . . . } the set
of their duals. The set of CL-formulas is defined as follows:

F ::= A | Ā | t | f | F ∧ F | F ∨ F .

We will use A, B, . . . to denote formulas. The elements of the set {t, f} are
called constants. A formula in which no constants appear is called a CL0-formula.
Sequents, denoted by Γ , Δ, . . . , are finite lists of formulas, separated by comma.

In the following, we will consider formulas as binary trees (and sequents as
forests), whose leaves are decorated by elements of A ∪ Ā ∪ {t, f}, and whose
inner nodes are decorated by ∧ or ∨. Given a formula A or a sequent Γ , we write
L (A) or L (Γ), respectively, to denote its set of leaves.

For defining proof nets, we start with a commutative semiring of weights
(W, 0, 1,+, ·). That is, (W, 0,+) is a commutative monoid structure, (W, 1, ·)
is another commutative monoid structure, and we have the usual distributivity
laws x·(y+z) = (x·y)+(x·z) and 0·x = 0. This abstraction layer is just there to
ensure a uniform treatment for the two cases that we will encounter in practice,
namely W = N (the semiring of the natural numbers with the usual operations),
and W = B = {0, 1} (the Boolean semiring, where addition is disjunction, i.e.,

250 F. Lamarche and L. Straßburger

1+1 = 1, and multiplication is conjunction). There are two additional algebraic
properties that we will need:

v + w = 0 implies v = w = 0 (1)
v · w = 0 implies either v = 0 or w = 0 . (2)

These are obviously true in both concrete cases. No other structure or prop-
erty on B and N is needed, and thus other choices for W can be made. They all
give sound semantics, but completeness (or sequentialization) is another matter.

2.1 Definition. Given W and a sequent Γ , a W -linking for Γ is a function
P : L (Γ) × L (Γ) → W which is symmetrical (i.e., P (x, y) = P (y, x) always),
and such that whenever P (x, y)
= 0 for two leaves, then one of the following
three cases holds:

0. one of x and y is decorated by an atom a and the other by its dual ā,
1. x = y and it is decorated by t, or
2. one of x and y is decorated by t and the other by f .

A W -pre-proof-net1 (or shortly W -prenet) consists of a sequent Γ and a linking
P for it. It will be denoted by P
 Γ . If W = B we say it is a simple pre-proof-net
(or shortly simple prenet).

In what follows, we will simply say prenet, if no semiring W is specified.
If we choose W = B, a linking is just an ordinary, undirected graph structure

on L (Γ), with an edge between x and y when P (x, y) = 1. An example is

b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧
�� �� �� �� �� �� �� ��

...............................
............................

..
...............
...

...............
..................
..................................

... (3)

To save space that example can also be written as

{ b̄1
-
b5 , b̄1

-
b8 , b̄4

-
b5 , b̄4

-
b8 , a2

-
ā3 , a6

-
ā7 }
 b̄1 ∧ a2, ā3 ∧ b̄4, b5 ∧ a6, ā7 ∧ b8 ,

where the set of linked pairs is written explicitly in front of the sequent. Here
we use the indices only to distinguish different atom occurrences (i.e., a3 and a6
are not different atoms but different occurrences of the same atom a).

For more general cases of W , we can consider the edges to be decorated with
elements of W \ {0}. When P (x, y)
= 0 we say that x and y are linked. Here is
an example of an N-prenet:

{ t1

2
-

t1 , a4

3
-
ā5 , t7

-
t7 , t7

-
f8 }
 t1 ∨ (a2 ∧ t3), (a4 ∨ (ā5 ∨ f6)) ∧ (t7 ∨ f8) . (4)

As before, no link means that the value is 0. Furthermore, we use the convention
that a link without value means that the value of the linking is 1. When drawing

1 What we call pre-proof-net is in the literature often called a proof structure.

Naming Proofs in Classical Propositional Logic 251

N-prenets as graphs (i.e., the sequent forest plus linking), we will draw n links
between two leaves x and y, if P (x, y) = n. Although this might be a little
cumbersome, we find it more intuitive. Example (4) is then written as

t a t a ā f t f

∧
∨

∨ ∨
∨

∧

�� ��

����
��

� �� �� �� ��
��

��
�

��

�����
		

		
	

.........
...
...........
.................
.. ..

...
............
..

...

. (5)

Now for some more notation: let P
 Γ be a prenet and L ⊆ L (Γ) an
arbitrary subset of leaves. There is always a P |L : L×L → W which is obtained
by restricting P on the smaller domain. But L also determines a subforest Γ |L
of Γ , in the manner that all elements of L are leaves of Γ |L, and an inner node s
of Γ is in Γ |L if one or two of its children is in Γ |L. Thus Γ |L is something a
bit more general than a “subsequent” or “sequent of subformulas”, since some
of the connectors are allowed to be unary, although still labeled by ∧ and ∨. Let
Γ ′ = Γ |L. Then not only is Γ ′ determined by L, but the converse is also true:
L = L (Γ ′). We will say that P |L
 Γ ′ is a sub-prenet of P
 Γ , although it
is not strictu sensu a prenet. Since this sub-prenet is entirely determined by Γ ′,
we can also write it as P |Γ ′
 Γ ′ without mentioning L any further.

On the set of W -linkings we define the following operations. Let P : L×L →
W and Q : M × M → W be two W -linkings.

– If L = M we define the sum P +Q to be the pointwise sum (P +Q)(x, y) =
P (x, y) + Q(x, y). When W = B this is just the union of the two graphs.

– If L ⊆ M we define the extension P ↑M of P to M as the binary function on
M which is equal to P (x, y) when both x and y are in L and zero elsewhere.
Most of the times we will write P ↑M simply as P .

– If L and M are disjoint, we define the disjoint sum P ⊕ Q on the disjoint
union2 L 5 M as P ⊕ Q = P ↑L�M +Q↑L�M .

2.2 Definition. A conjunctive resolution of a prenet P
 Γ is a sub-prenet
P |Γ ′
 Γ ′ where Γ ′ has been obtained by deleting one child subformula for every
conjunction node of Γ (i.e., in P |Γ ′
 Γ ′ every ∧-node is unary).

2.3 Definition. A W -prenet P
 Γ is said to be correct if for every one of
its conjunctive resolutions P |Γ ′
 Γ ′ the W -linking P |Γ ′ is not the zero function.
A W -proof-net (or shortly W -net) is a correct W -prenet. A correct B-prenet is
also called a simple net.

Both examples shown so far are correct: (3) is a B-net as well as an N-net;
(5) is an N-net. Notice that the definition of correctness does not take the exact
values of the weights into account, only the presence (P (x, y)
= 0) or absence

2 If L and M are not actually disjoint, we can rename one of the sets to ensure that
they are.

252 F. Lamarche and L. Straßburger

(P (x, y) = 0) of a link. Notice also that correctness is a monotone property
because of Axiom (1): if P
 Γ is correct then P + Q
 Γ is also correct.

The terms “linking” and “resolution”, as well as the
-notation, have been
lifted directly from the work on multiplicative additive (MALL) proof nets of [16],
and we use them in the same way, for the same reasons. In fact, there is a
remarkable similarity between the MALL correctness criterion therein—when
restricted to the purely additive case—and ours (which is essentially the same
as Andrews’ [1]); this clearly deserves further investigation.

3 Sequentialization

Figure 1 shows how sequent proofs are mapped into prenets. The sequent system
we use contains the multiplicative versions of the ∧- and ∨-rules, the usual axioms
for identity (reduced to atoms and constants) and truth, as well as the rules of
exchange, weakening, contraction, and mix. We call that system CL (for Classical
Logic). We use three minor variations: CL0 where the only axiom available is id0,
involving only atoms, CL1 which allows in addition the axiom t1, and CL2 which
allows all three axioms. In the case of CL0 we consider only CL0-formulas, and in
CL1 and CL2 we consider all CL-formulas. When we write just CL we mean CL2.

There are two rules that are not strictly necessary from the point of view of
provability, namely mix and id2. Thus, although we do not get more tautologies
by including these rules in the system, we get more proofs. These new proofs
are needed in order to make cut elimination confluent (mix), and get identity
proofs in the logic with units (id2), thus allowing us to construct a category. It is
only one more example of the extreme usefulness of completions in mathematics:
adding stuff can make your life simpler.

Let us now explain the translation from CLi sequent proofs to prenets. We
should have a notion of CLi-prenet for any one of i = 0, 1, 2, and Definition 2.1
has been designed to produce them automatically: a CLi-prenet is one where
conditions 0, . . . , i hold in that definition.

id0

{ a
�

ā }
 a, ā
t1

{ t�t }
 t
id2

{ f�t }
 f , t

P
 A,B, Γ∨
P
 A ∨B,Γ

P
 Γ,A Q
 B,Δ∧
P ⊕Q
 Γ,A ∧B,Δ

P
 Γ,A,B,Δ
exch

P
 Γ,B,A,Δ

P
 Γ
weak

P
 A,Γ

P
 A,A, Γ
cont

P ′
 A,Γ

P
 Γ Q
 Δ
mix

P ⊕Q
 Γ,Δ

Fig. 1. Translation of cut free sequent calculus proofs into prenets

The construction is done inductively on the size of the proof. In the two
rules for disjunction and exchange, nothing happens to the linking. In the case

Naming Proofs in Classical Propositional Logic 253

of weakening we apply the extension operation to P . In the mix and ∧ rules
we get the linking of the conclusion by forming the disjoint sum of the linkings
of the premises. Therefore, the only rule that deserves further explanation is
contraction. Consider the two sequents Δ′ = A,Γ and Δ = A,A, Γ , where Δ
is obtained from Δ′ by duplicating A. Let p : L (Δ) → L (Δ′) be the function
that identifies the two occurrences of A. We see in particular that for any leaf
x ∈ L (Δ′), the inverse image p−1{x} has either one or two elements. Given
P
 Δ let us define the linking P ′ for Δ′ as

P ′(x, y) =
∑

z∈p−1{x}
w∈p−1{y}

P (z, w) .

3.1 Theorem. (Soundness). Given any W as above, any i ∈ {0, 1, 2} and
a sequent proof in CLi, the construction above yields a correct W -prenet.

Proof. The proof is an easy induction and will be left to the reader for the time
being. Notice that we need Axiom (1) for the contraction rule, but not (2). /0

We say a prenet is sequentializable if it can be obtained from a sequent
calculus proof via this translation. Theorem 3.1 says that every sequentializable
prenet is a net.

3.2 Theorem. (Sequentialization). For any i ∈ {0, 1, 2}, a simple CLi-
net (i.e., W = B) is sequentializable in CLi.

Proof. We proceed by induction on the size of the sequent (i.e., the number
of ∧-nodes, ∨-nodes, and leaves in the sequent forest). Consider a simple net
P
 Δ. We have the following cases:

– If Δ contains a formula A ∨ B, then we can apply the ∨-rule, and proceed
by induction hypothesis.

– If Δ contains a formula A∧B, i.e., Δ = Γ,A∧B, then we can form the three
simple nets P ′
 Γ,A and P ′′
 Γ,B and P
 Γ,A,B, where P ′ = P |Γ,A

and P ′′ = P |Γ,B . All three of them are correct, quite obviously. Therefore,
we can apply the induction hypothesis to them. Now we apply the ∧-rule
twice to get P ′⊕P ′′⊕P
 Γ, Γ, Γ,A∧B,A∧B . To finally get P
 Γ,A∧B,
we only need a sufficient number of contractions (and exchanges).
Let us make two remarks about that case:
• If P
 Γ,A ∧ B contains no link between A and B, i.e., P |A,B = P |A ⊕

P |B, then we do not need the net P
 Γ,A,B, and can instead proceed
by a single use of the ∧-rule, followed by contractions.

• This is the only case where the fact that W = B is needed.
– If Δ = Γ,A, such that P = P |Γ , i.e., the formula A does not take part in the

linking P , then we can apply the weakening rule and proceed by induction
hypothesis.

– The only remaining case is where all formulas in Δ are atoms, negated atoms,
or constants. Then the sequent proof is obtained by a sufficient number of
instances of the axioms id0, t1, id2, and the rules cont, exch, and mix. /0

254 F. Lamarche and L. Straßburger

id4

[b̄, b] ∧ [b̄, b] ∧ [b̄, b] ∧ [b̄, b]
s4

[b̄ ∧ b̄, b, b] ∧ [b̄ ∧ b̄, b, b]
s2

[b̄ ∧ b̄, b̄ ∧ b̄, [b, b] ∧ [b, b]]
m

[[b̄, b̄] ∧ [b̄, b̄], [b, b] ∧ [b, b]]
cont4

[b̄ ∧ b̄, b ∧ b]
id2

[b̄ ∧ [a, ā] ∧ b̄, b ∧ [a, ā] ∧ b]
s4

[b̄ ∧ a, ā ∧ b̄, b ∧ a, ā ∧ b]

id � ā, a
weak � ā, a, a

id � ā, a

id � ā, a
weak � ā, ā, a∧ � ā, a ∧ ā, ā, a∧ � ā, a, a ∧ ā, a ∧ ā, ā, a

exch5

� ā, ā, a ∧ ā, a ∧ ā, a, a
cont3 � ā, a ∧ ā, a

Fig. 2. Left: (3) in the calculus of structures Right: A “fake” church numeral

0 :
ā a ā a

∧
����

.................
..

1 :
ā a ā a

∧
����

...............................

2 :
ā a ā a

∧
����

............................... ..
ā a ā a

∧
����

............................... ...
...............
...

3 :
ā a ā a

∧
����

............................... ...
..

4 :
ā a ā a

∧
����

............................... ...
...
............
.. · · · ā a ā a

∧
����

.................
...

...............
..

Fig. 3. Left: Church numerals as N-nets Right: “Fake” Church numerals

Note that the particular sequent system CL is only needed for obtaining
the completeness, i.e., sequentialization, of B-nets. For obtaining the soundness
result, any sequent system for classical propositional logic (with the identity
axiom reduced to atomic form) can be used. Moreover, this is not restricted
to sequent calculus. We can also start from resolution proofs (as done in [1]),
tableau proofs, Hilbert style proofs, etc.

Whereas B-nets only take into account whether a certain axiom link is used in
the proof, N-nets also count how often it is used. Therefore, N-nets can be used for
investigating certain complexity issues related to the size of proofs, e.g., the expo-
nential blow-up usually related to cut elimination. This is not visible for B-nets,
where the size of a proof net is always quadratic in the size of the sequent. It should
not come as a surprise that finding a fully complete correctness criterion for N-nets
is much harder. One reason is the close connection to the NP vs. co-NP problem
[5]. Moreover, there are correct N-nets for which no corresponding sequent proof
exists, for example (3) seen as an N-net, but which can be represented in other for-
malisms, for example the calculus of structures [15, 2]). Because of the conflation
of sequents and formulas into a single kind of syntactic expression, we can write
the proof that is shown on the left of Figure 2, and whose translation into N-nets
is exactly (3)—To save space we did in the figure several steps in one. For example
id4 stands for four applications of the identity rule.

To give some more examples, consider the sequent � ā, a ∧ ā, a . This is equiv-
alent to the formula (a→ a)→(a→ a) modulo some applications of associativity

Naming Proofs in Classical Propositional Logic 255

and commutativity (here → stands for implication). Hence, the proofs of that
sequent can be used to encode the Church numerals. Figure 3 shows on the left
the encodings of the numbers 0 to 4 as N-nets. Observe that using B-nets, we can
distinguish only the numbers 0, 1, and 2, because all numbers ≥ 2 are collapsed.
Note that there are also proofs of that sequent that do not encode a numeral.
There are two examples on the right of Figure 3. The top one is obtained by
simply mixing together the two proofs 0 and 2. One of the arguments for not
having the mix rule in a system is that it causes types (resp. formulas) to be
inhabited by more terms (resp. proofs) than the intended ones. However, we
would like to stress the (well-known) fact, that this phenomenon is by no means
caused by the mix rule, as the bottom “fake” numeral in Figure 3 shows, which
comes from the mix-free sequent proof on the right of Figure 2.

4 Proof Nets with Cuts

A cut is a formula A ♦ Ā, where ♦ is called the cut connective, and where the
function (−) is defined on formulas as follows (with a trivial abuse of notation):

ā = ā , ¯̄a = a , t̄ = f , f̄ = t , (A ∧ B) = Ā ∨ B̄ , (A ∨ B) = Ā ∧ B̄ .

A sequent with cuts is a sequent where some of the formulas are cuts. But cuts
are not allowed to occur inside formulas, i.e., all ♦-nodes are roots. A prenet
with cuts is a prenet P
 Γ , where Γ may contain cuts. The ♦-nodes have the
same geometric behavior as the ∧-nodes. Therefore the correctness criterion has
to be adapted only slightly:

4.1 Definition. A conjunctive resolution of a prenet P
 Γ with cuts is a
sub-prenet P |Γ ′
 Γ ′ where Γ ′ has been obtained by deleting one child subfor-
mula for every ∧-node and every ♦-node of Γ .

4.2 Definition. A W -prenet P
 Γ with cuts is said to be correct if for
every one of its conjunctive resolutions P |Γ ′
 Γ ′ the W -linking P |Γ ′ is not the
zero function. A W -net with cuts is a correct W -prenet with cuts.

An example of a correct net with cuts (taken from [12]):

b̄ a ā b̄ b b̄ b a ā b

∧ ∧ ♦ ∧ ∧
�� �� �� �� �� �� �� ���� ��

...............................
............................

...
...............
..

(6)

In the translation from sequent proofs containing the cut rule into prenets
with cuts, the cut is treated as follows:

Γ,A Ā,Δ
cut

Γ,Δ
�

P
 Γ,A Q
 Ā,Δ
cut

P ⊕Q
 Γ,A ♦ Ā,Δ
.

256 F. Lamarche and L. Straßburger

Here the cut connective is used to keep track of the cuts in the sequent proof.
To the best of our knowledge the use of a special connective for cut comes from
[23] (see also [16]).

In order to simplify the presentation and maintain the similarity between cut
and conjunction, our sequent calculus allows contraction to be applied to cut
formulas. This slightly unconventional rule is used only for obtaining a generic
proof of sequentialization; in no way does it affect the other results (statements
or proofs) in the rest of this paper.

The generalization of soundness and completeness is now immediate:

4.3 Theorem (Soundness). For any W and any i ∈ {0, 1, 2}, a sequen-
tializable W -prenet in CLi with cuts is correct.

4.4 Theorem (Sequentialization). For any i ∈ {0, 1, 2}, a B-net in CLi

with cuts is sequentializable in CLi + cut.

5 Cut Elimination

Cut elimination in CL-nets has much in common with multiplicative proof nets.
The cut-reduction step on a compound formula is exactly the same:

P
 (A ∧ B) ♦ (Ā ∨ B̄), Γ → P
 A ♦ Ā, B ♦ B̄, Γ

and so it does not affect the linking itself (although we have to show it preserves
correctness). The really interesting things happen in the atomic case, which this
time splits in two: atomic formulas or constants. Here cut elimination means
“counting paths through the cuts”. Let us illustrate the idea by an example:

ā ā ā a ā a a

♦
�� ��

................................. ...
...

..
.........................
..

reduces to ā ā ā a a
...

...
..

.......................
...
...............
..

................
.........................
...

More generally, if some weights are different from 1, we multiply them:

{ ā1

p
-
a4 , ā2

q
-
a4 , ā3

r
-
a4 , ā5

m
-
a6 , ā5

n
-
a7 }
 ā1, ā2, ā3, a4 ♦ ā5, a6, a7

→ { ā1

pm
-
a6 , ā1

pn
-
a7 , ā2

qm
-
a6 , ā2

qn
-
a7 , ā3

rm
-
a6 , ā3

rn
-
a7 }
 ā1, ā2, ā3, a6, a7 .

In the case of constants we have for example (here two cuts are reduced):

{ t1

p
-

t1 , f2
q
-

t3 , f4
r
-

t5 }
 t1 ♦ f2, t3 ♦ f4, t5 → { t5

pqr
-

t5 }
 t5 .

To understand certain subtleties let us consider

{ ā1

p
-
a4 , ā1

q
-
a2 , a2

r
-
ā3 , ā3

s
-
a4 }
 ā1, a2 ♦ ā3, a4 → { ā1

z
-
a4 }
 ā1, a4 .

Naming Proofs in Classical Propositional Logic 257

What is the value of z? We certainly cannot just take q · s, we also have to
add p. But the question is what happens to r, i.e., is the result z = p + qs or
z = p+ q · (1 + r) · s = p+ qs+ qrs or even z = p+ q · (1 + r + r2 + r3 + · · ·) · s?
All choices lead to a sensible theory of cut elimination, but here we only treat
the first, simplest case: we drop r. In [18], this property is called loop-killing.

Let us now introduce some notation. Given P
 Γ and x, y, u1, u2, . . . , un ∈
L (Γ), with n even, we write P (x-u1 ·u2

-u3 · . . . ·un
-y) as an abbreviation for

P (x, u1) · P (u2, u3) · . . . · P (un, y). In addition we define

P (x
∣∣-u1 ·u2

-u3 · . . . ·un

∣∣-y)

=

{
P (x-u1 ·u2

-u3 · . . . ·un
-y) + P (x-un · . . . ·u3

-u2 ·u1
-y) if y
= x

P (x-u1 ·u2
-u3 · . . . ·un

-un) + P (x-un · . . . ·u3
-u2 ·u1

-u1) if y = x

Notice that in both cases one of the summands is always zero, and that the
second case applies only when x is a t and a t1-axiom is involved. We now can
define cut reduction formally for a single atomic cut:

P
 u ♦ v, Γ → Q
 Γ , where Q(x, y) = P (x, y) + P (x
∣∣-u ·v ∣∣-y)

for all x, y ∈ L (Γ), and where u is labelled by an arbitrary atom or constant,
and v by its dual. But we can go further and do simultaneous reduction on a set
of atomic cuts:

P
 u1 ♦ v1, u2 ♦ v2, . . . , un ♦ vn, Γ → Q
 Γ , (7)

where each ui labelled by an arbitrary atom or constant, and vi by its dual. For
defining Q, we need the following notion:
A cut-path between x and y in a net P
 Δ with x, y ∈ L (Δ) is an expression
of the form x-w1 ·z1

-w2 ·z2
-w3 · . . . ·zk

-y where wi ♦ zi are all distinct atomic
cuts in Δ, and such that P (x

∣∣-w1 ·z1
-w2 ·z2

-w3 · . . . ·zk

∣∣-y)
= 0. For a set S of
atomic cuts in Δ, the cut-path is covered by S if all the wi ♦ zi are in S, and it
touches S if at least one of the wi ♦ zi is in S. The Q in (7) is now given by

Q(x, y) = P (x, y) +
∑

{ x
-

w1 ·z1
-

w2 ·...·zk
-

y }

P (x
∣∣-w1 ·z1

-w2 · . . . ·zk

∣∣-y) ,

where the sum ranges over all cut-paths covered by {u1♦v1, u2♦v2, . . . , un♦vn}.
5.1 Lemma. Let P
 Δ be a W -prenet in CLi, and let P
 Δ → P ′
 Δ′.
Then P ′
 Δ′ is also in CLi. Furthermore, if P
 Δ is correct, then P ′
 Δ′ is
also correct.

The proof is an ordinary case analysis, and it is the only place where Ax-
iom (2) is used. The next observation is that there is no infinite sequence
P
 Γ → P ′
 Γ ′ → P ′′
 Γ ′′ → · · · , because in each reduction step the
size of the sequent (i.e., the number of ∧, ∨ and ♦-nodes) is reduced. Therefore:

258 F. Lamarche and L. Straßburger

5.2 Lemma. The cut reduction relation → is terminating.

Let us now attack the issue of confluence. Obviously we only have to consider
atomic cuts; let us begin when two singleton cuts: P
 ai ♦ āj , ah ♦ āk, Γ are
reduced. If the first cut is reduced, we get P ′
 ah ♦ āk, Γ , where P ′(x, y) =
P (x, y) +P (x

∣∣-ai · āj

∣∣-y). Then reducing the second cut gives us Q1
 Γ , where

Q1(x, y) = P ′(x, y) + P ′(x
∣∣-ah · āk

∣∣-y). An easy computation shows that

Q1(x, y) =P (x, y) + P (x
∣∣�ai · āj

∣∣�y) + P (x
∣∣�ah · āh

∣∣�y) + P (x
∣∣�ai · āj

�
ak · āh

∣∣�y)+

P (x
∣∣�ah · āk

�
ai · āj

∣∣�y) + P (x
∣∣�ai · āj

�
ah · āk

�
ai · āj

∣∣�y) .
(8)

Reducing the two cuts in the other order yields Q2
 Γ , where

Q2(x, y) =P (x, y) + P (x
∣∣�ai · āj

∣∣�y) + P (x
∣∣�ah · āk

∣∣�y) + P (x
∣∣�ai · āj

�
ak · āh

∣∣�y)+

P (x
∣∣�ah · āk

�
ai · āj

∣∣�y) + P (x
∣∣�ah · āk

�
ai · āj

�
ah · āk

∣∣�y) .
(9)

We see that the last summand is different in the two results. But if we reduce
both cuts simultaneously, we get Q
 Γ , where

Q(x, y) =P (x, y) + P (x
∣∣�ai · āj

∣∣�y) + P (x
∣∣�ah · āk

∣∣�y)+

P (x
∣∣�ai · āj

�
ak · āh

∣∣�y) + P (x
∣∣�ah · āk

�
ai · āj

∣∣�y) .
(10)

Now the troublesome summand is absent. There are also good news: In the case
of B-nets we have that Q = Q1 = Q2. The reason is that if in either Q1 or Q2
the last summand is 1, then at least one of the other summands is also 1. This
ensures that the whole sum is 1, because of idempotency of addition. Therefore:

5.3 Lemma. On B-prenets the cut reduction relation → is locally confluent.

Lemmas 5.1–5.3 together give us immediately:

5.4 Theorem. On B-nets cut elimination via → is strongly normalizing.
The normal forms are cut free B-nets.

Note that we do not have this result for general W .
Let us compare our cut elimination with other (syntactic) cut elimination

procedures for classical propositional logic. In the case of B-nets, the situation
is quite similar to the sequent calculus: the main differences is that we do not
lose any information in the weak-weak case, although we lose some information
of a numeric nature in the cont-cont case.

In the case of N-nets, the situation is very different. Let us use (6) for an
example. The sequent calculus cut elimination needs to duplicate either the
right-hand side proof or the left-hand side proof. The two possible outcomes,
together with their presentation as N-nets, are shown in Figure 4, where the �
stand for contractions3. However, in our setting, the result of eliminating the cut
in (6) is always (3), whether we are in B-nets or in N-nets.

3 This idea of using explicit contraction nodes was sketched in [12] and is carried out
in detail in [24].

Naming Proofs in Classical Propositional Logic 259

b̄ a ā b̄ b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧ ∧ ∧
� �

 ��

 ��

 ��

 ��
������

������

������
������

 ��

 ��

...........................
...................
.........................

..
...............
................................

...
..

...................
...

 b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧
�� �� �� �� �� �� �� ��

...............................
............................

..
...............
...

...............
..................
..................................

..
..

b̄ a ā b̄ b a ā b b a ā b

∧ ∧ ∧ ∧ ∧ ∧
� �

 ��

 ��

 ��

 ��

 ��

 ��
������

������

������
������

...........................
...............
...

...................
.........................

..
...............
..................

..
..

 b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧
�� �� �� �� �� �� �� ��

...............................
............................

..
...............
...

...............
..................
..................................

..
..

Fig. 4. The two different results of applying sequent calculus cut elimination to the
proof (6). Left: Written as Girard/Robinson proof-net. Right: Written as N-proof-net

Although for N-nets the cut elimination operation does not have a close
relationship to the sequent calculus, there is a good correspondence with cut
elimination in the calculus of structures, when done via splitting [14].

We do not have confluence in general, but at least, given a sequent with cuts,
there is a “most canonical” way of obtaining a cut-free proof net: do simultaneous
elimination of all the cuts at once.

6 A Bit of Abstract Nonsense

For i ∈ {0, 2}, let CLB

i denote the category whose objects are the CLi-formulas and
whose arrows are the cut-free B-nets (in CLi) that have two (ordered) conclusions:
P
 Ā, B is a map from A to B. The composition of two maps P
 Ā, B
and Q
 B̄, C is given by eliminating the cut on P ⊕ Q
 Ā, B ♦ B̄, C. The
associativity of that operation is a direct consequence of Theorem 5.4. In CLB

0
and CLB

2 there is an obvious identity map for every object. CLB

1 is not a category
because it does not have identities: this is easy to check for t.

Given a general W , it is not certain that we can adapt the construction [10]
to get a category, where the objects would be the CLi-formulas but where the
arrows would be the two-conclusion W -nets in which atomic cuts may be present.
One of the main points of that construction is that it allows the definition of an
enrichment in posets—more correctly, sup-semilattices—where bigger nets for
that order are nets that have more cuts. But then in our case there is always a
naturally defined commutative monoid “enrichment”, given by pointwise sum of
nets, which is the corresponding structure.

In what follows we will sketch the axiomatic structure that the CLB

i possess,
allowing comparison with the categorical formalisms that have been recently
proposed. It is not hard to show that we do get a *-autonomous category, with
the expected interpretation (tensor is ∧, the involution is (−), etc.); but not

260 F. Lamarche and L. Straßburger

one that has units in general (new developments on the concept of unitless
autonomous category can be found in [18]). This makes our semantics rather
similar to [10, 11] (which, as we have said, is based on a rather different notion
of proof net). But it does not seem that the categories proposed in [9] can be
*-autonomous without being posets.

In the case of CLB

2 , the ∧ does have a unit t of some sort, but the standard
unit laws are not exactly true: there is a natural map λA : t ∧ A → A, (and
thus, because of the symmetry, a ρA : A ∧ t → A) and they obey the “standard
diagram” [21–p. 159], but they are not isomorphisms. Instead λ only has a right
inverse λ∗

A : A → t∧A, with λA ◦λ∗
A = 1A. It is not hard to generalize the notion

of symmetric monoidal category to accommodate that situation; this includes a
suitable coherence theorem.

But naturally our categories have more: there is diagonal map ΔA : A →
A ∧ A, and the counit map !A : A → t which exists in CLB

2 and which can be
replaced for CLB

0 by the usual projection map A ∧ X → X, which is natural in
X. Thus we can say that every object is equipped with a ∧-comonoid structure
(and by duality a ∨-monoid structure), when these notions are adapted to fit the
absence of real units to ∧,∨. All the recent proposals for “Boolean” categories
have this structure; it is by now clear that the reason that we do not have
collapse to a poset is that the families (ΔA)A and (!A)A are not natural. Some
additional important equations on the interaction between the *-autonomous
and the monoid-comonoid structure are in [18]; a general “covariant” treatment
of these issues is in [9].

Our logic gives us a natural map mixA,B : A ∧ B → A ∨ B. Thus given
any pair of parallel maps f, g : A → B we can construct (see also [9]) f + g =
∇B ◦ (f ∨ g) ◦ mixA,A ◦ ΔA.4 It is then easy to check that this operation is
commutative and associative. (But in general it does not give us an enrichment
of CLB

i over the category of commutative semigroups.) Thus the sum of linkings
(see Section 2) can be recovered through the categorical axioms. Since W = B
here the additional axiom f + f = f of idempotency holds; thus in this case
every hom-set does have a sup-semilattice structure.

References

1. Peter B. Andrews. Refutations by matings. IEEE Transactions on Computers,
C-25:801–807, 1976.

2. Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In LPAR
2001, volume 2250 of L, pages 347–361. Springer-Verlag, 2001.

3. Samuel R. Buss. The undecidability of k-provability. Annals of Pure and Applied
Logic, 53:72–102, 1991.

4. Alessandra Carbone. Interpolants, cut elimination and flow graphs for the propo-
sitional calculus. Annals of Pure and Applied Logic, 83:249–299, 1997.

4 It has recently been shown that the semilattice enrichment mentioned above can
also be obtained that way [11].

Naming Proofs in Classical Propositional Logic 261

5. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

6. Thierry Coquand. A semantics of evidence for classical arithmetic. The Journal
of Symbolic Logic, 60(1):325–337, 1995.

7. V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear logic.
The Journal of Symbolic Logic, 62(3):755–807, 1997.

8. Kosta Došen. Identity of proofs based on normalization and generality. The Bul-
letin of Symbolic Logic, 9:477–503, 2003.

9. Kosta Došen and Zoltan Petrić. Proof-Theoretical Coherence. KCL Publications,
London, 2004.

10. Carsten Führmann and David Pym. On the geometry of interaction for classical
logic (extended abstract). In LICS 2004, pages 211–220, 2004.

11. Carsten Führmann and David Pym. Order-enriched categorical models of the
classical sequent calculus. 2004.

12. Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical Struc-
tures in Computer Science, 1:255–296, 1991.

13. Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

14. Alessio Guglielmi. A system of interaction and structure, 2002. To appear in
ACM Transactions on Computational Logic. On the web at: http://www.ki.inf.tu-
dresden.de/˜guglielm/Research/Gug/Gug.pdf.

15. Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In Laurent Fribourg, editor, Computer Science Logic, CSL
2001, volume 2142 of LNCS, pages 54–68. Springer-Verlag, 2001.

16. Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-
additive linear logic. In LICS 2003, pages 1–10. 2003.

17. J. Martin E. Hyland. Abstract interpretation of proofs: Classical propositional
calculus. In CSL 2004, volume 3210 of LNCS, pages 6–21. Springer-Verlag, 2004.

18. François Lamarche and Lutz Straßburger. Constructing free Boolean categories,
2005. Submitted.

19. Olivier Laurent. Etude de la Polarisation en Logique. PhD thesis, Univ. Aix-
Marseille II, 2002.

20. Olivier Laurent. Polarized proof-nets and λμ-calculus. Theoretical Computer Sci-
ence, 290(1):161–188, 2003.

21. Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 1971.

22. Michel Parigot. λμ-calculus: An algorithmic interpretation of classical natural
deduction. In LPAR 1992, volume 624 of LNAI, pages 190–201, 1992.

23. Christian Retoré. Pomset logic: A non-commutative extension of classical linear
logic. In TLCA 1997, volume 1210 of LNCS, pages 300–318, 1997.

24. Edmund P. Robinson. Proof nets for classical logic. Journal of Logic and Compu-
tation, 13:777–797, 2003.

Reducibility and ��-Lifting for Computation Types

Sam Lindley and Ian Stark�

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland

{Ian.Stark, Sam.Lindley}@ed.ac.uk

Abstract. We propose ��-lifting as a technique for extending operational predi-
cates to Moggi’s monadic computation types, independent of the choice of monad.
We demonstrate the method with an application to Girard-Tait reducibility, using
this to prove strong normalisation for the computational metalanguage λml . The
particular challenge with reducibility is to apply this semantic notion at compu-
tation types when the exact meaning of “computation” (stateful, side-effecting,
nondeterministic, etc.) is left unspecified. Our solution is to define reducibility for
continuations and use that to support the jump from value types to computation
types. The method appears robust: we apply it to show strong normalisation for
the computational metalanguage extended with sums, and with exceptions. Based
on these results, as well as previous work with local state, we suggest that this
“leap-frog” approach offers a general method for raising concepts defined at value
types up to observable properties of computations.

1 Introduction

Moggi’s computational metalanguage λml is a typed calculus for describing program-
ming languages with real-world features like exceptions, nondeterminism and side-
effects. It refines the pure simply-typed lambda-calculus by explicitly distinguishing
values from computations in the type system: for each type A of values, there is a type
TA of programs that compute a value of type A. The calculus specifies that the type
constructor T be a strong monad, which is enough to support a wide range of notions of
computation [5, 21, 22, 33].

In this paper we present ��-lifting: a method for reasoning about properties of
computations in λml , independent of the underlying monad, by raising up concepts
defined explicitly on values.

We demonstrate the technique with a type-directed proof of strong normalisation
for λml , extending Girard-Tait reducibility to handle computation types. We also apply
it to some extensions of λml , and observe that ��-lifting gives a smooth treatment of
reducibility for commuting conversions.

Section 2 provides a brief review of the computational metalanguage and related
systems. Reduction in λml properly extends that in the simply-typed lambda-calculus,
with three reductions specific to computations. One of these, T.assoc, is a commuting

� Research supported by an EPSRC Advanced Research Fellowship

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 262–277, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reducibility and ��-Lifting for Computation Types 263

conversion; another,T.β, involves substituting one term within another; which may make
a term grow larger, and create subterms not present before. As usual with these kinds of
reduction, the consequence is that straightforward induction over the structure of terms
or types is not enough to prove termination of λml reduction.

In earlier work, Benton et al. proved strong normalisation forλml terms by translating
them into a lambda-calculus with sums, and then invoking Prawitz’s result for that
system [4]. Our alternative is to use ��-lifting to give a standalone proof of strong
normalisation, inductively on the structure of λml types.

Section 3 sets out the details. We define an auxiliary notion of reducibility at every
type, that is linked to strong normalisation but amenable to induction over the structure
of types. This is a standard technique from the lambda-calculus: roughly, reducibility is
the logical predicate induced by strong normalisation at ground types. We show that all
reducible terms are strongly normalising, and go on to prove the fundamental theorem
of logical relations, that in fact all definable terms are reducible.

The challenge, and the chief technical contribution of this paper, is to find a suitable
definition for reducibility at computation types. Some such definition is essential, as the
type constructor T is intentionally left unspecified. A first informal attempt might be to
echo the definition for functions, and look at the immediate application of a computation:

(Bad 1) Term M of type TA is reducible if for all reducible N of type TB, the term
let x⇐M in N is reducible.

This is not inductive over types, as the definition of reducibility at type TA depends on
reducibility at type TB, which may be more complex. We can try to patch this:

(Bad 2) TermM of typeTA is reducible if for all strongly normalisingN of typeTB,
the term let x⇐M in N is strongly normalising.

However, this turns out to be too weak to prove properties of M in richer contexts
like let y ⇐ (let x⇐ (−) in N) in P . Examining the structure of these, we define a
continuation K as a nested sequence of let xi⇐(−) in Ni, and use these for our definition
of reducibility:

(Good 1) Term M of type TA is reducible if for all reducible continuations K, the
application K @ M is strongly normalising.

Here application means pasting term M into the hole (−) within K. Of course, we now
have to define reducibility for continuations:

(Good 2) Continuation K accepting terms of typeTA is reducible if for all reducible
V of type A, the application K @ [V] is strongly normalising.

The term [V] is the trivial computation returning value V . By moving to the simpler value
type A we avoid a potential circularity, and so get a notion of reducibility defined by
induction on types. What is more, the characterisation by continuations is strong enough
to treat both the commuting conversion T.assoc and substitution in T.β, and the strong
normalisation proof goes through without undue difficulty.

264 S. Lindley and I. Stark

Looking beyond reducibility, this jump over continuations offers a quite general
method to raise concepts from value type A up to computation type TA, whether or
not we know the nature of T . Suppose that we write K � M when K applied to M is
strongly normalising, and for any predicate φ ⊆ A define in turn:

φ� = {K | K � [V] for all V ∈ φ }
φ�� = {M | K � M for all K ∈ φ� } ⊆ TA .

This is our operation of ��-lifting: to take a predicate φ on value type A and return
another φ�� on the computation type TA, by a “leap-frog” over φ� on continuations.
One informal view of this is that continuations K represent possible observations on
terms, and φ�� lifts φ to computations based on their observable behaviour.

We believe that the use of ��-lifting in the metalanguage λml is original. It was
inspired by similar constructions applied to specific notions of computation; it is also
related to Pitts’s ��-closure, and that in turn has analogues in earlier work on reducibility.
Section 5.1 discusses this further.

In Sect. 4 we demonstrate ��-lifting for reducibility in some variations of λml ; treating
sums, exceptions, and Moggi’s λc. For each case we vary our notion of continuation,
but leave the definition of (−)�� unchanged. Notably, this includes the commuting
conversions introduced by sums. Section 5 discusses related work, and concludes with
some possible future directions.

2 The Computational Metalanguage

We start with a standard simply-typed lambda-calculus with ground type 0, productA×B
and function space A → B for all types A and B. The computational metalanguage
extends this with a type constructor T and two term constructions:

– For each A there is a type TA, of computations that return an answer in A.
– The lifted term [M] is the computation which simply returns the answer M .
– The composition term let x⇐M in N denotes computing M , binding the answer

to x and then computing N .

Fig. 1 presents typing1 and reduction rules for this language λml . It corresponds to
Moggi’s λMLT [21]. In categorical terms, this is the internal language for a cartesian
closed category with a strong monad T . More concretely, it is also what lies behind the
use of monads in the Haskell programming language, where T is any type constructor
in the Monad class and the term formers are return M for lifting and do {x<-M; N}
for composition [24].

Often we do not require the full power of λml , and there are two common
simplifications: first, that all functions must return computations, thus having type A →

1 Our presentation of typing follows Girard et al. [14], in that we assume a global assignment of
types to variables. This is in contrast to typing “à la Curry” and typing “à la Church” [2], which
use local typing contexts.

Reducibility and ��-Lifting for Computation Types 265

TB; and second, that this is the only place where T can occur. These constrain the
calculus to represent computations and only computations, disallowing pure functions
of type A → B as well as metacomputations like those with type TA → TB and
T (TA).

With both of these restrictions in place we obtain the sub-calculus λml∗. This
contains the call-by-value embedding [16] of the simply-typed lambda-calculus into
the computational metalanguage; with the attention on functions of type A → TB
embodying call-by-value semantics.

It turns out that the terms of λml∗ are so constrained that we can dispense with explicit
lifting and computation types, replacing them by a simple syntactic separation of valuesV
from non-values M . This leaves only the let-construction, and we have a subset λc∗ of
Moggi’s computational lambda-calculus λc [20]. Sabry and Wadler discuss in detail the
correspondences between λml , λml∗, λc∗ and λc [28]. Our results on λml apply directly
to its restriction λml∗; however, λc has extra reduction rules, and in Sect. 4.3 we give a
��-lifting approach to cover these too.

The reductions for λml appear in the last part of Fig. 1. These extend those for the
simply-typed lambda-calculus with three reductions that act only on terms of computation
type: T.β, T.η and T.assoc. Before looking more closely at these three, we review some
relevant properties of typed reduction, and the notion of strong normalisation.

Proposition 1. Reduction in the computational metalanguage preserves types and is
itself preserved under substitution.

(i) If M : A and M → M ′ then M ′ : A.
(ii) If M → M ′ then M [x := N] → M ′[x := N].

Proof. Induction on the derivation of M : A and the structure of M respectively. /0

Definition 2. A term M in some calculus is strongly normalising (it is SN) if there is
no infinite reduction sequence M → M1 → · · · . In this case we write max (M) for the
length of the longest reduction sequence starting from M . A calculus itself is strongly
normalising if every term in it is strongly normalising.

We use the results of Prop. 1 repeatedly in the proofs for Sect. 3, and also the following:

Corollary 3. If the λml term M [x := N] is strongly normalising, then so is M .

Proof. By contradiction, from Prop. 1(ii): suppose M has some infinite reduction
sequence M → M1 → · · · ; then so does M [x := N] → M1[x := N] → · · · . If
M [x := N] has no such sequence, then neither does M and both are SN. /0
It is standard that under β-reduction the untyped lambda-calculus is not strongly
normalising. For example, the term Ω = (λx.xx)(λx.xx) β-reduces to itself, leading to
the infinite reduction sequence Ω →β Ω →β On the other hand, the simply-typed
lambda-calculus is strongly normalising with respect to β-reduction [14]: in particular,
Ω has no simple type.

We shall be investigating strong normalisation with the additional terms and
reductions of λml from Fig. 1. The reductions to watch are T.β and T.assoc: like →.β, a

266 S. Lindley and I. Stark

Fig. 1. The computational metalanguage λml

T.β step performs substitution, and so may enlarge the term at hand; while T.assoc
is a commuting conversion, also termed a permutation or permutative conversion.
Commuting conversions are so named for their transforming action, via the Curry-
Howard isomorphism, on derivation trees in natural deduction (indeed, the counterpart
in logic of T.assoc is described in [4]). They also arise when the lambda-calculus is
extended with sums, and are known for the issues they can cause in proofs over reduction
systems. Prawitz originally addressed this in [27]; see [17] for a discussion and further
references. As we shall see below, ��-lifting uses structured continuations to perform
proof over commuting conversions.

3 Reducibility

We present��-lifting with the concrete example of a proof of strong normalisation inλml ,
by extending the type-directed reducibility approach originally due to Tait [29].We follow

Reducibility and ��-Lifting for Computation Types 267

closely the style of Girard et al. [14–Chap. 6]; although in this short presentation we focus
on the proof parts specific toλml , with full details appearing elsewhere [19].As explained
earlier, the key step is to find an appropriate definition of reducibility for computation
types, which we do by introducing a mechanism for managing continuations.

3.1 Continuations

Informally, a continuation should capture how the result of a computation might be used
in a larger program. Our formal definition is structured to support inductive proof about
these uses.

– A term abstraction (x)N of type TA � TB is a computation term N of type TB
with a distinguished free variable x of type A.

– A continuation K is a finite list of term abstractions, with length |K|.

K ::= Id | K ◦ (x)N
|Id | = 0

|K ◦ (x)N | = |K| + 1

– Continuations have types assigned using the following rules:

Id : TA � TA
(x)N : TA � TB K : TB � TC

K ◦ (x)N : TA � TC
.

– We apply a continuation of type TA � TB to a computation term M of type TA
by wrapping M in let-statements that use it:

Id @ M = M

(K ◦ (x)N) @ M = K @ (let x⇐M in N)

Notice that when |K| > 1 this is a nested stack of computations, not simple
sequencing: i.e.

let x1 ⇐ (let x2 ⇐ (. . . (let xn ⇐M in Nn)) . . . in N2) in N1

rather than

let x1 ⇐M1 in let x2 ⇐M2 in . . . in let xn ⇐Mn in N .

Although these two are interconvertible by a sequence ofT.assoc rewrites, we cannot
identify them while we are looking to confirm strong normalisation in the presence
of substituting rewrites like →.β and T.β.
In fact, it is exactly this nesting structure that we use to tackle T.assoc in our key
Lemma 7; essentially, the stack depth of a continuation tracks the action of the
commuting conversion.

– We define a notion of reduction on continuations:

K → K ′ def⇐⇒ ∀M . K @ M → K ′ @ M

⇐⇒ K @ x → K ′ @ x

268 S. Lindley and I. Stark

where the second equivalence follows from Prop. 1(ii). A continuation K is strongly
normalising if all reduction sequences starting from K are finite; and in this case
we write max (K) for the length of the longest.

Lemma 4. If K → K ′, for continuations K and K ′, then |K ′| ≤ |K|.
Proof. Suppose K = Id ◦ (x1)Nn ◦ · · · ◦ (xn)Nn. Then its application K @ x =
let x1⇐(. . . (let xn ⇐ x in Nn) . . .) in N1 and there are only two reductions that might
change the length of K.

– T.η where Ni = [xi] for some i. Then K → K ′ where K ′ = Id ◦ (x1)N1 ◦ · · · ◦
(xi−1)Ni−1 ◦ (xi+1)Ni+1 ◦ · · · ◦ (xn)Nn and |K ′| = |K| − 1.

– T.assoc may occur at position i for 1 ≤ i < n to give K ′ = (x1)N1◦· · ·◦(xi−1)Ni◦
(xi+1)(let xi ⇐Ni+1 in Ni) ◦ (xi+2)Ni+2 ◦ · · · ◦ (xn)Nn. Again |K ′| = |K| − 1.

Hence |K ′| ≤ |K| as required. /0

3.2 Reducibility and Neutrality

Figure 2 defines two sets by induction on the structure of types: reducible terms redA of
type A, and reducible continuations red�A of type TA � TB for some B. As described
in the introduction, for computations we use redTA = red��

A .
We also need to classify some terms as neutral; we do this by decomposing every

reduction into a rewrite context with a hole that must be plugged with a term of a particular
form (see Fig. 2 again). From this we define:

– Term M is active if R[M] is a redex for at least one of the rewrite contexts.
– Term M is neutral if R[M] is not a redex for any of the rewrite contexts.

The neutral terms are those of the form x, MN , π1(M) and π2(M); i.e. computation
types add no new neutral terms. The basic properties of reducibility now follow (CR 1)–
(CR 4) of [14].

Theorem 5. For every term M of type A, the following hold.

(i) If M ∈ redA, then M is strongly normalising.
(ii) If M ∈ redA and M → M ′, then M ′ ∈ redA.

(iii) If M is neutral, and whenever M → M ′ then M ′ ∈ redA, then M ∈ redA.
(iv) If M is neutral and normal (has no reductions) then M ∈ redA.

Proof. Part (iv) is a trivial consequence of (iii), so we only need to prove (i)–(iii), which
we do by induction over types. The proof for ground, function and product types proceeds
as usual [14]. Here we expand the details for computation types:

(i) Say M ∈ redTA. By the induction hypothesis (i), for every N ∈ redA we have that
N is SN, and so [N] is too. This is enough to show that Id : TA � TA is in red�A,
and so Id @ M = M is SN as required.

(ii) Suppose M ∈ redTA and M → M ′. For all K ∈ red�A, application K @ M is SN,
and K @ M → K @ M ′; thus K @ M ′ is SN and M ′ ∈ redTA as required.

Reducibility and ��-Lifting for Computation Types 269

Fig. 2. Reducibility and neutrality for λml

(iii) Take M : TA neutral with M ′ ∈ redTA whenever M → M ′. We have to show that
K @M is SN for each K ∈ red�A. First, we have that K @[x] is SN, as x ∈ redA by
the induction hypothesis (iv). Hence K itself is SN, and we can work by induction
on max (K).
Application K @ M may reduce as follows:

• K @ M ′, where M → M ′, which is SN as K ∈ red�A and M ′ ∈ redTA.

• K ′ @M , where K → K ′. For any N ∈ redA, K @[N] is SN as K ∈ red�A; and
K @ [N] → K ′ @ [N], so K ′ @ [N] is also SN. From this we have K ′ ∈ red�A
with max (K ′) < max (K), so by the induction hypothesis K ′ @ M is SN.

There are no other possibilities asM is neutral. Hence K@M is strongly normalising
for every K ∈ red�A, and so M ∈ redTA as required. /0

3.3 Reducibility Theorem

We show that all terms are reducible, and hence strongly normalising, by induction on
their syntactic structure. This requires an appropriate lemma for each term constructor.
Here we set out proofs for the new constructors associated with computation: lifting [−]
and let . The other cases follow as usual from the properties of Thm. 5, and are set out
in [19].

Lemma 6. Lifting preserves reducibility: if term P ∈ redA then [P] ∈ redTA.

270 S. Lindley and I. Stark

Proof. For any continuation K ∈ red�A, the application K @ [P] is SN, as P ∈ redA;
and so [P] ∈ redTA. /0
We next wish to show that formation of let-terms preserves reducibility. That will be
Lemma 8, but we first need a result on the strong normalisation of let-terms in context.
This is the key component of our overall proof, and is where our attention to the stack-like
structure of continuations pays off: the challenging case is the commuting conversion
T.assoc, which does not change its component terms; but it does alter the continuation
stack length, and this gives enough traction to maintain the induction proof.

Lemma 7. Let P : A be a term, (x)N : TA � TB a term abstraction, and
K : TB � TC a continuation, such that both P and K @ (N [x := P]) are strongly
normalising. Then K @ (let x⇐ [P] in N) is strongly normalising.

Proof. We show by induction on |K| + max (K @ N) + max (P) that the reducts of
K @ (let x⇐ [P] in N) are all SN. The interesting reductions are as follows:

– T.β giving K @ (N [x := P]), which is SN by hypothesis.

– T.η when N = [x], giving K @ [P]. But K @ [P] = K @ (N [x := P]), which is
again SN by hypothesis.

– T.assoc in the case where K = K ′ ◦ (y)M with x /∈ fv(M); giving the reduct
K ′ @(let x⇐ [P] in (let y ⇐N in M)). We aim to apply the induction hypothesis
with K ′ and (let y ⇐N in M) for K and N , respectively. Now

K ′ @ ((let y ⇐N in M)[x := P]) = K ′ @ (let y ⇐N [x := P] in M)
= K @ (N [x := P])

which is SN by hypothesis. Also

|K ′| + max (K ′ @ (let y ⇐N in M))+max (P)< |K|+max (K@N)+max (P)

as |K ′| < |K| and (K ′ @ (let y ⇐N in M)) = (K @ N). This last equal-
ity explains our use of max (K @ N); it remains fixed under T.assoc, un-
like max (K) and max (N). Applying the induction hypothesis gives that K ′ @
(let x⇐ [P] in (let y ⇐N in M)) is SN as required.

Other reductions are confined to K, N or M , and can be treated by the induction
hypothesis, decreasing either max (K @ N) or max (M). /0
We are now in a position to prove that composing computations in let-terms preserves
reducibility.

Lemma 8. If M ∈ redTA and (x)N : TA � TB has N [x := P] ∈ redTB for all
P ∈ redA, then (let x⇐M in N) ∈ redTB .

Proof. Given a continuation K ∈ red�B , we must show that K @ (let x⇐M in N) is
SN. Now for any P ∈ redA, application K @ (N [x := P]) is SN, as K ∈ red�B and
N [x := P] ∈ redTB by hypothesis. But P is also SN, by Thm. 5(i), and so Lemma 7
shows that K @ (let x⇐ [P] in N) is SN too. This proves that (K ◦ (x)N) ∈ red�A, so
applying it to M ∈ redTA gives that K @ (let x⇐M in N) is SN as required. /0

Reducibility and ��-Lifting for Computation Types 271

We finally reach the desired theorem via a stronger result on substitutions into open
terms.

Theorem 9. Let M : B be some term with free variables x1 : A1, . . . , xk : Ak. Then
for any N1 ∈ redA1 , . . . , Nk ∈ redAk

we have M [x1 := N1, . . . , xk := Nk] ∈ redB .

Proof. By induction on the structure of the main term. For computation terms we have:

– [P], where P : A. By the induction hypothesis P [x :=N] ∈ redA, and by Lemma 6
we get [P][x := N] = [P [x := N]] ∈ redTA as required.

– let x ⇐ L in M , where L : TC and M : TB. The induction hypothesis is that
L[x := N] ∈ redTC , and M [x := N, x :=P] ∈ redTA for all P ∈ redC . Lemma 8
gives (let x⇐ L in M)[x := N] = let x⇐ L[x := N] in M [x := N] ∈ redTA./0

Theorem 10. Each λml term M : A is in redA, and hence strongly normalising.

Proof. Apply Thm. 9 with Ni = xi, where xi ∈ redAi
by Thm. 5(iv). This tells us that

M ∈ redA, and by Thm. 5(i) also strongly normalising. /0

4 Extensions

In this section we apply ��-lifting to reducibility in some extensions of λml : with
sum types, with exceptions; and in the computational lambda-calculus λc. Both sums
and exceptions have existing normalisation results in the standard lambda-calculus (for
example, [11] and [18–Thm. 6.1]); we know of no prior proofs for them in λml . More
important, though, is to see how ��-lifting adapts to these features. The key step is to
extend our formalized continuations with new kinds of observation. Once this is done,
we can use these to lift predicates to computation types. The case of reducibility, and
hence a proof of strong normalisation, then goes through as usual. Here we can only
summarize, and full details appear in [19].

4.1 Reducibility for Sums

Prawitz first showed how to extend reducibility to sums [27]. His method is quite intricate:
for a term M of sum type to be reducible, not only must the immediate subterms of M
be reducible, but also a certain class of subterms of M ′ must be reducible whenever M
reduces to M ′. We avoid this complexity by defining reducibility for sums as we do for
computations, by a leap-frog over continuations.

We begin by extending λml with sum types and a case construct where each branch
must be a computation (we later lift this constraint):

M : A
ι1(M) : A + B

M : B
ι2(M) : A + B

M : A + B N1 : TC N2 : TC
case M of ι1(x1

A) ⇒ N1 | ι2(x2
B) ⇒ N2 : TC

272 S. Lindley and I. Stark

To record possible observations of sum terms, we introduce sum continuations:

S ::= K ◦ 〈(x1)N1, (x2)N2〉
(K ◦ 〈(x1)N1, (x2)N2〉) @ M = K @ (case M of ι1(x1) ⇒ N1 | ι2(x2) ⇒ N2).

We can now define reducibility for sum continuations, and thence for sums.

– Sum continuation S : A + B � TC is in red�A+B if:

• S @ (ι1(M)) is strongly normalising for all M ∈ redA and
• S @ (ι2(N)) is strongly normalising for all N ∈ redB .

– Sum term P : A + B is in redA+B if S @ P is strongly normalising for all
S ∈ red�A+B .

This is then sufficient to prove strong normalisation for λml with sums in the manner of
Sect. 3.3.

To apply this to a more general case construction, we can move to frame stacks:
nested collections of elimination contexts for any type constructor [26]. Frame stacks
generalise continuations, and we have been able to use them to give a leap-frog definition
of reducibility not just for computations, but also for sums, products and function types.
This in turn gives a proof of strong normalisation for λml with full sums, as well as the
simply-typed lambda-calculus with sums [19–§3.5].

One special case of this brings us full circle: λml trivially embeds into the simply-
typed lambda-calculus with unary sums.

[M]
−→ ι(M) let x⇐M in N
−→ case M of ι(x) ⇒ N

The two languages are essentially the same, except that λml has tighter typing rules
and admits fewer reductions. Frame stacks and ��-reducibility then provide strong
normalisation for both calculi.

4.2 Reducibility for Exceptions

Benton and Kennedy propose a novel syntax for incorporating exceptions into λml ,
which they use within the SML.NET compiler [9]. They combine exceptions and let
into the single construction try xA ⇐ M in N unless H . This first evaluates M , then
binds the result to x and evaluates N ; unless an exception was raised in M , in which case
it evaluates the handler H instead. The control flow of try-in-unless strictly extends
the classic try-catch metaphor: for more on this see [9]; and also the rationale [10] for
a similar recent extension of exception handling in the Erlang programming language.

Here we take exceptions E ranging over some fixed (possibly infinite) set; this is
necessary to ensure termination [18]. A handler H : TB is then a list of pairs (E,P)
of exceptions and computations of type TB: evaluation picks the first pair that matches
the exception to be handled; unmatched exceptions are re-raised. Typing rules are:

raise(E) : TA
M : TA N : TB H : TB

try xA ⇐M in N unless H : TB
.

Reducibility and ��-Lifting for Computation Types 273

The original let is now a special case of try , with empty handler: let x ⇐ M in N =
try x⇐M in N unless {}. Notice that we are not fixing our choice of monad T ; it must
support exceptions, but it may incorporate other effects too.

For ��-lifting in this calculus, we generalise continuations to cover the new
observable behaviour of exception raising, by associating a handler to every step of
the continuation.

K ::= Id | K ◦ 〈(x)N,H〉
(K ◦ 〈(x)N,H〉) @ M = K @ (try x⇐M in N unless H)

We now say that continuation K is in red�A if:

– K @ [V] is strongly normalising for all N ∈ redA; and in addition
– K @ (raise(E)) is strongly normalising for all exceptions E.

Building ��-reducibility on this is enough to give strong normalisation for λml with
exceptions, with a proof in the style of Sect. 3.3.

4.3 Reducibility for the Computational Lambda-Calculus

Strong normalisation for λml immediately gives strong normalisation for the subcalcu-
lus λml∗ described in Sect. 2. However, despite the close correspondence between λml∗
and λc, explored in [28], we do not immediately get strong normalisation for λc. This is
because of two additional reduction rules in λc:

let .1 PM −→ let x⇐ P in xM if x /∈ fv(M)
let .2 V Q −→ let y ⇐Q in V y if y /∈ fv(V)

where P,Q range over non-values, and V ranges over values.
We can adapt our proof, again using continuations in a leap-frog definition of

reducibility:

Ground value V ∈ red0 if V is strongly normalising

Function value V ∈ redA→B if, for all M ∈ redA ∪ red��
A , VM ∈ red��

B

Continuation K ∈ red�A if, for all V ∈ redA, K @ V is strongly normalising

Non-value P ∈ red��
A if, for all K ∈ red�A, K @ P is strongly normalising

The distinction between values and non-values is crucial. There is no explicit computation
type constructor in λc, but non-values are always computations. Thus redA is reducible
values of type A, and red��

A is reducible non-values of type A, playing the role of redTA.
This ��-reducibility leads as before to a proof of strong normalisation for λc, accounting
for both additional reductions.

5 Conclusion

We have presented the leap-frog method of ��-lifting as a technique for raising
operational predicates from type A to type TA, based on the observable behaviour of

274 S. Lindley and I. Stark

terms. This is independent of the nature of computationsT , and introduces the opportunity
of proof by induction on the structure of continuations.

As a concrete example, we demonstrated ��-lifting in a definition of reducibility
for λml , and thence a type-directed proof of strong normalisation. We have also applied
this to some extensions of λml , addressing in particular the robustness of the method
in treating systems with commuting conversions. In this final section we expand on
the relation to other work on this topic, and comment on some possibilities for future
research.

5.1 Related Work

We believe that our use of ��-lifting for computation types in λml is new. It is,
however, inspired by similar constructions applied to specific notions of computation.
Pitts and Stark [25] apply the method to give a structurally inductive characterisation of
observational equivalence for a functional language with local state. They then use this
to validate certain proof techniques for reasoning about dynamically-allocated reference
cells. Direct validation of these techniques had proved fruitless, because even though the
precise form of computational effects was known — non-termination, state, and dynamic
allocation — the interaction between them was intractable.

In [26], Pitts employs ��-closure to define an operational form of relational
parametricity for a polymorphic PCF. Here the computational effect is nontermination,
and (−)�� leads to an operational analogue of the semantic concept of “admissible”
relations. Abadi in [1] investigates further the connection between ��-closure and
admissibility.

The notion of ��-closed is different from our lifting: it expresses a property of a set
of terms at a single type, whereas we lift a predicate φ on terms of type A to φ�� on
terms of a different type TA. However, the concept is clearly related, and the closure
operation makes some appearance in the literature on reducibility, in connection with
saturation and saturated sets of terms. Loosely, saturation is the property one wishes
candidates for reducibility to satisfy; and this can sometimes be expressed as ��-closure.
Examples include Girard’s reducibility candidates for linear logic [13–pp. 72–73] and
Parigot’s work on λμ and classical natural deduction [23–pp. 1469–1471]. For Girard
the relevant continuations are the linear duals A⊥, while for Parigot they are applicative
contexts, lists of arguments in normal form N<ω. We conjecture that in their style our
��-lifting could be presented as an insertion { [V] | V : redA } followed by saturation
(although we then lose the notion of reducible continuations).

Melliès and Vouillon use biorthogonality in their work on ideal models for types; this
is a closure operation based on an orthogonality relation matching our K � M [31, 32].
They make a case for the importance of orthogonality, highlighting the connection
to reducibility. They also deconstruct contexts into frame stacks for finer analysis:
elsewhere, Vouillon notes the correspondence between different forms of continuation
and possible observations [30].

There are evident echoes of continuation-passing style in the leap-frog character
of ��-lifting; and its independence from the choice of monad recalls Filinski’s result
that composable continuations can simulate all definable monads [12]. The apparent
connection here is appealing, but we have not been able to make any formal link.

Reducibility and ��-Lifting for Computation Types 275

Goubault-Larrecq et al. investigate logical relations for computation types, proposing
a distributivity law that these should satisfy [15]. They give a number of examples
of logical relations lifted to specific monads; and, again, their chosen relation for the
continuations monad has a similar structure to our ��-lifting.

As mentioned in the introduction, existing proofs of strong normalisation for λml are
based on translations into other calculi that are already known to be strongly normalising.
We have said how Benton et al., working from a logical perspective, used a translation into
a lambda-calculus with sums [4]. In a report on monadic type systems — a generalisation
of pure type systems and the computational metalanguage — Barthe et al. [3] prove strong
normalisation by translation into a lambda-calculus with an extra reduction β′. Finally,
Hatcliff and Danvy [16] state that T -reductions are strongly normalising, although they
do not indicate a specific proof method.

5.2 Further Work

Subsequent to the work described here, we have developed a normalisation by evaluation
algorithm for λml , which we prove correct using the strong normalisation result.
Normalisation by evaluation (NBE) then leads to further results on the theory of λml :
namely, that convertibility of terms is decidable, and reduction is confluent. This is
described in detail in the first author’s PhD thesis [19], which implements NBE for the
version of λml used as an intermediate language in the SML.NET compiler [7, 8], and
evaluates its performance compared to conventional rewriting.

There is an extensive and growing body of work on the problem of normalisation
for many varieties of typed lambda-calculi, with reducibility as just one approach.
Joachimski and Matthes have proposed an alternative induction method, that characterises
the strongly normalisable terms in a calculus [17]. This is proof-theoretically simpler, and
it would be interesting to see how this applies to computation types in λml . Their method
covers sum types, commuting conversions and, most interestingly for us, generalized
applications of the form s(t, y.r). These have some resemblance to our decomposition
of continuations: here y.r is a term abstraction, to which will be passed the result of
applying function s to argument t.

The broader test for ��-lifting is to investigate its application to other predicates
or relations on λml terms. Ultimately we want to make precise, and confirm, the
informal conjecture of Kennedy and Benton that (−)�� captures “observation”: if φ
is some predicate on values, then φ�� is a “best observable approximation” to it on
computations [6].

References

[1] M. Abadi. ��-closed relations and admissibility. Math. Struct. Comp. Sci., 10(3):313–320,
2000.

[2] H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science,
vol. II, pp. 118–309. OUP, 1992.

[3] G. Barthe, J. Hatcliff, and P. Thiemann. Monadic type systems: Pure type systems for impure
settings. In Proc. HOOTS II, ENTCS 10. Elsevier, 1997.

276 S. Lindley and I. Stark

[4] P. N. Benton, G. Bierman, and V. de Paiva. Computational types from a logical perspective.
J. Funct. Prog., 8(2):177–193, 1998.

[5] P. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In Applied Semantics; Advanced
Lectures, LNCS 2395, pp. 42–122. Springer-Verlag, 2002.

[6] P. N. Benton and A. Kennedy. Personal communication, December 1998.
[7] P. N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java bytecodes. In

Proc. ICFP ’98. ACM Press, 1998.
[8] P. N. Benton, A. Kennedy, C. Russo, and G. Russell. The SML.NET compiler. Available at

http://www.cl.cam.ac.uk/Research/TSG/SMLNET/.
[9] P. N. Benton and A. J. Kennedy. Exceptional syntax. J. Funct. Prog., 11(4):395–410, 2001.

[10] R. Carlsson, B. Gustavsson, and P. Nyblom. Erlang’s exception handling revisited. In Proc.
ERLANG ’04, pp. 16–26. ACM Press, 2004.

[11] P. de Groote. On the strong normalisation of intuitionistic natural deduction with
permutation-conversions. Inf. & Comp., 178(2):441–464, 2002.

[12] A. Filinski. Representing monads. In Conf. Record POPL ’94, pp. 446–457. ACM Press,
1994.

[13] J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50(1):1–102, 1987.
[14] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. CUP, 1989.
[15] J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. In Proc.

CSL ’02, pp. 553–568, 2002.
[16] J. Hatcliff and O. Danvy. A generic account of continuation-passing styles. In Conf. Record

POPL ’94, pp. 458–471. ACM Press, 1994.
[17] F. Joachimski and R. Matthes. Short proofs of normalization. Arch. Math. Log., 42(1):58–87,

2003.
[18] M. Lillibridge. Unchecked exceptions can be strictly more powerful than call/cc. Higher-

Order & Symb. Comp., 12(1):75–104, 1999.
[19] S. Lindley. Normalisation by Evaluation in the Compilation of Typed Functional Program-

ming Languages. PhD thesis, U. Edinburgh, 2005.
[20] E. Moggi. Computational lambda-calculus and monads. In Proc. LICS ’89, pp. 14–23. IEEE

Comp. Soc. Press, 1989.
[21] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92, 1991.
[22] J. Newburn. All about monads, v1.1.0. http://www.nomaware.com/monads.
[23] M. Parigot. Proofs of strong normalisation for second order classical natural deduction. J.

Symb. Log., 62(4):1461–1479, 1997.
[24] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report. CUP,

2003.
[25] A. Pitts and I. Stark. Operational reasoning for functions with local state. In Higher Order

Operational Techniques in Semantics, pp. 227–273. CUP, 1998.
[26] A. M. Pitts. Parametric polymorphism and operational equivalence. Math. Struct. Comp.

Sci., 10:321–359, 2000.
[27] D. Prawitz. Ideas and results in proof theory. In Proc. 2nd Scand. Log. Symp., Stud. Log.

Found. Math. 63, pp. 235–307. North Holland, 1971.
[28] A. Sabry and P. Wadler. A reflection on call-by-value. ACM Trans. Prog. Lang. Syst.,

19(6):916–941, 1997.
[29] W.W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log., 32(2):198–

212, 1967.
[30] J. Vouillon. Subtyping union types. In Proc. CSL ’04, LNCS 3210, pp. 415–429. Springer-

Verlag, 2004.

Reducibility and ��-Lifting for Computation Types 277

[31] J. Vouillon and P.-A. Melliès. Recursive polymorphic types and parametricity in an
operational framework. Submitted for publication, 2004.

[32] J. Vouillon and P.-A. Melliès. Semantic types: a fresh look at the ideal model for types. In
Conf. Record POPL ’04, pp. 52–63. ACM Press, 2004.

[33] P. Wadler. Monads for functional programming. In Advanced Functional Programming,
LNCS 925, pp. 24–52. Springer-Verlag, 1995.

Privacy in Data Mining Using Formal Methods

Stan Matwin1,2, Amy Felty1, István Hernádvölgyi3, and Venanzio Capretta4

1 SITE, University of Ottawa, Canada
{stan, afelty}@site.uottawa.ca

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
3 Siemens PSE, Hungary

istvan.hernadvolgyi@siemens.com
4 Department of Mathematics and Statistics,

University of Ottawa, Canada
venanzio.capretta@mathstat.uottawa.ca

Abstract. There is growing public concern about personal data collected by both
private and public sectors. People have very little control over what kinds of
data are stored and how such data is used. Moreover, the ability to infer new
knowledge from existing data is increasing rapidly with advances in database
and data mining technologies. We describe a solution which allows people to
take control by specifying constraints on the ways in which their data can be used.
User constraints are represented in formal logic, and organizations that want to use
this data provide formal proofs that the software they use to process data meets
these constraints. Checking the proof by an independent verifier demonstrates
that user constraints are (or are not) respected by this software. Our notion of
“privacy correctness” differs from general software correctness in two ways. First,
properties of interest are simpler and thus their proofs should be easier to automate.
Second, this kind of correctness is stricter; in addition to showing a certain relation
between input and output is realized, we must also show that only operations that
respect privacy constraints are applied during execution. We have therefore an
intensional notion of correctness, rather that the usual extensional one. We discuss
how our mechanism can be put into practice, and we present the technical aspects
via an example. Our example shows how users can exercise control when their
data is to be used as input to a decision tree learning algorithm. We have formalized
the example and the proof of preservation of privacy constraints in Coq.

1 Introduction

Privacy is one of the main concerns expressed about modern computing, especially in the
Internet context. People and groups are concerned by the practice of gathering informa-
tion without explicitly informing the individuals that data about them is being collected.
Oftentimes, even when people are aware that their information is being collected, it
is used for purposes other than the ones stated at collection time. The last concern is
further aggravated by the power of modern database and data mining operations which
allow inferring, from combined data sets, knowledge of which the person is not aware,
and would have never consented to generating and disseminating. People have no own-
ership of their own data: it is not easy for someone to exclude themselves from, e.g.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 278–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Privacy in Data Mining Using Formal Methods 279

direct marketing campaigns, where the targeted individuals are selected by data mining
models.

This state of affairs has been amply observed by the legal community, particularly
by the segment of it interested in human rights [EPI05]. One of the main concepts
that has emerged from research on societal and legal aspects of privacy is the idea of
Use Limitation Principle (ULP). That principle states that the data should be used only
for the explicit purpose for which it has been collected. It has been noted, however, that
“...[ULP] is perhaps the most difficult to address in the context of data mining or, indeed,
a host of other applications that benefit from the subsequent use of data in ways never
contemplated or anticipated at the time of the initial collection.” [IPC98]. A special
case of the ULP is the principle of opting out vs. opting in: in most cases one needs to
limit explicitly the access to one’s data: this approach is called “opting-out”. It is widely
felt (e.g. [Rie01]) that a better approach would be opting-in, where data could only be
collected with an explicit consent for the collection and specific usage from the data
owner.

In this paper, we propose and prototype a novel approach which gives an individual
the ownership of her data: a person may express permissions stating the purposes for
which the data may or may not be used.We show a mechanism by which such permissions
can be reinforced in a data mining environment. The core of this approach is the use
of formal methods for proving properties of programs. We use a theorem prover with a
highly expressive logic – the Coq Proof Assistant [Coq03]. This system provides a high
degree of power and flexibility for constructing proofs and it is widely used to develop
formal proofs of correctness of software. We are able to express data mining programs
directly in the logic of the theorem prover, and express privacy properties easily. In the
spectrum from less formal to more formal, this kind of system is on the formal end,
meaning that the method is more rigorous than many others and thus can provide a
higher degree of assurance of correctness than less formal methods. This high degree of
assurance is not without cost, of course; the price that must be paid for it is that more
work must be done to apply such methods. Proofs can be difficult to construct and require
a high degree of interaction and knowledge on the part of the user. We address this issue
by modularizing our programs and proofs. In particular, we structure the code so that
for each data mining algorithm we consider, we filter out the difficult part of the proof
so that it can be done once and for all by an expert, and isolate the code that is likely to
change so that the lemmas that are required for this code are straightforward and easy to
prove. It should be possible to simplify the task of proving such lemmas even further by
exploiting the similarities of such lemmas, and designing algorithms to help automate
their proofs.

One aspect that sets privacy verification apart from customary algorithm correctness
is that privacy concerns put constraints on the operation of the program. A traditional
correctness requirement states a relation between the input and the output of an algorithm
and verification consists of proving that the particular software realizes this relation. In
our case, the requirement is not on the input-output relation but on the operations that the
algorithm performs while running: we impose that no privacy violating operation can be
executed. Traditionally, two programs are considered logically equivalent if they imple-
ment the same input-output relation; therefore if one of the two satisfies a specification,

280 S. Matwin et al.

so does the other. However, we want to discriminate programs on the basis of how they
process their input into output. In order to realize such discrimination while at the same
time preserving the classical logical understanding of functions, we decided to overload
the output produced by the program so that a trace of the potentially privacy-breaking
operations is preserved in the result.

More specifically, we start from the Weka repository of Java code which implements
a variety of data mining algorithms [WF99]. We modify this code to include checks that
the privacy constraints that we allow users to specify are met. We also restructure the
code to help facilitate proving properties of it. We write it in the functional programming
language of Coq, taking care to ensure that the part of the code which checks that users’
privacy constraints are met is clearly identifiable. It is this part of the code that we need
the flexibility to change. In particular, we want to consider a possibly large variety of
privacy constraints, and so we must be able to modify the code as we modify or add new
constraints. In general, the lemmas required of this added privacy-checking code will be
considerably simpler than lemmas that will be needed about the algorithm as a whole.

This work extends earlier work, which outlined the main ideas and began with a
simple algorithm as an example [FM02]. This first example was a program to perform
a database join operation, and accommodated users who requested that their data not
be used in such an operation. Here we consider a significantly more complex algorithm
– a decision tree learning algorithm, we illustrate our method of structuring programs
and proofs to tackle the complexity of using formal methods, and we provide a deeper
analysis of the issues that arise in making this work practical.

The remainder of this paper is organized as follows: we describe the architecture
of our approach, show that it has the desired properties, illustrate how it applies to the
learning of decision trees, present the formalization of a particular privacy property, and
discuss the acceptance and implementation of our general approach.

2 Architecture

In order to describe the architecture of our approach, let us introduce the players that
participate in privacy-conscious data mining:

User C is a consumer or a citizen wishing to state her permissions with respect to her
data as it is involved in different data mining processes. Specifying permissions could
be as simple as choosing options, both positive and negative, from some fixed set. Data
miner Org is an organization involved in processing the data about a number of Cs. D
denotes the database schemata of the databases representing that data, while A denotes
a set of data mining algorithms that Org runs on the data. B denotes the binaries of the
software implementation of A. Data mining software developer Dev develops software
S (source code) implementing A. Dev provides Orgs with B. V eri is an independent,
generally trusted organization that verifies that C’s permissions are respected by Org in
the course of the normal operation of Org. Observe that no single player owns all the
data.

Our main idea is as follows. UserC sets permissionsPC(D,A): what can and cannot
be done with her data D by an algorithm in A. Any claim that software S respects these
permissions can be stated as a theoremT (PC , S) about S. ProofR(PC , S)of this theorem

Privacy in Data Mining Using Formal Methods 281

can be checked: if the proof holds, then the program S has the property of respecting PC .
V eri checks both that R(PC , S) is a proof of T (PC , S), and that the binary software
B run by Org is a compiled form of S. (For example, V eri could compare the hashed
result of compilation of S with hashed B, so that V eri needs no access to B, just to its
hashed form.)

Check
Source

PC (D, A) Check
Binary

PCR (, S)PCT (, S)S

Dev Org

VeriC

B

B

Fig. 1. Architectural diagram of the proposed method

Graphically, we present this architecture in Fig. 1. Arrows pointing from within a
box representing player X to a box representing player Y show that X makes an object
at the beginning of the arrow available to Y . For instance, an organization on behalf of
consumers makes the set of permissions PC(D,A) from which each individual C can
make choices available to Dev and V eri. The dashed line between S and B represents
the verifiable link that B is the executable of S. As can be seen from this diagram, the
architecture has the following properties:

– The user decides what is and what is not permitted to happen with the data. In that
sense, a user’s data belong to her.

– Users’permissions are verifiably enforced: it can be proven that the data mining soft-
ware respects them (or not). Consequently, it can be proven as well that the declared
use of the data is adhered to, as long as Org respects the proposed architecture. In
that sense, ULP becomes verifiable as well.

– The scheme is robust against cheating byDev orOrg.Dev cannot present a proof of
a theorem other than T (PC , S) because V eri recreates the statement of this theorem
fromPC andS.Org cannot run binaries of anything other thanS (about whichV eri
can verify that it satisfies permissions) as V eri can verify the B is indeed a binary
version of that S.

3 Example

The decision tree learning algorithm we use is the basic ID3 algorithm from [Mit97].
Decision trees classify examples by following, for a given example, a path from the root
to a leaf. This path is determined by the values of the attributes of a given example. The

282 S. Matwin et al.

leaf on that path gives the class of the example. Decision tree induction algorithms, such
as ID3, take as input examples described by their attributes; each example comes with
its class. The output of a decision tree induction algorithm is a decision tree like the
one shown in Fig. 2. Among many possible decision trees consistent with the input, ID3
chooses heuristically the one with the highest expected accuracy on unseen data – this
will be the best tree. We began by implementing this algorithm in Java. Similar, though
somewhat more complex versions can be found in the Weka code. We also implemented
the same algorithm in the functional programming language SML because it is a smaller
step to go from SML to Coq. To illustrate, we apply our program to fictitious data about
loan applications. In that data, people are represented by (among other things) their
earnings to expenses ratio, whether or not they live in a single dwelling, and whether
they live in the suburbs or in the inner city. The tree produced by ID3 from this dataset
is shown in Fig. 2.

Earnings/Expenses

14,000

Residence

5,000 5,0004,000

Single Dwelling

2504,750 4,900 100

Medium HighLow

Approve

(+)

(++)

No YesInner City Suburb
(+,++)

Reject Approve Reject Approve

Fig. 2. Example Decision Tree

We have added numbers to each node, indicating the number of training examples
considered. For example, the entire training set contains 14,000 records, of which 5,000
are passed on and used to build the tree rooted at the high ratio branch.

Users concerned with privacy may want to restrict how their data is used in training
sets to build decision trees. In a typical data mining application the learned decision tree
is just a symbolic structure, disconnected from the data used to build its nodes. Business
analysts will typically inspect the tree and decide that they are interested in individuals
represented by some nodes in the tree, e.g. the rightmost leaf in Fig. 2 (people with high
disposable income and likely owning property might be selected for a direct marketing
campaign of a life insurance policy, or for a tax audit). Analysts will then perform what
is called data drilling, i.e. they will request full access to the data subset that resulted
in the tree leaf. In such a context, users may want to specify that they do not want their
data to be used to build any part of the decision tree unless there is some minimum
number of training examples used to build that part of the tree. This may protect them
from being singled out or uniquely identified with the condition leading to the leaf in
which they find themselves. The ID3 algorithm can be modified to stop building parts of
the tree where such constraints are violated. We made this modification, and added two

Privacy in Data Mining Using Formal Methods 283

constraints to the data: one of the “single dwelling” loan applicants requires at least 500
people in the training set, and another with the low ratio value requires at least 6,000.
The tree resulting from our modified algorithm is the same as Fig. 2 without the branches
below the nodes marked with (+). Thus, in the new tree, the low ratio and single dwelling
branches will result in no decision. It would be easy, and probably more desirable, to
modify the tree so that such branches give some default decision. We leave out this kind
of detail when we discuss the proof below.

Data miners might consider such user-imposed constraints to be too restrictive. One
alternative is to continue building the tree, and to prune only the leaf node that contains
the person whose constraints are violated. Suppose in our example, the person who
requires at least 6,000 people in the training set lives in the suburbs. The tree obtained
by removing subtrees below nodes marked (++) is the tree obtained from this version of
the algorithm. (There is no change to the single dwelling branch in this case.) As before,
we will want to modify the two branches that are pruned to give some default decision
instead of no decision at all.

These two versions of the algorithm hint at some of the trade-offs and compromises
needed between data miners and customers. Instead of discussing this further, we simply
note here that (as discussed later), for practical purposes it will be necessary to design
a user-friendly language in which users can express constraints. In such a language,
we can have a variety of options including the two just discussed here, thus providing
increased flexibility.

To obtain an implementation of the ID3 algorithm in Coq’s functional language, we
began with a direct translation from the SML code and then modified it to use recursion in
a style that is more amenable to Coq’s reasoning power. Our implementation is modular.
We first present a general tree-building procedure that does not depend on specifics such
as how to determine the labels of the children of each node or which privacy constraints
must be checked. This implementation structure allows us to structure the proof so that
we can exploit general mathematical properties of our tree data structures as well as
general properties of functions which process such trees.

As mentioned above, we need to overload the output of the algorithm to obtain a
trace of the possibly privacy-infringing operations. In the example, the original algorithm
produces a search tree that does not contain information about the training data used in its
construction. We modify it by labeling each node of the tree with the set of corresponding
training data. In this way, the privacy constraints can be verified directly on the output
tree. This information can (and should) be discarded before using the tree. This operation
can be part of a post-processing phase that also includes replacing branches that give
no decision with default decisions as discussed above. We present the algorithm and
discuss the formal proof development showing that this code satisfies the required privacy
constraints in the next section.

4 The Formal Development

Coq implements the Calculus of Inductive Constructions (CIC), a powerful higher-order
logic. In its theory, data types and logical propositions are represented with the same
formalism. There are two sorts of types, Set for data structures and Prop for proposi-

284 S. Matwin et al.

tions. An element A : Set is a type whose terms are elements of the corresponding data
structure. An element P : Prop is a type whose terms are proofs of the corresponding
proposition.

The type constructors on Set (and Prop) are: function types (implication) A → B,
with abstraction denoted by [x : A]b and application by (f a); binary cartesian products
A × B (conjunction A ∧ B); binary disjoint unions A + B (disjunction A ∨ B); and
dependent products (x : A)B (universal quantification ∀x : A.P (x)).

Two very important constructs of Coq are inductive and coinductive definitions. The
notation to define them is similar, but there are deep differences in their meaning. Below
left is the general form of the declaration of an inductive or coinductive type:

(Co)Inductive A : Set
a0 : (Γ0)A

...
an : (Γn)A

Inductive nat : Set
0 : nat
S : nat → nat

CoInductive conat : Set
0 : conat
S : conat → conat

In the general form, the symbols Γi represent sequences of argument assumptions. This
declaration introduces a new Set, A; its elements are constructed by applying the con-
structors ai to elements satisfying the assumptions Γi. The Γis can contain occurrences
of A itself, provided that they respect a positivity restriction [CP90, PM93]. In this case
the elements of A can be constructed recursively. For example, the set nat defined in the
middle above contains natural numbers represented as 0, (S 0), (S (S 0)), etc.

Coinductive types are defined in an almost identical way and are subject to the
same positivity restrictions [Gim98]: The difference between the two constructs is that
the recursive elements of an inductive type must be well-founded, while those of a
coinductive type are allowed to be infinitely descending. For example, in the set conat
defined on the right above, it is possible to construct a term consisting in a infinite
sequence of applications of the S constructor: (S (S (S · · ·))), which is not allowed for
nat.

Inductive and Coinductive definitions can be given for elements of Prop as well;
and the definition of (co)inductive dependent types and predicates is allowed.

The definition of the type for trees is one of the delicate points in the development. We
have adopted an implementation methodology that consists of adapting the data types
to the structure of the algorithms to be verified. This implementation philosophy has
proved very effective in previous work [BC01, MM04, BC04] and it greatly simplifies
the representation of algorithms and the verification of their properties.

To see how this methodology is applied in our case, consider the following informal
description of the algorithm: The input is a database, that is a list of records, d, repre-
senting the input training data. If the privacy restriction is not satisfied by d (e.g. d is too
small), then the construction of the tree is blocked at this node and the node itself gives
a default result. On the other hand, if d satisfies the privacy restriction, a node is created
and d is partitioned into subsets that will be used to build the children of that node. The
children are determined by choosing the attribute that results in the best classifier. A list
of databases is obtained by dividing d into equivalence classes, one for each value of
this attribute, and a new branch of the tree is created for each element of this list.

Privacy in Data Mining Using Formal Methods 285

This is a top-down construction: The tree is constructed starting from its root node
by specifying the branches at each stage. This is typical of coinductively constructed
trees, because we cannot be sure a priori that the constructed tree is well-founded (it can
be proved a posteriori in our case). On the other hand, inductive trees are characterized
by a bottom-up construction in which the subtrees have to be defined first and the main
tree is built from them.

Therefore, the natural definition of Tree(A), for any A : Set, would be:

CoInductive Tree(A) : Set
node : A → list(Tree(A)) → Tree(A)

This says that a tree consists of a node with a label of type A and a list of subtrees. Un-
fortunately, this definition is rejected by the type system of Coq, because the assumption
list(Tree(A)) does not satisfy the positivity condition. This condition states that the type
that we are defining (Tree(A) in our case) can appear in the assumptions of a constructor
only in a positive position, that is, either by itself or as the result type of a functional
construction. Here it appears inside the list() constructor and it is therefore rejected. This
in spite of the fact that such a definition is sound.

We worked around this limitation of Coq by an alternative definition:

CoInductive Tree(A) : Set
pure node : A → Tree(A)
add child : Tree(A) → Tree(A) → Tree(A)

The idea here is that we first generate a node (pure node a), with label a and no branches,
and then add the subtrees one by one using the constructor add child (i.e. (add child c t)
adds a new child c to existing tree t). In presenting Coq terms in this section, for readabil-
ity, we often leave type parameters and arguments implicit. (For example, the parameter
[A : Set] is left out of the above Tree(A) definition and argument A is left out when we
write (pure node a) instead of (pure node A a).) Clearly, all trees that could be con-
structed by the previous (rejected) definition can be defined in this new format. We can
actually define a function node that performs the task that we required of the constructor
in the original definition, and just forget about the roundabout way we defined trees:

Fixpoint node [a : A; lt : (list(Tree(A)))] : Tree(A) :=
Cases lt of

nil ⇒ (pure node a)
(cons t lt′) ⇒ (add child t (node a lt′))

end

The keyword Fixpoint indicates a recursive definition on terms of inductive type. In this
case, the function node is defined by recursion on the list lt. The Cases construction
analyzes the structure of lt (it is either an empty list, nil, or a non-empty list with head t
and tail lt′), and uses the function node recursively on the tail of a non-empty list.

However, now it is possible to construct anomalous trees that did not exist earlier:
The constructor add child can be recursively applied infinitely many times to generate
a node with infinitely many branches. The existence of these pathological trees does not
influence in any way the functioning of the algorithm or the proof of correctness.

286 S. Matwin et al.

For coinductive types, there is a construction for recursive definitions similar to
Fixpoint, the operation CoFixpoint. The difference is in the criteria that the definition
must satisfy: In a Fixpoint definition the recursive calls must be performed on structurally
smaller objects; in a CoFixpoint definition there is no restriction on the recursive calls,
but the operation must be guarded, that is, it must guarantee that for every input, it
generates a term with a constructor at its head. For a formal definition of the syntactic
conditions for Fixpoint and CoFixpoint see [Coq93, Gim94].

However, we chose a different (equivalent) way to define recursive functions on
a coinductive type. We exploit instead the categorical characterization of coinductive
types as terminal coalgebras [Hag87] (for a type-theoretic introduction, see also Chap-
ter 3 of [Cap02]; for a comparison of the two approaches, see [Gim94]). A coalgebra,
in our case, is a pair consisting of a set A and a function f : A → list(A). Termi-
nality of the coinductive type means that for every coalgebra there exists a function
(coalgebra tree f) : A → Tree(A). Intuitively, given an element a : A, the term
(coalgebra tree f a) is the tree with root node labeled by a and subtrees recursively
constructed by applying (coalgebra tree f) to every element of (f a). The operator
coalgebra tree can easily be defined by CoFixpoint:

CoFixpoint coalgebra tree list : (A → list(A)) → A → list(A) → Tree(A) :=
[f, a, l]Cases l of

nil ⇒ (pure node a)
(cons b l′) ⇒ (add child (coalgebra tree list f b (f b))

(coalgebra tree list f a l′))
end

Definition coalgebra tree : (A → list(A)) → A → Tree(A) :=
[f, a](coalgebra tree list f a (f a))

Notice that in the CoFixpoint definition of coalgebra tree list the recursive calls are
performed on arguments that are not necessarily structurally simpler than the original
input, but they are guarded by the application of the constructor add child which ensures
that the construction of the tree proceeds by at least one step. The Definition keyword
introduces a (non-recursive) definition in Coq.

We first define a general decision-tree-building procedure that does not depend on
the specific data used by the ID3 algorithm. In particular, we assume the existence of the
following parameters with their types, but assume nothing about their implementations:
A : Set; children list : A → list(A); constraint : A → bool; dummy : A. Node labels
will be elements of type A. The children list function, given an input a, will determine
the elements of type A that will be used to construct the children of a node labelled with
a. The children of a node are uniquely determined by the label, and there are never two
nodes with the same label in any decision tree. The constraint predicate identifies the
subset of A that satisfies a particular property, left unspecified here. It returns a boolean
value true or false. Finally, dummy is an unspecified default value of type A. Given
these parameters, Fig. 3 contains the general implementation of decision tree. The first
definition is a general filter function which, given an input list, replaces every element
a that doesn’t meet the constraint (f a) with some default value z. The secure children
function uses this filter function on the list obtained by calling children list. The function
secure tree calls coalgebra tree with secure children as its argument function. Thus we

Privacy in Data Mining Using Formal Methods 287

Fixpoint filter [z : A; f : A→ bool; l : list(A)] : list(A) :=
Cases l of

nil ⇒ nil
(cons a l′)⇒ if (f a)

then (cons a (filter z f l′))
else (cons z (filter z f l′))

end
Definition secure children A→ list(A) :=

[a](filter A dummy constraint (children list a))
Definition secure tree : A→ Tree(A) :=

[a](coalgebra tree A secure children a)
Definition decision tree : A→ Tree(A) :=

[a]if (constraint a) then (secure tree a) else (pure node dummy)

Fig. 3. The General Decision Tree Algorithm in Coq

define it by using the characterization of the coinductive type Tree(A) as a terminal
coalgebra. The top-level decision tree function calls secure tree, but first checks to see
that the initial input meets the required constraint. If not, a degenerate tree of one node
with a dummy label is returned.

To instantiate the parameters and specialize this algorithm to ID3, we need several
definitions. We begin by using Coq’s built-in arrays and lists to represent the input
training data. A record is represented as an array of fixed size. Each position in the
array contains a particular field, and we assume the fields are in the same order in each
record in the training data. The training data is a list of such records. Defining an array
in Coq requires the type and number of fields. We leave these unspecified here. They are
formal parameters to our program, which we call Field and numFields. For simplicity we
assume that all fields have the same type (i.e. all possible field contents can be encoded
as elements of type Field). We define our array and lists as follows:

Definition Record := array(numFields,Field)
Definition DB := list(Record)

A privacy constraint is associated with each record. We represent this association as a
function min data : Record → nat. For a record r : Record, (min data r) specifies
the minimum number of records that must be present in a node of the decision tree for
the algorithm to be allowed to proceed. This number could, for example, be stored as
one of the fields in r, and then min data would be the function that extracts the value
of this field. Fig. 4 contains the implementation of several functions we will need. The
first two functions define the code that checks whether privacy is respected for all the
records in the database. The first function, min data check checks that all records in a
certain database have a privacy specification smaller than a given bound. In the second
function, privacy constraint, we just require that the boolean relation min data check
is satisfied when n is the size of the database.

288 S. Matwin et al.

Fixpoint min data check [db : DB; n : nat] : bool :=
Cases db of

nil ⇒ true
(cons r db′)⇒ ((min data r) ≤ n and (min data check db′ n))

end
Definition privacy constraint : DB → bool :=

[db](min data check db (length db))
Definition leaf db : DB → bool :=

[db](length (partitioning functions db)) ≤ 1
Definition id3 children : DB → list(DB) :=

[db]if (leaf db db) then nil else (partitions db)

Fig. 4. Functions Specific to the ID3 Algorithm

We leave out the part of the ID3 algorithm that determines how to partition the
training data by choosing the attribute that results in the best classifier. The details have
no bearing on the privacy issue. We just assume the existence of the following function:

partitioning functions : DB → list(Record → bool)

Given a database db : DB, (partitioning functions db) returns a list of boolean predicates
over Record. Each predicate selects a particular equivalence class.

For our proof, we need no information about this function other than its type. (For
example, we do not even need to know that each predicate selects a subset of db that is
disjoint from all others.) If there is only one equivalence class, the ID3 algorithm builds
a leaf node and stops. The function leaf db in Fig. 4 tests for this case by checking
the length of the list returned by partitioning functions. When there is more than one
equivalence class, we must compute the partitions of db. We can easily define a function
that does so according to the predicates returned by partitioning functions:

partitions : DB → list(DB)

We omit the definition. This function is used by id3 children in Fig. 4, which first tests
whether or not this partitioning should be done by calling leaf db. In the true case, since
there will be no children, the empty list is returned.

The ID3 algorithm is then obtained by instantiating the parameters introduced above.
First, we instantiate A with DB. Thus, we store at each node the actual subset of the
training data used to build the subtree below the node. (Note that our trees do not store
labels such as “Approve”, “Reject”, or “Single Dwelling” as used in Fig. 2. They are not
important for constructing or using the tree.) To complete the algorithm, we instantiate
children list with id3 children, constraint with privacy constraint, and dummy with
null data. We define null data to be an empty list of training data. This is the label used
for nodes which do not meet the required privacy constraints. Let id3 decision tree be
the name of the version of the decision tree function with parameters instantiated in this
way.

To implement the version of the algorithm that keeps more nodes and eliminates
only the leaves marked with (++), the only change needed is to instantiate the constraint
parameter with the following code:

Privacy in Data Mining Using Formal Methods 289

Definition leaf privacy constraint : DB → bool :=
[db](leaf db db) implies (min data check db (length db))

instead of instantiating with privacy constraint.
The following definition of the predicate privacy pred expresses what it means for

user constraints to be satisfied by source code S.

Definition privacy pred := [S : DB → Tree(DB)]
∀db0, db1 : DB.(In tree db1 (S db0))
→ ∀r : Record.(In r db1) → (min data r) � (length db1)

The predicate (In tree db1 (S db0)) expresses the fact that the database db1 is the label
of a node of the tree generated by S for the training set db0. The predicate says that if r
is one of the records in db1 then the privacy restriction is satisfied, that is, the number of
records in db1, (length db1), is at least the minimum limit specified for r, (min data r).
We use the symbol � for the logical version of the order relation to distinguish it from
the boolean version used in the algorithm.

Note here that S is a formal parameter. The theorem that is written T (PC , S) is
obtained in this case by the application (privacy pred id3 decision tree). The heart of
the proof of this theorem is a series of lemmas showing that (privacy constraint a) =
true is an invariant of all nodes a created by the id3 decision tree program. The main
theorem follows fairly directly from this property. The version of the algorithm that uses
leaf privacy constraint instead of privacy constraint requires only minor modifications
to two lemmas and their proofs. The whole proof development, including definitions,
lemmas, and proofs, is roughly 500 lines of Coq script.

5 Discussion and Conclusion

Let us turn our attention to some of the practical aspects of the approach we are proposing.
These include the additional effort (human and computational) needed to perform data
mining compared to the current practice; the question of access of the players to the
information proprietary to other players; and the limitations of the approach.

Firstly, as already mentioned, proving the theorem T (PC , S) is hard, but this needs to
be done only once. We envisage that Dev will perform this as part of the documentation
activities. The proof R(PC , S) must be checked by V eri. This check can be performed
automatically. Instead of being done exhaustively, it can be done at random times, sim-
ilarly to industrial quality control. Finally, a computational overhead of the software
modified so that permissions are checked during execution of B is linear in the number
of Cs whose privacy is checked.

Secondly, let us see in more detail what kind of access different players need to
have to software belonging to other players. It is access to S that is difficult in practice:
for obvious reasons Devs will be reluctant to let other parties read the source code of
Dev’s proprietary software. We believe that these concerns can be addressed by carefully
analyzing and constraining the access process, and engineering it so that the source code
is only accessed by programs and never by humans. For instance, V eri needs access toS
when checking proofR, but that can be done inDev’s environment, by an applet or other

290 S. Matwin et al.

non-intrusive mechanism for which it is known that it does not export any information
outside that environment.

Let us now look at some issues related to the language in which Cs express their
permissions ofPC . The first question is the issue of names of database fields – how would
C know what names of the database fields are needed to describe her permissions? We
can see this answered when universal XML standards will normalize the names of fields
in large databases. Alternatively, one can envisage the disclosure of field names by Orgs
participating in the proposed scheme.

Finally, the language of PCs also limits our approach to data properties that can
be expressed syntactically in formal logic. This does not take into account data de-
pendencies that may be true in a given domain and exploited by Orgs that have that
domain knowledge. It may be possible to deduce information from decision trees that
is not covered by privacy constraints. An example from the real world of deductions
from data is mortgage redlining. This is a name for a discrimination technique that has
been used in the past by some US lenders to exclude mortgage loan applicants based
on race and ethnic criteria. Racial redlining has been ruled illegal some years ago, but
many (see [USC98]) allege that lenders use other “attributes” of loan applicants that the
lenders know correlate highly with race, such as a combination of the geographic info
(e.g. ZIP indicating inner city) with household income. This results in the same effect as
racial redlining, and shows the limitation of “syntactic” privacy permissions that can be
sidetracked by having the knowledge of deep relationships between attributes. This is
the case in our example with the loan data and the resulting decision tree in Fig. 2: while
grouping people by race may be forbidden by law, lenders may know that following
the inner city path in the tree may practically identify racial minorities. In general, it is
important that users be given as much information as possible about what their chosen
privacy constraints cover, and what they don’t.

Most related work on addressing privacy problems in the data mining context [AS00,
ESAG02, Iye02] approaches the problem by applying data transformations that perturb
values of individual data records, changing the “sensitive” fields (e.g. salary informa-
tion). While the value of an individual perturbed field becomes useless, a reconstruction
procedure estimates the original distribution, so that a modified decision tree induction
algorithm gives results close to those that would be obtained on the original, unperturbed
database. Another branch of this research looks at the privacy aspects when the data is
split either vertically [VC02] (i.e. attributes are partitioned, and one party knows only
a given partition and does not wish to share the values of these attributes with other
parties, while all attributes are needed for data mining), or horizontally [KC02] (i.e. the
database is partitioned into subsets of records, one party knows only the records in its
partition and does not wish to share these records with other parties, while all records
are needed for data mining). None of this work, however, offers any tools to address the
ULP.

A variety of approaches to the privacy problem introduce formal models which can
serve as a starting point for verifying privacy policies. One example, which does begin
to address the ULP, is a language based approach which builds information-flow into
the types of a simplified version of Java [HA04]. Although this work does not address

Privacy in Data Mining Using Formal Methods 291

data mining in particular, it may be possible to integrate this kind of approach with ours
to improve the scope of privacy concerns that can be enforced.

A wealth of future work is ahead of us. A user-friendly permission language for PCs,
easy to handle by an average person, needs to be designed. As suggested earlier, it could
initially have the form of a set of options from which C would choose her permissions,
both negative and positive. Tools for proof development that can ease proof construction
in this domain need to be designed. Our current work includes experimenting with the
Krakatoa approach [MPMU04] which allows us to work more directly with the Weka
Java code, avoiding the step of translating code into Coq. We hope this approach will also
provide better automation of proofs. Also, the approach presented here can be combined
with the data perturbation method mentioned earlier [AS00]. In our framework, one
could prove that the perturbation techniques are in fact applied to the data during data
mining. Finally, we need to experiment with a specific dataset used by an organization
which will accept to act as the first Org, and a Dev who will provide access to his S on
the basis described above.

Acknowledgments

The authors acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada, and Communications and Information Technology Ontario. We also
thank Guillaume Dufay for useful discussions.

References

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In W. Chen, J. F.
Naughton, and P. A. Bernstein, editors, 2000 ACM SIGMOD International Confer-
ence on Management of Data, pages 439–450. ACM, May 2000.

[BC01] Ana Bove and Venanzio Capretta. Nested general recursion and partiality in type
theory. In Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in
Higher Order Logics: 14th International Conference, TPHOLs 2001, volume 2152
of Lecture Notes in Computer Science, pages 121–135. Springer-Verlag, 2001.

[BC04] Ana Bove and Venanzio Capretta. Modelling general recursion in type the-
ory. To appear in Mathematical Structures in Computer Science. Available at
http://www.science.uottawa.ca/˜vcapr396/, 2004.

[Cap02] Venanzio Capretta. Abstraction and Computation. PhD thesis, Computing Science
Institute, University of Nijmegen, 2002.

[Coq93] Thierry Coquand. Infinite objects in type theory. In Henk Barendregt and To-
bias Nipkow, editors, Types for Proofs and Programs. International Workshop
TYPES’93, volume 806 of Lecture Notes in Computer Science, pages 62–78.
Springer-Verlag, 1993.

[Coq03] Coq Development Team. The Coq Proof Assistant reference manual: Version 7.4.
Technical report, INRIA, 2003.

[CP90] Thierry Coquand and Christine Paulin. Inductively defined types. In P. Martin-
Löf, editor, Proceedings of Colog ’88, volume 417 of Lecture Notes in Computer
Science. Springer-Verlag, 1990.

[EPI05] EPIC. Electronic Privacy Information Center. http://www.epic.org/, 2005.

292 S. Matwin et al.

[ESAG02] A. Evfimievski, R. Srikant, R.Agrawal, and J. Gehrke. Privacy preserving mining of
association rules. In Eighth ACM SIGKDD International Conference on Knowledge
Discovery in Databases and Data Mining, July 2002.

[FM02] Amy Felty and Stan Matwin. Privacy-oriented data mining by proof checking. In
Sixth European Conference on Principles of Data Mining and Knowledge Discov-
ery, volume 2431 of Lecture Notes in Computer Science, pages 138–149. Springer-
Verlag, August 2002.

[Gim94] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Programs.
International Workshop TYPES ’94, volume 996 of Lecture Notes in Computer
Science, pages 39–59. Springer-Verlag, 1994.

[Gim98] Eduardo Giménez. A Tutorial on Recursive Types in Coq. Technical Report 0221,
Unité de recherche INRIA Rocquencourt, May 1998.

[HA04] Katia Hayati and Martı́n Abadi. Language-based enforcement of privacy policies.
In Proceedings of Privacy Enhancing Technologies Workshop (PET 2004), 2004.

[Hag87] Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In
D. H. Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory and Com-
puter Science, volume 283 of Lecture Notes in Computer Science, pages 140–157.
Springer-Verlag, 1987.

[IPC98] IPCO. Data mining: Staking a claim on your privacy, Information and Pri-
vacy Commissioner/Ontario. http://www.ipc.on.ca/scripts/index.asp?action=31&-
P ID=11387&N ID=1&PT ID=11351&U ID=0, January 1998.

[Iye02] Vijay S. Iyengar. Transforming data to satisfy privacy constraints. In Eighth ACM
SIGKDD International Conference on Knowledge Discovery in Databases and
Data Mining, pages 279–287, July 2002.

[KC02] Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. In The ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery (DMKD’2002), June
2002.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.
[MM04] Conor McBride and James McKinna. The view from the left. Journal of Functional

Programming, 14(1):69–111, 2004.
[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Krakatoa tool

for certification of Java/JavaCard programs annotated in JML. Journal of Logic
and Algebraic Programming, 58(1–2):89–106, January–March 2004.

[PM93] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties.
In M. Bezem and J.-F. Groote, editors, Proceedings of the conference Typed Lambda
Calculi and Applications, volume 664 of Lecture Notes in Computer Science, 1993.
LIP research report 92-49.

[Rie01] D. G. Ries. Protecting consumer online privacy – an overview. http://www.pbi.org/-
Goodies/privacy/privacy ries.htm, May 2001.

[USC98] USCM. Mayors attack urban redlining, mortgage discrimination, The US Con-
ference of Mayors. http://www.usmayors.org/uscm/news/press releases/press-
archive.asp?doc id=98, 1998.

[VC02] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in
vertically partitioned data. In Eighth ACM SIGKDD International Conference on
Knowledge Discovery in Databases and Data Mining, July 2002.

[WF99] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 1999.

L3: A Linear Language with Locations

Greg Morrisett1, Amal Ahmed1, and Matthew Fluet2

1 Harvard University
{greg, amal}@eecs.harvard.edu

2 Cornell University
fluet@cs.cornell.edu

Abstract. We explore foundational typing support for strong updates
— updating a memory cell to hold values of unrelated types at different
points in time. We present a simple, but expressive type system based
upon standard linear logic, one that also enjoys a simple semantic in-
terpretation for types that is closely related to models for spatial logics.
The typing interpretation is strong enough that, in spite of the fact that
our core calculus supports shared, mutable references and cyclic graphs,
every well-typed program terminates.

We then consider extensions needed to make our calculus expressive
enough to serve as a model for languages with ML-style references, where
the capability to access a reference cell is unrestricted, but strong updates
are disallowed. Our extensions include a thaw primitive for temporarily
re-gaining the capability to perform strong updates on unrestricted ref-
erences.

1 Introduction

The goal of this work is to explore foundational typing support for strong up-
dates. In type systems for imperative languages, a strong update corresponds
to changing the type of a mutable object whenever the contents of the object
is changed. As an example, consider the following code fragment written with
SML syntax:

1. let val r = ref () in
2. r := true;
3. if (!r) then r := 42 else r := 15;
4. !r + 12
5. end

At line 1, we create a ref cell r whose contents are initialized with unit. At line
2, we change the contents so that r holds a bool. Then at line 3, we change
the contents of r again, this time to int. In spite of the fact that at different
program points r holds values of different, incompatible types, there is nothing
in the program that will cause a run-time type error.1 This is because subsequent
reads of the reference are type-compatible with the immediately preceding writes.

1 We assume that values are represented uniformly so that, for instance, unit, booleans,
and integers all take up one word of storage.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 293–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 G. Morrisett, A. Ahmed, and M. Fluet

Unfortunately, most imperative languages, including SML and Java, do not
support strong updates. For instance, SML rejects the above program because
it requires that reference cells hold values of exactly one type. The reason for
this is that tracking the current type of a reference cell at each program point
is hindered by the potential for aliasing. Consider, the following function:

1. fun f (r1: int ref, r2: int ref): int =
2. (r1 := true;
3. !r2 + 42)

In order to avoid a typing error, this function can only be called in contexts
where r1 and r2 are different ref cells. The reason is that if we passed the same
cell for each formal argument, then the update on line 2 should change not only
the type of r1 but also the type of r2, causing a type error to occur at line 3.

Thus, any type system that supports strong updates needs some control over
aliasing. In addition, it is clear that the hidden side-effects of a function, such as
the change in type to f’s first argument in the example above, must be reflected in
the interface of the function to achieve modular type-checking. In short, strong
updates seem to need a lot of technical machinery to ensure soundness and
reasonable accuracy.

Lately, there have been a number of languages, type systems, and analyses
that have supported some form of strong updates. The Vault language [1, 2]
was designed for coding low-level systems code, such as device drivers. The
ability to track strong updates was crucial for ensuring that driver code respected
certain protocols. Typed Assembly Language [3, 4] used strong updates to track
the types of registers and stack slots. More recently, Foster and Aiken have
presented a flow-sensitive qualifier system for C, called Cqual [5], which uses
strong updates to track security-relevant properties in legacy C code.

Vault, later versions of TAL, and Cqual all based their support for strong up-
dates and alias control on the Alias Types formalism of Smith, Walker, and Mor-
risett [6]. Though Alias Types were proven sound in a syntactic sense, we lacked
an understanding of their semantics. Furthermore, Vault, TAL, and Cqual
added a number of new extensions that were not handled by Alias Types. For
instance, the restrict operator of Cqual is unusual in that it allows a com-
putation to temporarily gain exclusive ownership of a reference cell and perform
strong updates, in spite of the fact that there may be unknown aliases to the
object.

In this paper, we re-examine strong updates from a more foundational stand-
point. In particular, we give an alternative formulation of Alias Types in the
form of a core calculus based on standard linear logic, which yields an extremely
clean semantic interpretation of the types that is directly related to the seman-
tic model of the logic of Bunched Implications (BI) [7]. We show that our core
calculus is sound and that every well-typed program terminates, in spite of the
fact that the type system supports first-class, shared, mutable references with
strong updates. We then show how the calculus can be extended to support a
combination of ML-style references with uncontrolled aliasing and a restrict-
like primitive for temporarily gaining exclusive ownership over such references

L3: A Linear Language with Locations 295

to support strong updates. We do not envision the core calculi presented here
to be used by end programmers. Instead, we intend these calculi to be expres-
sive enough to serve as a target language for more palatable surface languages.
Proofs of theorems, as well as extended discussion, examples, and related work,
can be found in a companion technical report [8].

2 Core L3

Linear types, which are derived from Girard’s linear logic [9], have proven useful
for modeling imperative programming languages in a functional setting [10, 11].
For instance, the Clean programming language [12] relies upon a form of linearity
(or uniqueness) to ensure equational reasoning in the presence of mutable data
structures (and other effects such as IO). The intuitive understanding is that a
linear object cannot be duplicated, and thus there are no aliases to the object,
so it is safe to perform updates in-place while continuing to reason equationally.

Though a linear interpretation of reference cells supports strong updates, it is
too restrictive for many, if not most, realistic programs. What is needed is some
way to support the controlled duplication of references to mutable objects, while
supporting strong updates. One approach, suggested by Alias Types, is to sepa-
rate the typing components of a mutable object into two pieces: a pointer to the
object, which can be freely duplicated, and a capability for accessing the contents
of the object. The type of the capability records the current type of the contents
of the object and must remain linear to ensure the soundness of strong updates.

In this section, we present a different formulation of Alias Types based on a
relatively standard call-by-value linear lambda calculus; we name our calculus
L3(Linear Language with Locations). In L3, capabilities are explicit and first-
class, which makes it simple to support inductively defined data structures. Fur-
thermore, as in Alias Types, L3 supports multiple pointers to a given mutable
object as well as strong updates. Somewhat surprisingly, the core language re-
tains a simple semantics, which, for instance, allows us to prove that well-typed
programs terminate. Thus, we believe that L3 is an appropriate foundation for
strong updates in the presence of sharing.

2.1 Syntax

The syntax for core L3 is as follows:

Locs η ::= 	 | ρ 	 ∈ LocConsts ρ ∈ LocVars
Types τ ::= 1 | τ1 ⊗ τ2 | τ1 � τ2 | !τ |Ptr η |Cap η τ | ∀ρ.τ | ∃ρ.τ
Exprs e ::= 〈 〉 | let 〈 〉 = e1 in e2 | 〈e1, e2〉 | let 〈x, y〉 = e1 in e2 |

x |λx. e | e1 e2 | !v | let !x = e1 in e2 | dup e | drop e |
ptr 	 | cap 	 | new e | free e | swap e1 e2 |
Λρ. e | e [η] | �η, e� | let �ρ, x� = e1 in e2

Values v ::= 〈 〉 | 〈v1, v2〉 |x |λx. e | !v | ptr 	 | cap 	 |Λρ. e | �η, v�
Most of the types, expressions, and values are based on a traditional, call-by-
value, linear lambda calculus. In the following sections, we will explain the bits
that are new or different.

296 G. Morrisett, A. Ahmed, and M. Fluet

Stores σ ::= {	1 �→ v1, . . . , 	n �→ vn}

(let-bang) (σ, let !x = !v in e) �−→ (σ, e[v/x]) (dup) (σ, dup !v) �−→ (σ, 〈!v, !v〉)

(drop) (σ, drop !v) �−→ (σ, 〈 〉) (new) (σ, new v) �−→ (σ"{	 �→ v}, �	, 〈cap	, !(ptr)〉�)

(free) (σ " {	 �→ v}, free �	, 〈cap 	, !(ptr)〉�) �−→ (σ, �	, v�)

(swap) (σ " {	 �→ v1}, swap (ptr) 〈cap 	, v2〉) �−→ (σ " {	 �→ v2}, 〈cap 	, v1〉)

Fig. 1. Core L3– Selected Operational Semantics

Types. The types 1, τ1 ⊗ τ2, τ1 � τ2, and !τ are those found in the lin-
ear lambda calculus. The first three types are linear and must be eliminated
exactly once. The pattern matching expression forms let 〈 〉 = e1 in e2 and
let 〈x, y〉 = e1 in e2 are used to eliminate unit (1) and tensor products (⊗) re-
spectively. As usual, a linear function τ1 � τ2 is eliminated via application. The
“of course” type !τ can be used to relax the linear restriction. A value of type
!τ may be explicitly duplicated (dup e) or dropped (drop e). To put it another
way, weakening and contraction of unrestricted !τ values is explicit, rather than
implicit.

As mentioned earlier, we break a mutable object into two components: point-
ers (Ptr η) to the object’s location and a capability (Cap η τ) for accessing the
contents of the location. The link between these two components is the loca-
tion’s name: either a location constant � or a location variable ρ. Location con-
stants (e.g., physical memory addresses) are used internally by our operational
semantics, but are not allowed in source programs. Instead, source programs
manipulate location variables, which abstract over location constants. We use
the meta-variable η to range over both location constants and location vari-
ables. Note that location variables ρ may be bound in types and expressions and
alpha-convert, while location constants � do not.

As noted above, we wish to allow the pointer to a location to be freely du-
plicated and discarded, but we must treat the capability as a linear value. This
will be consistent with our semantic interpretation of types, which will establish
that !(Ptr η) is inhabited, while !(Cap η τ) is uninhabited.

Abstraction over locations within types are given by the universal ∀ρ.τ and
existential ∃ρ.τ types. Values of universal type must be instantiated and values
of existential type must be opened.

Expressions and Operational Semantics. Figure 1 gives the small-step op-
erational semantics for core L3 as a relation between configurations of the form
(σ, e), eliding some of the more obvious transitions. In the configuration, σ is a
global store that maps locations to closed values; note that a closed value has no
free variables or location variables, but may have arbitrary location constants—
even locations not in the domain of σ. The notation σ1 5σ2 denotes the disjoint
union of the stores σ1 and σ2; the operation is undefined when the domains of

L3: A Linear Language with Locations 297

σ1 and σ2 are not disjoint. We use evaluation contexts E (not shown) to lift
the primitive rewriting rules to a left-to-right, inner-most to outer-most, call-by-
value interpretation of the language.

Our calculus adopts many familiar terms from the linear lambda calculus.
We already explained the introduction and elimination forms for unit, tensor
products, and functions; their semantics is straightforward.

There are expression forms for both the pointer to a location (ptr �) and the
capability for a location (cap �). However, neither expression form is available in
source programs.

The expressions new e and free e perform the complementary actions of al-
locating and deallocating mutable references in the global store. new e evaluates
e to a value, allocates a fresh (unallocated) location � storing the value, and re-
turns the pair 〈cap �, !(ptr �)〉 in an existential package that hides the particular
location �. The static semantics will ensure that the type of cap � “knows” the
type of the value stored at �. free e performs the reverse. It evaluates e to the
pair 〈cap �, !(ptr �)〉, deallocates the location �, and returns the value previously
stored at �. We remark that deallocation can result in dangling pointers to a
location, but that since the (unique) capability for that location is destroyed,
those pointers can never be dereferenced.

The expression swape1e2 combines the operations of dereferencing and updat-
ing a mutable reference. Using swap instead of dereference and update ensures
that resources are not duplicated [13]. Thus, swap is the appropriate primitive to
ensure the linearity of resources. The first expression evaluates to a pointer ptr�
and the second to a pair 〈cap �, v2〉. The operation then swaps v2 for v1 where
v1 is the value stored at �, and returns 〈cap �, v1〉. Again, the static semantics
will ensure that the type of the input cap � “knows” the type of v1 and the type
of the output cap � “knows” the type of v2.

It is easily seen that the cap � terms have no operational significance; they
could be erased without affecting our ability to evaluate the program.

Finally, there are introduction and elimination forms for universal and exis-
tential location quantification. The expression Λρ. e provides universal abstrac-
tion over a location and is eliminated with an explicit application of the form
e [η]. The expression form �η, e� (read “pack η in e”) has the type ∃ρ.τ when e
has the type τ with η substituted for ρ. The package can be opened with the
expression form let �ρ, x� = e1 in e2.

2.2 Static Semantics

The type system for L3 must ensure that critical resources, such as capabilities,
are not duplicated or dropped. Our type system is based on the linear lambda
calculus and is thus relatively simple.

L3 typing judgments have the form Δ;Γ � e : τ where the contexts Δ and Γ
are defined as follows:

Location Contexts Δ ::= • |Δ, ρ Value Contexts Γ ::= • |Γ, x:τ

Thus, Δ is used to track the set of location variables in scope, whereas Γ , as
usual, is used to track the set of variables (and their types) in scope. We consider

298 G. Morrisett, A. Ahmed, and M. Fluet

Δ;Γ � e : τ

(Bang)
Δ;Γ � v : τ |Γ | = •

Δ;Γ � !v : !τ

(Let-Bang)
Δ;Γ1 � e1 : !τ1 Δ;Γ2, x:τ1 � e2 : τ2

Δ;Γ1 � Γ2 � let !x = e1 in e2 : τ2

(Dup)
Δ;Γ � e : !τ

Δ;Γ � dup e : !τ ⊗ !τ
(Drop)

Δ;Γ � e : !τ
Δ;Γ � drop e : 1

(New)
Δ;Γ � e : τ

Δ;Γ � new e : ∃ρ.(Cap ρ τ ⊗ !(Ptr ρ))

(Free)
Δ;Γ � e : ∃ρ.(Cap ρ τ ⊗ !(Ptr ρ))

Δ;Γ � free e : ∃ρ.τ

(Swap)
Δ;Γ1 � e1 : Ptr ρ Δ;Γ2 � e2 : Cap ρ τ1 ⊗ τ2

Δ;Γ1 � Γ2 � swap e1 e2 : Cap ρ τ2 ⊗ τ1

•� • = •
(Γ1, x:τ) � Γ2 = (Γ1 � Γ2), x:τ (x /∈ dom(Γ2))
Γ1 � (Γ2, x:τ) = (Γ1 � Γ2), x:τ (x /∈ dom(Γ1))

| • | = •
|Γ, x:!τ | = |Γ |
|Γ, x:τ | = |Γ |, x:τ (τ �= !τ ′)

Fig. 2. Core L3– Selected Static Semantics

contexts to be ordered lists of assumptions. There may be at most one occurrence
of a location variable ρ in Δ and, similarly, at most one occurrence of a variable
x in Γ .

As is usual in a linear setting, our type system relies upon an operator Γ1 �
Γ2 = Γ that splits the assumptions in Γ between the contexts Γ1 and Γ2.
Splitting the context is necessary to ensure that a given resource is used by
at most one sub-expression. Note that � splits all assumptions, even those of
!-type. However, recall that contraction and weakening is supported for !-types
through explicit operations.

Figure 2 presents the typing rules for L3, eliding the normal rules for a lin-
ear lambda calculus. The (Bang) rule uses an auxiliary function | · | on contexts
to extract the linear components. The rule requires that |Γ | is empty. This en-
sures that the value v can be freely duplicated and discarded, without implicitly
duplicating or discarding linear assumptions.

Note that there are no rules for ptr � or cap �, as these expression forms
are not present in the surface language. Likewise, all of the rules are given in
terms of location variables ρ and not in terms of location constants �. Instead,
the (New), (Free), and (Swap) rules act as introduction and elimination rules
for Ptr ρ and Cap ρ τ types. Both (New) and (Free) operate on existentially

L3: A Linear Language with Locations 299

V�1� = {({}, 〈 〉)}
V�τ1 ⊗ τ2� = {(σ1 " σ2, 〈v1, v2〉) | (σ1, v1) ∈ V�τ1� ∧ (σ2, v2) ∈ V�τ2�}
V�τ1 � τ2� = {(σ2, λx. e) | ∀σ1, v1. (σ1, v1) ∈ V�τ1� ∧ σ1 " σ2 defined ⇒

(σ1 " σ2, e[v1/x]) ∈ C�τ2�}
V�!τ� = {({}, !v) | ({}, v) ∈ V�τ�}

V�Ptr 	� = {({}, ptr)}
V�Cap 	 τ� = {(σ " {	 �→ v}, cap) | (σ, v) ∈ V�τ�}
V�∀ρ.τ� = {(σ,Λρ. e) | ∀	. (σ, e[/ρ]) ∈ C�τ [/ρ]�}
V�∃ρ.τ� = {(σ, �	, v�) | (σ, v) ∈ V�τ [/ρ]�}

C�τ� = {(σs, es) | ∀σr. σs " σr defined ⇒
∃n,σf , vf . (σs " σr, es) �−→n (σf " σr, vf) ∧ (σf , vf) ∈ V�τ�}

S�•�δ = {({}, ∅)}
S�Γ, x:τ�δ = {(σ " σx, γ[x �→ vx]) | (σ, γ) ∈ S�Γ �δ ∧ (σx, vx) ∈ V�δ(τ)�}

�Δ;Γ � e : τ� = ∀δ,σ, γ. dom(δ)=dom(Δ) ∧ (σ, γ)∈ S�Γ �δ⇒(σ, γ(δ(e)))∈ C�δ(τ)�

Fig. 3. Core L3– Semantic Interpretations

quantified capability/pointer pairs, which hides the location constant present in
the operational semantics. Note that (Swap) maintains the linear invariant on
capabilities by consuming a value of type Capρ τ1 and producing a value of type
Cap ρ τ2.

2.3 Examples and Discussion

This core language is expressive enough to approximate the examples given in
Section 1. A linear reference can be viewed as a value of type

LRef τ ≡ ∃ρ.(Cap ρ τ ⊗ !Ptr ρ),

and we can lift the primitive swap to update a reference with

lrswap ≡ λr:LRef τ. λx:τ ′.
let �ρ, cp� = r in
let 〈c0, p0〉 = cp in
let 〈p1, p2〉 = dup p0 in
let !p′

2 = p2 in
let 〈c1, y〉 = swap p′

2 〈c0, x〉 in
〈�ρ, 〈c1, p1〉�, y〉

cp:Cap ρ τ ⊗ !Ptr ρ
c0:Cap ρ τ, p0:!Ptr ρ
p1:!Ptr ρ, p2:!Ptr ρ
p′

2:Ptr ρ
c1:Cap ρ τ ′, y:τ

However, by keeping Capρτ and !Ptrρ packaged together, we lose any benefits
of making Ptrρ unrestricted. See the technical report [8] for an extended example,
demonstrating the power of treating capabilities and pointers separately.

2.4 Semantic Interpretations

In this section, we give semantic interpretations to types and prove that the
typing rules of Section 2.2 are sound with respect to these interpretations. We

300 G. Morrisett, A. Ahmed, and M. Fluet

have also sketched a conventional syntactic proof of soundness, but found a
semantic interpretation more satisfying for a few reasons. First, while shared ptr�
values can be used to create cyclic pointer graphs, the linearity of cap � values
prevents the construction of recursive functions through the standard “back-
patching” technique. (The extension in Section 3 will relax this restriction, giving
rise to a more powerful language.) Hence, our core language has the property that
every well-typed term terminates, just as in the linear lambda calculus without
references [14]. Our semantic proof captures this property in the definition of
the types, whereas a syntactic approach is too weak to show that this property
holds. Second, the semantic approach avoids the need to define typing rules for
various intermediate structures including stores. Rather, stores consistent with a
particular type will be incorporated into the semantic interpretation of the type.
Finally, the semantic interpretation will allow us some extra flexibility when we
consider extensions to the language in the next section.

Figure 3 gives our semantic interpretations of types as values (V�τ�), types
as computations (C�τ�), contexts as substitutions (S�Γ �), and finally a seman-
tic interpretation of typing judgments. We remark that these definitions are
well-founded since the interpretation of a type is defined in terms of the inter-
pretations of strictly smaller types.

For any closed type τ , we choose its semantic value interpretation V�τ� to
be a set (i.e., unary logical relation) of tuples of the form (σ, v), where v is a
closed value and σ a store. We can think of σ as the “exclusive store” of the
value, corresponding to the portion of the store over which the value has exclusive
rights. This exclusivity is conveyed by the linear Cap�τ type, whose interpretation
demands that σ includes � and maps it to a value of the appropriate type. This
corresponds to the primitive “points-to” relation in BI.

The definition of C�τ� combines both termination and type preservation. A
starting store and expression (σs, es) is a member of C�τ� if for every disjoint
(rest of the) store σr, a finite number of reductions leads to a final store and
value (σf , vf) that is a member of V�τ� and leaves σr unmodified. Notice that
the computation interpretation corresponds to the frame axiom of BI, whereas
the interpretation of linear implication is, as expected, in correspondence with
BI’s magic wand.

The semantic interpretation of a typing judgment �Δ;Γ � e : τ� is a logical
formula asserting that for all substitutions δ and γ and all stores σ compati-
ble with Δ and Γ , (σ, γ(δ(e))) is a member of the interpretation of δ(τ) as a
computation.
Theorem 1 (Core L3 Soundness). If Δ;Γ � e : τ , then �Δ;Γ � e : τ�.

As an immediate corollary, for any well-typed closed expression e of type
τ , we know that evaluating ({}, e) terminates with a configuration (σ, v) in the
value interpretation of τ . Another interesting corollary is that if we run any
closed, well-typed term of base type (e.g., 1), then the resulting store will be
empty. Thus, the expression will be forced to free any locations that it creates
before terminating.

L3: A Linear Language with Locations 301

3 Extended L3

Thus far, our language only supports linear capabilities. While this gives us the
ability to do strong updates, and the separation of pointers and capabilities
allows us to build interesting store graphs, we still cannot simulate ML-style
references, which are completely unrestricted. Such references are strictly more
powerful than the linear references considered in the previous sections. Although
an ML-style reference requires the cell to hold values of exactly one type, this
is sufficient for building recursive computations. For example, we can write a
divergent expression as follows:

1. let val r = ref (fn () => ())
2. val g = fn () => (!r) ()
3. in r := g;
4. g ()
5. end

The unrestricted nature of ML-style references is crucial in this example: the
reference r (holding a function of type unit -> unit), is used both in g’s closure
(line 2) and in the assignment at line 3.

In this section, we consider some minimal extensions needed for unrestricted
references. At the same time, we are interested in modeling more recent lan-
guages, such as Cqual, that support regaining (if only temporarily) a unique
capability on an unrestricted reference so as to support strong updates.

One approach to modeling ML-style references is to add a new kind of unre-
stricted capability, with its own version of swap. To ensure soundness, the new
swap would require that the value being swapped in to the location have the
same type as the value currently in the location. This would ensure that the
other capabilities for the location remained consistent with the current world.
That is, unrestricted capabilities must have types that are frozen throughout
their lifetime. An unrestricted, frozen capability could be created from a nor-
mal, linear capability. However, there could be no support for destroying a frozen
location since this would invalidate the other capabilities for that location.

These additions to the language would be relatively straightforward, but we
are also interested in supporting strong updates for unrestricted references. The
extensions described below are inspired by Cqual’s restrict operator in that
they allow an unrestricted, frozen capability to be temporarily “thawed” to a
linear capability. This allows us to perform strong updates on the location.

In fact, these extensions obviate the need for a new swap on frozen capabilities
– only thawed (linear) capabilities permit a swap, regardless of whether the con-
tent’s type changes. Hence, the process of thawing a location demands exclusive
access and the programmer must present evidence that no other frozen capa-
bility for the same location is currently thawed. In our extended language, this
evidence is a value representing a proof that no other thawed location aliases the
location on which we would like to do strong updates. There are many possible
ways to prove such a fact, based on types or regions or some other partitioning
of objects. Here, we do not commit to a particular logic so that the framework

302 G. Morrisett, A. Ahmed, and M. Fluet

Frozen Stores φ ::= {	1 �→ v1, . . . , 	n �→ vn}

(freeze) (φ,σ"{	 �→ !v}, freeze〈cap	, thwdL〉v′) �−→ (φ"{	 �→ !v},σ, 〈!(frzn), thwdL〉)

(thaw) (φ " {	 �→ !v},σ, thaw 〈!(frzn), thwd L〉 v′) �−→
(φ,σ " {	 �→ !v}, 〈cap 	, thwd (L " {	})〉)

(refreeze) (φ,σ " {	 �→ !v}, refreeze 〈cap 	, thwd (L " {	})〉) �−→
(φ " {	 �→ !v},σ, 〈!(frzn), thwd L〉)

Fig. 4. Extended L3– Additional Operational Semantics

can be used in various settings. Rather, we use our semantic interpretation of
types to specify a general condition so that admissible rules can be added to the
type system without re-proving soundness.

A thawed location can also be “re-frozen” in our extended language. This
is meant to re-enable access to the location along a different frozen capability.
Note that it would be unsound to freeze a thawed location at a type other than
the original frozen type, because other frozen capabilities expect the location
to hold a value of the original type. Therefore, we provide a separate operation
that requires the original type to be re-established when we re-freeze. Together,
thawing and re-freezing a location correspond to the lexically-scoped restrict
of Cqual. However, we are not limited to the last-in-first-out thawing and re-
freezing imposed by a lexically-scoped discipline, and, indeed, there is no real
requirement that a thawed location ever be re-frozen.

Finally, because frozen capabilities are unrestricted, we will require a frozen
location to hold a value of !-type. This prevents a program from discarding a
linear value by placing the (one and only) reference to the value in a frozen
location and then discarding all capabilities to access the location.

3.1 Changes to Support the Extensions

The syntactic changes to support the extensions described above are as follows:

L ∈ P(LocConsts) Thawed Contexts θ ::= • | θ, η:τ
Types τ ::= . . . |Frzn η τ |Thwd θ |Notin η θ
Exprs e ::= . . . | freeze e1 e2 | thaw e1 e2 | refreeze e | frzn 	 | thwd L
Values v ::= . . . | frzn 	 | thwd L

The extended language is evaluated in the presence of a frozen store φ, which
contains type-invariant mutable references, and the linear store σ. Figure 4 gives
the small-step operational semantics for extended L3 as a relation between con-
figurations of the form (φ, σ, e), where the two stores are necessarily disjoint. All
of the operational semantics rules of core L3 carry over to the extended language
by passing φ along unmodified. (However, note that (new) must choose a fresh
location not in the domain of either φ or σ.) The static semantics for the ex-
tended language consist of all the rules for the core language and the rules given
in Figure 5.

L3: A Linear Language with Locations 303

Δ;Γ � e : τ

(Freeze)
Δ;Γ1 � e1 : Cap ρ !τ ⊗ Thwd θ Δ;Γ2 � e2 : Notin ρ θ

Δ;Γ1 � Γ2 � freeze e1 e2 : !(Frzn ρ !τ)⊗ Thwd θ

(Thaw)
Δ;Γ1 � e1 : !(Frzn ρ !τ)⊗ Thwd θ Δ;Γ2 � e2 : Notin ρ θ

Δ;Γ1 � Γ2 � thaw e1 e2 : Cap ρ !τ ⊗ Thwd (θ, ρ:!τ)

(Refreeze)
Δ;Γ � e : Cap ρ !τ ⊗ Thwd (θ, ρ:!τ)

Δ;Γ � refreeze e : !(Frzn ρ !τ)⊗ Thwd θ

Fig. 5. Extended L3– Additional Static Semantics

The type Frznητ is the type of a frozen capability for location η which in turn
holds a value of type τ . The (internal) term frzn � represents such a capability.
We allow frozen capabilities to occur under the !-constructor, and thus they can
be both duplicated and forgotten.

The type Notin η θ represents a proof that the location η is not in the thawed
context θ. As presented, our language has no terms of this type. Rather, our
intention is that the type should only be inhabited by some value when indeed,
the given location is not in the locations given by θ. For instance, in the next
section, we will make use of a constant voidη, which we could add to the language
as a proof of the trivial fact that for all locations η, Notin η •.

A value of type Thwdθ is called a thaw token and is used to record the current
set of frozen locations that have been thawed, as well as their original types. The
term thwd L is used to represent a thaw token. In a given program, there will
be at most one thaw token value that must be effectively threaded through the
execution. Thus, Thwd θ values must be treated linearly. An initial thaw token
of type Thwd • is made available at the start of a program’s execution.

The thaw operation takes as its first argument a pair of a frozen capability for
a location (!Frznη τ) and the current thaw token (Thwdθ). The second argument
is a proof that the location has not already been thawed (Notinηθ). The operation
returns a linear capability (Cap η τ) and a new thaw token of type Thwd (θ, η:τ).
In thawing a location, the operational semantics transfers the location from
the frozen store to the linear store. This is a technical device that keeps the
current state of a location manifest in the semantics; a real implementation
would maintain a single, global store with all locations.

The refreeze operation takes a linear capability of type Cap η τ and a thaw
token of type Thwd (θ, η:τ) and returns a frozen capability with type !Frzn η τ
and the updated thaw token of type Thwd θ. Note that to re-freeze, the type of
the capability’s contents must match the type associated with the location in
the thaw token.

Finally, a frozen capability of type !Frzn η τ is created with the freeze oper-
ation. The first argument to freeze is a pair of a linear capability for a location
(Cap η τ) and the current thaw token (Thwd θ). The other argument is a value
of type Notin η θ ensuring that the location being frozen is not in the current

304 G. Morrisett, A. Ahmed, and M. Fluet

thawed set; thawed locations must be re-frozen to match the type of any frozen
aliases. Note that freeze returns the thaw token unchanged.

Both freeze and refreeze have the operational effect of moving a location
from the linear store to the frozen store.

3.2 Examples and Discussion

The extended language is now expressive enough to encode the example given
at the beginning of this section. An ML-style reference can be viewed as a value
of type:

Ref !τ ≡ !∃ρ.(!Frzn ρ !τ ⊗ !Ptr ρ).

Next, we need to give read and write operations on references. We consider a
simple scenario in which a frozen capability is thawed exactly for the duration
of a read or write; hence, we will assume that the thaw token has type Thwd •
at the start of the operation and we will return the thaw token with this type
at the conclusion of the operation. Recall that we take voidη as a constant term
of type Notin η •, which suffices given our assumed type of the thaw token.

read ≡ λr!:Ref !τ. λt0:Thwd • .

let �ρ, 〈f!a, l!〉� = r in
let 〈c1, t1〉 = thaw 〈fa, t0〉 voidρ in
let 〈c2, x!〉 = swap l 〈c1, 〈 〉〉 in
let 〈c3, 〈 〉〉 = swap l 〈c2, x〉 in
let 〈f!b, t2〉 = refreeze 〈c3, t1〉 in
〈x, t2〉

write ≡ λr!:Ref !τ. λz!:!τ. λt0:Thwd • .

let �ρ, 〈f!a, l!〉� = r in
let 〈c1, t1〉 = thaw 〈fa, t0〉 voidρ in
let 〈c2, x!〉 = swap l 〈c1, z〉 in
let 〈f!b, t2〉 = refreeze 〈c2, t1〉 in
t2

It is easy to see how these operations can be combined to reconstruct the
divergent computation presented at the beginning of this section by “back-
patching” an unrestricted reference.

3.3 Semantic Interpretations

As the extended L3 is strictly more powerful that the core language given previ-
ously, the semantic interpretation given in Section 2.4 will not suffice as a model.
We describe the essential intuitions underlying our semantic interpretation here;
details are given in the technical report [8].

Our model for extended L3 is based on the indexed model of general references
by Ahmed, Appel, and Virga [15] where the semantic interpretation of a (closed)
type V�τ� is a set of triples of the form (k, Ψ, v). Here k is a natural number
(called the approximation index), Ψ is a store typing that maps locations to (the
interpretation of) their designated types, and v is a value. Intuitively, (k, Ψ, v) ∈
V�τ� says that in any computation running for no more than k steps, v cannot
be distinguished from values of type τ . Furthermore, Ψ need only specify the
types of locations to approximation k− 1 — it suffices to know the type of each
store location for k − 1 steps to determine that v has type τ for k steps. This
ensures that the model is well-founded.

For any closed type τ in extended L3, its semantic interpretation V�τ� is a
set of tuples of the form (k, Ψ, ζ, σ, v). Here k is the approximation index; Ψ is a

L3: A Linear Language with Locations 305

store typing that maps frozen locations (including locations that are currently
thawed) to the semantic interpretations of their frozen types (to approximation
k − 1); v is a value. As for core L3, we consider σ to be the exclusive store of
the value v. The lifted thaw set ζ ∈ P(LocConsts)⊥ denotes either the set of
currently thawed locations (if v has exclusive rights to the thaw token) or ⊥ (if
v has no such rights).

We define V�Thwd θ� as the set of all tuples of the form (k, Ψ, L, {}, thwd L)
such that the type of every currently thawed location (� ∈ L) in θ is consistent
(to approximation k) with the type of the location in Ψ . This ensures that when
we move a location from the linear store back to the frozen store, we end up
with a frozen store where every location contains the type mandated by Ψ .

In order to track how far “out of synch” the frozen store φ is with respect to
the frozen store typing Ψ , we define the relation φ :k Ψ \ ζ. Informally, this says
that the frozen store φ is well-typed with respect to the store typing Ψ modulo
the current set of thawed locations ζ — that is, the contents of locations in
the frozen store must have the types specified by Ψ , but the contents of thawed
locations do not have to have the types mandated by Ψ .

As for core L3, we have established the following theorem which shows the
soundness of the typing rules with respect to the model.

Theorem 2 (Extended L3 Soundness). If Δ;Γ � e : τ , then �Δ;Γ � e : τ�.

4 Related Work

A number of researchers have noted that linearity and strong updates can be
used to effectively manage memory (c.f. [13, 16, 17, 18]). Our work is comple-
mentary, in the sense that it provides a foundational standpoint for expressing
such memory management in the presence of both linear and unrestricted data.

Our core L3 language is most directly influenced by Alias Types [6]. Relative
to that work, the main contributions of our core language are (a) a simplification
of the typing rules by treating capabilities as first-class linear objects, and (b)
a model for the types that makes the connections with models for spatial logics
clear. Of course, the extended version of L3 goes well beyond what Alias Types
provided, with its support for thawing and re-freezing locations. As noted earlier,
these primitives are inspired by the lexically-scoped restrict of Cqual [5],
though they are strictly more powerful.

The work of Boyland et al. [19] considers another application of capabilities
as a means to regulate sharing of mutable state. In their untyped calculus, every
pointer is annotated with a set of capabilities, which are checked at each read
or write through the pointer. Asserting capabilities revokes them from aliasing
pointers, which can stall the abstract machine by removing necessary rights
for future pointer accesses. They leave as an open problem the specification of
policies and type-systems to ensure that execution does not get stuck.

The Vault programming language [1] extended the ideas of the Capability
Calculus [20] and Alias Types to enforce type-state protocols. As far as we are
aware, there is no published type soundness proof of Vault’s type system. Later

306 G. Morrisett, A. Ahmed, and M. Fluet

work [2] added the adoption and focus constructs. The former takes linear
references to an adoptee and an adopter, returning a non-linear reference to the
adoptee, while the latter construct temporarily linear view of an adopted object,
suitable for accessing linear components. We are confident that it will be possible
to extend L3 to handle these features.

There has been a great deal of work on adapting some notion of linearity to
real programming languages. Examples include ownership types [21], uniqueness
types [12, 22, 23], confinement types [24, 25], and roles [26]. Each of these mech-
anisms is aimed at supporting local reasoning in the presence of aliasing and
updates. Most of these approaches relax the strong requirements of linearity to
make programming more convenient. We believe that L3 could provide a con-
venient foundation for modeling many of these features, because we have made
the distinction between a reference and a capability to use the reference.

A more distantly related body of work is the typing of process calculi [27, 28].
Here, a kind of strong update is allowed in the type of channels, where a single
communication port can be used for sending values of different types. While a
connection with linearity has been established [29], the intuition seems to be
more closely related to type-states than to strong updates. A potentially fruitful
direction for future work would be to investigate both the application of process
types to this work and to extend this work to apply in a concurrent setting.

5 Future Work

A key open issue is what logic to use for proving that it is safe to thaw a given
location. For instance, one could imagine a logic that allows us to conclude two
locations do not alias because their types are incompatible. In Cqual, locations
are placed in different conceptual regions, and the regions are used to abstract
sets of thawed locations.

Another open issue is how to lift the ideas in L3 to a surface level language.
Clearly, explicitly threading linear capabilities and a thaw token through a com-
putation is too painful to contemplate. We are currently working on adapting
ideas from indexed monads and type-and-effects systems to support implicit
threading of these mechanisms.

References

1. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software.
In: PLDI. (2001)

2. Fähndrich, M., DeLine, R.: Adoption and focus: Practical linear types for imper-
ative programming. In: PLDI. (2002)

3. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. TOPLAS 21 (1999) 528–569

4. Morrisett, G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly lan-
guage. JFP 12 (2002) 43–88

5. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local
non-aliasing. In: (PLDI). (2003)

L3: A Linear Language with Locations 307

6. Smith, F., Walker, D., Morrisett, G.: Alias types. In: (ESOP). (2000)
7. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.

In: (POPL). (2001)
8. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Tech-

nical Report TR-24-04, Harvard University (2004)
9. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102

10. Wadler, P.: Linear types can change the world! In: Programming Concepts and
Methods. (1990)

11. O’Hearn, P.W., Reynolds, J.C.: From Algol to polymorphic linear lambda-calculus.
Journal of the ACM 47 (2000) 167–223

12. Plasmeijer, R., van Eekelen, M. Keep it clean: a unique approach to functional
programming. ACM SIGPLAN Notices 34 (1999) 23–31

13. Baker, H.: Lively linear LISP—look ma, no garbage. ACM SIGPLAN Notices 27
(1992) 89–98

14. Benton, P.N.: Strong normalisation for the linear term calculus. JFP 5 (1995)
65–80

15. Ahmed, A., Appel, A.W., Virga, R.: An indexed model of im-
predicative polymorphism and mutable references. Available at
http://www.cs.princeton.edu/~appel/papers/impred.pdf (2003)

16. Hofmann, M.: A type system for bouned space and functional in-place update. In:
(ESOP). (2000)

17. Cheney, J., Morrisett, G.: A linearly typed assembly language. Technical Report
2003-1900, Cornell University (2003)

18. Aspinall, D., Compagnoni, A.: Heap bounded assembly language. Journal of
Automated Reasoning 31 (2003) 261–302

19. Boyland, J., Noble, J., Retert, W.: Capabilities for aliasing: A generalization of
uniqueness and read-only. In: (ECOOP). (2001)

20. Walker, D., Crary, K., Morrisett, G.: Typed memory management in a calculus of
capabilities. TOPLAS 24 (2000) 701–771

21. Boyapati, C., Sălcianu, A., Beebee, W., Rinard, M.: Ownership types for safe
region-based memory management in real-time Java. In: (PLDI). (2003)

22. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: (ECOOP).
(2003)

23. Hicks, M., Morrisett, G., Grossman, D., Jim, T.: Experience with safe manual
memory-management in Cyclone. In: (ISMM). (2004)

24. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types.
In: (OOPSLA). (2001)

25. Vitek, J., Bokowski, B.: Confined types in Java. Software – Practice and Experience
31 (2001) 507–532

26. Kuncak, V., Lam, P., Rinard, M.: Role analysis. In: (POPL). (2002)
27. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. In: (POPL).

(2001)
28. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing

system. In: Proc. Parallel Architectures and Languages Europe. (1994)
29. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. TOPLAS

21 (1999) 914–947

Binding Signatures for Generic Contexts�

John Power and Miki Tanaka��

School of Informatics, University of Edinburgh,
King’s Buildings, Edinburgh EH9 3JZ, Scotland

Tel: +44 131 650 5159
ajp@inf.ed.ac.uk

miki.tanaka@ed.ac.uk

Abstract. Fiore, Plotkin and Turi provided a definition of binding sig-
nature and characterised the presheaf of terms generated from a bind-
ing signature by an initiality property. Tanaka did for linear binders
what Fiore et al did for cartesian binders. They used presheaf categories
to model variable binders for contexts, with leading examples given by
the untyped ordinary and linear λ-calculi. Here, we give an axiomatic
framework that includes their works on cartesian and linear binders, and
moreover their assorted variants, notably including the combined carte-
sian and linear binders of the Logic of Bunched Implications. We provide
a definition of binding signature in general, extending the previous ones
and yielding a definition for the first time for the example of Bunched
Implications, and we characterise the presheaf of terms generated from
the binding signature. The characterisation requires a subtle analysis of
a strength of a binding signature over a substitution monoidal structure
on the presheaf category.

1 Introduction

There have been numerous recent attempts to provide category theoretic models
of binders for cartesian contexts, as for instance in the λ-calculus [2, 3, 4]. The
idea is to replace calculi such as the λ-calculus by syntax that is invariant under
α-conversion and is supported by a body of category theory. Conceptually, the
easiest and most direct approach was that of Fiore, Plotkin and Turi. Their work
was modified by Tanaka to model binders for linear contexts as for instance in
the linear λ-calculus [15]. Before one can model binders, one must first model
substitution, as the concept of binding is derived from that of substitution. So, in
the light of Fiore et al and Tanaka’s work, Power adumbrated an axiomatic ac-
count of substitution to include cartesian, linear, and mixed contexts, as appear

� This work has been done with the support of EPSRC grants GR/N64571/01 and
GR/586372/01, A Theory of Effects for Programming Languages.

�� Currently at National Institute of Information and Communications Technology,
4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan. Tel:+81 42 327 5782,
miki.tanaka@nict.go.jp

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 308–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Binding Signatures for Generic Contexts 309

for instance in the Logic of Bunched Implications [14]; and Power and Tanaka
together resolved the relevant details [11, 13, 16]. With an axiomatic account of
substitution in hand, one seeks an axiomatic account of binders, and that is the
purpose of this paper, developing and correcting the ideas outlined in [11].

In the light of the axiomatic account, Fiore et al’s analysis of substitution
may be seen as follows. Start with the trivial one object category 1 and freely
add finite products. That yields the category Setopf , which they denoted by Fop

and which modelled contexts for them: they only considered untyped binders,
so they modelled a context by a natural number. They then considered the
presheaf category [F,Set]. For X in [F,Set], they regarded X(n) as a set of terms,
modulo α-conversion, containing at most n variables. They described a monoidal
structure on [F,Set] to model substitution, with finite products extending from
Fop to [F,Set] to model pairing. Tanaka’s analysis was similar.

We axiomatised all this in [13], allowing us to include Fiore et al and Tanaka’s
work, as well as accounting for corresponding structure in studies such as that
of the Logic of Bunched Implications [14]. Finite product structure corresponds
to a pseudo-monad Tfp on Cat . The presheaf construction [Cop,Set] may be
characterised as the free colimit completion of C, and so, except for a size ques-
tion, amounts to giving another pseudo-monad Tcoc on Cat , a pseudo-monad for
cocomplete categories. There is a canonical pseudo-distributive law of Tfp over
Tcoc, allowing one to compose, yielding a pseudo-monad structure on TcocTfp.
One can then use results about the combination that hold for axiomatic reasons
for any pseudo-monad S and T , and any pseudo-distributive law ST → TS of S
over T . In particular, it follows that there is a canonical substitution monoidal
structure on the presheaf category, as the latter is of the form T1 for the pseudo-
monad on Cat determined by the composite TcocS, and S-structure lifts to the
presheaf category also for axiomatic reasons.

Having modelled substitution and pairing, Fiore et al moved onto binding
signatures. In the absence of binders, a signature would consist of a set of opera-
tions O together with a function ar : O −→ N sending each operation to an arity.
But if one does have binders, one needs more sophistication in the arities as one
wants not only a natural number but an account of the number of variables to
be bound. Ultimately, Fiore et al defined a binding signature to be a set O of
operations together with a function ar : O −→ N∗. Their leading example was
the untyped λ-calculus

M ::= x | λx.M | MM

which has two operators, one for lambda and one for application, with arities 〈1〉,
and 〈0, 0〉 respectively: λ-abstraction has one argument and binds one variable,
and application has two arguments and binds no variables.

Having defined the notion of binding signature, they defined the presheaf of
terms generated by a binding signature: it forms a presheaf rather than a set as
one must parametrise by the number of variables that are to be bound. They
then characterised the presheaf of terms generated by a signature Σ as the initial
Σ-monoid, where a Σ-monoid was defined to consist of a Σ-structure to model

310 J. Power and M. Tanaka

application of an element of Σ to a putative term, together with a monoid struc-
ture to model substitution, satisfying a natural and simple coherence condition.
The central proposition they needed in order to make that characterisation pro-
vided a canonical strength for the endofunctor on [F,Set] generated by Σ, with
respect to the substitution monoidal structure, over any pointed object

ΣX • Y −→ Σ(X • Y)

Tanaka’s definition of signature was identical, and it was a more straightforward
construction of the strength relative to pointed objects and hence a more clear
proof of the corresponding characterisation of the presheaf of terms.

Here, we axiomatise that work. Our axiomatisation also provides an ac-
count of binders in the Logic of Bunched Implications, hence for its associated
αλ-calculus. The axiomatisation is necessarily subtle: for Fiore et al and Tanaka,
the number of binders determines an arity, but that is not the case for the Logic
of Bunched Implications, which has both a linear binder and a cartesian binder,
and hence it is not the case in general. So one needs more subtle definitions of
signature and arity in order to include such examples, and one correspondingly
needs more care in providing the requisite strength and the characterisation of
the presheaf of terms generated by a signature. That in turn requires a closer ex-
amination than previously needed of the substitution monoidal structure, which
we give in Section 3. The central definition of the paper is that of a binding
signature in Section 4, with the central examples arising from cartesian binders,
linear binders, and the mixed binders of the Logic of Bunched Implications also
in Section 4. The central proof is the construction of the strength with respect
to the substitution monoidal structure in Section 5, and the central theorem is
the characterisation of the presheaf of terms in Section 6. Section 2 is essential
to make the paper comprehensible.

2 Pseudo-Distributive Laws for Context Manipulation

The notion of pseudo-monad on Cat is a variant of the notion of monad on
Cat. For space reasons, we shall not define pseudo-monads, their 2-categories of
pseudo-algebras, etcetera, here, beyond remarking that they are the definitive
variant of the notions of monad, algebra, etcetera, that respect natural trans-
formations and for which equalities in the various axioms are systematically
replaced by coherent isomorphisms [13, 16].

Example 1. Let Tfp denote the pseudo-monad on Cat for small categories with
finite products. The 2-category Ps-Tfp-Alg has objects given by small categories
with finite products, maps given by functors that preserve finite products in the
usual sense, i.e., up to coherent isomorphism, and 2-cells given by all natural
transformations. So Ps-Tfp-Alg is the 2-category FP. The category Tfp(X) is
the free category with finite products on X. Taking X = 1, the category Tfp(X)
is given, up to equivalence, by Setop

f , which is denoted as Fop by Fiore et al [2].

Binding Signatures for Generic Contexts 311

Example 2. Let Tsm denote the pseudo-monad on Cat for small symmetric
monoidal categories. The 2-category Ps-Tsm-Alg has objects given by small sym-
metric monoidal categories, maps given by strong symmetric monoidal functors,
i.e., functors together with data and axioms to the effect that the symmetric
monoidal structure is preserved up to coherent isomorphism, and 2-cells given
by all symmetric monoidal natural transformations, i.e., those natural transfor-
mations that respect the symmetric monoidal structure. Therefore, Ps-Tsm -Alg
is the 2-category SymMonstr and Tsm(X) is the free symmetric monoidal cat-
egory on X. Taking X = 1, it follows, up to equivalence, that Tsm(X) is the
category Pop of finite sets and permutations used by Tanaka [15].

Example 3. Combining the first two examples by taking the sum of pseudo-
monads, we may consider the pseudo-monad TBI on Cat for small symmetric
monoidal categories with finite products. The 2-category Ps-TBI -Alg has objects
given by small symmetric monoidal categories with finite products, maps given
by strong symmetric monoidal functors that preserve finite products, and 2-cells
given by all symmetric monoidal natural transformations. This structure is the
free category on 1 independently generated by finite-product and symmetric
monoidal structures used in the Logic of Bunched Implications [14]. The objects
of TBI(X) where X = 1 are precisely the bunches of Bunched Implications.

Example 4. For size reasons, there is no interesting pseudo-monad on Cat for
cocomplete categories: small cocomplete categories are necessarily preorders, and
the free large cocomplete category on a small category does not lie in Cat . But
there are well-studied techniques to deal with that concern [16], allowing us
safely to ignore it here. Assuming we do that, there is a pseudo-monad Tcoc for
cocomplete categories. For any small category X, the category Tcoc(X) is given
by the presheaf category [Xop,Set]. This construction is fundamental to all of
Fiore et al, Tanaka, and Pym [2, 14, 15]. Its universal property was not considered
by them, but, as we shall see in Section 3, it explains why the substitution
monoidal structures are definitive.

Definition 1. Given a 2-category C and pseudo-monads (S,μS , ηS , τS , λS , ρS)
and (T,μT , ηT , τT , λT , ρT) on C, a pseudo-distributive law (δ,μS ,μT , ηS , ηT) of
S over T consists of

– a pseudo-natural transformation δ : ST → TS
– invertible modifications

S2T
Sδ� STS

δS� TS2 ST 2 δT� STS
Tδ� T 2S

⇓ μS ⇓ μT

ST

μST

	

δ
� TS

TμS

	
ST

SμT

	

δ
� TS

μT S

	

312 J. Power and M. Tanaka

subject to ten coherence axioms [13, 16].

By a lifting of a pseudo-monad T to the 2-category Ps-S-Alg of pseudo-algebras
for a pseudo-monad S, we mean a pseudo-monad T̃ on the 2-category Ps-S-Alg
such that US T̃ = TUS , and similarly for the other data, where US is the forgetful
2-functor for the pseudo-monad S.

Theorem 1 ([13, 16]). To give a pseudo-distributive law δ : ST −→ TS of
pseudo-monads on Cat is equivalent to giving a lifting of the pseudo-monad T
to a pseudo-monad T̃ on Ps-S-Alg.

Theorem 2 ([13, 16]). Given a pseudo-distributive law δ : ST −→ TS of
pseudo-monads on Cat

– the pseudo-functor TS acquires the structure for a pseudo-monad, with mul-
tiplication given by

TSTS
TδS� TTSS

μTμS

� TS

– Ps-TS-Alg is canonically isomorphic to Ps-T̃ -Alg
– the object TS1 has both canonical pseudo-S-algebra and pseudo-T -algebra

structures on it.
Theorem 2 yields a selection of pseudo-monads by combining our first three
examples with the fourth. The central result that makes all the examples work
is as follows.

Proposition 1 ([13]). The pseudo-monad for free cocompletions lifts from Cat
to SymMonstr.

Example 5. Applying Theorems 1 and 2 and Proposition 1 to Tfp and Tcoc, one
obtains the pseudo-monad TcocTfp with TcocTfp(1) being equivalent to [F,Set],
which was Fiore et al’s category for cartesian variable binding [2].

Example 6. Applying Theorems 1 and 2 and Proposition 1 to Tsm and Tcoc, one
obtains the pseudo-monad TcocTsm with TcocTsm(1) equivalent to [P,Set], which
was Tanaka’s category for linear variable binding.

Example 7. Applying Theorems 1 and 2 and Proposition 1 twice to TBI and
Tcoc yields a composite pseudo-monad with TcocTBI(1) given by the functor
category [(TBI1)op,Set]. The combination of TBI and Tcoc is implicit in the
Logic of Bunched Implications; presheaf categories such as [(TBI1)op,Set] appear
explicitly there [14].

Binding Signatures for Generic Contexts 313

3 Monoidal Structure for Substitution

In this section, given a pseudo-monad T on Cat , we describe a canonical monoidal
structure • on the category T1, then give a general calculation of • when T is of
the form TcocS. When S is Tfp, that yields Fiore et al’s substitution monoidal
structure, and likewise for Tanaka when S is Tsm. The substitution monoidal
structure on TcocTBI(1) does not seem to appear explicitly in the literature on
Bunched Implications but it is implicit there.

A pseudo-strength for a pseudo-monad (T,μ, η, τ, λ, ρ) on a 2-category C con-
sists of a pseudo-natural transformation with components

tX,Y : TX × Y −→ T (X × Y)

and invertible modifications that correspond to the four axioms for an ordinary
strength, subject to ten coherence axioms listed in [16]. Every pseudo-monad on
Cat gives rise to a pseudo-strength, with tX,Y defined by Currying

Y � [X,X × Y]
T� [TX, T (X × Y)]

The rest of the data for pseudo-naturality arises from pseudo-functoriality of T ,
as do two of the structural modifications. The other two structural modifications
arise from the pseudo-naturality of μ and η.

Theorem 3 ([13, 16]). Given a pseudo-monad T on Cat, the category T1 has
a canonical monoidal structure with multiplication • defined by using the pseudo-
strength induced by T as follows:

• : T1× T1
t1,T1� T (1× T1)

∼=� T 21
μ1 � T1

and with unit given by

η1 : 1 � T1

The associativity and unit isomorphisms are generated by those for the multi-
plication and unit of T together with those of the pseudo-strength. Moreover,
the multiplication • : T1 × T1 → T1 is a pseudo-map of T -algebras in its first
variable, i.e., there is a coherent isomorphism

T 21× T1
tT1,T1� T (T1× T1)

T•� T 21

∼=

T1× T1

μ× id

	

•
� T1

μ

	

Example 8. Consider the pseudo-monad TcocTfp on Cat . By Example 5, the
category TcocTfp(1) is equivalent to [F,Set]. So, by Theorem 3, [F,Set] acquires

314 J. Power and M. Tanaka

a canonical monoidal structure. By the last line of the theorem, for every ob-
ject Y of [F,Set], the functor − • Y : [F,Set] −→ [F,Set] is a pseudo-map of
TcocTfp-algebras, and so preserves both colimits and finite products. Since every
functor X : F −→ Set is a colimit of representables, and every object of Fop is
a finite product of copies of the generating object 1, which in turn is the unit of
the tensor •, it follows that we can calculate X • Y as a canonical coequaliser of
the form

(X • Y)m = (
∐
n∈N

Xn × (Y m)n)/∼

where the equivalence relation ∼ is induced by arrows of F [2], yielding exactly
Fiore et al’s construction of a substitution monoidal structure.

Example 9. Consider the pseudo-monad TcocTsm on Cat. By Example 6, the
category TcocTsm(1) is equivalent to [P,Set]. Applying the same argument as
in the previous example, we can calculate X • Y and check that it agrees with
Tanaka’s construction of a substitution monoidal structure, namely

(X • Y)m = (
∐
n∈N

Xn × (Y (n))m)/∼

where Y (n) denotes the n-fold tensor product in [P,Set] of Y , using the con-
volution symmetric monoidal product of [P,Set]: that convolution symmetric
monoidal product is exactly the lifting to [P,Set] of the canonical symmetric
monoidal product of Pop, which is, in turn, the free symmetric monoidal cat-
egory on 1, i.e., Tsm(1). The reason one still sees a product in this formula is
because, conceptually, it plays the role of the Xn-fold sum of copies of Y (n)m
here rather than that of a product. The equivalence relation ∼ is induced by
permutations, similarly to the case of the previous example.

Generalising from these examples and using the final clause of Theorem 3,
we can give an axiomatic formula for X • Y for objects X and Y of TcocS(1) for
any pseudo-monad S and pseudo-distributive law of S over Tcoc. An object of
S1 is given by a sophisticated sort of word of copies of 1 as we shall explain. But
1 • Y must always be isomorphic to Y . So the final clause of Theorem 3 tells us
that, if we express X as a colimit of words of copies of 1, the object X • Y is
given by replacing each copy of 1 in that colimit of words by an occurrence of
Y . The details are as follows.

Given an arbitrary pseudo-monad S on Cat , let (A, a) be (part of) an arbi-
trary pseudo-S-algebra, and let α be an object of the category Sk for any small
category k, in particular for any natural number. The idea is to use such an α to
specify how each argument should be arranged when constructing an operation
with k arguments. The object α induces a functor αA : Ak → A from Ak to A
as follows:

Ak ∼= Ak × 1
S×α� (SA)Sk × Sk

evα� SA
a� A

Binding Signatures for Generic Contexts 315

This construction is a routine extension of the idea that every algebra for a
(finitary) monad on Set supports a semantics for every operation of the Lawvere
theory corresponding to the monad [10, 12]. It is exploited in the modelling of
computational effects in [9].

The construction is pseudo-functorial, i.e., given a pseudo-map (f, f̄) of al-
gebras, the diagram

Ak fk

� Bk

A

αA

	

f
� B

αB

	

commutes up to coherent isomorphism.
Applying Theorem 2 to the case of T being Tcoc, and so TS(1) being the

category [(S1)op,Set], which we denote by Ŝ1 in the rest of the paper, we may
conclude the following:

Proposition 2. Given a pseudo-distributive law of S over Tcoc, the category Ŝ1
has a canonical pseudo-S-algebra structure on it, and, for any α in Sk,

(S1)k Yk

� Ŝ1
k

S1

αS1

	

Y
� Ŝ1

α
̂S1

	

commutes up to coherent isomorphism.

This proposition allows us to give the characterisation of • that we seek. The
characterisation uses the concept of a coend [7], which is a kind of colimit, so can
generally be expressed as a coequaliser of a coproduct. Fiore et al and Tanaka’s
descriptions of X • Y were exactly calculations of coends.

Theorem 4. Given a pseudo-monad S on Cat and a pseudo-distributive law of
S over Tcoc, and given X,Y in Ŝ1, one can calculate the value of X • Y at an
object c of S1 as

(X • Y)c =
∫ c′∈S1

Xc′ × (c′
Ŝ1(Y))c (1)

Proof. It follows from the Yoneda lemma (see for instance [6]) that X is the
colimit of representables

X− =
∫ c′∈S1

Xc′ × (S1)(−, c′) (2)

316 J. Power and M. Tanaka

But c′ = c′S1(1), so by Proposition 2 we have

X− =
∫ c′∈S1

Xc′ × c′
Ŝ1(S1)(−, 1) (3)

But − • Y is a map of pseudo-TcocS-algebras, hence a map of pseudo-Tcoc-
algebras and a map of pseudo-S-algebras by Theorem 2. So −•Y respects both
− and all colimits. Moreover, (S1)(−, 1), or equivalently Y(1), is the unit of •,
so (S1)(−, 1) •Y is isomorphic to Y . So, replacing each occurrence of (S1)(−, 1)
in Equation (3) by Y , we have the result.

Example 10. Applying Theorem 4 to TcocTBI , one obtains a formula for X • Y
of the form

(X • Y)b =
∫ b′∈TBI1

Xb′ × (Y (b′))b

where Y (b′) represents a b′-bunch of copies of the object Y of [(TBI1)op, Set].

4 Binding Signatures

In this section, generalising the work of both Fiore et al and Tanaka, we give
an axiomatic formulation of the notion of a binding signature. Fiore et al and
Tanaka each defined a binding signature to consist of a set of operations O
together with an arity function a : O → N∗. Supposing for simplicity they had
just one operation with arity (ni)1≤i≤k, the functor they would generate (in
Fiore et al’s setting) would send X to

(∂n1X) × · · · × (∂nkX)

where ∂X was defined to be X(1+−), giving a mathematical formulation of the
idea of binding over one variable. Of course, ∂nX, which was therefore X(n+−),
allowed the formulation of the idea of binding over n variables. But that is
not subtle enough in more complex binding situations such as that of Bunched
Implications, which has two sorts of binders: a linear binder and a non-linear
binder. A finite sequence of natural numbers does not specify which sort of binder
is to be used, and in what combination are the binders to be used. So, in order
to capture examples in which one has more than one sort of binder, we need
a more refined definition of binding signature to that used by Fiore et al and
Tanaka.

Their definition of binding signature essentially contains two pieces of data:
for each i, each ni tells you how many times to apply X(1 + −), and k tells you
how many such X(ni +−) need to be multiplied. Their use of k is fine as it tells
us the number of arguments, but we need more specificity in regard to their ni,
as we need to allow a choice of which sort of binder is to be specified by each of
the natural numbers. We also need to allow a choice in how the arguments are

Binding Signatures for Generic Contexts 317

combined: Fiore et al implicitly use ×, Tanaka implicitly uses ⊗, and Bunched
Implications could use a combination. These considerations ultimately led us to
the following definition.

Definition 2. For a pseudo-monad S on Cat, a binding signature Σ = (O, a)
is a set of operations O together with an arity function a : O → ArS where an
element (k, α, (αi)1≤i≤k) of ArS consists of a natural number k, an object α of
the category Sk, and, for 1 ≤ i ≤ k, an object αi of the category S2.

The reason that we choose αi’s to be objects of S2 rather than S1 is, technically,
that the binary operator +, for example, is generated by a map in the Lawvere
theory, i.e., by an object of S2, whereas the unary operator 1 + − is not. So +
has strong uniformity properties with respect to algebras and maps of algebras
that 1 + − does not have. And, intuitively, the two arguments of such a binary
α must correspond to the number of bound variables and that of free variables.
For the cases that there is no binding, only the second argument is significant,
reflecting the fact that only free variables are present.

With the definition of signature in hand, we can induce a signature endo-
functor, as they did, and we can then speak of algebras for the endofunctor.

Proposition 3. Each binding signature Σ induces an endofunctor on Ŝ1 that
sends X to ∐

o∈O
a(o)=(k,αo,(αo

i)1≤i≤k)

αo
Ŝ1(X(αo

1 S1(1,−)), . . . , X(αo
k S1(1,−)))

The functor constructed in the proposition agrees with the functors Fiore et al
and Tanaka generated from their signatures; and the category Σ-Alg of algebras
for the functor agrees with their constructions too. Following Fiore et al, we
overload notation by denoting both the signature and the functor it generates
by Σ. Even when one restricts to the examples of S = Tfp and S = Tsm, our
definition of binding signature is more general than those of Fiore et al and
Tanaka: their k and our k agree, their ni amount to canonical choices of αi for
us, and there is a canonical choice of α incorporated into their choice of k.
Example 11. Let S be Tfp, i.e., consider Fiore et al’s cartesian binders. Our k
is their k. Our α is the object of Tfpk generating the functor

[F,Set]k −→ [F,Set]

defining the k-fold product. And, where they have ni, our αi is the object of
Tfp2 generating the functor

αiF : F2 −→ F

that sends a pair (x, y) to (ni × x) + y.
In particular, the untyped λ-calculus

M ::= x | λx.M | MM

318 J. Power and M. Tanaka

has two operators, one with arity, in Fiore et al’s terms, given by 〈1〉, and the
other with arity 〈0, 0〉. Let 2 be defined to have elements x and y. Then, in our
terms, for the first operator, i.e., for the λ-operator, k = 1, α ∈ Tfp(1) is 1, and
α1 is the element x× y of Tfp(2). For the latter, i.e., for application, k = 2, α is
the element x × y of Tfp(2), and both αi’s are given by y seen as an element of
Tfp(2).

Example 12. Let S be Tsm, i.e., consider Tanaka’s linear binders in [15]. Our k
is her k. Our α is the object of Tsmk generating the functor

[P,Set]k −→ [P,Set]

defining the k-fold tensor product. And, where Tanaka has ni, our αi is the
object of Tsm2 generating the functor

αiP : P2 −→ P

that sends a pair (x, y) to (ni × x) ⊗ y.
In particular, the untyped linear λ-calculus

M ::= x | λlx.M | M@M

has two operators, which except for the routine replacement of product by ten-
sor, have exactly the same arities as those for the ordinary λ-calculus as above.
So, in our terms the signature for the linear λ-calculus is exactly the same
as that for the λ-calculus except for the routine replacement of product by
tensor.

Example 13. Let S be TBI , i.e., the pseudo-monad for bunches as in the Logic of
Bunched Implications. For this example, we no longer have a uniform choice of
α and αi as we must allow a choice between the product and the tensor product.
Consider the untyped αλ-calculus [14] (we replace Pym’s α by λl in order to
avoid overloading of notation)

M ::= x | λx.M | λlx.M | MM | M@M

It has binding signature ΣBI = (OBI , a : OBI → ArBI) given by four opera-
tors with arities (1, 1, x × y), (1, 1, x ⊗ y), (2, x × y, (y, y)) and (2, x ⊗ y, (y, y))
respectively, where x and y are the generators of 2, and hence objects of
TBI(2).

5 A Strength for a Signature

The central abstract result that allowed Fiore et al, then Tanaka, to chacterise
the presheaf of terms generated by a signature as initial algebra semantics in-
volved the description of a canonical strength (see Section 3 of [2] and Lemma
3.1(2) of [15]). So in this section, we show that in our axiomatic setting, for any
signature, the functor Σ has a canonical strength

ΣX • Y −→ Σ(X • Y)

Binding Signatures for Generic Contexts 319

with respect to •, for pointed objects Y . The strength we describe here agrees
with those given by Fiore et al and Tanaka, albeit subject to effort to check the
details. The point will denote an assignment, i.e., a given evaluation of variables.

Generalising Fiore et al’s use of the functor 1+− and Tanaka’s use of 1⊗−,
our axiomatic definition of a binding signature gave us objects α of S2, and
hence binary operations α. We therefore need to consider endofunctors of the
form αS1(b,−) on S1 where b is 1.

Lemma 1. Let S be a pseudo-monad on Cat, let α ∈ S2, b, c ∈ S1, and let
(A, a) be an S-algebra. Then for any x ∈ A,

αS1(b, c)Ax = αA(bA(x), cA(x))

functorially in x.

Proof.

αS1(b, c)Ax = a ◦ Sx ◦ μ1 ◦ S(b, c)(α)

and

αA(bA(x), cA(x)) = a ◦ S(a ◦ Sx(b), a ◦ Sx(c))(α)
= a ◦ S(a ◦ Sx ◦ (b, c))(α)

= a ◦ Sa ◦ S2x ◦ S(b, c)(α)

= a ◦ μA ◦ S2x ◦ S(b, c)(α)
= a ◦ Sx ◦ μ1 ◦ S(b, c)(α)

all functorially in x.

Observe also that when α = 1 ∈ S1, we have 1A = idA.

Proposition 4. Each α ∈ S2 induces a canonical natural transformation

X(αS1(1,−)) • Y −→ (X • Y)(αS1(1,−))

Proof. By Theorem 4, we need to give a natural transformation whose compo-
nent at d ∈ S1 is of the form∫ c′∈S1

X(αS1(1, c′)) × (c′
Ŝ1(Y))d −→

∫ c′′∈S1

Xc′′ × (c′′
Ŝ1(Y))(αS1(1, d))

Putting, c′′ = αS1(1, c′), it suffices, subject to suitable naturality, to give a
function

(c′
Ŝ1(Y))d −→ (αS1(1, c′)Ŝ1(Y))(αS1(1, d)) (4)

But by Lemma 1 with b = 1, c = c′ and A = Ŝ1, we have

αS1(1, c′)Ŝ1(Y) = α
Ŝ1(Y, c

′
Ŝ1(Y))

320 J. Power and M. Tanaka

So to give the requisite function (4) is equivalent to giving a function of the form

(c′
Ŝ1(Y))d −→ (α

Ŝ1(Y, c
′
Ŝ1(Y)))(αS1(1, d)) (5)

which in turn, by applying the Yoneda Lemma applied to both the domain and
codomain, is equivalent to giving a function of the form:

Ŝ1(S1(−, d), c′
Ŝ1(Y)) −→ Ŝ1(S1(−, αS1(1, d)), (α

Ŝ1(Y, c
′
Ŝ1(Y)))) (6)

But by Proposition 2, given a pair (1, d) of objects of S1, one has

S1(−, αS1(1, d)) ∼= α
Ŝ1(S1(−, 1), S1(−, d))

So, letting g be a natural transformation from S1(−, d) to c′
Ŝ1(Y), the composite

α
̂S1(S1(−, 1),S1(−, d))

α
̂S1(S1(−, 1), c′

̂S1(Y))

α
̂S1(S1(−, 1), g)

	

α
̂S1(Y, c

′
̂S1(Y))

	

where the first map is given by functoriality of α
Ŝ1 and the second is given by

the point of Y , yields a function of the form (6), and thus the construction,
which is natural in g, yields the function required in (4).

Theorem 5. There is a canonical strength of the endofunctor Σ over •
ΣX • Y −→ Σ(X • Y)

for pointed objects Y .

Proof. By Theorem 3, for any pseudo-monad T on Cat, the functor defined by
• : T1×T1 −→ T1 is a T -algebra map in its first variable. Taking T to be TcocS,
by Theorem 2, we have the pseudo-monad for cocomplete categories with S-
structure, subject to a coherence condition. So • must preserve both coproducts
and S-structure in its first variable. So we have a canonical isomorphism from

ΣX • Y =

⎛⎜⎜⎝ ∐
o∈O

a(o)=(k,αo,(αo
i)1≤i≤k)

αo
Ŝ1(X(αo

1 S1(1,−)), . . . , X(αo
k S1(1,−)))

⎞⎟⎟⎠ • Y

to ∐
o∈O

a(o)=(k,αo,(αo
i)1≤i≤k)

αo
Ŝ1(X(αo

1 S1(1,−)) • Y, . . . ,X(αo
k S1(1,−)) • Y)

So, applying Proposition 4 multiple times, we are done.

Binding Signatures for Generic Contexts 321

6 Initial Algebra Semantics

Fiore et al and Tanaka’s initial algebra semantics follow directly from their
instances of Theorem 5. So we simply emulate their constructions here, subject
to correcting a tiny error in the first (they forgot the point), to characterise the
presheaf of terms generated by a binding signature in general here. We proceed
from Theorem 5 as follows.

Corollary 1. For any binding signature Σ, if TΣ is the free monad generated
by Σ on the category TcocS(1) = [(S1)op, Set], it follows that TΣ has a canonical
strength over pointed objects with respect to •.

By a variant of Theorem 3, a strength for any monad on a monoidal closed
category (over pointed objects) yields a canonical monoid structure on the free
algebra on 1. So we have:

Corollary 2. For any binding signature Σ, the object TΣ(1) of [(S1)op, Set] has
a canonical monoid structure on it.

And from this, we can deduce, at this level of generality, the initial algebra
semantics of Fiore et al and Tanaka as follows:

Definition 3. Let F be an endofunctor with a strength over pointed objects
on a monoidal closed category (C, ·, I). An F -monoid (X,μ, ι, h) consists of a
monoid (X,μ, ι) in C and an F -algebra (X,h) such that the diagram

F (X) ·X tX,X� F (X ·X)
Fμ� FX

X ·X

h ·X
	

μ
� X

h

	

commutes.

F -monoids form a category with maps given by maps in C that preserve both
the F -algebra structure and the monoid structure.

Theorem 6. For any binding signature Σ, the object TΣ(1) of the category
[(S1)op, Set] together with its canonical Σ-algebra structure and monoid structure
forms the initial Σ-monoid.

That is the final theorem in Tanaka’s paper and one of the two equivalent
versions of the final section of Fiore et al’s paper.

7 Further Work

Although we have studied syntax, we have not given a general syntax in this
paper. So an obvious question to address now is to provide syntax that corre-
sponds to at least a class of the structures we have described here, enough to

322 J. Power and M. Tanaka

include at least Fiore et al’s analysis, Tanaka’s linear variable binders, and the
mixed variable binders of the Logic of Bunched Implication.

It seems unlikely that there is a syntax to be found at the full generality
of this paper. But there seems likely to be something interesting at a level of
generality that is included in that of this paper and extends the three leading
classes of examples. The notion of a pseudo-commutative monad [5] may be
relevant.

Further, the analysis of this paper should be extended to consider variable
binding in a typed setting: everything in this paper has been based on an untyped
setting. Fiore [1] and more recently and extensively Miculan and Scagnetto [8]
have begun to address types, and their approaches may fit directly within the
structures advocated here. But it may ultimately prove more useful to focus on
a pseudo-distributive law for 2-monads on CatX , given a set of types X: it is
unclear yet.

Some of the development of binders has involved the use of sheaves rather
than presheaves, e.g., in [3]. Sheaves appear for example if one wants to justify
decidable equality of variables, which [F,Set] does not support. So, in due course,
we plan to extend the pseudo-monadic approach of this paper to cover sheaves
too: in principle, we are optimistic about that as the category of sheaves is
also given by a free cocompletion, one that respects some existing colimiting
structure.

Also note that [4] studies logical principles on binding structures. Accordingly,
we too would like to extend our approach to incorporate logical principles such
as induction over higher-order terms.

References

1. M. Fiore, Semantic analysis of normalisation by evaluation for typed lambda
calculus. In Proc. PPDP 02, ACM Press, 2002, 26–37.

2. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc.
LICS 99, pages 193–202. IEEE Press, 1999.

3. M. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders.
In Proc. LICS 99, pages 214–224. IEEE Press, 1999.

4. M. Hofmann, Semantical analysis of higher-order abstract syntax. In Proc. LICS
99, IEEE Press, 1999, 204–213.

5. M. Hyland and A. J. Power. Pseudo-commutative monads and pseudo-closed 2-
categories. J. Pure and Applied Algebra 175:141–185, 2002.

6. G. M. Kelly. Basic Concepts of Enriched Category Theory, London Math. Soc.
Lecture Notes Series 64 Cambridge University Press, 1982.

7. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.
8. M. Miculan and I. Scagnetto, A framework for typed HOAS and semantics. In

Proc. PPDP 2003, ACM Press, pages 184–194, 2003.
9. G. D. Plotkin and A. J. Power. Algebraic Operations and Generic Effects. In Proc.

MFCSIT 2000, Applied Categorical Structures 11, 2003, 69–94.
10. A. J. Power. Enriched Lawvere theories. Theory and Applications of Categories,

6:83–93, 1999.

Binding Signatures for Generic Contexts 323

11. A. J. Power. A Unified Category-Theoretic Approach to Variable Binding. In Proc.
MERLIN 2003, ACM Digital Library, 2003.

12. A. J. Power. Countable Lawvere theories and Computational Effects. Submitted.
13. A. J. Power and M. Tanaka. Pseudo-Distributive Laws and Axiomatics for Variable

Binding. Submitted.
14. D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,

Applied Logic Series. Kluwer, 2002.
15. M. Tanaka. Abstract syntax and variable binding for linear binders. In Proc.

MFCS 2000, LNCS 1893, pages 670–679, 2000.
16. M. Tanaka. Pseudo-Distributive Laws and a Unified Framework for Variable Bind-

ing. Edinburgh Ph.D. thesis, 2004.

Proof Contexts with Late Binding

Virgile Prevosto1 and Sylvain Boulmé2

1 Max-Planck Institut für Informatik,
Stuhlsatzenhausweg 85 – 66123 Saarbrücken – Germany

prevosto@mpi-sb.mpg.de
2 LSR-IMAG,

681, rue de la Passerelle BP-72 – 38402 St-Martin D’Hères – France
Sylvain.Boulme@imag.fr

Abstract. The Focal language (formerly FoC) allows one to incre-
mentally build modules and to formally prove their correctness. In this
paper, we present two formal semantics for encoding Focal construc-
tions in the Coq proof assistant. The first one is implemented in the
Focal compiler to have the correctness of Focal libraries verified with
the Coq proof-checker. The second one formalizes the Focal structures
and their main properties as Coq terms (called mixDrecs). The relations
between the two embeddings are examined in the last part of the paper.

1 Introduction

As software applications are growing in size and complexity, it becomes necessary
to provide strong, machine-checked guarantees of their correctness. Focal is a
language (formerly called FoC) initially designed to develop certified computer
algebra libraries. In short, a component of a Focal library can mix abstract
specifications, implementations of operations and proofs that the implementa-
tions satisfy their specifications. Focal encourages a development process by
refinement: concrete implementation can be derived step-by-step from abstract
specifications. The validity of each step is bound to various constraints. Some
of them can be checked by the compiler, but others lead to proof obligations.
These proof obligations can be discharged by an automatic prover or directly
by the developer. In Focal, refinement is realized through a kind of inheri-
tance mechanism. The correctness of the libraries is verified with the Coq proof
assistant [21].

This paper introduces two semantics for the Focal constructions. The first
one is a very shallow embedding into Coq using mainly λ-abstractions. This se-
mantics reflects the current implementation of the Focal compiler. However,
it is purely operational and does not take into account the global structure of
Focal libraries. We have defined a denotational semantics that associates to
each component of a Focal library a Coq type called mixDrec. These mix-
Drecs allow us to state formally in the Coq logic the main properties of these
structures. In this paper, we examine the relations between these two semantics.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 324–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proof Contexts with Late Binding 325

Let us now introduce a flavor of the main Focal concepts. The building
blocks of a computer algebra library are algebraic structures. At first glance,
an algebraic structure can be seen as a set of functions (and constants, i.e.
functions with 0 argument) and properties. For instance, a group is built upon
a carrier set, rep. It has a binary operation over rep, plus, which is associative
and has a neutral element 0. It also provides a unary operation opp such that
plus(x, opp(x)) = 0 etc. As we may notice from this example, each component
of such a structure must be expressed in a certain context, where some other
elements are present. For instance, plus or 0 can only be introduced after rep has
been specified. This can be captured by the notion of dependent records [7, 15, 6],
that is records in which the type of each field might depend on the preceding
ones. With such a construction, the notion of group is simply a record type,
which can be informally represented as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rep :Set
plus :rep → rep → rep
assoc:∀x , y , z ∈ rep,

plus(x ,plus(y ,z)) = plus(plus(x ,y),z)
. . .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
A given group, such as (Z,+, 0,−), is a particular instance of this type.

While these records can specify single mathematical structures, they do not
capture the relations between them. Indeed, once we have groups, we can add
a new operation mult (together with its properties) to obtain rings. Then it is
possible to define integral domains as a special kind of rings with some additional
properties. Thus record types must be extensible.

Furthermore, it is often possible to define some operations at an abstract
level. For instance, subtraction can be derived from plus and opp for any group
(x − y = plus(x, opp(y)), and by extension for any structure deriving from the
groups, such as rings and domains: its definition can be given together with the
specification of groups, and reused in any instance of a structure deriving from
groups, as well as proofs of its properties (for instance x−y = opp(y−x)). Such
refinements from one structure into another are very similar to the inheritance
notion in Object-Oriented Programming (OOP).

In order to increase efficiency of programs, it is often interesting to refine a
definition when deriving a new structure. If we want to implement Z/2Z with
booleans, the generic definition of subtraction may be replaced by xor , and all
other components of this structure have to use this new definition. This concept
is known in OOP as late binding. However, on the contrary to OOP, definitions
represent here (proofs of) theorems as well as functions. Mixing redefinitions with
proofs and dependent types is the main issue of Focal inheritance semantics.

This paper is divided as follows. First, we present in the next section the
main constructions of the Focal language. Then, we propose an embedding
of these constructions in Coq, which is used to ensure the correctness of the
proofs made within Focal (section 3). Section 4 introduces mixDrecs, which
can be seen as partially defined (dependent) records, and hence constitute a
good representation of mathematical structures. Last, sections 5 and 6 show the

326 V. Prevosto and S. Boulmé

conformance of respectively the Focal language and its translation into Coq
with respect to the mixDrecs model.

2 The Focal Language

2.1 Presentation

The main goal of the FoC project1 was to design a new language for computer
algebra having both a clear semantics and an efficient implementation – via a
translation to Ocaml. The resulting language incorporates functional and some
restricted object-oriented features. For the certification part, the language pro-
vides means for the developers to write formal specifications and proofs of their
programs and to have them verified with Coq. The Focal library, mostly devel-
oped by Rioboo [5, 18], implements mathematical structures up to multivariate
polynomial rings with performances comparable to the best CAS in existence.

Designing our own language allows us to express more easily than in a general
purpose language some very important concepts of computer algebra, and in
particular the carrier type of a structure. We have also restricted object-oriented
features to what was strictly necessary and avoided constructions which would
have hindered our intention to prove the correctness of programs [4].

2.2 Main Constructions of the Language

We describe here informally the main features of the language, and give an
overview of its syntax. More in-depth descriptions can be found in [17, 22].

Species. The main nodes of the Focal hierarchy are called species. They
can be compared to the classes of an object-oriented language. Each species is
composed of methods, identified by their names. A method can be either declared
or defined. Declared methods represent the primitive operations of the structure,
as well as its specifications. Defined methods represent all the operations that
have received an implementation so far, and all theorems that have been proved.
Moreover, we distinguish three kinds of methods:

Carrier: It is the type of the elements manipulated by the algebraic structure.
A declared carrier is an abstract data type. A defined carrier is bound to a
concrete type. For instance, polynomials may be represented by a list of pairs,
the first component being the degree and the second one the coefficient.

Programming Methods: They represent the constants and the operators of
the structure. Declared methods of this category are simply signatures. The
definitions are written in a language close to the functional core of ML.

Logical Methods: Such methods represent the properties of the programming
methods. Following the Curry-Howard isomorphism, the type of such a method
is a statement, while its body (when it is defined) is a proof.

1 http://focal.inria.fr

Proof Contexts with Late Binding 327

To give an example of Focal syntax, we express below the specification of
groups seen in section 1 as a species (due to space constraints, the statements
of the properties are given informally in a comment):

species group =
rep;
sig plus in rep → rep → rep;
property assoc: (* x+(y+z)=(x+y)+z *);
sig opp in rep → rep; sig zero in rep;
property plus opp: (* -(x+y)=(-y)+(-x) *);
property opp opp: (* -(-x)=x *);
let minus(x,y)= plus(x,opp(y));
let id(x)=minus(x,zero); . . .
theorem minus opp: (* x-y=-(y-x) *)
proof : by plus opp, opp opp def minus;

end

First, there is the declaration of the abstract carrier rep. Then we give the
signature of plus, a binary operation over rep. After that, we state a logical
property over plus (namely that it is associative). In addition, we declare a
unary operation opp together with some of its properties. We also define (through
the let keyword) new operations, minus, from plus and opp, and id from minus
and zero. In addition, we state a theorem about minus which can be derived
from the properties of plus and opp and the definition of minus.

Inheritance. the species group above is defined “from scratch”, by providing
the complete list of its methods. It is also possible to build species using inheri-
tance. A new species may inherit the declarations and definitions of one or several
species. For instance, given a species monoid with an associative operation mult
and a neutral element one, we can define the species ring as follows:

species ring inherits group, monoid =
property distrib: (* x*(y+z)=(x*y)+(x*z) *);
let zero = minus(one, one); . . .

end

The new species can use all the methods of its parents, regardless of their origin.
It can declare new methods (such as distrib) or directly define them, provide
a definition for previously declared methods (such as zero), or even redefine
methods. On the other hand, the type of the methods (or their statement in
the case of logical methods) must remain the same. This constraint guarantees
that if a species s2 inherits from a species s1, then any instance of s2 is also
an instance of s1. Similarly, in case of multiple inheritance, the methods with
a same name in the two parents must have the same type. If several meth-
ods are defined, we select the definition coming from the rightmost species in
the inherits clause. This is also true for the carrier, whose implicit name is
rep.

328 V. Prevosto and S. Boulmé

Collections and Interfaces. The interface of a species s is obtained by hiding
the body of all defined methods of s (while keeping the corresponding declara-
tions). It can be seen as the type of s. All implementations of s must adhere
to this interface, while they are free to modify some of the definitions of s. A
collection is an instance of a completely defined species (i.e. in which every
method is defined). Users of a collection access it only through its interface.

2.3 Dependencies

A method m1 of a species s can depend on a method m2 of s. The group species
gives various examples of dependencies:

– The declaration of plus depends on rep.
– The statement of assoc depends on rep and plus.
– The body of minus depends on plus and opp, and also implicitly on rep,

since some subexpressions have type rep. Its type (rep → rep → rep as it
can be inferred by the compiler), depends only on rep.

– id depends on minus, zero (and rep).
– The statement of minus opp depends on minus, opp, and rep. The proof

itself depends in addition on plus opp and opp opp, and on the definition of
minus.

As shown by this last example, we have two kinds of dependencies. There is a
decl-dependency on x when we need to rely on the declaration of x (i.e. its type
or its statement). There is a def-dependency on x if we need to unfold its exact
definition in order to type-check an expression.

A def-dependency may occur not only in the body of a method, but also in
the statement of a property or of a theorem. In this case, it is not possible to
extract an interface for the species. Consider for instance the following code:

species bad =
rep = int ;
property id : all x in rep, equal(int plus(x,0),x);

end

The statement of id can only be well-typed in a context where rep is bound
to the int type. Otherwise, it is not even possible to type-check the expression
int plus(x,0). Allowing such def-dependencies in types would have a major draw-
back with respect to redefinition. For instance, redefining rep requires at least
to remove completely the methods with a def-dependency upon it in their type,
such as id , because their type could not be type-checked anymore. But then, the
resulting species does not offer the same functionalities as its parent (id does not
exist anymore). To avoid this problem, Focal does not allow species without a
correct interface: species such as bad are rejected.

2.4 Inheritance Resolution and Normal Form

If we redefine a method x, all methods that def-depend upon x are no longer
accurate, so that we have to erase their definition. In [17] and [16], Doligez and

Proof Contexts with Late Binding 329

Prevosto describe an algorithm that performs inheritance resolution and takes
into account def-dependencies. They use the following notations:
– The decl-dependencies of a method x in a species s are written �x�s.
– The def-dependencies of a method x in a species s are written ��x��s.
– Last, it is required that any species s can be put in normal form.

A species in normal form has no inherits clause, and its methods are ordered
according to their dependencies. Namely, a method can only depend on the
preceding ones. Hence, a species in normal form is nothing more than an ordered
sequence of methods. It is unique modulo reordering of independent methods. In
this paper, we will sometimes implicitly identify such a sequence with a species.

Given a species defined by species s inherits s1, . . ., sn = φ1 . . . φm end,
the main properties of the algorithm are the following:

1. If the algorithm succeeds then its result norm(s) is in normal form.
2. If a normal form equivalent to s exists then the algorithm succeeds.
3. norm(s) contains the newest definition of each method x. This is the last

definition of name x found, starting from norm(s1) and ending with φm.
4. Only a minimum set of definitions is erased: for each method x declared in

norm(s) but defined in one of the si, there exists y ∈ ��x��si
, such that y is

only declared in norm(s), or the definition of y is not the same in s and si.

3 Minimal Environment and Method Generators

Dependencies also play an important role during the translation of a species
s in the Coq language. Each method x of s introducing a new definition is
transformed into a well-typed Coq-term. In addition, we want to reuse this term
in any species or collection deriving from s (in which x is neither redefined nor
erased), and the names of �x�s to be bound to the newest definitions available,
hence emulating a late-binding mechanism. The main issue is that a definition
can not come alone. Indeed, we have to take dependencies into account and to
provide a whole environment in which the definition can be type-checked. For
instance, if we consider again the group species, the theorem minus opp has to
be verified in an environment containing at least the following methods:

rep; sig plus in rep → rep → rep; sig opp in rep → rep;
property plus opp: . . .; property opp opp: . . .;
let minus (x,y) = plus(x, opp(y));

Indeed, minus opp def-depends upon minus and decl-depends upon plus opp
and opp opp. Then in order to define minus (and to state plus opp and opp opp
by the way) we have to include the declarations of plus and opp. Last, rep must
also be present, since all the functions manipulate elements of the carrier type.

To achieve that, the decl-dependencies of x can be replaced by abstractions.
This leads to the notion of method generators. To obtain the method x for a given
collection, we only have to apply the generator of x to the appropriate methods.
In our example, we can apply the generator of minus opp to any implementation
of rep, plus and opp, together with proofs of plus opp and opp opp.

330 V. Prevosto and S. Boulmé

By definition, def-dependencies can not be abstracted. We must put their
definition in the environment. These definitions have themselves their own envi-
ronment constraints: if y ∈ ��x��s, the method generator must be abstracted with
respect to the methods of �y�s, so that we can generate y itself.

In order to properly tackle this issue, we introduce the notion of minimal
environment in which x can be defined. It is denoted by s � x, and corresponds
to the smallest subset of norm(s) which is needed to both type-check x and have
a well formed typing context. The formal definition of s�x relies on the notion of
visible universe | x | of a method x. It is the list of method names that will occur
in s�x. Namely, with <def

s the transitive closure of ��·��s and Ts(x) denoting the
type (or the statement for logical methods) of x in the species s, we have

Definition 1 (Visible Universe).

y ∈ �x�s

y ∈| x |
y <def

s x

y ∈| x |
z <def

s x y ∈ �z�s

y ∈| x |
z ∈| x | y ∈ �Ts(z)�s

y ∈| x |
In the following, we write norm(s) as an ordered list of methods Φ, where Φ is

defined inductively as either the empty list ∅ or a non-empty list {y : τ = e;Φ′}.
In this last case, τ is a type associated to the field name y, and e is ⊥ when y is
only declared, or else a term corresponding to the definition of y.

Definition 2 (Minimal Environment). The minimal environment is defined
with the following rules:

∅ � x = ∅ y /∈| x | Φ � x = Σ

{y : τ = e;Φ} � x = Σ

y <def
s x Φ � x = Σ

{y : τ = e;Φ} � x = {y : τ = e;Σ}

y ∈| x | y
<def
s x Φ � x = Σ

{y : τ = e;Φ} � x = {y : τ = ⊥;Σ}
On the Coq side, the method generator is obtained by mapping any decla-

ration of s�x to a λ-abstraction, and any definition to a local binding, obtained
by applying the corresponding method generator to the appropriate variables. In
[16], we have shown that such a method generator is a well-typed Coq term. For
instance, the method generators corresponding to the minus, id and minus opp
methods of our group species would be the following:

Definition minus gen:=
fun(rep: Set)⇒ fun(plus: rep → rep → rep)⇒ fun (opp: rep → rep)⇒

fun (x,y :rep) ⇒ plus(x,opp(y)).
Definition minus opp gen:=

fun(rep:Set)⇒ fun (plus:rep → rep → rep)⇒ fun (opp: rep → rep)⇒
let minus = (minus gen rep plus opp) in

fun (plus opp: . . .) ⇒ . . .
Definition id gen:=

fun(rep:Set)⇒ fun(zero:rep)⇒ fun(minus: rep → rep → rep)⇒
fun (x :rep) ⇒ minus(x,zero).

Proof Contexts with Late Binding 331

minus gen is simply an abstraction over rep, plus and opp. minus opp gen con-
tains in addition a definition of minus, obtained by applying minus gen to the
appropriate representations of rep, plus and opp in the context of the theorem
generator. id gen is abstracted with respect to minus and zero. Since it does not
rely on the definition of minus, there is no need to call minus gen.

4 MixDrecs

Method generators provide a convenient way to represent the method defini-
tions of a species s in Coq, and to reuse the corresponding code in each im-
plementation of s. However this translation gives us only a set of method gen-
erators: we do not have any representation of s itself, nor of its relations with
the other species. In his PhD [4], Boulmé verifies that relations between species
can be described in Coq (and are thus compatible with the Coq logic, the cal-
culus of inductive constructions). He proposes Coq constructions to represent
species. This section presents these structures and their main properties using
human-friendly notations (roughly speaking, inference rules below correspond
to inductive definitions in Coq). The whole Coq development is available at
http://www-lsr.imag.fr/Les.Personnes/Sylvain.Boulme/focal.html

4.1 Dependent Records

Collections can be represented as records, while their interface can be represented
as a record type. Given a (countably infinite) set Lab of field names, a record is
a function (with a finite domain of definition) which associates a definition to a
field name. A record signature associates a type to a field name.

Definition 3 (Drecord Signature).

Rec : List(Lab) → Type
Esig

{}s : Rec∅

Csig
T : Type a /∈ l F : T → Recl

{a : T ;F}s : Reca;l

The function F in Csig expresses the dependencies of the remaining signature
with respect to a. We build then a signature from right to left, that is, following
the terminology of [15], right associative records. The definition of a Drecord
follows the same rules, with the difference that the field a is now bound to an
expression and not only to a type. The main operations over signatures are:

– A sub-signature relation between two signatures, noted s1 :7s2
2, which says

that s1 contains at least all the fields of s2 with the same type, but not
necessarily in the same order. Two independent fields can indeed be swapped.

– Single inheritance corresponds to the extension of a given signature s with
new fields. These new fields can depend on the fields of s and thus are
appended at the end of the signature.

2 :$ corresponds to the usual subtyping relation <, but the direction of the relation
makes “bigger” the signature which has more fields.

332 V. Prevosto and S. Boulmé

– Multiple inheritance corresponds to the fusion of two signatures s1 and s2,
provided that the common fields have the same type in both signatures.

4.2 Partially Defined Drecords: MixDrecs

To represent species, we must be able to mix declared and defined fields. This is
done in a structure called MixDrec. A mixDrec is a tree whose nodes are:

– Empty nodes, forming the leafs of the tree.
– Abstract nodes, corresponding to declared fields. An abstract node contains

a name and its type, and has one son.
– Manifest nodes, corresponding to defined fields. Such a node contains a name

x , its type and its definition. It has two sons. In the first one, x is abstracted,
i.e. we only know its type. In the second one, we have access to the definition
of x. Both sons contain the same fields in the same order, but some abstract
nodes of the first son may be defined in the second. Intuitively, it corresponds
to def-dependencies over x.

Arep

	
Aplus

	Aopp

	Mminus����

Aminus opp

�����
Mminus opp

	Mid

���

Mid

����
Mid

Fig. 1. Tree-structure of a mixDrec

As an example, figure 1 represents
the structure of the MixDrec repre-
senting groups, with A being abstract
nodes and M manifest nodes. Due
to lack of space, empty nodes (leafs
of the tree) have been omitted, as
well as some abstract fields. In this
figure, the first three nodes are ab-
stract. The fourth one is defined and
has two sons. In the left-hand side,
we do not take into account the def-
inition of minus. Thus, minus opp
must also be abstracted, because of

its def-dependency. On the other hand, id , which has only a decl-dependency
upon minus, can be defined. On the right-hand side, we know the definition of
minus. minus opp can thus be defined. Since id does not depend upon minus opp,
both sons of Mminus opp are manifest nodes containing the definition of id .

More formally, the type of mixDrecs has three parameters: a list l of field
names, a tree-structure p of type Prel (defined figure 2) and a Drecord signature
S of type Recl, which associates a type to each field. A mixDrec M of structure
p and signature S is denoted as M : MixS,p (l is kept implicit). The definition
of this type is mutually recursive with the definition of the relation � which
expresses that a mixDrec is a more defined view of another one. In particular, if
m1 and m2 are respectively the left and right son of a manifest node, we must
have m2 � m1. Inference rules for Prel, M : MixS,p and � are described in
figure 2. The side condition for the typing rule of a manifest node captures the
notion of balanced mixDrec given in [16]. Intuitively, it says that (f x) is the
most defined view of m when a is abstract.

Proof Contexts with Late Binding 333

∅p : Pre∅

a /∈ l p : Prel

A p : Prea;l

a /∈ l p1 : Prel p2 : Prel

M p1 p2 : Prea;l

{{}} : Mix{}s,∅p

f : Πx : T.Mix (F x),p

{{a : T ; f}} : Mix{a:T ;F}s,Ap

f : Πx : T.Mix (F x),p1

x : T m : Mix (F x),p2 m � (f x)
{{a : T = x; f ;m}} : Mix{a:T ;F}s,Mp1p2

∀f ′ : Πx : T.Mix (F x),p1 ,
m � (f ′ x) ⇒ f x � f ′ x

{{}}� {{}}
∀y : T, f1 y � f2 y

{{a : T ; f1}}� {{a : T ; f2}}
m � (f1 x) ∀y : T, f1 y � f2 y

{{a : T = x; f1;m}}� {{a : T ; f2}}

m1 � m2 ∀y : T, f1 y � f2 y

{{a : T = x; f1;m1}}� {{a : T = x; f2;m2}}

Fig. 2. types of mixDrecs

4.3 Operations on MixDrecs

The two main operations on mixDrecs are the embedding of a mixDrec M of
signature s in a sub-signature s′ of s, ⇑s′ M , and the fusion of two mixDrecs M1
and M2 sharing the same signature, M1 ⊕ M2.

⇑s′ M is defined by induction on the derivation of s′ :7s. Basically, we add
the fields of s′ that are not present in s as abstract nodes, and reorder the fields
of s according to s′ order.

To compute M1 ⊕ M2, we traverse both structures, and consider the corre-
sponding nodes of each side. The definitions of M1 have precedence over the one
of M2. In other words, if x is defined in both M1 and M2 we take the definition
of M1 and follow the left son of the manifest node in M2 since we provide a new
definition: on this branch, fields with a def-dependency on x are abstract.

But even if the node of the first mixDrec is abstract, it might not be possible
to use a definition provided by the second mixDrec. Indeed, we have to take into
account possible def-dependencies with respect to previously considered fields.
For instance, if we take the two mixDrecs:

M1 = {{a : T1 = e1;λa : T1. {{b : T2}} ; {{b : T2 = e2}}}}

M2 =
{{

a : T1 = e′1; λa : T1. {{b : T2 = e′2}} ;
{{b : T2 = e′2}}

}}
then M1 ⊕ M2 is equal to

M = {{a : T1 = e1;λa : T1. {{b : T2}} ; {{b : T2 = e2}}}}

and not to the mixDrec M ′ obtained by comparing the nodes of M1 and M2
placed in the same position:

334 V. Prevosto and S. Boulmé

M ′ =
{{

a : T1 = e1; λa : T1. {{b : T2 = e′2}} ;
{{b : T2 = e2}}

}}
Indeed, M ′ has two different definitions for the field b and thus is not well-formed.

To take into account the global structure of the mixDrecs, Boulmé introduces
a list of booleans, the control list, indicating for each field whether it is possible
or not to take the definition of the mixDrec on the right. Briefly, for a given
field x, the corresponding element of the control list is true if x is abstract in
the rightmost branch of M1 and defined in M2, and false otherwise, as it is the
case for b in the previous example.

5 From Species to MixDrecs

We have just seen two semantics of Focal libraries. The mixDrecs semantics
formalizes the notion of species. The method generator semantics provides a light
way to express the environment in which each proof obligation of the Focal
library can be verified with Coq. In the next sections, we examine the relations
between these two semantics.

5.1 Plain Translation

A species s put in normal form norm(s) can be directly translated into a mix-
Drec, <<s>>. Whenever there is a defined method x in norm(s), we compute
the left son of the corresponding node in <<s>> by erasing the definitions that
def-depend upon x. The structure of such a mixDrec, P (s), is defined the same
way. It is also possible to derive a signature of Drecord from s, �s�, by taking
the types of the methods in the order given by norm(s)

Theorem 1. <<s>>: Mix �s�,P(s) Moreover, the names of the fields of <<s>> are
exactly the names of the methods of norm(s).

Proof. By induction on the number of methods of norm(s). /0

5.2 Inheritance

Let s1 be a well-formed species and take M1 =<<s1>> the mixDrec associated
to its normal form. Let s2 be a well-formed species defined by

species s2 inherits s1 = φ1 . . . φn end

The following properties have been proved in [16]:

Lemma 1. �s2� :7�s1�

Theorem 2 (Correctness of single inheritance). With the above notations,
the following equality holds: <<s2>> ⊕ (⇑�s2� tomixs1

)
=<<s2>>

Intuitively, this theorem states that in the single inheritance case, the inheritance
resolution algorithm conforms to the mixDrecs semantics: the fusion of <<s2>>
and the embedding of <<s1>> does not add any definition that existed in s1 and
has been erased during inheritance resolution.

Proof Contexts with Late Binding 335

Theorem 3 (Correctness of multiple inheritance).
Let s be defined as species s inherits s1, s2 = end. Then

<<s>>= (⇑�s�<<s2>>) ⊕ (⇑�s�<<s1>>)

6 Method Generators and MixDrecs

First, we define paths inside a MixDrec M as usual: a path p is a sequence of 0
and 1 of length smaller than the depth of M.

Definition 4 (Definition Contexts). Let M be a mixDrec, and p a path. The
context associated to p, noted Γp (M) is defined according to the following rules:

Γ∅ (M) = {{}}
Γ0;p′ ({{x : T = e; f ;m}}) = {{x : T ;λx.Γp′ (f x)}}
Γ0;p′ ({{x : T ; f}}) = {{x : T ;λx.Γp′ (f x)}}
Γ1;p′ ({{x : T = e; f ;m}}) = {{x : T = e;λx.Γp′ (f x) ;Γp′ (m)}}
Γ1;p′ ({{x : T ; f}}) = {{x : T ;λx.Γp′ (f x)}}

Let x be the last field of Γp (M). If x is defined in Γp (M), we say that p is a
definition path of x, and Γp (M) is a definition context of x in M.

Lemma 2. Given a mixDrec M and a defined field x of M, let �M (x) be the
minimal definition path of x in M according to the lexicographic ordering over
paths. We write Γ (M) � x for Γ�M(x) (M). If a field y is defined in Γ (M) � x,
y is also defined in any definition context associated to x in M.

In addition, we define an equivalence relation � over mixDrecs, such that
two well-formed mixDrecs defining the same fields but in different order are
equivalent. � can be seen as an extension of the congruence associated to the :7
relation over signatures to the mixDrecs. Given a species s and a defined method
x, we can find a mixDrec M equivalent to <<s>>, such that Γ (M) � x is equal
to <<s � x>>, and the depth of x in M is minimal for the whole equivalence
class. This shows that s�x is minimal according to mixDrecs semantics: method
generators can be extracted from the mixDrecs by selecting the appropriate path.

Theorem 4. Let Ts(x) and Bs(x) be the type and the body of x in s, and
γs(x) =<<s � x;x : Ts(x) = Bs(x)>>. There exists a mixDrec M such that

1. M � Γ (<<s>>) � x
2. Γ (M) � x = γs(x)
3. ∀m, such that m�Γ (<<s>>) � x, the depth of x in M is less than or equal

to the depth of x in m.

Proof. First, we use the rules of � to build M such that it is equivalent to
Γ (<<s>>) � x, and then prove that it verifies the two other properties. The
construction itself is based on the fact that if y1 and y2 are two consecutive
fields of Γ (<<s>>) � x, such that y1 is not in | x |, while y2 is in | x | ∪{x},

336 V. Prevosto and S. Boulmé

then it is possible to swap the two elements. We perform recursively all such
permutations, until no one is possible (since the depth of the methods of | x |
strictly decrease at each step, this always terminates).

Then by definition, all the fields of M preceding x are in | x | (otherwise,
we could make an exchange), and their relative order is preserved. Moreover, it
follows from the preceding lemma that the only manifest nodes of Γ (<<s>>) � x
correspond to the def-dependencies of x, that is the methods defined in s � x:
Γ (M) � x = γs(x). Last, by induction on the derivation of y ∈| x |, it is
impossible to swap x with any of the y in | x |. /0

7 Related Work

The very idea of mixDrecs can be viewed as an extension of de Bruijn’s telescopic
mappings [7], in which the context is formed of definitions as well as of abstrac-
tions. Roughly, telescopes can be seen as an embedding of contexts as λ-terms,
in which each type can depend on the preceding abstractions. More generally,
different formalisms have been designed to deal with “incomplete” terms. In par-
ticular, the λc calculus [3] offers a very flexible approach in which holes (similar
to the declared methods of Focal), can be manipulated as normal λ variables,
thanks to new binders. Similar approaches have been proposed in particular by
Sato, Sakurai and Kameyama [20], Sands [19], and Mason [12]. Last, Lee and
Friedman [11] uses contexts of lambda calculus to obtain a notion of separate
compilation, the distinguished free variables of a term being the names of the
values that must be given by the context. However, none of these calculi deal
explicitly with redefinition, a crucial point in Focal inheritance resolution.

Pollack [15] and Betarte [2] have given their own embedding of dependent
records in Type Theory. Both provide operations to extend existing signatures
with new abstract fields, quite similar to the one that have been presented in
section 4. Recently, Coquand, Pollack and Takeyama [6] have also presented a
notion of records in which some fields can be defined, as in MixDrecs. However,
they do not seem to look toward a computational counterpart such as the Focal
translation into Ocaml, so that they do not deal with redefinitions either. This
applies also to the definition of records given by Kopylov [10], which is based
on the notion of intersection types. On the other hand, a formalization of late
binding with specifications and proofs in the proof assistant LEGO is given in [9].
However, they seem to restrict the theorems that can be proved inside a class in
order to avoid issues related to def-dependencies.

On the programming side, mixDrecs can be related to the mixin modules
of Ancona and Zucca [1], and to their implementation as an extension of the
module system of Ocaml [8]. Mixins can be seen as structure mixing some fea-
tures of modules (and in particular type definitions and abstraction), and classes
(inheritance). In [13], the νobj calculus introduces dependent types in an object-
oriented language. In this approach, classes can have type components. Hence,
on the contrary to mixins, νobj adds module features to objects. However, both

Proof Contexts with Late Binding 337

of them deal mainly with functions. Thus, they do not address the issues specific
to properties and theorems, and in particular the notion of def-dependency.

Focal programming features have been partly inspired by the “compiler of
computer algebra libraries” Axiom and its successor Aldor. In order to integrate
deduction steps in the system, Thompson and Poll propose in [23, 14] to extend
the type system of Aldor with dependent types and properties. However, their
project seems to be in a quite initial stage.

8 Perspectives

During the implementation of the Focal library [22], some constructions have
been provided inside the Focal compiler in addition to the core Focal methods
presented here. Some work is needed to incorporate these constructions at a
theoretical level. First, it is often interesting to be able to define “local” methods.
Such methods are only visible to the other methods of the species in which they
are defined. They can be treated as normal methods provided dependencies upon
such method are flagged as def-dependencies (as if their definition was in-lined
everywhere). On the mixDrec side, there is nothing to handle them, though.

It would also be convenient to rename some methods during inheritance. For
instance, monoids could declare a generic operation op, which would be called
plus for abelian groups, and mult in rings. This has not been implemented yet,
but since method generators and Drecords signatures implement dependencies
by λ-abstractions, renaming might reduce to alpha-conversion.

The most important extension is the possibility to define inner collections
inside a species by using self , the species currently defined to instantiate the
parameters of a given species. This construction is translated to Ocaml, and
a restricted version has been studied formally (in particular with respect to
dependencies analysis) in [16], but the general case as well as the translation
into Coq need to be investigated.

9 Conclusion

In this paper, we have presented two embeddings of the main Focal construc-
tions into Coq. The first one, which uses “simple” terms made of abstractions
and local bindings, provides an efficient encoding, as the produced terms are
quite easily type-checked by Coq, while method generators let us reuse as much
code as possible. On the contrary, mixDrecs are a very heavy encoding, but they
preserve the structure of the species and the relation between them. Moreover,
we have seen that the treatment of inheritance is the same in both embeddings,
and that method generators can be extracted from mixDrecs.

Acknowledgment

The authors wish to thank Thérèse Hardin and the anonymous referees for their
helpful remarks on earlier versions of this paper.

338 V. Prevosto and S. Boulmé

References

[1] D. Ancona and E. Zucca. An algebra of mixin modules. In WADT’97, volume
1376 of LNCS, 1998.

[2] G. Betarte. Dependent Record Types and Formal Abstract Reasoning: Theory and
Practice. PhD thesis, University of Göteborg, 1998.

[3] M. Bognar and R. de Vrijer. A calculus of lambda calculus contexts. Journal of
Automated Reasoning, 27(1), 2001.

[4] S. Boulmé. Spécification d’un environnement dédié à la programmation certifiée
de bibliothèques de Calcul Formel. Thèse de doctorat, Université Paris 6, 2000.
http://www-lsr.imag.fr/Les.Personnes/Sylvain.Boulme/pub/sbthese.ps.gz.

[5] S. Boulmé, Th. Hardin, and R. Rioboo. Some hints for polynomials in the Foc
project. In Proc. Calculemus, 2001.

[6] T. Coquand, R. Pollack, and M. Takeyama. A logical framework with dependently
typed records. In Typed Lambda Calculus and Applications, TLCA’03, volume
2701 of LNCS, 2003.

[7] N. G. de Bruijn. Telescopic mappings in typed λ-calculus. Information and Com-
putation, 91(2), 1991.

[8] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In ESOP,
volume 2305 of LNCS, 2002.

[9] Martin Hofmann et al. Inheritance of proofs. TAPOS, 4(1):51–69, 1998.
[10] A. Kopylov. Dependent intersection: A new way of defining records in type theory.

In LICS, 2003.
[11] S. Lee and D. P. Friedman. Enriching the lambda calculus with contexts: Toward

a theory of incremental program construction. In Proceedings of ICFP, ACM
SIGPLAN notices, 1996.

[12] I. A. Mason. Computing with contexts. Higher-Order and Symbolic Computation,
12, 1999.

[13] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects
with dependent types. In FOOL 10, 2003.

[14] E. Poll and S. Thompson. Integrating Computer Algebra and Reasoning through
the Type System of Aldor. In FROCOS, volume 1794 of LNCS, 2000.

[15] R. Pollack. Dependently typed records for representing mathematical structures.
In TPHOLs, volume 1869 of LNCS, 2000.

[16] V. Prevosto. Conception et Implantation du langage FoC pour le développement
de logiciels certifiés. Thèse de doctorat, Université Paris 6, 2003.
http://www.mpi-sb.mpg.de/~prevosto/papiers/these.ps.gz.

[17] V. Prevosto and D. Doligez. Inheritance of algorithms and proofs in the computer
algebra library foc. Journal of Automated Reasoning, 29(3-4), 2002.

[18] R. Rioboo. Programmer le calcul formel, des algorithmes à la sémantique. Habil-
itation, Université Paris 6, 2002.

[19] D. Sands. Computing with contexts: A simple approach. In Second Workshop on
Higher-Order Operational Techniques in Semantics, volume 10 of ENTCS, 1997.

[20] M. Sato, T. Sakurai, and Y. Kameyama. A simply typed context calculus with
first-class environments. J. of Functional and Logic Programming, 2002(4), 2002.

[21] The Coq Development Team. The Coq Proof Assistant Reference Manual Version
8.0. INRIA-Rocquencourt, 2004.

[22] The Focal development team. Focal, version 0.2 Tutorial and reference manual.
LIP6 – INRIA – CNAM, 2004. http://modulogic.inria.fr/focal/download/.

[23] S. Thompson. Logic and Dependent Types in the Aldor Computer Algebra Sys-
tem. In Proc. Calculemus, 2000.

The ∇-Calculus. Functional
Programming with Higher-Order Encodings�

Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat

Department of Computer Science, Yale University,
51 Prospect St. New Haven, CT, 06511, USA
{carsten, poswolsky, sarnat}@cs.yale.edu

Abstract. Higher-order encodings use functions provided by one lan-
guage to represent variable binders of another. They lead to concise and
elegant representations, which historically have been difficult to analyze
and manipulate.

In this paper we present the ∇-calculus, a calculus for defining general
recursive functions over higher-order encodings. To avoid problems com-
monly associated with using the same function space for representations
and computations, we separate one from the other. The simply-typed
λ-calculus plays the role of the representation-level. The computation-
level contains not only the usual computational primitives but also an
embedding of the representation-level. It distinguishes itself from similar
systems by allowing recursion under representation-level λ-binders while
permitting a natural style of programming which we believe scales to
other logical frameworks. Sample programs include bracket abstraction,
parallel reduction, and an evaluator for a simple language with first-class
continuations.

1 Introduction

Higher-order abstract syntax refers to the technique of using a meta-language,
or logical framework, to encode an object language in such a way that variables
of the object language are represented by the variables of the logical framework.
This deceptively simple idea has far reaching consequences for the design of
languages that aim to manipulate these encodings. On one hand, higher-order
encodings are often very concise and elegant since they take advantage of com-
mon concepts and operations automatically provided by the logical framework,
including variable renaming, capture avoiding substitutions, and hypothetical
judgments. On the other hand, higher-order encodings are not inductive in the
usual sense, which means that they are difficult to analyze and manipulate.

Many attempts have been made to integrate advanced encoding techniques
into functional programming languages. FreshML [GP99] supports implicit vari-
able renaming for first-order encodings. The modal λ-calculus supports primitive

� This research has been funded by NSF grants CCR-0325808 and CCR-0133502.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 339–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

340 C. Schürmann, A. Poswolsky, and J. Sarnat

recursion over higher-order encodings via an iterator. However, function defini-
tion via iteration is naturally limited [SDP01].

In this paper, we present the ∇-calculus, a step towards integrating logical
frameworks into functional programming. It supports general recursive functions
over higher-order encodings without burdening the representational expressive-
ness of the logical framework. The ∇-calculus distinguishes itself from similar
systems by allowing recursion under representation-level λ-binders while per-
mitting a natural style of programming, which we believe scales to other logical
frameworks.

To avoid problems commonly associated with using the same function space
for representations and computations, we separate one from the other. The
simply-typed λ-calculus plays the role of the representation-level and provides a
function space enabling higher-order encodings. A second simply-typed language
plays the role of the computation-level. It provides embeddings of the higher-
order encodings, function definition by cases, and insurances for safe returns
from computation under representation-level λ-binders.

The resulting system allows us, for example, to write computation-level func-
tions that recurse over the usual higher-order encoding of the untyped λ-calculus
(see Example 2). It is general enough to permit case analysis over any object of
any representation-level type. In the accompanying Technical Report [SPS04] the
reader may find a wide collection of examples, such as translation to de Bruijn
indices, parallel reduction, and an evaluator for a simple language with first-class
continuations. A prototype implementation [PS05] of the ∇-calculus, including
a type-checker, an interactive runtime-system, and a collection of examples is
available from the website http://www.cs.yale.edu/~delphin.

This paper is organized as follows. We explain the use of the simply-typed
λ-calculus as a logical framework in Section 2. We introduce the ∇-calculus
in Section 3. It is divided into several subsections describing the conventional
features of the ∇-calculus and those constructs that facilitate programming with
higher-order encodings. The static and operational semantics of the ∇-calculus
are given in Section 4, while the meta-theoretic properties of the calculus are
discussed and analyzed in Section 5. We assess results and discuss related and
future work in Section 6.

2 The Simply-Typed Logical Framework

We choose the simply-typed λ-calculus as our logical framework, which is ex-
pressive enough to permit interesting higher-order encodings.

Types: A,B ::= a | A → B
Objects: M,N ::= x | c | λx : A.M | M N

Signatures: Σ ::= · | Σ, a : type | Σ, c : A
Contexts: Γ ::= · | Γ, x : A

We use a for type constants, c for object constants, and x for variables. We
assume that constants and variables are declared at most once in a signature

The ∇-Calculus. Functional Programming with Higher-Order Encodings 341

and context, respectively. To maintain this invariant, we tacitly rename bound
variables and use capture-avoiding substitutions. The typing judgments for ob-
jects and signatures are standard. Type-level and term-level constants must be
declared in the signature.

Definition 1 (Typing Judgment). Γ �
Σ

M : A is defined by the following
rules:

Γ (x) = A
ofvar

Γ �
Σ
x : A

Σ(c) = A
ofconst

Γ �
Σ
c : A

Γ, x : A �
Σ
M : B

oflam
Γ �

Σ
λx : A.M : A → B

Γ �
Σ
M : A → B Γ �

Σ
N : A

ofapp
Γ �

Σ
M N : B

To avoid clutter we omit the subscript Σ when convenient. Our notion of def-
initional equality is obtained by taking the reflexive, transitive, and symmetric
closure of β- and η-conversion [Coq91]. We write Γ � M ≡ N : A if and only
if M is βη-equivalent to N and both have type A. For every well-typed ob-
ject M of type A, there exists a unique β-normal, η-long term M ′ such that
Γ � M ≡ M ′ : A. We refer to M ′ as being canonical, which we denote as
Γ � M ′ ⇑ A.

Throughout this paper, our examples will use encodings of natural numbers,
first-order logic, and the untyped λ-calculus. An encoding consists of a signature
and a representation function, which maps elements from our domain of dis-
course into canonical forms in our logical framework. We say that an encoding
is adequate if the representation function is an isomorphism.

In all of the examples below, the signatures for our encoding are listed in ital-
ics and our translation functions �−� are defined by the given sets of equations.
For example, natural numbers are represented by the type nat where �0� = z
and �n + 1� = s �n�.

Example 1 (First-order logic with equality). Terms t ::= x and first-order formu-
las F ::= ∀x. F | F1 ⊃ F2 | ¬F | t1 = t2 are represented as objects of type i and
type o, respectively, in a signature that also includes the following declarations:

�∀x. F� = forall (λx : i . �F�) forall : (i → o) → o
�¬F� = neg �F� neg : o → o

�F1 ⊃ F2� = impl �F1� �F2� impl : o → o → o
�t1 = t2� = eq �t1� �t2� eq : i → i → o

�x� = x

Example 2 (Untyped λ-expressions). Untyped λ-expressions e ::= x | lam x. e |
e1 e2 are encoded as follows:

exp : type
�lam x. e� = lam (λx : exp. �e�) lam : (exp → exp) → exp

�e1 e2� = app �e1� �e2� app : exp → exp → exp
�x� = x

342 C. Schürmann, A. Poswolsky, and J. Sarnat

The encodings of first-order formulas and untyped λ-expressions use functions
to encode variable binders. Because little meaningful analysis can be done on
variables in our logical framework, the only interesting operation that can be
performed on a variable is substitution. Thus, it is most helpful to think of a
term of type A → B not as representing a computation, but as representing a
term of type B that has a hole of type A.

We demonstrate the formulation of an adequacy theorem. Each case can be
proven by a straightforward induction.

Theorem 1 (Adequacy of exp). Adequacy holds for our representation of
untyped λ-expressions.

1. If e is an expression with free variables among x1, . . . , xn,
then x1 : exp, . . . , xn : exp � �e� ⇑ exp.

2. If x1 : exp, . . . , xn : exp � M ⇑ exp
then M = �e� for some expression e with free variables among x1, . . . , xn.

3. �−� is a bijection between expressions and canonical forms where
�[e′/x]e� = [�e′�/x]�e�. �

3 The ∇-Calculus

The representation-level type exp is not inductive because the constructor lam :
(exp → exp) → exp has a negative occurrence [PM93] of exp. This property
has far reaching consequences for the design of the ∇-calculus, which needs to
provide a notion of computation general enough to handle higher-order datatypes
of this kind. We offer the ability to recurse under λ-binders and consider cases
over functions of type exp → exp while continuing to guarantee the adequacy of
the encoding. Allowing for this, as well as general recursive computation, can be
seen as the main contributions of this work.

In the ∇-calculus, computation-level functions can be defined by cases and al-
ternations instead of explicit λ-binders. Computation-level expressions and types
are summarized in Figure 1 and explained in the remainder of this section.

3.1 Function Definition by Cases and Recursion

In the ∇-calculus, we draw a separating line between the levels of representation
and computation. Representation-level types such as nat and exp are injected

Types: τ,σ ::= 〈A〉 | τ ⇒ σ | �τ

Expressions: e, f ::= u | 〈M〉 | e1 �→τ e2 | εx : A. e | εu ∈ τ . e

| e1 · e2 | (e1 | e2) | fix u ∈ τ . e

| νx : A. e | pop e | ∇x : A. e

Fig. 1. Syntactic categories of the ∇-calculus

The ∇-Calculus. Functional Programming with Higher-Order Encodings 343

into computation-level types 〈nat〉 and 〈exp〉. Likewise, representation-level con-
stants, such as (s z) and lam (λx : exp. x), are injected into computation-level
terms 〈s z 〉 and 〈lam (λx : exp. x)〉. There are no user defined datatypes on
the computation-level; all type and constant declarations must be done at the
representation-level.

Example 3 (Addition). We define the addition function plus and its representa-
tion in the ∇-calculus as follows:

plus z y = y
plus (s x) y = s (plus x y)

fix plus ∈ 〈nat〉 ⇒ 〈nat〉 ⇒ 〈nat〉.
εy : nat . 〈z 〉
→ 〈y〉
→ 〈y〉
| εx : nat . 〈s x〉
→ εy : nat .

〈y〉
→ 〈s〉 ◦ (plus · 〈x〉 · 〈y〉) �
The recursion operator is conventional. In later examples we will omit it for

the sake of readability. Alternation, “|”, separates cases that may be chosen for
evaluation. It binds more tightly than the recursion operator fix u ∈ τ . e, but not
as tightly as any of the other operators. Individual cases are of the form e1
→τ e2,
where e1 can be thought of as a guard. Only when such a case is applied to an
object equivalent to e1 (as defined in Section 4.2) is e2 evaluated. In particular,
if e1 is a value of type 〈A〉, then our notion of equality is given by our logical
framework’s notion of definitional equality. We refer to e1 as the pattern and e2
as the body of the case. The index τ states the type of the pattern, but is usually
omitted when the type of the pattern can be easily inferred. In conventional
programming languages, variables that occur in patterns are implicitly declared,
whereas in the ∇-calculus they must be declared explicitly by εx : A. e for reasons
explained in Section 3.2. A similar declaration for the computation-level εu ∈ τ . e
permits higher-order functions and is discussed in detail in the accompanying
Technical Report [SPS04]. Application in the ∇-calculus is written as e1 · e2 in
order to avoid confusion with representation-level application, which is expressed
via juxtaposition. The notation e1◦e2 is syntactic sugar that lifts representation-
level application to the computation-level.

e1 ◦
A,B

e2 = (εx : A → B . 〈x〉
→〈A→B〉 εy : A. 〈y〉
→〈A〉 〈x y〉) · e1 · e2

We refer to ◦ without type annotations because they are easily inferable.

3.2 Traversal of λ-Binders

Next, we explain the operators ν and pop from Figure 1. Recall the encoding
of first-order logic from Example 1. As an example, we consider Kolmogorov’s
double-negation interpretation, which transforms formulas from classical logic
into intuitionistic logic in the following way:

dneg (eq t1 t2) = neg (neg (eq t1 t2))
dneg (impl F1 F2) = neg (neg (impl (dneg F1) (dneg F2)))
dneg (neg F) = neg (neg (neg (dneg F)))
dneg (forall F) = neg (neg (forall F ′))

where F ′ x = dneg (F x)
for some new parameter x : i

344 C. Schürmann, A. Poswolsky, and J. Sarnat

In the last case dneg must recurse on the body F of the forall term, which is a
representation-level function of type i → o. Since F is definitionally equivalent
to a canonical term that starts with a λ-binder, we strip away the λ-binder
by applying F to some new parameter x before invoking dneg . The result of
the computation depends on x and is hence written as F ′ x, where F ′ is a
representation-level function of type i → o.

The first three cases of dneg can be implemented in the ∇-calculus with con-
structs we have already introduced. As for the forall case, we need to add new
constructs to our language. We feel that there are several interesting possibilities
worth considering. One possibility would be to introduce a computation-level op-
erator λ̂, which lifts representation-level abstraction to the computation-level in
much the same way that the syntactic-sugar ◦ lifts representation-level applica-
tion. In this case, we could write the forall case as

εF : i → o. 〈forall F 〉
→ 〈neg〉 ◦ (〈neg〉 ◦ (〈forall〉 ◦ (λ̂x : i . dneg · 〈F x〉)))
where the subterm (λ̂x : i . dneg · 〈F x〉) has type 〈i → o〉. In principle this is a
possible solution. Adequacy is preserved because although the body of λ̂ may
diverge or get stuck, any value it computes must be of the form 〈M〉. However,
λ̂ is too limited for our purposes because it always returns a representation-level
function, even if the desired result is of a base type (see Example 4 below).
Meta-ML [TS00] employs a construct similar to λ̂.

Another possibility is to add an explicit parameter introduction operator ν̄

εF : i → o. 〈forall F 〉
→ ν̄x : i .
case dneg · 〈F x〉

of εF ′ : i → o. 〈F ′ x〉
→ 〈neg (neg (forall F ′))〉
where we write “case e1 of e2” as syntactic sugar for “e2 · e1”. In contrast to λ̂,
the type of the subterm starting with ν̄ is 〈o〉. Since the recursive call results in
a value of type 〈o〉, and forall requires a value of type i → o, we need a way
to turn the result into a value of type 〈i → o〉. Furthermore, because this value
escapes x’s declaration, it should not contain any free occurrences of x. Ideally,
higher-order pattern matching would yield F ′, which is the result of abstracting
all occurrences of x from the result of the recursive call. But there is no guarantee
that this will succeed, because F ′ is declared within the scope of x. For example,
if dneg · 〈F x〉 returns 〈neg(neg(eq x x))〉, then F ′ = (λy : i .neg(neg(eq x x)))
and F ′ = (λy : i .neg(neg(eq y y))) are among the possible solutions to this
matching problem. To remedy this, F ′ can be declared outside of the scope of
x, and thus could not possibly be instantiated with a term containing x:

εF : i → o. 〈forall F 〉
→ εF ′ : i → o.
ν̄x : i .case dneg · 〈F x〉 of 〈F ′ x〉
→ 〈neg (neg (forall F ′))〉

In this case, the only solution is F ′ = (λy : i .neg(neg(eq y y))), which illus-
trates the necessity of explicit ε-declarations. However, we do not include ν̄ in
the ∇-calculus since, as we have seen, it allows us to write functions that let
parameters escape their scope.

The ∇-Calculus. Functional Programming with Higher-Order Encodings 345

Instead, we do include two operators and one new type constructor that
can be found in Figure 1. The operator ν is similar to ν̄ in that it introduces
new parameters, but different because it statically requires that these parameters
cannot extrude their scope. The operator “pop” provides such guarantees. These
guarantees are communicated through the type �τ , which pop introduces and
ν eliminates. The complete function dneg is given below.

dneg : 〈o〉 ⇒ 〈o〉
= εt1 : i . εt2 : i . 〈eq t1 t2〉
→ 〈neg (neg (eq t1 t2))〉

| εF1 : o. εF2 : o.
〈imp F1 F2〉
→ 〈neg〉 ◦ (〈neg〉 ◦ (〈imp〉 ◦ (dneg · 〈F1〉) ◦ (dneg · 〈F2〉)))

| εF : o. 〈neg F 〉
→ 〈neg〉 ◦ (〈neg〉 ◦ (〈neg〉 ◦ (dneg · 〈F 〉)))
| εF : i → o. 〈forall F 〉
→ εF ′ : i → o.

νx : i . case dneg · 〈F x〉 of 〈F ′ x〉
→ pop 〈neg (neg (forall F ′))〉
The body of the ν is of type �〈o〉; the � ensures that whatever value this ex-
pression evaluates to does not contain x. The body of pop has type 〈o〉 because it
neither contains x nor any ε-quantified variable that may depend on x. Thus, the
subexpression “pop 〈forall F ′〉” introduces type �〈o〉. A precise type theoretic
definition and analysis of the � type will be given in Section 4.

3.3 Pattern-Matching Parameters

Finally, we turn to the last unexplained operator from Figure 1, the ∇-operator,
which is used to match parameters introduced by ν.

Example 4 (Counting variable occurrences). Consider a function that counts the
number of occurrences of bound variables in an untyped λ-expression from Ex-
ample 2.

cntvar (x) = (s z) where x : exp is a parameter
cntvar (app e1 e2) = plus (cntvar e1) (cntvar e2)
cntvar (lam e) = cntvar (e x) for some new parameter x : exp

The first of the three cases corresponds to the parameter case that matches
any parameter of type exp regardless of where and when it was introduced.
Formally, we use the ∇-operator to implement this case.

cntvar : 〈exp〉 ⇒ 〈nat〉
= ∇x : exp. 〈x〉
→ 〈s z 〉

| εe1 : exp. εe2 : exp.
〈app e1 e2〉
→ plus · (cntvar · 〈e1〉) · (cntvar · 〈e2〉)

| εe : exp → exp. 〈lam e〉
→ εn : nat .
νx : exp. (〈n〉
→ pop 〈n〉) · (cntvar · 〈e x〉) �

Notice that, in the above example, if we were to replace the ∇ with ε, it
would still be possible for cntvar to return correct answers, since εx : exp can
match any expression of type exp including parameters; however, it would also
be possible for cntvar to always return 〈s z〉 for the same reason.

346 C. Schürmann, A. Poswolsky, and J. Sarnat

Example 5 (Combinators). The combinators c ::= S | K | MP c1 c2 are repre-
sented as objects of type comb as follows:

�K� = K K : comb
�S� = S S : comb

�MP c1 c2� = MP �c1� �c2� MP : comb → comb → comb

Any simply-typed λ-expression from Example 2 can be converted into a com-
binator in a two-step algorithm. The first step is called bracket abstraction,
or ba, which converts a parametric combinator (a representation-level function
of type comb → comb) into a combinator with one less parameter (of type
comb). If M has type comb → comb and N has type comb then 〈MP〉 ◦ (ba ·
〈M〉) ◦ 〈N〉 results in a term that is equivalent to 〈MN〉 in combinator logic.

ba (λx : comb. x) = MP (MP S K) K
ba (λx : comb. z) = MP K z where z : comb is a parameter
ba (λx : comb.K) = MP K K
ba (λx : comb.S) = MP K S
ba (λx : comb.MP (c1 x) (c2 x)) = MP (MP S (ba c1)) (ba c2)

Formally ba is implemented as follows:

ba : 〈comb → comb〉 ⇒ 〈comb〉
= 〈λx : comb. x〉
→ 〈MP (MP S K) K 〉

| ∇z : comb. 〈λx : comb. z〉
→ 〈MP K z〉
| 〈λx : comb.K 〉
→ 〈MP K K 〉
| 〈λx : comb.S 〉
→ 〈MP K S 〉
| εc1 : comb → comb. εc2 : comb → comb.

〈λx : comb.MP (c1 x) (c2 x)〉
→
〈MP〉 ◦ (〈MP〉 ◦ 〈S 〉 ◦ (ba · 〈c1〉)) ◦ (ba · 〈c2〉)

The first two cases of ba illustrate how to distinguish x, which is to be ab-
stracted, from parameters that are introduced in the function convert , which we
discuss next. The function convert traverses λ-expressions and uses ba to convert
them into combinators.

convert (y z) = z where y : comb → exp and z : comb are parameters
convert (app e1 e2) = MP (convert e1) (convert e2)
convert (lam e) = ba c where c z = convert (e (y z))

and y : comb → exp
and z : comb are parameters

The last case illustrates how a parameter of functional type may introduce
information to be used when the parameter is matched. Rather than introduce
a parameter x of type exp, we introduce a parameter of type comb → exp
that carries a combinator as “payload.” In our example, the payload is another
parameter z : comb, the image of x under convert . This technique is applicable

The ∇-Calculus. Functional Programming with Higher-Order Encodings 347

to a wide range of examples (see the Technical Report [SPS04] for details). We
formalize convert below:

convert : 〈exp〉 ⇒ 〈comb〉
= ∇y : comb → exp.∇z : comb. 〈y z〉
→ 〈z〉

| εe1 : exp. εe2 : exp.
〈app e1 e2〉
→ 〈MP〉 ◦ (convert · 〈e1〉) ◦ (convert · 〈e2〉)

| εe : exp → exp. 〈lam e〉
→ εc : comb → comb.
νy : comb → exp. νz : comb.

case convert · 〈e (y z)〉 of 〈c z〉
→ pop (pop (ba · 〈c〉)) �

We summarize a few of the most important properties of the ∇-operator.
First, it is intuitively appealing to have one base case (the ∇-case) for each
class of parameters, because what happens in these cases is uniquely defined in
one place. Second, payload carrying parameters permit sophisticated base cases,
which simplify the reading of a program because all information shared between
the introduction and matching of parameters must be made explicit.

4 Semantics

The operators ν and pop have guided the design of the static and operational
semantics of the ∇-calculus. To reiterate, once a parameter is introduced by a
ν, all other declarations that take place within its scope may depend on the new
parameter. As we will see, pop statically ensures that an expression is valid out-
side ν’s scope by discarding all declarations since the last parameter introduction
in a manner reminiscent of popping elements off a stack. The ambient environ-
ment is therefore formally captured in form of scope stacks. A scope consists of
two parts: The context Γ (defined in Section 2), which summarizes all object-
level declarations x : A, and the context Φ, which summarizes all meta-level
declarations u ∈ τ .

Meta Contexts: Φ ::= · | Φ, u ∈ τ

Scope Stacks: Ω ::= · | Ω, (Γ ;Φ)

We refer to the top and second-from-top elements of Ω as the current and
previous scopes, respectively. The scope stack Ω grows monotonically, which
means that the current scope always extends the previous scope.

4.1 Static Semantics

We define the typing judgment Ω � e ∈ τ by the rules depicted in Figure 2. Many
of the rules are self-explanatory. All rules except for tpnew and tppop touch only
the current scope. For example, tpvar relates variables and types, whereas tpinj
enforces that only representation-level objects valid in the current scope can be
lifted to the computation-level. For functions, tpfun indicates that the pattern
must be of the argument type, whereas the body must be of the result type.
Variables that may occur in patterns must be declared by a preceding εx : A,

348 C. Schürmann, A. Poswolsky, and J. Sarnat

Φ(u) = τ
tpvar

Ω, (Γ ;Φ) � u ∈ τ

Γ �M : A
tpinj

Ω, (Γ ;Φ) � 〈M〉 ∈ 〈A〉
Ω � e1 ∈ τ Ω � e2 ∈ σ

tpfun
Ω � e1 �→τ e2 ∈ τ ⇒ σ

Ω, (Γ ;Φ,u ∈ τ) � e ∈ τ
tpfix

Ω, (Γ ;Φ) � fix u ∈ τ . e ∈ τ

Ω, (Γ, x : A;Φ) � e ∈ τ
tptheobj

Ω, (Γ ;Φ) � εx : A. e ∈ τ

Ω, (Γ ;Φ,u ∈ τ) � e ∈ τ
tpthemeta

Ω, (Γ ;Φ) � εu ∈ τ . e ∈ τ

Ω � e1 ∈ σ ⇒ τ Ω � e2 ∈ σ
tpapp

Ω � e1 · e2 ∈ τ

Ω � e1 ∈ τ Ω � e2 ∈ τ
tpalt

Ω � (e1 | e2) ∈ τ

Ω � e ∈ τ
tppop

Ω, (Γ ;Φ) � pop e ∈ �τ

Ω, (Γ ;Φ), (Γ, x : A;Φ) � e ∈ �τ
tpnew

Ω, (Γ ;Φ) � νx : A. e ∈ τ

Ω, (Γ, x : A;Φ) � e ∈ τ
tpnabla

Ω, (Γ ;Φ) � ∇x : A. e ∈ τ

Fig. 2. The static semantics of the ∇-calculus

εu ∈ τ , or ∇x : A declaration, which will be recorded in the current scope by
tptheobj, tpthemeta, and tpnabla respectively. The rules tpapp, tpalt, and tpfix
are standard. The tppop rule is the introduction rule for �τ . The expression
pop e is valid if e is valid in the previous scope. The corresponding elimination
rule is tpnew. The expression νx : A. e has type τ when e is of type �τ in the
properly extended scope stack.

4.2 Operational Semantics

Computation level function application in the ∇-calculus is more demanding
than the usual substitution of an argument for a free variable. It relies on the
proper instantiation of all ε- and ∇-bound variables that occur in the function’s
pattern. Perhaps not surprisingly, the behavior of our calculus depends on when
these instantiations are committed. For example,

(εf ∈ 〈nat〉 ⇒ 〈nat〉. f
→ plus · (f · 〈z 〉) · (f · 〈sz 〉)) · (εn : nat . 〈n〉
→ 〈n〉)
may either return s z under a call-by-name semantics, or no solution at all
under a call-by-value semantics because n : nat may be instantiated either by z
or s z but not both. Consequently, our calculus adopts a call-by-name evaluation
strategy. We can define computational-level λ-abstraction “lambda u ∈ τ. e” as
syntactic sugar for (εu ∈ τ . u
→ e) and “let u ∈ τ = e1 in e2 end” as syntactic
sugar for ((εu ∈ τ . u
→ e2) e1).

Definition 2 (Values). The set of values of the ∇-calculus is defined as follows.

Values: v ::= 〈M〉 | pop e | e1
→τ e2

The ∇-Calculus. Functional Programming with Higher-Order Encodings 349

Ω � e1 ≡ e′
1 ∈ τ

redbeta
Ω � (e1 �→τ e2) · e′

1 → e2

rednupop
Ω � νx : A.pop e → e

. .

redalt1
Ω � (e1 | e2)→ e1

redalt2
Ω � (e1 | e2)→ e2

Γ �M : A
redsome

Ω, (Γ ; ·) � εx : A. e → [M/x]e

Ω � f ∈ τ
redsomeM

Ω � εu ∈ τ . e → [f/u]e

Γ (y) = A
rednabla

Ω, (Γ ; ·) � ∇x : A. e → [y/x]e
redfix

Ω � fix u ∈ τ . e → [fix u ∈ τ . e/u]e

. .
Ω � e1 → e′

1
redfun

Ω � e1 · e2 → e′
1 · e2

Ω, (Γ ; ·), (Γ, x : A; ·) � e → e′

rednew
Ω, (Γ ; ·) � νx : A. e → νx : A. e′

Fig. 3. Small-step semantics (Reductions)

Γ �M ≡ N : A
eqinjV

Ω, (Γ ; ·) � 〈M〉 ≡ 〈N〉 ∈ 〈A〉
Ω � e1 ≡ e2 ∈ τ

eqpopV
Ω, (Γ ; ·) � pop e1 ≡ pop e2 ∈ �τ

Ω � e1 →∗ e′
1 Ω � e2 →∗ e′

2 Ω � e′
1 ≡ e′

2 ∈ τ
eqR where τ = 〈A〉 or �τ ′

Ω � e1 ≡ e2 ∈ τ

eqfun
Ω � e ≡ e ∈ τ1 ⇒ τ2

Fig. 4. Small-step semantics (Equality)

The operational semantics of the ∇-calculus combines a system of reduction
rules of the form Ω � e → e′ with an equivalence relation on meta-level expres-
sions Ω � e ≡ e′ ∈ τ . We give the reduction rules in Figure 3 where we write
→∗ for the reflexive, transitive closure of →. The equality rules are depicted in
Figure 4. During runtime, all ε-quantified variables are instantiated with con-
crete objects, so evaluation always takes place in a scope stack of the form
Ω ::= · | Ω, (Γ ; ·), where Γ contains only ν-quantified parameter declarations.

The rules in Figure 3 are organized into three parts. The top part shows the
essential reduction rules redbeta and rednupop. The rule rednupop states that it
is unnecessary to traverse into a new scope to return an expression that is valid
in the previous scope.

Among the second block of rules, redalt1 and redalt2 express a nondeter-
ministic choice in the control flow. Similarly, redsome and redsomeM express
a nondeterministic choice of instantiations. The abbreviations f/u and M/x
stand for single-point substitutions that can easily be expanded into simulta-

350 C. Schürmann, A. Poswolsky, and J. Sarnat

neous substitutions given in Definition 3. During evaluation, the current scope
only contains parameters introduced by ν, and thus rednabla expresses a nonde-
terministic choice of parameters. Finally, redfix implements the unrolling of the
recursion operator.

The bottom two rules are necessary to give us a congruence closure for re-
ductions on ∇-expressions. Because the ∇-calculus is call-by-name, we do not
evaluate e2 in the rule redfun. Finally, rednew reduces under the ν after appro-
priately copying and extending the current scope.

Our notion of equivalence is type-directed. For functions, this is decided only
by syntactic equality, as shown by rule eqfun in Figure 4. For all other types, we
give two rules: the rule ending in V refers to the case where the left and right
hand side are already values, while the rule ending in R is used when further
reduction steps are required on either side.

5 Meta Theory

We study the meta-theory of the ∇-calculus culminating in the type-preservation
theorem, which entails that parameters cannot escape their scope.

Substituting for ε and ∇-bound variables is essential for defining the oper-
ational meaning of our expressions. In this section we elaborate on object-level
and meta-level substitutions, as well as substitution stacks, which are defined
on scope stacks. As is standard, we make our substitutions capture avoiding by
tacitly renaming variable names.

Definition 3 (Substitutions).

Object-Level Substitutions: γ ::= · | γ,M/x
Meta-Level Substitutions: ϕ ::= · | ϕ, f/u
Substitution Stacks: ω ::= · | ω, (γ;ϕ)

We define the meaning of the three typing judgments for substitutions Γ � γ : Γ ′,
Ω � φ : Φ, and Ω � ω ∈ Ω′ in Figure 5. The domains of the substitutions are Γ ′,
Φ, and Ω′, respectively, and the codomains of the substitutions are Γ , Ω, and
Ω, respectively. The definition of substitution application is given in Figure 6.

We write Γ < Γ ′ if Γ ′ strictly extends Γ , and Φ ≤ Φ′, if Φ = Φ′ or Φ < Φ′.

Definition 4 (Well-Formed Context Stacks). We say that a context stack
Ω is well-formed if the proposition � Ω ok can be proved using the following rules
of inference

okempty
� · ok

okinit� ·, (Γ ;Φ) ok

� Ω, (Γ ;Φ) ok Γ < Γ ′ Φ ≤ Φ′
oknew

� Ω, (Γ ;Φ), (Γ ′;Φ′) ok

The following substitution lemma is the key lemma for proving type preservation.

Lemma 1 (Substitution). If Ω � e ∈ τ , Ω ok, Ω′ ok and Ω′ � ω ∈ Ω then
Ω′ � [ω]e ∈ τ .

The ∇-Calculus. Functional Programming with Higher-Order Encodings 351

tpEObjS
Γ � · : ·

Γ �M : A Γ � γ : Γ ′

tpIObS
Γ � (γ,M/x) : (Γ ′, x : A)

. .

tpEMetaS
Ω � · : ·

Ω � f ∈ τ Ω � ϕ : Φ
tpIMetaS

Ω � (ϕ, f/u) : (Φ,u ∈ τ)

. .

tpEStackS
Ω � · : ·

Γ � γ : Γ ′ Ω, (Γ ;Φ) � ϕ : Φ′ Ω � ω : Ω′

tpIStackS
Ω, (Γ ;Φ) � ω, (γ;ϕ) : Ω′, (Γ ′, Φ′)

Fig. 5. The static semantics of substitutions

[γ,M/x]x = M
[γ,M/x]y = [γ]y

[γ]c = c
[γ](N1 N2) = ([γ]N1) ([γ]N2)

[γ](λx : A.N) = λx : A. [γ, x/x]N

[ϕ, e/u]u = e
[ϕ, e/u]v = [ϕ]v

[ω, (γ;ϕ)]u = [ϕ]u
[ω, (γ;ϕ)]〈N〉 = 〈[γ]N〉

[ω, (γ;ϕ)](pop e) = pop [ω]e
[ω](e1 �→τ e2) = ([ω]e1) �→τ ([ω]e2)

[ω](e1 · e2) = ([ω]e1) · ([ω]e2)
[ω](e1 | e2) = ([ω]e1 | [ω]e2)

[ω, (γ;ϕ)](fix u ∈ τ . e) = fix u ∈ τ . [ω, (γ;ϕ,u/u)]e
[ω, (γ;ϕ)](εx : A. e) = εx : A. [ω, (γ, x/x;ϕ)]e
[ω, (γ;ϕ)](εu ∈ τ . e) = εu ∈ τ . [ω, (γ;ϕ,u/u)]e
[ω, (γ;ϕ)](∇x : A. e) = ∇x : A. [ω, (γ, x/x;ϕ)]e
[ω, (γ;ϕ)](νx : A. e) = νx : A. [ω, (γ;ϕ), (γ, x/x;ϕ)]e

Fig. 6. Substitution Application

Proof. By induction on the structure of Ω � e ∈ τ . See the Technical Re-
port [SPS04] for details.

We are now ready to prove the type preservation theorem.

Theorem 2 (Type Preservation). If � Ω ok and Ω � e ∈ τ and Ω � e → e′

then Ω � e′ ∈ τ .

Proof. By induction on the structure of Ω � e → e′. See the Technical Re-
port [SPS04] for details.

As a corollary we obtain the property that parameters cannot escape their scope.

Corollary 1 (Scope Preservation). If � Ω, (Γ ; ·) ok and Ω, (Γ ; ·) � e ∈ �τ
and Ω, (Γ ; ·) � e →∗ v and v is a value then v = pop e′ and Ω � e′ ∈ τ .

In future work, we will investigate further meta-theoretical properties of the
∇-calculus, such as progress and termination. Neither of these two properties is
satisfied without additional side conditions on the typing rules.

352 C. Schürmann, A. Poswolsky, and J. Sarnat

6 Conclusion

In this paper we have presented the ∇-calculus. We allow for evaluation under
λ-binders, pattern matching against parameters, and programming with higher-
order encodings. The ∇-calculus has been implemented as a stand-alone pro-
gramming language, called Elphin [PS05]. The ∇-calculus solves many prob-
lems associated with programming with higher-order abstract syntax. We allow
for, and can usefully manipulate, datatype declarations whose constructor types
make reference to themselves in negative positions while maintaining a closed
description of the functions. Many examples, such as parallel reduction and an
evaluator for a simple language with first-class continuations can be found in the
Technical Report [SPS04].

The ∇-calculus is the result of many years of design, originally inspired by an
extension to ML proposed by Dale Miller [Mil90], the type theory T +

ω [Sch01],
and Hofmann’s work on higher-order abstract syntax [Hof99]. A predecessor
to this work is the modal λ-calculus with iterators [SDP01], which separates
representation-level from computation-level functions via a modality within one
single λ-calculus. We conjecture that any function written in the modal λ-
calculus with iterators can also be expressed in the ∇-calculus, the reverse, of
course, does not hold.

Closely related to our work are programming languages with freshness [GP99],
which provide a built-in α-equivalence relation for first-order encodings but pro-
vide neither βη nor any support for higher-order encodings. Also closely related
to the ∇-calculus are meta-programming languages, such as MetaML [TS00],
which provide hierarchies of computation levels, but do not single out a par-
ticular level for representation. Many other attempts have been made to com-
bine higher-order encodings and functional programming, in particular Hon-
sell, Miculan, and Scagnetto’s embedding of the π-calculus in Coq[HMS01], and
Momigliano, Amber, and Crole’s Hybrid system [MAC03].

In future work, we plan to extend the ∇-calculus to a dependently-typed
logical framework, add polymorphism to the computation-level, and study ter-
mination and progression.

Acknowledgments. We would like to thank Henrik Nilsson, Simon Peyton-Jones,
and Valery Trifonov, and Hai Fang for comments on earlier drafts of this paper.

References

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255–
279. Cambridge University Press, 1991.

[GP99] Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax
involving binders. In G. Longo, editor, Proceedings of the 14th Annual Sym-
posium on Logic in Computer Science (LICS’99), pages 214–224, Trento,
Italy, July 1999. IEEE Computer Society Press.

The ∇-Calculus. Functional Programming with Higher-Order Encodings 353

[HMS01] Furio Honsell, Marino Miculan, and Ivan Scagnetto. π-calculus in
(Co)inductive-type theory. Theoretical Computer Science, 253(2):239–285,
2001.

[Hof99] Martin Hofmann. Semantical analysis for higher-order abstract syntax. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in
Computer Science (LICS’99), pages 204–213, Trento, Italy, July 1999. IEEE
Computer Society Press.

[MAC03] Alberto Momigliano, Simon Ambler, and Roy Crole. A definitional ap-
proach to primitive recursion over higher order abstract syntax. In Alberto
Momigliano and Marino Miculan, editors, Proceedings of the Merlin Work-
shop, Uppsala, Sweden, June 2003. ACM Press.

[Mil90] Dale Miller. An extension to ML to handle bound variables in data struc-
tures: Preliminary report. In Proceedings of the Logical Frameworks BRA
Workshop, Nice, France, May 1990.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq: Rules
and properties. In M. Bezem and J.F. Groote, editors, Proceedings of the
International Conference on Typed Lambda Calculi and Applications, pages
328–345, Utrecht, The Netherlands, March 1993. Springer-Verlag LNCS 664.

[PS05] Adam Poswolsky and Carsten Schürmann. Elphin user’s man-
ual. Technical report, Yale University, 2005. To appear. See also
http://www.cs.yale.edu/~delphin.

[Sch01] Carsten Schürmann. Recursion for higher-order encodings. In Laurent Fri-
bourg, editor, Proceedings of the Conference on Computer Science Logic
(CSL 2001), pages 585–599, Paris, France, August 2001. Springer Verlag
LNCS 2142.

[SDP01] Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. Primitive
recursion for higher-order abstract syntax. Theoretical Computer Science,
(266):1–57, 2001.

[SPS04] Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The ∇-calculus.
Functional programming with higher-order encodings. Technical Report
YALEU/DCS/TR-1272, Yale University, October 2004.

[TS00] Walid Taha and Tim Sheard. MetaML: Multi-stage programming with ex-
plicit annotations. Theoretical Computer Science, 248(1-2), 2000.

A Lambda Calculus for Quantum Computation
with Classical Control

Peter Selinger and Benoı̂t Valiron

Department of Mathematics and Statistics, University of Ottawa,
Ottawa, Ontario K1N 6N5, Canada

Abstract The objective of this paper is to develop a functional programming
language for quantum computers. We develop a lambda calculus for the classical
control model, following the first author’s work on quantum flow-charts. We define
a call-by-value operational semantics, and we give a type system using affine
intuitionistic linear logic. The main results of this paper are the safety properties
of the language and the development of a type inference algorithm.

1 Introduction

The objective of this paper is to develop a functional programming language for quantum
computers. Quantum computing is a theory of computation based on the laws of quantum
physics, rather than of classical physics. Quantum computing has become a fast growing
research area in recent years. For a good introduction, see e.g. [9, 10].

Due to the laws of quantum physics, there are only two kinds of basic operations that
one can perform on a quantum state, namely unitary transformations and measurements.
Many existing formalisms for quantum computation put an emphasis on the former, i.e.,
a computation is understood as the evolution of a quantum state by means of unitary
gates. Measurements are usually performed at the end of the computation, and outside of
the formalism. In these models, a quantum computer is considered as a purely quantum
system, i.e., without any classical parts. One example of such a model is the quantum
Turing machine [3, 6], where the entire machine state, including the tape, the finite
control, and the position of the head, is assumed to be in quantum superposition. Another
example is the quantum lambda calculus of van Tonder [14, 15], which is a higher-order,
purely quantum language without an explicit measurement operation.

On the other hand, one might imagine a model of a quantum computer where unitary
operations and measurements can be interleaved. One example is the so-called QRAM
model of Knill [8], which is also described by Bettelli, Calarco and Serafini [4]. Here, a
quantum computer consists of a classical computer connected to a quantum device. In this
configuration, the operation of the machine is controlled by a classical program which
emits a sequence of instructions to the quantum device for performing measurements and
unitary operations. In such a model, the control structures of the machine are classical,
and only the data being operated upon is quantum. This situation is summarized by the
slogan “quantum data, classical control” [12]. Several programming languages have been
proposed to deal with such a model [4, 11]. The present paper is based on the work of [12].

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 354–368, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

selinger@mathstat.uottawa.ca, bvali180@science.uottawa.ca

A Lambda Calculus for Quantum Computation with Classical Control 355

In this paper, we propose a higher-order quantum programming language, i.e., one
in which functions can be considered as data. A program is a lambda term, possibly with
some quantum data embedded inside. The basic idea is that lambda terms encode the
control structure of a program, and thus, they would be implemented classically, i.e.,
on the classical device of the QRAM machine. However, the data on which the lambda
terms act is possibly quantum, and is stored on the QRAM quantum device.

Because our language combines classical and quantum features, it is natural to con-
sider two distinct basic data types: a type of classical bits and a type of quantum bits.
They behave very differently. For instance, a classical bit can be copied as many times as
needed. On the other hand, a quantum bit cannot be duplicated, due to the well-known
no cloning property of quantum states [9, 10]. However, quantum data types are very
powerful, due to the phenomena of quantum superposition and entanglement.

The semantics described in this paper is operational; a program is an abstract machine
with reductions rules. The reduction rules are probabilistic.

Some care is needed when defining a type system for higher-order quantum functions.
This is because the question of whether a function is duplicable or not cannot be directly
seen from the types of its arguments or of its value, but rather it depends on the types of
any free variables occurring in the function definition. As it turns out, the appropriate type
systemforhigher-orderquantumfunctions inoursettingisaffineintuitionistic linear logic.

We also address the question of finding a type inference algorithm. Using the remark
that a linear type is a decoration of an intuitionistic one, we show that the question of
deciding whether or not a program is valid can be reduced to the question of finding an
intuitionistic type for it and to explore a finite number of linear decorations for the type.

This work is based on the second author’s Master’s thesis [13].

2 Quantum Computing Basics

We briefly recall the basic definitions of quantum computing; please see [9, 10] for a
complete introduction to the subject. The basic unit of information in quantum compu-
tation is a quantum bit or qubit. The state of a single qubit is a a normalized vector of the
2-dimensional Hilbert space C2. We denote the standard basis of C2 as {|0〉, |1〉}, so that
the general state of a single qubit can be written as α|0〉 + β|1〉, where |α|2 + |β|2 = 1.

The state of n qubits is a normalized vector in ⊗n
i=1C2 ∼= C2n

. We write |xy〉 =
|x〉 ⊗ |y〉, so that a standard basis vector of C2n

can be denoted |�i�n〉, where �i�n is
the binary representation of i in n digits, for 0 � i < 2n. As a special case, if n = 0,
we denote the unique standard basis vector in C1 by |〉.

The basic operations on quantum states are unitary operations and measurements.
A unitary operation maps an n-qubit state to an n-qubit state, and is given by a unitary
2n ×2n-matrix. It is common to assume that the computational model provides a certain
set of built-in unitary operations, including for example the Hadamard gate H and the
controlled not-gate CNOT , among others:

H =
1√
2

(
1 1
1 −1

)
, CNOT =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

356 P. Selinger and B. Valiron

The measurement acts as a projection. When a qubit α|0〉 + β|1〉 is measured, the
observed outcome is a classical bit. The two possible outcomes 0 and 1 are observed
with probabilities |α|2 and |β|2, respectively. Moreover, the state of the qubit is affected
by the measurement, and collapses to |0〉 if 0 was observed, and to |1〉 if 1 was observed.
More generally, given an n-qubit state |φ〉 = α0|0〉 ⊗ |ψ0〉 + α1|1〉 ⊗ |ψ1〉, where |ψ0〉
and |ψ1〉 are normalized (n − 1)-qubit states, then measuring the leftmost qubit results
in the answer i with probability |αi|2, and the resulting state will be |i〉 ⊗ |ψi〉.

3 The Untyped Quantum Lambda Calculus

3.1 Terms

Our language uses the notation of the intuitionistic lambda calculus. For a detailed
introduction to the lambda calculus, see e.g. [2]. We start from a standard lambda calculus
with booleans and finite products. We extend this language with three special quantum
operations, which are new , meas , and built-in unitary gates. new maps a classical bit to
a quantum bit. meas maps a quantum bit to a classical bit by performing a measurement
operation; this is a probabilistic operation. Finally, we assume that there is a set Un of
built-in n-ary unitary gates for each n. We use the letter U to range over built-in unitary
gates. Thus, the syntax of our language is as follows:

Term M,N,P ::= x | MN | λx.M | if M then N else P | 0 | 1 | meas
| new | U | ∗ | 〈M,N〉 | let 〈x, y〉=M in N,

We follow Barendregt’s convention for identifying terms up to α-equivalence. We also
sometimes use the shorthand notation 〈M1, . . . ,Mn〉 = 〈M1, 〈M2, . . . 〉〉.
3.2 Programs

The reader will have noticed that we have not provided a syntax for constant quantum
states such as α|0〉 + β|1〉 in our language. One may ask why we did not allow the
insertion of quantum states into a lambda term, such as λx.(α|0〉 + β|1〉). The reason
is that, in the general case, such a syntax would be insufficient. Consider for instance
the lambda term (λy.λf.fpy)(q), where p and q are entangled quantum bits in the
state |pq〉 = α|00〉 + β|11〉. Such a state cannot be represented locally by replacing
p and q with some constant qubit expressions. The non-local nature of quantum states
thus forces us to introduce a level of indirection into the representation of a state of a
quantum program.

Definition 1. A program state is represented by a triple [Q,L,M], where

– Q is a normalized vector of ⊗n−1
i=0 C2, for some n � 0

– M is a lambda term,
– L is a function from W to {0, . . . , n− 1}, where FV (M) ⊆ W ⊆ Vterm . L is also

called the linking function or the qubit environment.

The purpose of the linking function is to assign specific free variables of M to
specific quantum bits in Q. The notion of α-equivalence extends naturally to programs,
for instance, the states [|1〉, {x
→ 0}, λy.x] and [|1〉, {z
→ 0}, λy.z] are equivalent. The
set of program states, up to α-equivalence, is denoted by S.

A Lambda Calculus for Quantum Computation with Classical Control 357

Convention 1. In order to simplify the notation, we will often use the following conven-
tion: we use pi to denote the free variable x such that L(x) = i. A program [Q,L,M]
is abbreviated to [Q,M ′] with M ′ = M [pi1/x1] . . . [pin

/xn], where ik = L(xk).

3.3 Linearity

An important well-formedness property of quantum programs is that quantum bits should
always be uniquely referenced: roughly, this means that no two variable occurrences
should refer to the same physical quantum bit. The reason for this restriction is the well-
known no-cloning property of quantum physics, which states that a quantum bit cannot
be duplicated: there exists no physically meaningful operation which maps an arbitrary
quantum bit |φ〉 to |φ〉 ⊗ |φ〉.

Syntactically, the requirement of unique referencing translates into a linearity con-
dition: A lambda abstraction λx.M is called linear if the variable x is used at most once
during the evaluation of M . A well-formed program should be such that quantum data is
only used linearly; however, classical data, such as ordinary bits, can of course be used
non-linearly. Since the decision of which subterms must be used linearly depends on
type information, we will not formally enforce any linearity constraints until we discuss
a type system in Section 4; nevertheless, we will assume that all our untyped examples
are well-formed in the above sense.

3.4 Evaluation Strategy

As is usual in defining a programming language, we need to settle on a reduction strategy.
The obvious candidates are call-by-name and call-by-value. Because of the probabilistic
nature of measurement, the choice of reduction strategy affects the behavior of programs,
not just in terms of efficiency, but in terms of the actual answer computed. We demonstrate
this in an example. Let plus be the boolean addition function, which is definable as
plus = λxy. if x then (if y then 0 else 1) else (if y then 1 else 0). Consider the term
M = (λx.plus x x)(meas(H(new 0))).

Call-by-value. Reducing this in the empty environment, using the call-by-value reduc-
tion strategy, we obtain the following reductions:

−→CBV [|0〉, (λx.plus x x)(meas(H p0))]
−→CBV [1√

2
(|0〉 + |1〉), (λx.plus x x)(meas p0)]

−→CBV

{
[|0〉, (λx.plus x x)(0)]
[|1〉, (λx.plus x x)(1)] −→CBV

{
[|0〉,plus 0 0]
[|1〉,plus 1 1] −→CBV

{
[|0〉, 0]
[|1〉, 0]

each with a probability of 1/2. Thus, under call-by-value reduction, this program pro-
duces the boolean value 0 with probability 1. Note that we have used Convention 1 for
writing these program states.

Call-by-name. Reducing the same term under the call-by-name strategy, we obtain in
one step [|〉,plus (meas(H(new 0))) (meas(H(new 0))))], and then with probabil-
ity 1/4, [|01〉, 1], [|10〉, 1], [|00〉, 0] or [|11〉, 0]. Therefore, the boolean output of
this function is 0 or 1 with equal probability.

358 P. Selinger and B. Valiron

Mixed strategy. Moreover, if we mix the two reduction strategies, the program can
even reduce to an ill-formed term. Namely, reducing by call-by-value until [1√

2
(|0〉 +

|1〉), (λx.plus x x)(meas p0)], and then changing to call-by-name, we obtain in one
step the term [1√

2
(|0〉+|1〉), (plus (meas p0) (meas p0)], which is not a valid program

since there are 2 occurrences of p0.
In the remainder of this paper, we will only consider the call-by-value reduction

strategy, which seems to us to be the most natural.

3.5 Probabilistic Reduction Systems

In order to formalize the operational semantics of the quantum lambda calculus, we need
to introduce the notion of a probabilistic reduction system.

Definition 2. A probabilistic reduction system is a tuple (X,U,R, prob) where X is a
set of states, U ⊆ X is a subset of value states, R ⊆ (X \U)×X is a set of reductions,
and prob : R → [0, 1] is a probability function, where [0, 1] is the real unit interval.
Moreover, we impose the following conditions:

– For any x ∈ X , Rx = { x′ | (x, x′) ∈ R } is finite.
–
∑

x′∈Rx
prob(x, x′) � 1

We call prob the one-step reduction, and denote x−→p y to be prob(x, y) = p. Let
us extend prob to the n-step reduction

prob0(x, y) =
{

0 if x
= y
1 if x = y

prob1(x, y) =
{
prob(x, y) if (x, y) ∈ R

0 else
probn+1(x, y) =

∑
z∈Rx

prob(x, z)probn(z, y),

and the notation is extended to x −→n
p y to mean probn(x, y) = p.

We say that y is reachable in one step with non-zero probability from x, denoted
x−→>0y whenx−→py with p > 0. We say that y is reachable with non-zero probability
from x, denoted x −→∗

>0 y when there exists n such that x −→n
p y with p > 0.

We can then compute the probability to reach u ∈ U from x: It is a function from
X × U to R defined by probU (x, u) =

∑∞
n=0 prob

n(x, u). The total probability for
reaching U from x is probU (x) =

∑∞
n=0
∑

u∈U probn(x, u).
On the other hand, there is also the probability to diverge from x, or never reaching

anything. This value is prob∞(x) = limn→∞
∑

y∈X probn(x, y).

Lemma 1. For all x ∈ X , probU (x) + prob∞(x) � 1.

We define the error probability of x to be the number proberr(x) = 1−probU (x)−
prob∞(x).

Definition 3. We can define a notion of equivalence in X:

x ≈ y iff ∀u ∈ U

{
probU (x, u) = probU (y, u)
prob∞(x) = prob∞(y)

A Lambda Calculus for Quantum Computation with Classical Control 359

Definition 4. In addition to the notion of reachability with non-zero probability, there
is also a weaker notion of reachability, given by R: We will say that y is reachable from
x if xRy. By the properties of prob, x−→>0 y implies x� y with x� y for xRy. Let
us denote by −→∗ the relation such that x �∗ y iff there exists n such that xRny, with
Rn defined as the n-th composition of R. Similarly, x −→∗

>0 y implies x �∗ y.

Definition 5. In a probabilistic reduction system, a state x is called an error-state if
x
∈ U and

∑
x′∈X prob(x, x′) < 1. An element x ∈ X is consistent if there is no

error-state e such that x �∗ e.

Lemma 2. If x is consistent, then proberr(x) = 0. The converse is false.

Remark 1. We need the weaker notion of reachability x�∗ y, in addition to reachability
with non-zero probability x −→>0

∗ y, because a null probability of getting a certain
result is not an absolute warranty of its impossibility. In the QRAM, suppose we have
a qubit in state |0〉. Measuring it cannot theoretically yield the value 1, but in practice,
this might happen with small probability, due to imprecision of the physical operations
and decoherence. Therefore, when we prove type safety (see Theorem 2), we will use
the stronger notion. In short: a type-safe program should not crash, even in the event of
random QRAM errors.

3.6 Operational Semantics

We will define a probabilistic call-by-value reduction procedure for the quantum lambda
calculus. Note that, although the reduction itself is probabilistic, the choice of which
redex to reduce at each step is deterministic.

Definition 6. A value is a term of the following form:

Value V,W ::= x | λx.M | 0 | 1 | meas | new | U | ∗ | 〈V,W 〉.
The set of value states is V = {[Q,L, V] ∈ S | V ∈ Value}.

The reduction rules are shown in Table 1, where we have used Convention 1 to
shorten the description of states. We write [Q,L,M] −→p [Q′, L′,M ′] for a single-
step reduction of states which takes place with probability p. In the rule for reducing
the term U〈pj1 , . . . , pjn

〉, U is an n-ary built-in unitary gate, j1, . . . , jn are pairwise
distinct, and Q′ is the quantum state obtained from Q by applying this gate to qubits
j1, . . . , jn. In the rule for measurement, |Q0〉 and |Q1〉 are normalized states of the form
|Q0〉 =

∑
j αj |φ0

j 〉⊗ |0〉⊗ |ψ0
j 〉 and |Q1〉 =

∑
j βj |φ1

j 〉⊗ |1〉⊗ |ψ1
j 〉, where φ0

j and φ1
j

is an i-qubit state (so that the measured qubit is the one pointed to by pi). In the rule for
for new , Q is an n-qubit state, so that Q⊗ |i〉 is an (n+ 1)-qubit state, and pn refers to
its rightmost qubit.

We define a weaker relation �. This relation models the transformations that can
happen in the presence of decoherence and imprecision of physical operations. We define
[Q,M] � [Q′,M ′] to be [Q,M] −→p [Q′,M ′], even when p = 0, plus the additional
rule, if Q and Q′ are vectors of equal dimensions: [Q,M] � [Q′,M].

Lemma 3. Let prob be the function such that for x, y ∈ S, prob(x, y) = p if x −→p y
and 0 else. Then (S,V,�, prob) is a probabilistic reduction system. �

360 P. Selinger and B. Valiron

Table 1. Reductions rules of the quantum lambda calculus

[Q, (λx.M)V]−→1 [Q,M [V/x]]

[Q,N]−→p [Q′, N ′]

[Q,MN]−→p [Q′,MN ′]

[Q,M]−→p [Q′,M ′]

[Q,MV]−→p [Q′,M ′V]

[Q,M1]−→p [Q′,M ′
1]

[Q, 〈M1,M2〉]−→p [Q′, 〈M ′
1,M2〉]

[Q,M2]−→p [Q′,M ′
2]

[Q, 〈V1,M2〉]−→p [Q′, 〈V1,M
′
2〉]

[Q, if 0 then M else N]−→1 [Q,N]

[Q, if 1 then M else N]−→1 [Q,M]

[Q,U〈pj1 , . . . , pjn〉]−→1 [Q′, 〈pj1 , . . . , pjn〉]
[α|Q0〉+ β|Q1〉,meas pi]−→|α|2 [|Q0〉, 0]

[α|Q0〉+ β|Q1〉,meas pi]−→|β|2 [|Q1〉, 1]

[Q,new 0]−→1 [Q⊗ |0〉, pn]

[Q,new 1]−→1 [Q⊗ |1〉, pn]

[Q,P]−→p [Q′, P ′]

[Q, if P then M else N]−→p [Q′, if P ′ then M else N]

[Q,M]−→p [Q′,M ′]

[Q, let 〈x1, x2〉 = M in N]−→p [Q′, let 〈x1, x2〉 = M ′ in N]

[Q, let 〈x1, x2〉 = 〈V1,V2〉 in N]−→1 [Q,N [V1/x1,V2/x2]]

This probabilistic reduction system has error states, for example, [Q,H(λx.x)] or
[Q,U〈p0, p0〉]. Such error states correspond to run-time errors. In the next section, we
introduce a type system designed to rule out such error states.

4 The Typed Quantum Lambda-Calculus

We will now define a type system designed to eliminate all run-time errors arising from
the reduction system of the previous section. We need base types (such as bit and qbit),
function types, and product types. In addition, we need the type system to capture a
notion of duplicability, as discussed in Section 3.3. We follow the notation of linear
logic [7]. By default, a term of type A is assumed to be non-duplicable, and duplicable
terms are given the type !A instead. Formally, the set of types is defined as follows,
where α ranges over a set of type constants and X ranges over a countable set of type
variables:

qType A,B ::= α | X | !A | (A � B) | + | (A ⊗ B)

Note that, because all terms are assumed to be non-duplicable by default, the language has
a linear function type A � B and a linear product type A ⊗ B. This reflects the fact that
there is in general no canonical diagonal function A → A ⊗ A. Also, + is the linear unit
type. This will be made more formal in the typing rules below. We write !nA for !!! . . .!!A,
with n repetitions of !. We also write An for the n-fold tensor product A ⊗ . . . ⊗ A.

A Lambda Calculus for Quantum Computation with Classical Control 361

4.1 Subtyping

The typing rules will ensure that any value of type !A is duplicable. However, there is no
harm in using it only once; thus, such a value should also have type A. For this reason,
we define a subtyping relation <: as follows:

α <: α (ax) X <: X
(var) + <: + (+) A<: B

!A<: B
(D) !A<: B

!A<: !B
(!)

A1 <: B1 A2 <: B2

A1 ⊗ A2 <: B1 ⊗ B2
(⊗) A<: A′ B <: B′

A′ � B <: A � B′ (�)

Lemma 4. For types A and B, if A<:B and (m = 0)∨ (n � 1), then !nA<: !mB. /0
Notice that one can rewrite types using the notation:

qType A,B ::= !nα | !nX | !n(A � B) | !n+ | !n(A ⊗ B)

with n ∈ N. Using the overall condition on n and m that (m = 0) ∨ (n � 1), the rules
can be re-written as:

!nX <: !mX
(var2) !nα <: !mα

(α)
!n+ <: !m+ (+)

A1 <: B1 A2 <: B2

!n(A1 ⊗ A2) <: !m(B1 ⊗ B2)
(⊗) A<: A′ B <: B′

!n(A′ � B) <: !m(A � B′)
(�2)

The two sets of rules are equivalent.

Lemma 5. The rules of the second set are reversible. /0
Lemma 6. (qType, <:) is reflexive and transitive. If we define an equivalence relation
� by A � B iff A<: B and B <: A, (qType/�, <:) is a poset. /0
Lemma 7. If A<: !B, then there exists C such that A = !C. /0

Remark 2. The subtyping rules are a syntactic device, and are not intended to catch all
plausible type isomorphisms. For instance, the types !A ⊗ !B and !(A ⊗ B) are not
subtypes of each other, although an isomorphism between these types is easily definable
in the language.

4.2 Typing Rules

We need to define what it means for a quantum state [Q,L,M] to be well-typed. It turns
out that the typing does not depend on Q and L, but only on M . We introduce typing
judgments of the form Δ
 M : B. Here M is a term, B is a qType , and Δ is a typing
context, i.e., a function from a set of variables to qType. As usual, we write |Δ| for
the domain of Δ, and we denote typing contexts as x1:A1, . . . , xn:An. As usual, we
write Δ,x:A for Δ ∪ {x:A} if x
∈ |Δ|. Also, if Δ = x1:A1, . . . , xn:An, we write

362 P. Selinger and B. Valiron

Table 2. Typing rules

A<: B
Δ, x:A
 x : B

(ax1)
Ac <: B
Δ
 c : B

(ax2)

Γ1, !Δ
 P : bit Γ2, !Δ
 M : A Γ2, !Δ
 N : A
Γ1, Γ2, !Δ
 if P then M else N : A

(if)

Γ1, !Δ
 M : A � B Γ2, !Δ
 N : A
Γ1, Γ2, !Δ
 MN : B

(app)

x:A,Δ
 M : B
Δ
 λx.M : A � B

(λ1)

If FV (M) ∩ |Γ | = ∅:
Γ, !Δ,x:A
 M : B

Γ, !Δ
 λx.M : !n+1(A � B)
(λ2)

!Δ,Γ1
 M1 : !nA1 !Δ,Γ2
 M2 : !nA2

!Δ,Γ1, Γ2
 〈M1,M2〉 : !n(A1 ⊗A2)
(⊗.I)

Δ
 ∗ : !n ()

!Δ,Γ1
 M : !n(A1 ⊗A2) !Δ,Γ2, x1:!nA1, x2:!nA2
 N : A
!Δ,Γ1, Γ2
 let 〈x1, x2〉 = M in N : A

(⊗.E)

!Δ = x1:!A1, . . . , xn:!An. A typing judgement is called valid if it can be derived from
the rules in Table 2.

The typing rule (ax) assumes that to every constant c of the language, we have
associated a fixed type Ac. The types Ac are defined as follows:

A0 = !bit Anew = !(bit � qbit)
A1 = !bit Ameas = !(qbit � !bit) AU = !(qbitn � qbitn)

Note that we have given the type !(bit � qbit) to the term new . Another possible
choice would have been !(!bit � qbit), which makes sense because all classical bits
are duplicable. However, since !(bit � qbit) <: !(!bit � qbit), the second type is less
general, and can be inferred by the typing rules.

Note that, if [Q,L,M] is a program state, the term M need not be closed; however,
all of its free variables must be in the domain of L, and thus must be of type qbit . We
therefore define:

Definition 7. A program state [Q,L,M] is well-typed of type B if Δ
 M : B is
derivable, where Δ = {x: qbit | x ∈ FV (M)}. In this case, we write [Q,L,M] : B.

Note that the type system enforces that variables holding quantum data cannot be
duplicated; thus, λx.〈x, x〉 is not a valid term of type qbit � qbit ⊗ qbit . On the other
hand, we allow variables to be discarded freely. Other approaches are also possible,
for instance, Altenkirch and Grattage [1] propose a syntax that allows duplication but
restricts discarding of quantum values.

4.3 Example: Quantum Teleportation

Let us illustrate the quantum lambda calculus and the typing rules with an example. The
following is an implementation of the well-known quantum teleportation protocol (see

A Lambda Calculus for Quantum Computation with Classical Control 363

e.g. [9]). The purpose of the teleportation protocol is to send a qubit from location A
to location B, using only classical communication and a pre-existing shared entangled
quantum state. In fact, this can be achieved by communicating only the content of two
classical bits.

In terms of functional programming, the teleportation procedure can be seen as the
creation of two non-duplicable functions f : qbit � bit ⊗ bit and g : bit ⊗ bit � qbit ,
such that f ◦ g(x) = x for an arbitrary qubit x.

We start by defining the following functions EPR : !(+ � (qbit ⊗ qbit)),
BellMeasure : !(qbit �(qbit � bit ⊗ bit)), and U : !(qbit �(bit ⊗ bit � qbit)):

EPR = λx.CNOT 〈H(new 0),new 0〉,
BellMeasure = λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉 in 〈 meas(Hx),meas y〉,
U = λq.λ〈x, y〉.if x then (if y then U11q else U10q)

else (if y then U01q else U00q),

where

U00 =
(

1 0
0 1

)
, U01 =

(
0 1
1 0

)
, U10 =

(
1 0
0 −1

)
, U11 =

(
0 1

−1 0

)
.

The function EPR creates an entangled state 1√
2
(|00〉 + |11〉). The function

BellMeasure performs a so-called Bell measurement, and the function U performs a
unitary correction on the qubit q depending on the value of two classical bits. We can
now construct a pair of functions f : qbit � bit ⊗ bit and g : bit ⊗ bit � qbit with the
above property by the following code:

let 〈x, y〉=EPR ∗
in let f = BellMeasure x

in let g = U y.
in 〈f, g〉.

The functions f and g thus created do indeed have the desired property that f ◦g(x) = x,
where x is any qubit. Note that, since f and g depend on the state of the qubits x and y,
respectively, these functions cannot be duplicated, which is reflected in the fact that the
types of f and g do not contain a top-level “!”.

4.4 Properties of the Type System

We derive some basic properties of the type system.

Definition 8. We extend the subtyping relation to contexts by writing Δ<:Δ′ if |Δ′| =
|Δ| and for all x in |Δ′|, Δf (x) <: Δ′

f (x).

Lemma 8. 1. If x
∈ FV (M) and Δ,x:A
 M :B, then Δ
 M :B.
2. If Δ
 M :A, then Γ,Δ
 M :A.
3. If Γ <: Δ and Δ
 N : A and A<: B, then Γ
 N : B.

364 P. Selinger and B. Valiron

The next lemma is crucial in the proof of the substitution lemma. Note that it is only
true for a value V , and in general fails for an arbitrary term M .

Lemma 9. If V is a value and Δ
 V : !A, then for all x ∈ FV (V), there exists some
U ∈ qType such that Δ(x) = !U .

Proof. By induction on V .

– If V is a variable x, then the last rule in the derivation was
B <: !A

Δ′, x : B
 x : !A . Since

B <: !A, B must be exponential by Lemma 7.
– If V is a constant c, then FV (V) = ∅, hence the result holds vacuously.
– If V = λx.M , the only typing rule that applies is (λ2), and Δ = Γ, !Δ′ with

FV (M) ∩ |Δ′| = ∅. So every y ∈ FV (M) except maybe x is exponential. Since
FV (λx.M) = (FV (M) \ {x}), this suffices.

– The remaining cases are similar. /0
Lemma 10 (Substitution). If V is a value such that Γ1, !Δ,x:A
M : B and Γ2, !Δ

V : A, then Γ1, Γ2, !Δ
 M [V/x] : B.

Corollary 1. IfΓ1, !Δ,x:A
M : B andΓ2, !Δ
V : !nA, thenΓ1, Γ2, !Δ
M [V/x] :
B.

Proof. From Lemma 10 and Lemma 8(3).

Remark 3. We note that all the usual rules of affine intuitionistic linear logic are derived
rules of our type system, except for the general promotion rule. However, the promotion
rule is derivable when V is a value:

!Γ
 V : A
!Γ
 V :!A.

4.5 Subject Reduction and Progress

Theorem 1 (Subject Reduction). Given [Q,L,M] : B and [Q,L,M]�∗ [Q′, L′,M ′],
then [Q′, L′,M ′] : B.

Proof. It suffices to show this for [Q,L,M] −→p [Q′, L′,M ′], and we proceed by
induction on the rules in Table 1. The rule [Q, (λx.M)V] −→1 [Q,M [V/x]] and the
rule for “let” use the substitution lemma. The remaining cases are direct applications of
the induction hypothesis. /0
Theorem 2 (Progress). Let [Q,L,M] : B be a well-typed program. Then [Q,L,M]
is not an error state in the sense of Definition 5. In particular, either [Q,L,M] is a
value, or else there exist some state [Q′, L′,M ′] such that [Q,L,M] −→p [Q′, L′,M ′].
Moreover, the total probability of all possible single-step reductions from [Q,L,M] is 1.

Corollary 2. Every sequence of reductions of a well-typed program either converges to
a value, or diverges.

The proof of the Progress Theorem is similar to the usual proof, with two small
differences. The first is the presence of probabilities, and the second is the fact that M
is not necessarily closed. However, all the free variables of M are of type qbit , and this
property suffices to prove the following lemma, which generalizes the usual lemma on
the shape of closed well-typed values:

A Lambda Calculus for Quantum Computation with Classical Control 365

Lemma 11. Suppose Δ = x1:qbit , . . . , xn:qbit , and V is a value. If Δ
 V : A � B,
then V is new , meas , U , or a lambda abstraction. If Δ
V : A⊗B, then V = 〈V1, V2〉.
If Δ
 V : bit , then V = 0 or V = 1.

Proof of the Progress Theorem. By induction on M . The claim follows immediately in
the cases when M is a value, or when M is a left-hand-side of one of the rules in Table 1
that have no hypotheses. Otherwise, using Lemma 11, M is one of the following: PN ,
NV , 〈N,P 〉, 〈V,N〉, if N then P else Q, let 〈x, y〉=N in P , where N is not a value.
In this case, the free variables of N are still all of type qbit , and by induction hypothesis,
the term [Q,L,N] has reductions with total probability 1, and the rules in Table 1 ensure
that the same is true for [Q,L,M]. /0

5 Type Inference Algorithm

It is well-known that in the simply-typed lambda calculus, as well as in many program-
ming languages, satisfy the principal type property: every untyped expression has a most
general type, provided that it has any type at all. Since most principal types can usually
be determined automatically, the programmer can be relieved from the need to write any
types at all.

In the context of our quantum lambda calculus, it would be nice to have a type
inference algorithm; however, the principal type property fails due to the presence of
exponentials !A. Not only can an expression have several different types, but in general
none of the types is “most general”. For example, the term M = λxy.xy has possible
types T1 = (A � B) � (A � B) and T2 = !(A � B) � !(A � B), among others.
Neither of T1 and T2 is a substitution instance of the other, and in fact the most general
type subsuming T1 and T2 is X � X , which is not a valid type for M . Also, neither of
T1 and T2 is a subtype of the other, and the most general type of which they are both
subtypes is (A � B) � !(A � B), which is not a valid type for M .

In the absence of the principal type property, we need to design a type inference
algorithm based on a different idea. The approach we follow is the one suggested by
V. Danos, J.-B. Joinet and H. Schellinx [5]. The basic idea is to view a linear type
as a “decoration” of an intuitionistic type. Our type inference algorithm is based on the
following technical fact, given below: if a given term has an intuitionistic type derivation
π, then it is linearly typable if and only if there exists a linear type derivation which is
a decoration of π. Typability can therefore be decided by first doing intuitionistic type
inference, and then checking finitely many possible linear decorations.

5.1 Skeletons and Decorations

The class of intuitionistic types is

iType U, V ::= α | X | (U ⇒ V) | (U × V) | +
where α ranges over the type constants and X over the type variables.

To each A ∈ qType, we associate its type skeleton †A ∈ iType , which is obtained
by removing all occurrences of “!”. Conversely, every U ∈ iType can be lifted to some
♣U ∈ qType with no occurrences of “!”. Formally:

366 P. Selinger and B. Valiron

Definition 9. Define functions † : qType → iType and ♣ : iType → qType by:

†!nα = α, †!nX = X, †!n+ = +,
†!n(A � B) = †A ⇒ †B,
†!n(A ⊗ B) = †A × †B,

♣α = α, ♣X = X, ♣+ = +,
♣(U ⇒ V) = ♣U � ♣V ,
♣(U × V) = ♣U ⊗ ♣V .

Lemma 12. If A<: B, then †A = †B. If U ∈ iType , then U = †♣U .

Writing Δ � M : U for a typing judgement of the simply-typed lambda calculus,
we can extend the notion of skeleton to contexts, typing judgments, and derivations as
follows: †{x1:A1, . . . , xn:An} = {x1:†A1, . . . , xn:†An}

†(Δ
 M : A) = (†Δ � M : †A).

From the rules in Table 2, it is immediate that if Δ
M : A is a valid typing judgment in
the quantum lambda-calculus, then †(Δ
 M : A) = (†Δ � M : †A) is a valid typing
judgment in the simply-typed lambda-calculus.

We now turn to the question of how an intuitionistic typing derivation can be “deco-
rated” with exponentials to yield a valid quantum typing derivation. These decorations
are going to be the heart of the quantum type inference algorithm.

Definition 10. Given A ∈ qType and U ∈ iType, we define the decoration U � A ∈
qType of U along A by

1. U � !nA = !n(U � A),
2. (U ⇒ V) � (A � B) = (U � A � V � B),
3. (U × V) � (A ⊗ B) = (U � A ⊗ V � B), and in all other cases:
4. U � A = ♣U .

The following lemma is the key to the quantum type inference algorithm:

Lemma 13. If M is well-typed in the quantum lambda-calculus with typing judgment
Γ
 M : A, then for any valid typing judgment Δ � M : U in simply-typed lambda-
calculus with |Δ| = |Γ |, the typing judgment Δ � Γ
 M : U � A is valid in the
quantum lambda-calculus.

5.2 Elimination of Repeated Exponentials

The type system in Section 4 allows types with repeated exponentials such as !!A.
While this is useful for compositionality, it is not very convenient for type inference.
We therefore consider a reformulation of the typing rules which only requires single
exponentials.

Lemma 14. The following are derived rules of the type system in Table 2, for all τ, σ ∈
{0, 1}.

!Δ,Γ1
 M1 : !A1 !Δ,Γ2
 M2 : !A2

!Δ,Γ1, Γ2
 〈M1,M2〉 : !(!τA1 ⊗ !σA2)
(⊗.I ′)

!Δ,Γ1
 M : !(!τA1 ⊗ !σA2) !Δ,Γ2, x1:!A1, x2:!A2
 N : A
!Δ,Γ1, Γ2
 let 〈x1, x2〉 = M in N : A

(⊗.E′)

A Lambda Calculus for Quantum Computation with Classical Control 367

Lemma 15. If M is typable in the quantum lambda calculus by some derivation π, then
M is typable in the system with the added rules (⊗.I ′) and (⊗.E′), by a derivation π′

using no repeated exponentials. Moreover, †π′ = †π. /0

5.3 Description of the Type Inference Algorithm

To decide the typability of a given term M , first note the following: if M is not typable
in simply-typed lambda calculus, then M is not quantum typable. On the other hand,
suppose M admits a typing judgment Γ � M : U in the simply-typed lambda calculus,
say with typing derivation π. Moreover, suppose without loss of generality that the
derivation π uses no dummy variables, i.e., each sequent Γ ′ � M ′ : U ′ of π satisfies
|Γ ′| = FV (M ′). Then by the proof of Lemma 13, M is quantum typable if and only if
M has a quantum derivation whose skeleton is π. Thus we can perform type inference
in the quantum lambda-calculus in two steps:

1. Find an intuitionistic typing derivation π, if any, using no dummy variables.
2. Find a decoration of π which is a valid quantum typing derivation, if any.

Step (1) is known to be decidable. For step (2), note that by Lemma 15, it suffices to
consider decorations of π without repeated exponentials. Since there are only finitely
many such decorations, the typability of M is clearly a decidable problem. Also note
that if the algorithm succeeds, then it returns a possible type for M . However, it does
not return a description of all possible types.

It should further be noted that the space of all decorations of π, while exponential
in size, can be searched efficiently by solving a system of constraints. More precisely,
if we create a boolean variable for each place in the type derivation which potentially
can hold a “!”, then the constraints imposed by the linear type system can all be written
in the form of implications x1 ∧ . . . ∧ xn ⇒ y, where n � 0, and negations ¬z. It
is well-known that such a system can be solved in polynomial time in the number of
variables and clauses, which is in turns polynomial in the size of the type derivation.
Note, however, that the size of the type derivation need not be polynomial in the size of
the term M , as the type of M can be of exponential size in the worst case.

6 Conclusion and Further Work

In this paper, we have defined a higher-order quantum programming language based
on a linear typed lambda calculus. Compared to the quantum lambda calculus of van
Tonder [14, 15], our language is characterized by the fact that it contains classical as well
as quantum features; for instance, we provide classical datatypes and measurements as
a primitive feature of our language. Moreover, we provide a subject reduction result
and a type inference algorithm. As the language shows, linearity constraints do not just
exist at base types, but also at higher types, due to the fact that higher-order function are
represented as closures which may in turns contain embedded quantum data. We have
shown that affine intuitionistic linear logic provides the right type system to deal with
this situation.

There are many open problems for further work. An interesting question is whether
the syntax of this language can be extended to include recursion. Another question is

368 P. Selinger and B. Valiron

to study extensions of the type system, for instance with additive types as in linear
logic. One may also study alternative reduction strategies. In this paper, we have only
considered the call-by-value case; it would be interesting to see if there is a call-by-
name equivalent of this language. Finally, another important open problem is to find a
good denotational semantics for a higher order quantum programming language. One
approach for finding such a semantics is to extend the framework of Selinger [12] and
to identify an appropriate higher-order version of the notion of a superoperator.

References

1. T. Altenkirch and J. Grattage. A functional quantum programming language. Available from
arXiv:quant-ph/0409065, 2004.

2. H. P. Barendregt. The Lambda-Calculus, its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundation of Mathematics. North Holland, second edition, 1984.

3. P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamilto-
nian model of computers as represented by Turing machines. Journal of Statistical Physics,
22:563–591, 1980.

4. S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum programming.
The European Physical Journal D, 25(2):181–200, August 2003.

5. V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intuitionistic derivations.
Archive for Mathematical Logic, 33:387–412, 1995.

6. D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 400(1818):97–117, July 1985.

7. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
8. E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los

Alamos National Laboratory, 1996.
9. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-

bridge University Press, 2002.
10. J. Preskill. Lecture notes for Physics 229, quantum computation. Available from

http://www.theory.caltech.edu/people/preskill/ph229/#lecture, 1999.
11. J. W. Sanders and P. Zuliani. Quantum programming. In R. Backhouse and J. N. Oliveira,

editors, Mathematics of Program Construction: 5th International Conference, volume 1837
of Lecture Notes in Computer Science, pages 80–99, Ponte de Lima, Portugal, July 2000.
Springer-Verlag.

12. P. Selinger. Towards a quantum programming language. Mathematical Structures in Computer
Science, 14(4):527–586, 2004.

13. Benoı̂t Valiron. A functional programming language for quantum computation with classical
control. Master’s thesis, University of Ottawa, September 2004.

14. A. van Tonder. Quantum computation, categorical semantics and linear logic. On arXiv:
quant-ph/0312174, 2003.

15. A. van Tonder. A lambda calculus for quantum computation. SIAM Journal of Computing,
33(5):1109–1135, 2004. Available from arXiv:quant-ph/0307150.

Continuity and Discontinuity in LambdaCalculus

Paula Severi and Fer-Jan de Vries

Department of Mathematics and Computer Science,
University of Leicester, University Road,

Leicester, LE1 7RH, UK

Abstract. This paper studies continuity of the normal form and the
context operators as functions in the infinitary lambda calculus. We con-
sider the Scott topology on the cpo of the finite and infinite terms with
the prefix relation. We prove that the only continuous parametric trees
are Böhm and Lévy–Longo trees. We also prove a general statement: if
the normal form function is continuous then so is the model induced by
the normal form; as well as the converse for parametric trees. This allows
us to deduce that the only continuous models induced by the parametric
trees are the ones of Böhm and Lévy–Longo trees. As a first applica-
tion, we prove that there is an injective embedding from the infinitary
lambda calculus of the ∞η-Böhm trees in D∞. As a second application,
we study the relation between the Scott topology on the prefix relation
and the tree topologies. This allows us to prove that the only parametric
tree topologies in which all context operators are continuous and the ap-
proximation property holds are the ones of Böhm and Lévy–Longo. As
a third application, we give an explicit characterisation of the open sets
of the Böhm and Lévy–Longo tree topologies.

1 Introduction

The study of the infinitary lambda calculi has focused on confluence and nor-
malisation [4, 9, 10, 11, 12, 16, 15] and sequentiality [5]. In this paper we will look
at another property of these calculi, namely continuity.

Our starting point are lambda calculi that extend finite lambda calculus with
infinite terms and transfinite reduction. The β and η reduction rules apply to
infinite terms in much the same way as they apply to finite terms. However,
characteristic for these calculi is that they contain a ⊥-rule that maps a certain
set U of meaningless terms to ⊥. Without such an addition the extension of finite
lambda calculus with infinite terms and reductions immediately would result in
loss of confluence [9]. All infinite calculi that we consider have the same set of
finite and infinite terms Λ∞

⊥ . The variation comes from the choice of the set U
and the strength of extensionality.

Figure 1 summarises the infinitary lambda calculi studied so far [4, 9, 10, 12,
16, 15]. An interesting aspect of infinitary lambda calculus is the possibility of
capturing the notion of tree (such as Böhm and Lévy–Longo trees) as a normal

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 369–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

370 P. Severi and F.-J. de Vries

REDUCTION RULES NORMAL FORMS NF

Beta and Bottom for terms without tnf Berarducci trees BeT = TT

Beta and Bottom for terms without whnf Lévy–Longo trees LT = TW

Beta and Bottom for terms without hnf Böhm trees BT = TH

Beta, Bottom parametric on U Parametric trees TU

Beta, Bottom for terms w.o. hnf and Eta η-Böhm trees ηBT

Beta, Bottom for terms w.o. hnf and EtaBang ∞η-Böhm trees ∞ηBT

Fig. 1. Infinitary Lambda Calculi

form. These trees were originally defined for finite lambda terms only, but in the
infinitary lambda calculus we can also consider normal forms of infinite terms.
The three infinitary lambda calculi mentioned in the first three rows of Figure 1
capture the well-known cases of Böhm, Lévy–Longo and Berarducci trees [4, 9,
10]. In the fourth row, there is an uncountable class of infinitary lambda calculi
with a ⊥-rule parametrised by a set U of meaningless terms [11, 12]. By changing
the parameter set U of the ⊥-rule, we obtain different infinitary lambda calculi.
If U is the set of terms without head normal form, we capture the notion of
Böhm tree. If U is the set of terms without weak head normal form we obtain
the Lévy–Longo trees. And if U is the set of terms without top head normal form
to ⊥, we recover the Berarducci trees. The infinitary lambda calculus sketched
in the one but last row incorporates the η-rule [16]. This calculus captures the
notion of η-Böhm tree. The last row in Figure 1 mentions the infinitary lambda
calculus incorporating the η!-rule, a strengthened form of the η-rule [15]. The
normal forms in this calculus capture the notion of ∞η-Böhm trees.

When the infinite extensions are confluent and normalising (normal forms
can now be infinite too!) they induce a function NF : Λ∞

⊥ → Λ∞
⊥ mapping a term

to its unique normal form. The normal form functions NF induce models of the
finite lambda calculus: just interpret a term M by its normal form NF(M) and
application M · N of two terms M and N by NF(MN).

It is natural to compare terms, in particular normal forms, by the prefix
relation %. When terms are represented as trees, prefixes of a tree are obtained
by pruning some of its subtrees and replacing them by ⊥. Whereas application in
the model of Böhm trees is well-known to be continuous with respect to the Scott
topology induced by the prefix relation, it is perhaps less well-known that in case
of the model of Berarducci trees, the normal form function BeT : Λ∞

⊥ → Λ∞
⊥ and

the application operator are not even monotone [8]. For the models induced by

Continuity and Discontinuity in Lambda Calculus 371

NF, it makes sense to study continuity of all context operators and this includes
not only the application operator but also the abstraction.

In this paper we will make a systematic study of continuity of the following
two functions and the relation between them:
– the normal form functions NF with respect to the Scott topology on (Λ∞

⊥ ,%)
and

– the context operators λλM ∈NF(Λ∞
⊥).NF(C[M]) : NF(Λ∞

⊥) → NF(Λ∞
⊥) in the

models induced by NF.

We first prove that the only continuous parametric tree functions are the
ones that correspond to Böhm and Lévy–Longo trees. We also show that the η
and ∞η-Böhm tree functions are not continuous.

We also study the relation between continuity of NF and continuity of the
context operators in the models induced by NF. We prove that if NF is con-
tinuous then so is the model induced by NF; as well as the converse when NF
is a parametric tree. This allows us to deduce that the only continuous models
induced by the parametric trees are the ones of Böhm and Lévy–Longo trees.

As a first application of our results on continuity, we show that there is an
injective embedding from the infinitary lambda calculus of ∞η-Böhm trees in
Scott’s models D∞. We use the fact that the model induced by BT is continuous
to prove that the interpretation on D∞ extended to infinite terms is homomor-
phic with the abstraction and the application.

As a second application, we study the relation between the Scott topology on
the prefix relation and the tree topologies. We prove that the only parametric
tree topologies that make all context operators continuous and in which the
approximation property holds are the ones of Böhm and Lévy–Longo. Continuity
of the finite context operators λλM ∈ Λ.C[M] : Λ → Λ in the Böhm and Lévy–
Longo tree topologies is proved in [2, 14] using the labelled reduction. We show
that it can also be deduced from confluence via the infinitary lambda calculus

As a third application, we define the notion of NF-topology and prove that
the BT-topology and the LT-topology coincide with the old notions of Böhm and
Lévy–Longo tree topologies.

2 Infinite Lambda Calculus

We will now briefly recall some notions and facts of infinite lambda calculus from
our earlier work [9, 10, 12, 16, 15]. We assume familiarity with basic notions and
notations from [2].

Let Λ be the set of λ-terms and Λ⊥ be the set of finite λ-terms with ⊥ given
by the inductive grammar:

M ::= ⊥ | x | (λxM) | (MM)

where x is a variable from some fixed set of variables V. We follow the usual
conventions on syntax. Terms and variables will respectively be written with
(super- and subscripted) letters M,N and x, y, z. Terms of the form (M1M2)

372 P. Severi and F.-J. de Vries

and (λxM) will respectively be called applications and abstractions. A context
C[] is a term with a hole in it, and C[M] denotes the result of filling the hole
by the term M , possibly by capturing some free variables of M .

The set Λ∞
⊥ of finite and infinite λ-terms is defined by coinduction using the

same grammar as for Λ⊥. This set contains the three sets of Böhm, Lévy–Longo
and Berarducci trees. In [10, 11, 12], an alternative definition of the set Λ∞

⊥ is
given using a metric. The coinductive and metric definitions are equivalent [3].
In this paper we consider only one set of λ-terms, namely Λ∞

⊥ , in contrast to
the formulations in [10, 11] where several sets (which are all subsets of Λ∞

⊥)
are considered. The paper [12] shows that the infinitary lambda calculi can be
formulated using a common set Λ∞

⊥ , confluence and normalisation still hold since
the extra terms added by the superset Λ∞

⊥ are meaningless and equated to ⊥.
Many notions of finite lambda calculus apply and/or extend more or less

straightforwardly to the infinitary setting. The main idea which goes back to
Dershowitz e.a. in [7] is that reduction sequences can be of any transfinite ordinal
length α: M0 → M1 → M2 → . . .Mω → Mω+1 → . . .Mω+ω → Mω+ω+1 →
. . .Mα. This makes sense if the limit terms Mω,Mω+ω, . . . in such sequence
are all equal to the corresponding Cauchy limits, limβ→λ Mβ , in the underlying
metric space for any limit ordinal λ ≤ α. If this is the case, the reduction is
called Cauchy converging. We need the stronger concept of a strongly converging
reduction that in addition satisfies that the depth of the contracted redexes goes
to infinity at each limit term: limβ→λ dβ = ∞ for each limit ordinal λ ≤ α, where
dβ is the depth in Mβ of the reduced redex in Mβ → Mβ+1. Note that any finite
reduction is strongly converging.

We use the following notation:

1. M → N denotes a one step reduction from M to N ;
2. M →→ N denotes a finite reduction from M to N ;
3. M →→→ N denotes a strongly converging reduction from M to N .

We define several rules used to define different infinite lambda calculi. The β,
η and η−1-rules are extensions of the rules for finite lambda calculus to infinite
terms. The η!-rule does not appear in the finite lambda calculus. The ⊥-rule is
parametric on a set U ⊂ Λ∞ of meaningless terms [11, 12] where Λ∞ is the set
of terms in Λ∞

⊥ that do not contain ⊥.
The notions of head normal form, weak head normal form and top normal

form are defined as follows:

1. A head normal form (hnf) is a term of the form λx1 . . . xn.yM1 . . .Mk.
2. A weak head normal form (whnf) is either a hnf or an abstraction λx.M .
3. A top normal form (tnf) is either a whnf or an application (MN) if there is

no P such that M →→β λx.P .

We define the following sets:

H = {M ∈ Λ∞ | M →→β N and N in head normal form}
W = {M ∈ Λ∞ | M →→β N and N in weak head normal form}
T = {M ∈ Λ∞ | M →→β N and N in top normal form}

Continuity and Discontinuity in Lambda Calculus 373

Instances of U ⊆ Λ∞ are H, W and T the respective complements of H, W
and T . Since the ⊥-rule is parametric, each set U of meaningless terms gives a
different infinitary lambda calculus λ∞

β⊥.

Definition 1. We define the following rewrite rules on Λ∞
⊥ :

(λx.M)N → M [x := N] (β)
M [⊥ := Ω] ∈ U

(⊥)
M → ⊥

x
∈ FV (M)
(η)

λx.Mx → M

x
∈ FV (M)
(η−1)

M → λx.Mx

x →→→η−1 N x
∈ FV (M)
(η!)

λx.MN → M

In this paper we need various rewrite relations constructed from these rules
on the set Λ∞

⊥ . These are defined in the standard way, eg. →β⊥η! is the smallest
binary relation containing the β, ⊥ and η!-rules which is closed under contexts.
Variations on the reduction rules will give rise to different calculi (see Figure 1).
The resulting infinite lambda calculus (Λ∞

⊥ ,→ρ) we will denote by λ∞
ρ for any

ρ ∈ {β⊥, β⊥η, β⊥η!}.
Definition 2. 1. We say that a term M in λ∞

ρ is in ρ-normal form if there is
no N in λ∞

ρ such that M →ρ N .
2. We say that λ∞

ρ is confluent (Church-Rosser) if (Λ∞
⊥ ,→→→ρ) satisfies the dia-

mond property, i.e. ρ ←←← ◦ →→→ρ ⊆ →→→ρ ◦ ρ ←←←.
3. We say that λ∞

ρ is normalising if for all M ∈ Λ∞
⊥ there exists an N in

ρ-normal form such that M →→→ρ N .
4. Let α be an ordinal. We say that λ∞

ρ is α-compressible if for all M,N such
that M →→→ρ N there exists a strongly converging reduction sequence from
M to N of length at most α.

Theorem 3. [10, 11, 12] The calculi λ∞
β⊥ with a parametric ⊥-rule on the set U

are confluent, normalising, ω-compressible and satisfy postponement of ⊥ over β.

In [12], confluence of the parametric calculi is proved for any Cauchy con-
verging reduction, not only strongly converging ones.

Theorem 4. [16, 15] The infinite lambda calculi of ∞η-Böhm and η-Böhm
trees are confluent and normalising.

Assumption. In the rest of the paper whenever we refer to the function NF :
Λ∞
⊥ → Λ∞

⊥ , we are assuming that the infinitary lambda calculus in question is
confluent and normalising and that NF is the function that maps a term to its
unique normal form.

3 Equality Induced by the Normal Form

The theory given by NF is the set Eq(NF) = {(M,N) ∈ Λ∞
⊥ × Λ∞

⊥ | NF(M) =
NF(N)}. Figure 1 shows an order between the calculi. On the first row we see the

374 P. Severi and F.-J. de Vries

smallest theory of λ-terms given by the equality of Berarducci trees and in the
last row we see the largest theory given by equality of ∞η-Böhm trees. Hence,

Eq(BeT) ⊂ Eq(LT) ⊂ Eq(BT) ⊂ Eq(ηBT) ⊂ Eq(∞ηBT)

Note that T ⊃ W ⊃ H and T ⊂ W ⊂ H.

Lemma 5. Let U be a set of meaningless terms satisfying the axioms of [11, 12].
If the theory Eq(TU) is consistent then T ⊆ U ⊆ H.

Proof. By the axioms of meaningless terms [11, 12], we know that T ⊆ U . Sup-
pose now towards a contradiction that there exists M ∈ U such that M
∈ H.
Then M has a head normal form. Suppose M = λx1 . . . xn.yP1 . . . Pk. Once
more applying the axioms of meaningless terms, we have that (Mx1 . . . xn)[y :=
λy1 . . . yk.P] →→β P ∈ U for any P ∈ Λ∞

⊥ . It follows that all terms P ∈ Λ∞
⊥ have

the same normal form and hence the theory is not consistent.

As a consequence of the previous lemma, any consistent theory of parametric
trees lays between the theories of Berarducci and Böhm trees:

Eq(BeT) ⊆ Eq(TU) ⊆ Eq(BT)

Theorem 6. The class of parametric trees is uncountable.

Proof. For each subset X of the set of finite closed β-normal forms, we define a
set UX as follows:

UX = {M ∈ Λ∞ | M →→β RP1 . . . Pn, n ∈ ω, R ∈ T and P1, . . . , Pn ∈ X}
It is possible to prove that the set UX satisfies the axioms of [11, 12].

4 Truncation and Preorders

In this section we define the notion of truncation and some preorders used in
this paper. In the next section we will use truncations instead of approximants
to prove continuity.

Definition 7. Let M ∈ Λ∞
⊥ .

1. We define the truncation of M at depth n, denoted as Mn, as the result of
replacing in M all subterms at depth n by ⊥.

2. The truncation of the normal form of M at depth n is denoted by NFn(M).

The following lemma is proved by induction on the depth of the hole in the
context.

Lemma 8. Let C[M] ∈ Λ∞
⊥ and d the depth of the hole in C. If n > d then

(C[M])n = Cn[Mn−d]. Otherwise C[M]n = Cn is a term without a hole in it.

Continuity and Discontinuity in Lambda Calculus 375

Definition 9. Let M,N ∈ Λ∞
⊥ . We say that M is a prefix of N (we write

M % N) if M is obtained from N by replacing some subterms of N by ⊥
The pair (Λ∞

⊥ ,%) is an algebraic cpo. The compact elements are the finite λ-
terms. In particular, truncations of terms are compact. We denote the supremum
of a directed subset X of (Λ∞

⊥ ,%) by
⋃

X. In the particular case of Böhm trees,
the pair (BT(Λ∞

⊥),%) is isomorphic to (B,⊆) where B is the set of Böhm–like
trees and ⊆ is the prefix relation on trees [2].

Definition 10. Let M,N ∈ Λ∞
⊥ .

1. We say that M %fin N if M is the result of replacing a finite number of
subterms of N by ⊥.

2. Let NF : Λ∞
⊥ → Λ∞

⊥ . Then, M %NF N if NF(M) % NF(N).
3. M %η−1 N if BT(M) →→→η−1 P % Q η−1←←← BT(N) for P,Q in β⊥-normal

form.
4. We say that M ⊆hf

N if for all finite contexts C, if C[M] β-reduces to a
head normal form then so does C[N].

5. We say that M ⊆h N if for all (finite or infinite) contexts C, if C[M] β-
reduces to a head normal form then so does C[N].

The relation %NF is a preorder, i.e. it is reflexive and transitive. It is also a
partial order if restricted to the set of normal forms, i.e. it is antisymmetric.

Definition 11. We say that NF quasi-preserves %fin if NF(M) % NF(N) for all
M %fin N .

5 Continuity of the Normal Form Function NF

We will now consider the Scott topology on the cpo (Λ∞
⊥ ,%) and study continuity

of the normal form function NF : Λ∞
⊥ → Λ∞

⊥ . We prove that the only parametric
trees satisfying continuity are BT and LT.
We give some counterexamples against continuity of the normal form function:

Counterexample 12. The map NF : Λ∞
⊥ → Λ∞

⊥ is not continuous in (Λ∞
⊥ ,%)

in the following cases:

1. Case NF = BeT. We show that BeT is not monotone in (Λ∞
⊥ ,%). Take

M = ⊥y, N = (λx.⊥)y. Then M % N but NF(M)
% NF(N).

2. Case NF = {ηBT,∞ηBT}. We show that ηBT and ∞ηBT are not mono-
tone. Take M = λx.y⊥ and N = λx.yx. Then M % N but NF(M)
% NF(N).

3. Case NF = TO and O = W ∪{M ∈ Λ∞ | M →→β λx1 . . . xn.N and N ∈ W}.
Then TO is monotone but it is not continuous. The infinite sequence of
abstractions O = λx1x2 . . . is in normal form but the truncations On =
λx1 . . . xn.⊥ reduce to ⊥ for all n. Hence

⋃
n∈ω On = O = NF(O)
=⋃

n∈ω NF(On) = ⊥.

376 P. Severi and F.-J. de Vries

Definition 13. We say that the truncations are NF-increasing if there exists m
such that M →ρ N implies Mn+m =NF Nn for all n.

Lemma 14. Let λ∞
ρ be ω-compressible. If the truncations are NF-increasing

then for all n there exists l such that NFn(P) %NF Pn+l.

Proof. By confluence, normalisation and ω-compression for λ∞
ρ , there exists a

strongly convergent reduction sequence of length ω from P to NF(P):

P = P0 →ρ P1 →ρ P2 . . .NF(P)

Since this reduction sequence is strongly convergent, there exists Pi such
that NFn(P) = (Pi)n. Since the truncations are NF-increasing, we construct the
following (finite) chain from Pn+l to NFn(P):

Pn+im = (P0)n+im =NF (P1)n+(i−1)m . . . =NF (Pi−1)n+m =NF (Pi)n = NFn(P)

Taking l = im we have that NFn(P) %NF Pn+l.

Lemma 15. Let P,Q ∈ Λ∞
⊥ . Then, Pn[x := Qn] = (P [x := Q])n.

This is proved by induction on the number of symbols of Pn.

Lemma 16. If TU quasi-preserves %fin then the truncations are TU -increasing.

Proof. Suppose M →⊥ ⊥. We have that Mn =TU ⊥. Suppose M =
C[(λx.P)Q] →β C[P [x := Q]] = N . Let d be the position of the hole in C[]
and k = n − d > 0.

(C[(λx.P)Q])n+2 = Cn+2[(λx.P k)Qk+1] by Lemma 8
→β Cn+2[P k[x := Qk+1]
= Cn[P k[x := Qk]]
= Cn[(P [x := Q])k] by Lemma 15
= (C[P [x := Q]])n by Lemma 8

Since β⊥ is confluent (Theorem 4) and TU quasi-preserves %fin ,

(C[(λx.P)Q])n+2 =TU (C[P [x := Q]])n

Definition 17. Let σ be a function from positions of ⊥’s to Λ∞
⊥ . We define Mσ

as the result of replacing ⊥’s in M by the corresponding terms given by σ.

Lemma 18. Let M,N ∈ Λ∞
⊥ . Then, M % N if and only if Mσ = N for some σ.

Lemma 19. Let σ be a function from positions of ⊥’s to Λ∞
⊥ . If M →→→β N then

there exists σ′ such that Mσ →→→β Nσ′
.

This is proved by induction on the length of the reduction sequence from M
to N .

Continuity and Discontinuity in Lambda Calculus 377

Theorem 20. BT and LT are monotone in (Λ∞
⊥ ,%).

Proof. Let M,N ∈ Λ∞
⊥ such that M % N . We prove that BT(M) % BT(N). By

normalisation of β⊥ and postponement of ⊥ over β (Theorem 4 and Theorem 3),
we have that there exists P such that M →→→β P →→→⊥ BT(M). By Lemma 19 we
have that N = Mσ →→→β P σ′

. We prove that for all n, BTn(P) % BTn(P σ′
) by

induction on n. Suppose n = h + 1. We have three cases:

1. Case P = ⊥. Then BTn(P) = ⊥ % BTn(P σ′
).

2. Case P = λx1 . . . xn.y Q1 . . . Qk.
Then BTn(P) = λx1 . . . xn.y BTh1(Q1) . . .BThk(Qk). It follows by induction
hypothesis that BThi(Qi) % BThi(Q

σhi
i). Hence Pn %BT (P σ′

)n.
3. Case P = λx1 . . . xn.(λy.R)SQ1 . . . Qk. Since P →→→⊥ BT(M), P cannot have

head normal form. Hence BTn(P) = ⊥ % BTn(P σ′
).

This proof can be easily adapted to Lévy–Longo trees with some minor ad-
justments.

Corollary 21. The functions BT and LT are continuous in (Λ∞
⊥ ,%).

Proof. By Theorem 20, we have that
⋃

n∈ω BT(Mn) % BT(M). The truncations
are BT-increasing by Theorem 20 and Lemma 16. The calculus of Böhm trees is
ω-compressible by Theorem 3. Hence, we have that:

BT(M) =
⋃

n∈ω BTn(M)
=
⋃

n∈ω BT(BTn(M)) because BTn(M) is in normal form
% ⋃n∈ω BT(Mn) by Lemma 14

The same proof works for LT.

We prove that the only parametric tree functions TU : Λ∞
⊥ → Λ∞

⊥ satisfying
continuity are the Böhm tree function and the Lévy–Longo tree function.

Theorem 22. If TU : Λ∞
⊥ → Λ∞

⊥ is continuous then TU = BT or TU = LT.

Proof. By Lemma 5, we have that T ⊆ U ⊆ H. We prove that U = H or U = W.
Suppose that M ∈ W −T . We can also suppose that M ∈ BeT(Λ∞

⊥) because
T ⊆ U and TU (BeT(M)) = TU (M) by confluence of β⊥. We have two cases:

1. Let M = ⊥Pk . . . P1 and N = (λx1 . . . xk.⊥)Pk . . . P1. Since TU is monotone
and M % N , we have that TU (M) % TU (N) = ⊥. Hence M ∈ U .

2. Let M = (((. . . P3)P2)P1). Then, TU (M) =
⋃

n∈ω TU (Mn) = ⊥. Hence
M ∈ U .

Hence, we have that W−T ⊆ U and also W ⊆ U . Suppose now that W ⊂ U ⊆
H. Then there exists M ∈ U such that M ∈ H −W. We prove that H −W ⊆ U
and hence U = H. We can suppose that the terms in H − W are in LT(Λ∞

⊥)
and then they are either of the form λx1 . . . λxk.⊥ or λx1x2x3 We have two
cases:

378 P. Severi and F.-J. de Vries

1. Let M = λx1 . . . λxk.⊥ for some k.

TU (λx.⊥) = TU (Mx1 . . . xk−1) because Mx1 . . . xk−1 →→β λx.⊥
= TU (⊥x1 . . . xk−1) because M ∈ U
= ⊥ because W ⊆ U

Then, we also have that TU (λx1 . . . xn.⊥) = ⊥ for all n. Since TU is contin-
uous, we also have that TU (λx1x2 . . .) = ⊥.

2. Let M = λx1x2 Then ⊥ = TU (M) = TU (Mn) = λx1 . . . xn.⊥ for all n.

6 Models Induced by NF

In this section we define the model induced by NF and give a notion of continuity
for these models.

Definition 23. The model induced by NF, denoted by M(NF), is the applica-
tive structure (NF(Λ∞

⊥), . , [[]]) defined as follows:

1. M.N = NF(MN) for all M,N ∈ NF(Λ∞
⊥),

2. [[M]]σ = NF(Mσ) for all M ∈ Λ and where Mσ is the simultaneous substi-
tution of all free variables of M by σ.

By Theorem 6, the class of models induced by the parametric trees is un-
countable.

It is easy to prove that M(NF) is indeed a λ-model of the finite lambda
calculus using confluence and normalisation (see Definition 5.3.2 in [2]).

We consider the prefix relation % on NF(Λ∞
⊥). For NF ∈

{BT, LT,BeT,∞ηBT, ηBT}, the pair (NF(Λ∞
⊥),%) is a cpo. We can de-

duce that the set of normal forms is closed under directed suprema by showing
first that a redex in a term should also be present in some finite prefix. In
general, the pair (NF(Λ∞

⊥),%) may not be a cpo:

Counterexample 24. We show an example of a pair (TU (Λ∞
⊥),%) which is

not a cpo. Let I = λx.x and K = λxy.x. We consider the infinite term K∞ =
((. . .K)K)I). The set K = T ∪ {M ∈ Λ∞ | M →→β K∞} satisfies the axioms
of [11, 12] and, then, TK : Λ∞

⊥ → Λ∞
⊥ is a parametric tree function. The term

K∞ is a redex but none of its prefixes contain any redex. The pair (TK(Λ∞
⊥),%)

is not a cpo because the set X = {TKn(K∞) | n ∈ ω} ⊂ TK(Λ∞
⊥) but K∞ =⋃

X
∈ TK(Λ∞
⊥).

For the models induced by NF, it makes sense to define a notion of continuity
that considers all context operators and not only the application. In particu-
lar, we can consider the abstraction operator as a function in the model, i.e.
abs(M) = NF(λx.M) for M ∈ NF(Λ∞

⊥).

Definition 25. Let C[] be a context in Λ∞
⊥ . The context operator C[] restricted

to NF is the function λλM∈NF(Λ∞
⊥).NF(C[M]) : NF(Λ∞

⊥) → NF(Λ∞
⊥).

Continuity and Discontinuity in Lambda Calculus 379

Definition 26. M(NF) is continuous if the following holds:

1. (NF(Λ∞
⊥),%) is a cpo,

2. the context operators C[] restricted to NF are continuous in the Scott topol-
ogy on the cpo (NF(Λ∞

⊥),%) for all context C[] ∈ Λ∞
⊥ .

3. the approximation property holds: NF(M) =
⋃

n∈ω NF(NFn(M)) for M ∈
Λ∞
⊥ .

Counterexample 27. We give examples against continuity of M(NF):

1. Case NF = BeT. The application is not monotone, though the abstraction
is continuous. Take M = ⊥, N = λx.⊥ and P = y. Then M % N but
M · P
% N · P . The approximation property holds since BeTn(M) is in
normal form for all n.

2. Case NF = {ηBT,∞ηBT}. Neither the abstraction nor the application oper-
ators are monotone:

(a) Take M = y⊥ and N = yx. Then M % N but abs(M)
% abs(N).
(b) Take M = λzx.zx⊥, N = λzx.zxx and P = λx.y. Then M % N but

M · P
% N · P .

Note that in this case the approximation property does not hold.
3. Case NF = TO and O = W ∪{M ∈ Λ∞ | M →→β λx1 . . . xn.N and N ∈ W}.

The abstraction and the application are not continuous:

(a) Take O = λx1x2 Then O = abs(O)
= ⋃n∈ω abs(On) = λx.⊥.
(b) Take fix = λf.f(f(. . .)) and K = λxy.x. Then O = fix·K
= ⋃n∈ω fixn·K =

⊥.

Note that in this case the approximation property does not hold.

We recall a notion of continuous λ-model defined by Welch to deduce that
all fixed point operators are equal in the model [2]. For models induced by NF,
this result can be deduced instead from confluence and normalisation since the
normal form of a fixed point operator is λf.f(f(. . .)).

Definition 28. An applicative continuous λ-model is a structure (X, ·,�) such
that:

1. (X,�) is a cpo,
2. the operation · is continuous in the Scott topology on the cpo (X,�) and
3. the approximation property holds for Böhm trees on finite λ-terms: [[M]] =

0{[[BTn(M)]] | n ∈ ω}, for all M ∈ Λ.

According to Definition 28, the model induced by BT is the only one from
Figure 1 which is applicative continuous. None of the remaining trees satisfy the
third clause. By replacing BT by the general form NF, we got the third clause
in Definition 26.

380 P. Severi and F.-J. de Vries

7 Continuity of the Context Operators

In this section we study continuity of M(NF) in relation to continuity of NF. We
prove that if NF is continuous in (Λ∞

⊥ ,%) then so is M(NF); and the converse
for NF = TU . This allows us to deduce that the only continuous models induced
by the parametric trees are M(BT) and M(LT).

Theorem 29. If NF is continuous in (Λ∞
⊥ ,%) then

1. (NF(Λ∞
⊥),%) is an algebraic cpo.

2. The Scott topology on (NF(Λ∞
⊥),%) is the subset topology and the quotient

topology by NF. In other words, it is initial for the inclusion and final for
NF.

3. If f : Λ∞
⊥ → Λ∞

⊥ is continuous in (Λ∞
⊥ ,%) then NF ◦ f�NF(Λ∞

⊥) is continuous
in (NF(Λ∞

⊥),%).

Proof. 1. This follows from Proposition 1.2.21 in [2]. Because NF(Λ∞
⊥) is a

retract of Λ∞
⊥ , the set NF(Λ∞

⊥) of normal forms is closed under directed
suprema. It is also easy to see that it is algebraic. The compact elements in
(NF(Λ∞

⊥),%) are the finite normal forms.
2. See Proposition 5.0.11 in [17].
3. Let f be continuous in (Λ∞

⊥ ,%). Since NF : Λ∞
⊥ → Λ∞

⊥ is continuous, then
so is the inclusion inc : NF(Λ∞

⊥) → Λ∞
⊥ . Then, NF ◦ f�NF(Λ∞

⊥) = NF ◦ f ◦ inc
is composition of continuous functions.

Theorem 30. If NF is continuous in (Λ∞
⊥ ,%) then so is M(NF).

Proof. The first clause in Definition 26 is Theorem 29 part 1. For the second
clause, since C[

⋃
X] =

⋃
C[X], we have that λλM ∈Λ∞

⊥ .C[M] : Λ∞
⊥ → Λ∞

⊥ is
continuous in (Λ∞

⊥ ,%) and, then, we apply Theorem 29 part 3. For the third
clause, we have that X = {NFn(M) | n ∈ ω} is a directed set and NF(M) =
NF(NF(M)) =

⋃
n∈ω{NF(NFn(M)) | n ∈ ω}.

The converse holds for the parametric trees:

Theorem 31. If M(TU) is continuous then so is TU : Λ∞
⊥ → Λ∞

⊥ .

Proof. It is enough to prove that TU quasi-preserves %fin . In that case,
TU (Mn) % TU (M), by Lemma 16 the truncations are TU -increasing and then
we have that:

TU (M) =
⋃

n∈ω TU (Tn
U (M))

% ⋃n∈ω TU (Mn) by Lemma 14

We now prove that TU quasi-preserves %fin . Let P %fin Q. We do induction
on the number n of subterms that are replaced by ⊥ in Q. The case n = 1 is
P = C[⊥] and Q = C[M]. Since all context operators are monotone, TU (C[⊥]) %
TU (C[M]) = TU (C[NF(M)]). The case n > 0 is similar.

Theorem 32. M(BT) and M(LT) are the only continuous models induced by
parametric trees.

Proof. By Corollary 21, Theorem 22 and Theorem 31.

Continuity and Discontinuity in Lambda Calculus 381

8 An Embedding from ∞ηBT(Λ∞
⊥) in D∞

In this section we use the fact that M(BT) is continuous to prove that the inter-
pretation on D∞ extended to infinite terms is homomorphic with the application
and the abstraction. We can, then, show that there is an injective embedding
from the infinitary lambda calculus of ∞η-Böhm trees in D∞.

Using the Approximation Theorem [19] we extend the interpretation to infi-
nite terms as follows: [[M]] = 0{[[BTn(M)]] | n ∈ ω} for an infinite term M .

Lemma 33. Let M,N ∈ Λ∞
⊥ .

1. If BT(M) % BT(N) then D∞ |= M � N .
2. If BT(M) →→→η−1 BT(N) then D∞ |= M = N .

The first part is proved using the Characterisation Theorem on finite terms.
For the second part, we have to re-do some work and prove a similar statement
to Proposition 19.1.13 in [2] for infinite β⊥-normal forms.

Lemma 34. [[C[M]]] = 0{[[C[BTn(M)]]] | n ∈ ω}
Proof. By Theorem 32, we have that λλM ∈ BT(Λ∞

⊥).BT(C[M]) is continuous.
Hence,

1. C[BTn(M)] %BT C[M] by monotonicity.
2. for all n there exists k such that BTn(C[M]) %BT C[BTk(M)] because the

truncations are compact in (BT(Λ∞
⊥),%).

By Lemma 33, [[C[BTn(M)]]] � [[C[M]]] and [[BTn(C[M])]] � [[C[BTk(M)]]].

The following lemma is a triviality in the finite lambda calculus but for the
infinite case we need to prove it and use continuity.

Lemma 35. Let M,N ∈ Λ∞
⊥ .

1. [[(MN)]] = [[M]].[[N]].
2. [[(λx.M)]] = λGd ∈ D∞.[[M]]ρ(x:=d).

Proof. Using Lemma 34.

Lemma 36. If D∞ |= M � N then D∞ |= C[M] � C[N].

Proof. This is proved by induction on the position of the hole in C using
Lemma 35.

Lemma 37. Let M ∈ Λ∞
⊥ . Then [[M]] = ⊥ iff M has no head normal form.

Proof. Using the Characterisation Theorem on finite terms.

382 P. Severi and F.-J. de Vries

Theorem 38 (Characterisation Theorem extended to infinite
terms).

The following statements are equivalent for terms M,N in Λ∞
⊥ :

1. M %η−1 N .
2. D∞ |= M � N .
3. M ⊆h N .
4. M ⊆hf

N .

Proof. (1 ⇒ 2) follows from Theorem 33. We prove (2 ⇒ 3). By Lemma 36,
D∞ |= C[M] � C[N]. Hence, by Lemma 37, if C[M] has head normal form, so
does C[N].
(3 ⇒ 4) is trivial. (4 ⇒ 1) follows by applying the Böhm-out technique to %η−1

and it is rather long, though the use of commutation properties of the reductions
helps to make it shorter than the proof found in [2] for the finite lambda calculus.

Remark 39. As a consequence of Theorem 38, the interpretation function [[]] is
an injective embedding from ∞ηBT(Λ∞

⊥) to D∞. The following example shows
that it is not surjective, i.e. D∞ contains more elements than ∞ηBT(Λ∞

⊥).
We define M0 = y⊥ and Mn = λx1 . . . xn.y(x1x2 . . . xn⊥)x1x2 . . . xn. Clearly

X = {Mn | n ∈ ω} is directed in (Λ∞
⊥ ,%η−1) and so is [[X]] = {[[Mn]] | n ∈ ω} in

D∞ by the Characterisation Theorem. The supremum of [[X]] exists in D∞ but
not in Λ∞

⊥ .

9 Tree Topologies

In this section we study the relation between the Scott topology on the prefix
relation and the tree topologies. This allows us to deduce that the only para-
metric tree topologies that make all context operators continuous and in which
the approximation property holds are the ones of Böhm and Lévy–Longo. We
also give an alternative proof of continuity of the context operator with respect
to the Böhm and Lévy–Longo tree topologies on the set of finite lambda terms
via the infinitary lambda calculus [2, 14].

The (Böhm) tree topology is defined in [2] as the initial topology for BT�Λ :
Λ → BT(Λ∞

⊥) where BT(Λ∞
⊥) is considered with the Scott topology on the prefix

relation. By just replacing BT by NF, we get the following two notions of tree
topologies:

Definition 40. Suppose that (NF(Λ∞
⊥),%) is a cpo. We consider the Scott

topology on (NF(Λ∞
⊥),%).

1. The tree topology on Λ∞
⊥ is the initial topology for NF : Λ∞

⊥ → NF(Λ∞
⊥).

2. The tree topology on Λ is the initial topology for NF�Λ : Λ → NF(Λ∞
⊥).

Remark 41. 1. The open sets in the tree topology on Λ∞
⊥ are of the form

NF−1(O) with O open in NF(Λ∞
⊥). They are closed under =NF.

Continuity and Discontinuity in Lambda Calculus 383

2. The tree topology on Λ is the subspace topology of the tree topology on Λ∞
⊥ .

In the following lemma, the function NF might not be continuous in (Λ∞
⊥ ,%).

Lemma 42. Suppose (NF(Λ∞
⊥),%)) is a cpo.

1. The inclusion inc : NF(Λ∞
⊥) → Λ∞

⊥ is a continuous function from the Scott
topology on (NF(Λ∞

⊥),%) to the tree topology on Λ∞
⊥ .

2. Let f : Λ∞
⊥ → Λ∞

⊥ be a function such that NF ◦ f = NF ◦ f ◦ NF
(a) The function f is continuous in the tree topology on Λ∞

⊥ if and only if
NF ◦ f�NF(Λ∞

⊥) : NF(Λ∞
⊥) → NF(Λ∞

⊥) is continuous in the Scott topology
on (NF(Λ∞

⊥),%)).
(b) Suppose f�Λ : Λ → Λ. If f : Λ∞

⊥ → Λ∞
⊥ is continuous in the tree topology

on Λ∞
⊥ then f�Λ : Λ → Λ is continuous in the tree topology on Λ.

Proof. 1. An open set in the tree topology on Λ∞
⊥ is of the form NF−1(O) with

O open in (NF(Λ∞
⊥),%)). Then, inc−1(NF−1(O)) = {M ∈ NF(Λ∞

⊥) | M ∈
NF−1(O)} = {M ∈ NF(Λ∞

⊥) | NF(M) ∈ O} = O because NF(M) = M for
all M ∈ NF(Λ∞

⊥).
2. (a) (⇒). Let f be continuous in the tree topology on Λ∞

⊥ . Then, NF ◦
f�NF(Λ∞

⊥) = NF ◦ f ◦ inc is composition of continuous functions.
(⇐). Let NF ◦ f�NF(Λ∞

⊥) be continuous. Then NF ◦ f�NF(Λ∞
⊥) ◦ NF : Λ∞

⊥ →
NF(Λ∞

⊥) is a continuous function from the tree topology to (NF(Λ∞
⊥),%)).

We know that NF◦f�NF(Λ∞
⊥) ◦NF = NF◦f ◦NF = NF◦f . By Proposition

5.0.2 [17], we have that f is continuous in the tree topology on Λ∞
⊥ .

(b) Any open set in the tree topology on Λ is of the form NF−1(O)∩Λ. Then
f−1

�Λ (NF−1(O) ∩Λ) = f−1(NF−1(O)) ∩Λ is open in the tree topology on
Λ.

Theorem 43.

1. The Böhm and Lévy–Longo tree topologies are the only parametric tree
topologies on the set Λ∞

⊥ that satisfies the following two conditions:
(a) continuity of all context operators λλM ∈ Λ∞

⊥ .C[M] : Λ∞
⊥ → Λ∞

⊥ and
(b) the approximation property, i.e. NF(M) =

⋃
n∈ω NF(NFn(M)) for M ∈

Λ∞
⊥ .

2. The finite context operators λλM ∈ Λ.C[M] : Λ → Λ are continuous in the
Böhm and Lévy–Longo tree topologies on Λ.

Proof. They follow from Lemma 42 and Theorem 32.

Continuity of the finite context operators with respect to the Böhm tree
topology on Λ is proved in [2] and with respect to the Lévy–Longo tree topology
on Λ is proved in [14] along the lines of [2]. The proof in [2] uses the notion
of approximants (approximants are finite β⊥-normal forms) and essentially the
following proposition (called syntactic continuity in [1]): For all finite β⊥-normal
form P such that P %BT C[M] there exists N in finite β⊥-normal form such that
N %BT M and C[N] %BT N . This proposition has been proved using a variety of
methods by Wadsworth [18], Lévy [13] and Welch [20]. Our proof (Theorem 43
part 2) uses the continuity of NF and properties of initial and final topologies.

384 P. Severi and F.-J. de Vries

10 The NF-Topology

We will now give an explicit characterisation of the open sets in the Böhm and
Lévy–Longo tree topologies.

Definition 44. A subset O of Λ∞
⊥ is an open set in the NF-topology provided

1. O is open in the Scott topology of (Λ∞
⊥ ,%) and

2. O is closed under =NF.

It is easy to see that the NF-topology makes the normal form NF and the
context operators continuous.

Lemma 45. Suppose that NF : Λ∞
⊥ → Λ∞

⊥ is continuous in (Λ∞
⊥ ,%). Then the

tree topology is exactly the set of open sets of (Λ∞
⊥ ,%) closed under =NF.

Proof. Since the tree topology is initial for NF, the open sets of the tree topology
are open in (Λ∞

⊥ ,%). They are also closed under =NF.
Let O be an open set in (Λ∞

⊥ ,%) closed under =NF. Then, O = NF−1(NF(O)).
Since the Scott topology on (NF(Λ∞

⊥),%) is final for NF, NF(O) is open in
NF(Λ∞

⊥) and hence O = NF−1(NF(O)) is open in the tree topology.

Corollary 46. The BT-topology and LT-topology coincide with the Böhm and
Lévy–Longo tree topologies respectively.

Proof. This follows from Corollary 21 and Lemma 45.

Unfortunately, the BeT-topology coincides with the LT-topology. In general,
the TU -topology is either the BT-topology or the LT-topology.

Acknowledgements. We thank Vincent van Oostrom and the referees
for their useful comments, Mariangiola Dezani-Ciancaglini for her knowledge
and inspiration, Simona Ronchi della Rocca for telling us the solution of a key
exercise in [2] and Alexander Kurz for interesting discussions on coinduction.

References

1. R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge Uni-
versity Press, Cambridge, 1998.

2. H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
Amsterdam, Revised edition, 1984.

3. M. Barr. Terminal coalgebras for endofunctors on sets. Theoretical Computer
Science, 114(2):299–315, 1999.

4. A. Berarducci. Infinite λ-calculus and non-sensible models. In Logic and algebra
(Pontignano, 1994), pages 339–377. Dekker, New York, 1996.

5. I. Bethke, J.W. Klop, and R. de Vrijer. Descendants and origins in term rewriting.
Information and Computation, 159:59–124, 2000.

Continuity and Discontinuity in Lambda Calculus 385

6. M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type theories, normal forms,
and D∞-lambda-models. Information and Computation, 72(2):85–116, 1987.

7. N. Dershowitz, S. Kaplan, and D. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, Theoretical Computer Science, 83(1):71–96, 21 June 1991.

8. M. Dezani-Ciancaglini, P. Severi, and F.J. de Vries. Infinitary lambda calculus and
discrimination of Berarducci trees. Theoretical Computer Science, 298(2):275–302,
2003.

9. J.R. Kennaway, J.W. Klop, M. Sleep, and F.J. de Vries. Infinite lambda calculus
and Böhm models. In Rewriting Techniques and Applications, volume 914 of LNCS,
pages 257–270. Springer-Verlag, 1995.

10. J.R. Kennaway, J.W. Klop, M. Sleep, and F.J. de Vries. Infinitary lambda calculus.
Theoretical Computer Science, 175(1):93–125, 1997.

11. J.R. Kennaway, V. van Oostrom, and F.J. de Vries. Meaningless terms in rewriting.
J. Funct. Logic Programming, Article 1:35 pp, 1999.

12. J.R. Kennaway and F.J. de Vries. Infinitary rewriting. In Terese, editor, Term
Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Sci-
ence, pages 668–711. Cambridge University Press, 2003.

13. J.-J. Lévy. An algebraic interpretation of the λβK-calculus, and an application of
a labelled λ-calculus. Theoretical Computer Science, 2(1):97–114, 1976.

14. C.-H. L. Ong. The lazy lambda calculus:an investigation into the foundations of
functional programming. PhD thesis, University of Cambridge, 1992.

15. P. Severi and F.J. de Vries. A lambda calculus for D∞. Technical report, University
of Leicester, 2002.

16. P. Severi and F.J. de Vries. An extensional Böhm model. In Rewriting Techniques
and Applications, volume 2378 of LNCS, pages 159–173. Springer-Verlag, 2002.

17. M. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 1, pages 641–762. Oxford
University Press, Oxford, 1993.

18. C. P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus. PhD thesis,
Oxford University, 1971.

19. C. P. Wadsworth. Approximate reduction and lambda calculus models. SIAM
Journal on Computing, 7(3):337–356, 1978.

20. P. Welch. Continuous semantics and inside out reductions. In C. Böhm, editor,
Lambda Calculus and Computer Science Theory, volume 37 of LNCS, pages 122–
146. Springer-Verlag, 1975.

Call-by-Name and Call-by-Value
as Token-Passing Interaction Nets

François-Régis Sinot�

LIX, École Polytechnique, 91128 Palaiseau, France
frs@lix.polytechnique.fr

Abstract. Two common misbeliefs about encodings of the λ-calculus in
interaction nets (INs) are that they are good only for strategies that are
not very well understood (e.g. optimal reduction) and that they always
have to deal in a complex way with boxes. In brief, the theory of inter-
action nets is more or less disconnected from the standard theory: we
can do things in INs that we cannot do with terms, which is true [5, 10];
and we cannot do in INs things that can easily be done with terms. This
paper contributes to fighting this misbelief by showing that the standard
call-by-name and call-by-value strategies of the λ-calculus are encoded
in interaction nets in a very simple and extensible way, and in particular
that these encodings do not need any notion of box. This work can also
be seen as a first step towards a generic approach to derive graph-based
abstract machines.

1 Introduction

Interaction nets (INs) [9] are a graphical paradigm of distributed computation
that makes all the steps in a computation explicit and expressed uniformly in the
same formalism. Reduction in interaction nets is local and strongly confluent,
hence reductions can take place in any order, even in parallel (see [17]). These
properties make interaction nets well-suited as an intermediate formalism in the
implementation of programming languages.

Indeed, interaction nets have their origins in linear logic [6], but have been
most successfully used in the implementation of optimal reduction in the λ-
calculus, starting from Lamping [10], Gonthier, Abadi and Lévy [8], Asperti
et al. [1] to the recent work of van Oostrom et al. [19]. There have also been sev-
eral other efficient (non-optimal) implementations of the λ-calculus, for instance
Mackie [15, 16].

All of the above encodings of the λ-calculus have in common that a β-redex is
always translated to an active pair (i.e. a redex in interaction nets), hence, para-
doxically, while all reductions are equivalent, there is still the need for an external
interpreter to find the redexes and manage them, which is typically implemented

� Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay,
CNRS, École Polytechnique, INRIA, Université Paris-Sud.

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 386–400, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets 387

by maintaining a stack of redexes [17]. The fact that different β-reductions may
be interleaved also has the nasty consequence that the encodings need to simulate
boxes in a more or less complex and costly way (see [10, 8, 13, 15, 16] for various
types of such encodings). This reveals two common misbeliefs about interaction
nets for λ-calculus: they are good only to express strategies that we cannot write
in a term-like framework, and consequently that we do not understand very well,
and they always need a complex mechanism to manage boxes. This paper in-
tends to fight these two misbeliefs. More precisely, we will present encodings of
the call-by-name and call-by-value strategies of the λ-calculus in interaction nets.
These encodings are based on the idea of a single evaluation token, which is a
standard interaction agent, walking through the term as an evaluation function
would do. They are thus very natural and easy to understand.

An implementation of the λ-calculus on a sequential machine has whatsoever
to perform reductions in a certain order (i.e. to follow a strategy), hence it is
meaningful to give up the redex-to-redex translation in interaction nets. This has
actually been done in Lippi’s work [12, 11]. Lippi gives an implementation of left
reduction in interaction nets, and goes even further by describing the Krivine
machine in interaction nets. However, his work is based on notions of coding
and decoding which makes the overall presentation difficult to understand and
he does not make clear the notion of evaluation token hidden in his encoding.
In particular, he does not extend his presentation to call-by-value, which indeed
seems difficult with his presentation.

In contrast, our presentation is more simple and uniform: it is based on the
simple idea of a single evaluation token walking through the representation of
the term exactly as a functional evaluator would do, going down on recursive
calls and up when exiting the recursive calls. This approach is very simple and
is indeed a good alternative to working with terms, since it allows to abstract
away from syntactical details such as α-conversion. Moreover it is very easily
extended from call-by-name to call-by-value.

We thus provide new graph-based abstract machines for call-by-name and
call-by-value, with the peculiarity that the structure of the term itself is used
instead of a stack or a heap in traditional abstract machine. Moreover, our
approach is so simple that there is some serious hope it can be extended to more
interesting strategies. It is also nice from a theoretical point of view to (try to)
bridge the gap between optimal reduction and call-by-name/value by providing
a (more) uniform framework.

The idea of a token walking through a graph is superficially reminiscent of
the geometry of interaction (GoI) [7], which has been used to implement call-
by-name [14] and call-by-value [3] abstract machines. However, the details of the
approach are quite different. In particular, the GoI machines avoid as much as
possible to modify the graph, thus they have less freedom in the strategy. For
instance, call-by-value is obtained at the price of a greater complexity. While it
is relatively clear that the GoI machines can be formalised in our framework (i.e.
by making the token explicit and encoding the stack with interaction agents),

388 F.-R. Sinot

this does not seem to lead to a better understanding of the GoI machines (in
particular to a possibly more satisfactory call-by-value machine).

Our approach is also reminiscent of continuation-passing style (CPS) trans-
formation [18], in the sense that we simulate an evaluation strategy by forbidding
certain reductions until something triggers them (the token or the continuation).
However, a CPS transformation followed by a traditional encoding in interaction
nets would certainly not allow to get rid of boxes, although only one β-reduction
would be allowed at a time. In this respect, our framework is thus more satis-
factory; it also seems easier to extend to other strategies.

The rest of this paper is structured as follows. In Section 2, we recall some
background on interaction nets. In Section 3, we give the full details of our
approach in the case of call-by-name for closed terms. Sections 4 and 5 adapt
the presentation respectively to closed call-by-value and to open terms. Finally,
we conclude in Section 6.

2 Interaction Nets

A system of interaction nets [9] is specified from a set Σ of symbols, and a set
R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An
occurrence of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then
the agent has n+ 1 ports: a distinguished one called the principal port depicted
by an arrow, and n auxiliary ports labelled x1, . . . , xn corresponding to the arity
of the symbol. Such an agent will be drawn in the following way:

��
��
α

	

� �· · ·x1 xn

Intuitively, a net N built on Σ is a graph (not necessarily connected) with agents
at the vertices. The edges of the graph connect agents together at the ports such
that there is only one edge at every port. The ports of an agent that are not
connected to another agent are called free. There are two special instances of a
net: a wiring (no agents) and the empty net; the extremes of wirings are also
called free ports.

An interaction rule ((α, β) =⇒ N) ∈ R replaces a pair of agents (α, β) ∈
Σ×Σ connected together on their principal ports (this is called an active pair or
redex), by a net N . Rules must satisfy two conditions: all free ports are preserved
during reduction (reduction is local, i.e. only the part of the net involved in the
rewrite is modified), and there is at most one rule for each pair of agents. The
following diagram shows the format of interaction rules (N can be any net built
from Σ).

��
��
α ��

��
β��

�

�

�

�

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets 389

We use the notation =⇒ for the one step reduction relation and =⇒∗ for
its transitive and reflexive closure. If a net does not contain any active pairs
then we say that it is in normal form. One-step reduction (=⇒) satisfies the
diamond property, and thus we obtain a very strong notion of confluence. Indeed,
all reduction sequences are permutation equivalent and standard results from
rewriting theory tell us that weak and strong normalisation coincide (if one
reduction sequence terminates, then all reduction sequences terminate).

3 Call-by-Name

In this section, we give an encoding of the call-by-name strategy of the λ-calculus
in interaction nets. We present the strategy with inductive rules, in a big-step
style, and the first step in our encoding is to derive a more fine-grained rewrite
system. In this section, we only consider closed terms (i.e. terms without free
variables). Open terms will be dealt with in Section 5.

3.1 Preliminaries

We assume basic knowledge of the λ-calculus; we refer the reader to [2] for more
details. To fix notations, the set Λ of λ-terms is defined by:

t, u ::= x | λx.t | t u

where x ranges over a set of variables. Terms are considered modulo α-conversion
i.e. renaming of bound variables. We denote by fv(t) the set of free variables of
a term t.

This set is equipped with the rewrite relation:

(β) (λx.t) u →β t{x := u}

where t{x := u} denotes t where all occurrences of x are replaced by u, without
name capture. We write →β for one-step reduction and →∗

β for its reflexive
transitive closure.

We call weak head normal forms (whnf) terms of the form λx.t or x t1 . . . tn.
Note that closed whnf are only terms of the form λx.t. We say that v is a weak
head normal form of t if v is a weak head normal form and t →∗

β v.

3.2 Big-Step Style

The call-by-name strategy for closed λ-terms is specified by the following evalu-
ation rules, as found in various textbooks:

λx.t ⇓ λx.t

t ⇓ λx.t′ t′{x := u} ⇓ v

t u ⇓ v

This is in fact the inductive definition of an evaluation function (also known
as big-step semantics), rather than a strategy: we take a λ-term t as input and

390 F.-R. Sinot

we inductively find v such that t ⇓ v, then v is the unique weak head normal
form of t (provided it exists) obtained by the call-by-name strategy, but the
reduction path is not visible at the top-level.

Too much is hidden in these rules for a direct encoding in interaction nets. In
the rule for application, we call the procedure recursively on the left term, and
then we have to return to this application somehow. In a functional program-
ming setting, this is done automatically, but this is not a free operation: when
a function is entered, the current environment is saved on the stack; when it
returns, this information is popped down from the stack. We will thus formalise
the call-by-name strategy in a small-step style, so as to be more explicit about
the control flow and to facilitate the encoding in interaction nets.

3.3 Small-Step Style

We want to replace the previous inductive rules by a first-order rewrite system
but we also want to be as explicit about the evaluation order as in the pre-
vious system. We thus enrich the syntax of terms with two unary symbols ⇓
(corresponding to evaluation) and ⇑ (corresponding to the evaluation function
returning) and define the following rewrite system:

⇓ λx.t → ⇑ λx.t
⇓ (t u) → (⇓ t) u
(⇑ λx.t) u → ⇓ t{x := u}

Although we do not want to get into any details, it is clear how the small-step
system is derived from the big-step one. In the particular case of call-by-name,
omitting the symbol ⇑ gives an equivalent system (this is exactly tail-recursion
optimisation), but we prefer to include it already; this point will be discussed
again in Section 4. Also note that, as far as we know, such a simple small-
step presentation of call-by-name has not been made before; usual small-step
presentations of call-by-name and call-by-value rely on inductive rules allowing
reductions in a certain class of contexts, hence do not make explicit the flow of
evaluation contrary to our presentation, which is crucial for the encoding into
interaction nets. In some sense, our presentation is intermediate between tradi-
tional small-step semantics (which separate as much as possible reduction and
strategy) and abstract machines (which may involve complex data structures).
We call this presentation the token-passing semantics of call-by-name.

A λ-term t is always in normal form with respect to this system, and so is
⇑ t. To evaluate t, we have to start reduction from ⇓ t.

First note that a reduction always involves a ⇓ or ⇑, hence, by the following
proposition, there is always at most one redex in a term obtained from reduction
of ⇓ t. Thus the control flow is really made explicit at the syntactic level.

Proposition 1. If ⇓ t →∗ u, then there exists exactly one occurrence of ⇓ or ⇑
in u.

Proof. By induction. The first two rules are easy. In the last rule, the right hand-
side may have zero or more than one occurrences of u, but u has no occurrence
of ⇓ or ⇑ by the induction hypothesis. /0

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets 391

The two systems correspond to each other in the following sense:

Proposition 2. t ⇓ v ⇐⇒ ⇓ t →∗ ⇑ v

Proof. ⇒ By induction:
• λx.t ⇓ λx.t and indeed ⇓ λx.t → ⇑ λx.t
• if t u ⇓ v, then there exists t′ such that t ⇓ λx.t′ and t′{x := u} ⇓ v. By

induction, ⇓ t →∗ ⇑ λx.t′ and ⇓ t′{x := u} →∗ ⇑ v, hence:
⇓ (t u) → (⇓ t) u →∗ (⇑ λx.t′) u → ⇓ t′{x := u} →∗ ⇑ v

⇐ The first part of the proposition (already proved) allows to state the following
lemma: if t is a λ-term and t has a whnf, then there exists v such that
⇓ t →∗ ⇑ v and v is a whnf (consequence of classical theorems on call-by-
name). Then we can proceed by induction:
• ⇓ λx.t → ⇑ λx.t and indeed λx.t ⇓ λx.t
• ⇓ (t u) → (⇓ t) u. By the lemma, if t has a whnf, there exists λx.t′

(remember that all terms are closed), such that ⇓ t →∗ ⇑ λx.t′. Moreover,
t ⇓ λx.t′ by induction. Then (⇑ λx.t′) u → ⇓ t′{x := u} and a similar
argument (lemma and induction) allows to conclude. If t of t′{x := u}
does not have a whnf, the proposition is trivially true (we do not reach
a term of the form ⇑ v). /0

Hence the given rewrite system faithfully corresponds to the call-by-name
strategy. This step is crucial, as the interaction net encoding will closely follow
the small-step style system. Also remark that the method used here is very
general.

3.4 Encoding of Terms

The translation T (·) of λ-terms into interaction nets is very natural. We basically
represent terms by their syntax tree, where we group together several occurrences
of the same variable by agents c (corresponding to copy) and bind them to
their corresponding λ node (this is sometimes referred to as a backpointer). The
nodes for application and abstraction are agents λ and a with three ports; their
principal port is directed towards the root of the term. Note that in traditional
encodings, the application agent looks towards its left, so that interaction with
an abstraction is always possible. Here, on the contrary, terms are translated to
packages [12] and in particular there will be no spontaneous reduction, something
will have to trigger them: the evaluation token.

Variables. In this section, we consider only closed terms (open terms will be
dealt with in Section 5), hence variables are not translated as such. They will
simply be represented by edges between their binding λ and their grouped oc-
currence in the body of the abstraction, as explained below.

Application. The translation T (t u) of an application t u is simply an agent a
of arity 2 pointing to the root, with T (t) and T (u) linked to its auxiliary ports.
If t and u share common free variables, then c agents (representing copy) collect
these together pairwise so that a single occurrence of each free variable occurs
amongst the free edges (only one such copy is represented on the figure).

392 F.-R. Sinot

T (t) T (u)

��
��
a
�

· · · · · ·

�
��

��
��
c

�� ��

	

Abstraction. If λx.t is an abstraction, T (λx.t) is obtained by introducing an
agent λ, and simply linking its right auxiliary port to T (t) and its left one to
the unique wire corresponding to x in T (t). If x does not appear in t, then the
left port of the agent λ is linked to an agent ε.

�

��
��
λ

T (t)

· · ·

or

�

��
��
λ

T (t)

· · ·

��
��
ε

���

To sum up, we represent λ-terms in a very natural way. In particular, there
is no artifact to simulate boxes. Another point worth noticing is that, because
of the explicit link between a variable and its binding λ, α-conversion comes
from free, as it is often the case in graphical representations of the λ-calculus. So
far, we only introduced agents λ and a strictly corresponding to the λ-calculus,
as well as agents ε and c for the explicit resource managements necessary (and
desirable: we do not want to hide such important things) in interaction nets. Also
remark that the translation of a term has no active pair, hence is in normal form,
whatever the interaction rules we allow. Moreover, it has exactly one principal
port, at the root.

3.5 Evaluation by Interaction

We introduce two new unary agents ⇓ and ⇑. To evaluate a closed λ-term t with
call-by-name, we simply build the following net, that we will denote ⇓ T (t).

T (t)

�

��
��
⇓
	

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets 393

⇑ T (t) will be a net built in the same way, but with a ⇑ agent instead, with
its principal port directed towards the root. In particular, ⇑ T (t) is always a net
in normal form.

The interaction rules will follow as closely as possible the rewrite system of
Section 3.3. The first one is easy; when the evaluation token reaches a λ, it may
begin to return:

��
��
λ

��

�

��
��
⇓
	 =⇒

��
��
λ

��

�

��
��
⇑
�

The second one is still simple, but slightly more subtle:

��
��
a

��

�

��
��
⇓
	 =⇒ ��

��
@

���
�

��
��
⇓
	

When the evaluation token reaches an application agent, we change the agent
a to an agent @ still representing application, but no longer looking at its root
but to the left, towards the propagated evaluation agent, waiting until it returns.

Finally, when the agent ⇑ returns from a successful evaluation to a @, then
we know for sure that there is a λ just behind the ⇑, so the agent ⇑ may safely
disappear, at least if λ and @ promise to create it again later. In a sense, it does
not disappear, it just hides in the @ agent.

��
��
@

���
�

�

��
��
⇑

=⇒ ��
��
@

����

From the previous rule, it is obvious that the agent ⇑ is in fact useless. How-
ever this is the key to the generality of the translation, because we could have
a different agent in the right hand-side. In particular, we will see that it is not
useless for call-by-value. It is also interesting to note how striking it is in our
framework that the agent ⇑ is useless, which corresponds to tail-recursion optimi-
sation. The framework we propose is so simple that clever optimisations become
obvious, hence this is indeed a good intermediate step between the inductive-
style definition of a strategy and its implementation as an abstract machine.

394 F.-R. Sinot

Now that the way is free between the @ and the λ, we may let them interact
as usual, except that we create a new ⇓ token. We thus link together the variable
port of the λ to the argument port of the @, which initiates the substitution.
In brief, we follow exactly the rewrite system, except that we need two steps
instead of one.

��
��
λ

��
��
@

��
�

� �

��

=⇒

��
��
⇓
	

The core of the interaction net machine for call-by-name thus needs only four
interaction rules, and no encoding of boxes.

3.6 Resource Management

The explicit resource management typical of interaction nets is done by the
agents ε, c and δ. The auxiliary agent δ is introduced to duplicate abstractions,
as explained below. The agent ε erases any agent and propagates according to
the following schema (where α represents any agent):

��
��
ε

��
��
α

	
�

� �· · ·

=⇒ ��
��
ε

	

· · · ��
��
ε

	

In general, the agent c duplicates any agent it meets. To duplicate an ab-
straction, we need an auxiliary agent δ that will also duplicate any agent, but
will stop the copy when it meets another δ agent. Note that an agent c will thus
never interact with another agent c. Here, α represents any agent except λ.

��
��
α

� · · ·�

��
��
c

� �

�
	 =⇒

��
��
α ��

��
α

��
��
c ��

��
c· · ·

	 	

� �

�
��

�
��

��
��
λ

� �

��
��
c

� �

�
	 =⇒

��
��
λ ��

��
λ

��
��
δ ��

��
δ

	 	

� �

�
��

�
��

The agent δ duplicates any agent, except itself. If it interacts with itself, it
just annihilates. Here, α represents any agent except δ.

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets 395

��
��
α

� · · ·�

��
��
δ

� �

�
	 =⇒

��
��
α ��

��
α

��
��
δ ��

��
δ· · ·

	 	

� �

�
��

�
��

��
��
δ

�

��
��
δ

	

��

� �

=⇒

Classical results on packages [12] allow to state the two following properties:

Proposition 3. – If t is a closed λ-term, then:

T (t)

�

��
��
ε

	
=⇒∗ ��

�

(where the right hand-side of the rule denotes the empty net).
– If t is a closed λ-term, then:

T (t)

�

��
��
c

� �

	
=⇒∗

T (t)

�

T (t)

�

3.7 Properties

In a net obtained starting from ⇓ T (t), there may be several redexes involving
c’s, δ’s or ε’s, however, we have the following result.

Proposition 4. If ⇓ T (t) =⇒∗ N then in N , there is exactly one occurrence of
⇓, ⇑ or of a λ−@ active pair.

Proof. By induction, using the rules. /0
Proposition 5. t ⇓ v ⇐⇒ ⇓ T (t) =⇒∗ ⇑ T (v)

Proof. It is clear that the interaction rules closely follow the rewrite rules of
Section 3.3 (using Proposition 3 for non-linear substitutions), then Proposition 2
allows to conclude. /0

4 Call-by-Value

In this section, we show that we can very easily adapt the previous presentation
to closed call-by-value. We follow the same organisation as Section 3, showing
only the differences. In this section again, all terms are closed.

396 F.-R. Sinot

The call-by-value strategy for closed λ-terms is inductively defined by the
following set of evaluation rules:

λx.t ⇓ λx.t

t ⇓ λx.t′ u ⇓ v′ t′{x := v′} ⇓ v

t u ⇓ v

We may derive a small-step presentation of the strategy in a similar fashion
as in Section 3. Here is the token-passing semantics of call-by-value:

⇓ λx.t → ⇑ λx.t
⇓ (t u) → (⇓ t) u
(⇑ t) u → t (⇓ u)
(λx.t) (⇑ u) → ⇓ t{x := u}

Here the role of ⇑ is more complex than with call-by-name: when the function
part of an application is evaluated, the control is transferred to the argument.
Then, when the argument is evaluated, β-reduction may be performed.

We have a similar property of simulation (the proof is also similar).

Proposition 6. t ⇓ v ⇐⇒ ⇓ t →∗ ⇑ v

Some interaction rules have to change a bit, according to the small-step style
system. When the left term of an application returns after evaluation, we no
longer perform a β-reduction right after. Instead, we turn to evaluating the
argument:

��
��
@

���
�

�

��
��
⇑

=⇒ ��
��
@′

��� �

��
��
⇓
	

We introduce a new application agent @′ whose job is to wait until the
argument of the application is evaluated. When it is, then again, we know for
sure that there is a λ waiting at the left, so we may transform the agent into @
to allow the β-reduction to take place:

��
��
@′

��� �

��
��
⇑�

=⇒ ��
��
@

����

The other rules stay the same. Again, we have (the proof is easily adapted):

Proposition 7. t ⇓ v ⇐⇒ ⇓ T (t) =⇒∗ ⇑ T (v)

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets 397

To sum up, our presentation allow to adapt very easily from call-by-name
to call-by-value, contrary to previous related works. There is no reason to think
this approach cannot be adapted beyond to other strategies, or in a more general
framework than the λ-calculus.

This interaction system is very faithful to what a sequential evaluation func-
tion would probably do. In particular, the agent ⇑ is necessary, because we have
to manage explicitly the control flow in a sequential way.

Of course, interaction nets allow to evaluate the function and the argument of
an application in parallel. Keeping the control flow explicit, we have to synchro-
nise on the application node when both evaluations are completed. The system
is obtained from the same rules as above, except that we replace the interaction
rule ⇓−a by:

��
��
a

��

�

��
��
⇓
	 =⇒ ��

��
@′

����
�

��
��
⇓
	

��
��
⇓
	

Now in this system, it is again clear that the agent ⇑ is useless: there is no
true need to synchronise both evaluations, and a β-reduction may occur even if
evaluation of the argument is not yet completed.

But that is not our point. We prefer the version with sequential, explicit
control (i.e. with a unique evaluation token) because it is really closer to an
abstract machine: it is very easily implementable on a sequential machine, which
is what we often have in practice, and does not need an external mechanism to
manage a stack of active pairs.

5 Handling Open Terms

For completeness, we show how to deal with open terms. There is no difficulty,
and no new idea. The presentation is done in a modular way: we only say what
should be added or changed to the presentations of closed call-by-name and
call-by-value to deal with open terms.

Evaluation to weak head normal form of open terms using call-by-name or
call-by-value is done by adding to the corresponding system the following rules:

x ⇓ x

t ⇓ x

t u1 . . . un ⇓ x u1 . . . un

Or, in a small-steps fashion (keeping the other rules):

⇓ x → ⇑ x
(⇑ x) u → ⇑ (x u)
(⇑ (v w)) u → ⇑ (v w u)

398 F.-R. Sinot

On the interaction nets side, it is clear that free variables will have to interact
with the evaluation token, hence we cannot just represent them by a wire.

A term t with fv(t) = {x1, . . . , xn} will be translated as a net T (t) with the
root edge at the top, and n free edges marked by an agent v, corresponding to
the free variables:

T (t)

��
��
v
�

��
��
v
�

· · ·
x1 xn

Variables. To sum up, if t is a variable x bound by a λ, then T (t) is just a wire
(left). If it is free in the term, then T (t) is an agent v (right).

��
��
v
�

The systems for call-by-name and call-by-value are obtained by adding the
two following rules, where we introduce a new agent ⇑o which is essentially the
same as ⇑ but which remembers that the term under it is of the form x t1 . . . tn
and not λx.t. We have to introduce such an agent only because of the restriction
to binary left hand-side in interaction nets (there is no deep reason behind).

��
��
v
�

��
��
⇓
	 =⇒

��
��
v
�

��
��
⇑o

�

��
��
@

���
�

�

��
��
⇑o

=⇒

��
��
a

��

�

��
��
⇑o

�

In call-by-value, we also have to eliminate a possible ⇑o appearing to the
right of an application. In this case, ⇑o is indeed redundant with ⇑, hence the
rule is the same:

��
��
@′

��� �

��
��
⇑o

�
=⇒ ��

��
@

����

Finally, it may now happen that, in the course of the duplication of an ab-
straction, a δ agent meets a v agent. Then it is safer to transform it back to a c
agent:

Call-by-Name and Call-by-Value as Token-Passing Interaction Nets 399

��
��
δ

��

	

��
��
v
�

=⇒

��
��
c

����

	

��
��
v
�

��
��
v
�

A similar result then holds (for open call-by-name and open call-by-value):

Proposition 8. t ⇓ v ⇐⇒ ⇓ T (t) =⇒∗ ⇑ T (v) or ⇑o T (v)

6 Conclusion

We have presented a simple and extensible approach to express call-by-name and
call-by-value in interaction nets. The approach is so simple that it is indeed a
good alternative to working with terms, with the advantages of seeing graphically
what is going on, of α-conversion for free and of explicit status and cost for the
operations of substitution and copying.

Moreover, our interaction nets lie in a particular subclass of token-passing in-
teraction nets that is not fully studied here, which seems very easy to implement
on a sequential machine, without the usual overheads of looking for a redex and
managing a stack of these. Full study of these aspects is left as future work.

We would also like to extend our approach to closed reduction [4] in order to
derive an interaction nets based abstract machine for this efficient strategy.

The question whether our approach can benefit to the optimal strategy is still
open. Boxes are certainly necessary, since β-reductions have to be interleaved,
but controlling more tightly the evaluation flow might still be useful.

References

1. A. Asperti, C. Giovannetti, and A. Naletto. The Bologna optimal higher-order
machine. Journal of Functional Programming, 6(6):763–810, Nov. 1996.

2. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland Publishing
Company, second, revised edition, 1984.

3. M. Fernández and I. Mackie. Call-by-value lambda-graph rewriting without rewrit-
ing. In Proceedings of the International Conference on Graph Transformations
(ICGT’02), volume 2505 of Lecture Notes in Computer Science, Barcelona, 2002.
Springer-Verlag.

4. M. Fernández, I. Mackie, and F.-R. Sinot. Closed reduction: Explicit substitutions
without alpha-conversion. Mathematical Structure in Computer Science. to appear.

5. J. Field. On laziness and optimality in lambda interpreters: Tools for specifica-
tion and analysis. In Conference Record of the 17th Annual ACM Symposium on
Principles of Programming Languages (POPL ’90), pages 1–15, San Francisco, CA,
USA, Jan. 1990. ACM Press.

400 F.-R. Sinot

6. J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.
7. J.-Y. Girard. Geometry of interaction I: Interpretation of system F. In C. Bonotto,

R. Ferro, S. Valentini, and A. Zanardo, editors, Logic Colloquium ’88, pages 221–
260. North-Holland, 1989.

8. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduc-
tion. In Proceedings of the 19th ACM Symposium on Principles of Programming
Languages (POPL’92), pages 15–26. ACM Press, Jan. 1992.

9. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Princi-
ples of Programming Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

10. J. Lamping. An algorithm for optimal lambda calculus reduction. In Proceedings of
the 17th ACM Symposium on Principles of Programming Languages (POPL’90),
pages 16–30. ACM Press, Jan. 1990.

11. S. Lippi. Encoding left reduction in the lambda-calculus with interaction nets.
Mathematical Structures in Computer Science, 12(6), December 2002.

12. S. Lippi. Théorie et pratique des réseaux d’interaction. PhD thesis, Université de
la Méditerranée, June 2002.

13. I. Mackie. The Geometry of Implementation. PhD thesis, Department of Comput-
ing, Imperial College of Science, Technology and Medicine, September 1994.

14. I. Mackie. The geometry of interaction machine. In Proceedings of the 22nd Sym-
posium on Principles of Programming Languages (POPL’95), pages 198–208, San
Francisco, CA, USA, 1995. ACM Press.

15. I. Mackie. YALE: Yet another lambda evaluator based on interaction nets.
In Proceedings of the 3rd International Conference on Functional Programming
(ICFP’98), pages 117–128. ACM Press, 1998.

16. I. Mackie. Efficient λ-evaluation with interaction nets. In V. van Oostrom, edi-
tor, Proceedings of the 15th International Conference on Rewriting Techniques and
Applications (RTA’04), volume 3091 of Lecture Notes in Computer Science, pages
155–169. Springer-Verlag, June 2004.

17. J. S. Pinto. Sequential and concurrent abstract machines for interaction nets. In
J. Tiuryn, editor, Proceedings of Foundations of Software Science and Computation
Structures (FOSSACS), volume 1784 of Lecture Notes in Computer Science, pages
267–282. Springer-Verlag, 2000.

18. G. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

19. V. van Oostrom, K.-J. van de Looij, and M. Zwitserlood. Lambdascope: another
optimal implementation of the lambda-calculus. In Workshop on Algebra and Logic
on Programming Systems (ALPS), Kyoto, April 2004.

Avoiding Equivariance in Alpha-Prolog

Christian Urban1 and James Cheney2

1 Ludwig-Maximilians-University Munich
urban@mathematik.uni-muenchen.de

2 Edinburgh University
jcheney@inf.ed.ac.uk

Abstract. αProlog is a logic programming language which is well-suited for
rapid prototyping of type systems and operational semantics of typed λ-calculi
and many other languages involving bound names. In αProlog, the nominal uni-
fication algorithm of Urban, Pitts and Gabbay is used instead of first-order unifi-
cation. However, although αProlog can be viewed as Horn-clause logic program-
ming in Pitts’ nominal logic, proof search using nominal unification is incomplete
in nominal logic. Because of nominal logic’s equivariance principle, complete
proof search would require solving NP-hard equivariant unification problems.
Nevertheless, the αProlog programs we studied run correctly without equivariant
unification. In this paper, we give several examples of αProlog programs that do
not require equivariant unification, develop a test for identifying such programs,
and prove the correctness of this test via a proof-theoretic argument.

1 Introduction

Logic programming is particularly suited for implementing inference rules defining re-
lations over terms. Many interesting examples of such inference rules, however, involve
terms with binders and α-equivalence, for which Prolog, for example, provides little
assistance. In [3] we presented αProlog, which is designed to simplify programming
with binders. For instance, the operation of capture-avoiding substitution for λ-terms
can be implemented in αProlog as follows:

id(X,X).

subst(var(X),X,T,T).
subst(var(X),Y,T,var(X)) :- not(id(X,Y)).
subst(app(M,N),X,T,app(M’,N’)):- subst(M,X,T,M’),subst(N,X,T,N’).
subst(lam(a.M),X,T,lam(a.M’)) :- a#T,a#X,subst(M,X,T,M’).

where the terms var(X), app(M,N) and lam(a.M) encode variables, applications
and λ-abstractions. The predicate subst(E,X,T,E’) defined by the clauses holds
only if E’ contains the result of the usual capture-avoiding substitution E[X:=T] in
the λ-calculus.

Two features of αProlog are immediately visible to the user. First, the term language
includes the term-constructor −.− for forming abstractions, which are used to encode
binding. Second, αProlog has a freshness-predicate, written as −#−, built into the lan-
guage; this predicate ensures that a name does not occur freely in a term (by a name

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 401–416, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

402 C. Urban and J. Cheney

we mean lower-case symbols, for instance a in the expression lam(a.M)). In this
subst-program, the freshness-predicate is used to make sure that no variable capture
occurs inside the term being substituted.

To illustrate how the subst-program calculates the result of the capture-avoiding
substitution (λb.a b)[a := b], we consider the query:

subst(lam(b.app(var(a),var(b)),a,var(b),R)) (1)

To solve this query, αProlog unifies it with the head of the fourth subst-clause

subst(lam(a1.M1),X1,T1,lam(a1.M’1)):- a1#T1,a1#X1,subst(M1,X1,T1,M’1).

where, as in Prolog, the variables M, X, T and M’ have been replaced with fresh variables
(indicated by the subscript), and also the name a has been freshened (we shall return to
the difference between variables and names later). The unifier that αProlog calculates is
app(var(a),var(a1)) for M1, a for X1, var(b) for T1 and lam(a1.M’1) for R.
Next, αProlog checks that the freshness-predicates a1# var(b) and a1# a hold, and
continues unifying the new query subst(app(var(a),var(a1)),a,var(b),M’1)
with the third subst-clause. Then it uses the first and second subst-clause and af-
ter they succeed, αProlog returns lam(a1.app(var(b),var(a1))) as the answer
for R.

Another example, which illustrates how easily inference rules can be implemented
in αProlog, is the following program

mem(X,[X|T]).
mem(X,[Y|T]) :- mem(X,T).

type(Gamma,var(X),T) :- mem((X,T),Gamma).
type(Gamma,app(M,N),T):- type(Gamma,M,arr(S,T)), type(Gamma,N,S).
type(Gamma,lam(x.M),arr(S,T)):-x#Gamma,type([(x,S)|Gamma],M,T).

implementing the usual inference rules for inferring the types of λ-terms.

x : T ∈ Γ
Γ x : T

var Γ M : S → T Γ N : S
Γ MN : T

app
x : S, Γ M : T (x �∈ FV (Γ))

Γ λx.M : S → T
lam

Note that, in contrast to for example λProlog, abstractions in αProlog bind a concrete
name which is not restricted to the scope of the abstractions. Therefore it is possible
in αProlog to use a name of a binder in the body of the clause, for instance to append
(x,S) to the context Gamma in the third type-clause. The implicit side-condition in
the rule lam requiring that Γ has no type-assignment for x is implemented in αProlog
by the freshness-predicate x#Gamma.

We have implemented a large number of such λ-calculus examples, including type
systems and operational semantics for System F, λμ and linear λ-calculi. Our experi-
ence from these examples suggests that the combination of concrete names in abstrac-
tions and the freshness-predicate is very useful for programming with binders. One ques-
tion, however, might arise: what are the advantages of αProlog relative to, for example,

Avoiding Equivariance in Alpha-Prolog 403

λProlog [6], which has both α-equivalence and capture-avoiding substitution built-in
and the typing rules can be correctly implemented by the two clauses:

(type (app M N) T) :- type M (arr S T), type N S.
(type (lam M) (arr S T)) :- (pi x\(type x S => type (M x) T)).

(Notice that in this program the typing-context is implicitly given by the “surrounding”
program-context. This program-context can be modified using the universal quantifica-
tion (i.e. pi x\ . . .) and implications in goal-formulae. Therefore there is no clause
for the variable case.) We find the most important reason in favour of αProlog is that
by having concrete names (namely x in the type-example) and freshness-predicates
one can almost directly translate the three typing rules into three clauses and obtain a
correct implementation. This should be seen in the context that, despite the elegance of
λProlog, some recent textbooks use (standard) Prolog for implementing inference rules
over λ-terms. For example one of them presents the following implementation of the
typing rules:

mem(X,[X|T]).
mem(X,[Y|T]) :- mem(X,T).

type(Gamma,var(X),T) :- mem((X,T),Gamma).
type(Gamma,app(M,N),T):- type(Gamma,M,arr(S,T)), type(Gamma,N,S).
type(Gamma,lam(X,M),arr(S,T)):-type([(X,S)|Gamma],M,T).

which calculates the wrong type for λ-terms such as λx.λx.(x x). Although this prob-
lem can be fixed by judicious use of cut or side-effects, first-order terms of Prolog are
unwieldy for implementing relations over syntax with binders correctly. On the other
hand, λProlog does not allow concrete names as binders and therefore operations such
as adding the type for x to the typing-context need to be encoded using universal quan-
tification, implications in goals and beta-reduction.

The αProlog language is based on nominal terms and uses the nominal unifica-
tion algorithm of Urban, Pitts, and Gabbay [8], which calculates (most general) uni-
fiers modulo α-equivalence. For example, the query ?-id(a.a,b.X) is solved in
αProlog by the capturing substitution [X := b] since a.a and b.b are α-equivalent.
However, nominal unification is not enough to make the programs given earlier func-
tion as intended. For this αProlog generates fresh names during proof-search. As seen
above, before a query is unified with the fourth subst-clause, αProlog generates a
fresh name for a. This ensures that substitutions can always be “pushed” under a binder
without risk of capture.

While in [3] we have described our implementation of αProlog, its behaviour can
be justified in terms of nominal logic [7, 2]. For instance, the generation of a fresh name
can be expressed in terms of the N-quantifier of nominal logic, and an αProlog clause
A :- B1,..,Bn can viewed as the formula Na1..an.∀X1..Xn.B1∧··∧Bn⊃A, where
the Xi and ai are the variables, respectively names, in the clause. The problem is that
the generation of fresh names is more subtle in αProlog than the usual “freshening”
of variables when backchaining a Prolog-clause. The reason is that distinct names are
always considered to denote different values. Consider the clause ∀X.p(X) and the
query p(b) written as a sequent as follows

∀X.p(X) � p(b) (2)

404 C. Urban and J. Cheney

When constructing a proof for (2), Prolog generates a fresh name for the variable X,
say X’, and then unifies p(X’) and p(b) giving the solution [X’:=b]. A similar
αProlog-clause that has a name in place of the variable behaves differently: if we have
the sequent

Na.p(a) � p(b) (3)

with the clause Na.p(a), then “freshening” a to a’ leads to the unification problem
p(a’)≈?p(b). Since nominal unification treats names as distinct constants, this prob-
lem is unsolvable. (Treating names as distinct constants is important, because treating
them as substitutable entities would break the most-general unifier property of nominal
unification, see [8].) On the other hand, (3) is provable in nominal logic. This is because
after freshening a to a’ one can in nominal logic apply the equivariance principle—
expressed as an inference rule1

π·B, Γ ⇒ C

B, Γ ⇒ C
π

where π is a permutation of names, B, C stand for formulae and Γ for a multiset of
formulae. This means if the full Horn-fragment of nominal logic were used as the basis
of αProlog, then we need equivariant unification for complete proof search. Equivariant
unification solves a problem not just by finding a substitution but also by finding a
permutation; for example in (3) the identity substitution and the permutation (a’ b).

The second author has shown in [1] that equivariant unification and equivariant
matching problems are NP-hard. For proof-search in αProlog this means that one needs
to guess which permutation π leads to a proof. However, in experimenting with αProlog
we found that such guessing is never needed in the programs we considered. In this
paper we identify a class of nominal Horn-clause programs for which the π-rule can
be eliminated from deductions (this is the place where equivariant unification prob-
lems arise), and thus nominal unification is complete for proof-search. In order to show
this result, we introduce a well-formedness condition which guarantees that nominal
unification-based proof search is complete. This condition roughly says that a clause is
“insensitive” to the particular choice of names occurring in it.

Some programs do not satisfy this condition. For example, in the following program
calculating a list of bound variables of a λ-term, the last clause is not well-formed.

bv(var(X),[]).
bv(app(E1,E2),L) :- bv(E1,L1), bv(E2,L2), append(L1,L2,L).
bv(lam(x.E),[x|L]) :- bv(E,L).

In the last clause, the result accumulated in the second argument depends on which
name is chosen for the binder x. In contrast, the names chosen in the subst and
type example do not matter (up to α-equivalence) and therefore will satisfy our well-
formedness condition.

The existence of a trivial syntactic criterion for deciding when a clause is “insen-
sitive” to the choice of a name seems unlikely. Consider, for example, allowing names

1 The corresponding right-rule has been shown to be admissible in nominal logic in [5].

Avoiding Equivariance in Alpha-Prolog 405

to only occur bound or in binding position—then the type-program would be ruled
out since x occurs free in the body of the clause. Restricting free names to occur only
in the body of a clause would permit the clause r(X):-id(X,a) which is sensitive
to the choice of a since id “propagates” the choice for the name a back to the head
of the clause (id is defined in the subst-example). Our well-formedness condition is
therefore more subtle; it is a test whether a certain matching problem derived from the
clause is solvable. Despite being technically relatively complex, well-formedness can
be automatically verified.

The paper is organised as follows: Section 2 describes nominal terms, formulae
and the inference rules of αProlog’s proof-search procedure. Section 3 introduces a
well-formedness condition for clauses and shows that the π-rule can be eliminated
from proofs involving only well-formed clauses. Section 4 describes how the well-
formedness condition can be automatically verified. Section 5 concludes and describes
future work.

2 Terms, Formulae and Proof-Search Rules

The terms used in αProlog are nominal terms (see [8] for more details) as defined by
the grammar:

t ::= a | π·X | 〈〉 | 〈t, t〉 | a.t | f(t)

where a is a name, X a variable, f a function symbol and π a permutation expressed
as a list of swappings (a1 b1) · · · (an bn). We have the operations −@− and (−)−1 for
composing (list concatenation) two permutations and inverting (list reversal) a permu-
tation, respectively. Constants are encoded as function symbols with unit arguments
f(〈〉), and n-tuples are encoded by iterated pairs 〈t1, · · · 〈tn−1, tn〉〉. Following [8], we
refer to terms of the form π·X as suspensions, because the permutation π is suspended
in front of a variable waiting to be applied to a term substituted for X .

Formulae are divided into goal formulae G and definite (or program) clauses D
defined as

G ::= p(t) | G∧G | G∨G | B ::= G ⊃ p(t) D ::= Nas.∀Xs.∇/B

where p(t) stands for an atomic predicate with the argument t (we shall also write
A for such formulae whenever the argument is unimportant); +,∧,∨,⊃ are standard
connectives; and ∇ is a set of freshness constraints of the form a1 # X1, . . . , an # Xn

(Xi and ai being variables and names, respectively). The intended meaning of ∇ in D-
formulae is that a clause is applicable only if its freshness constraints are satisfied.
For freshness constraints and quantifier-free formulae we shall use the notation Qas,Xs
(Q ::= ∇|G|B) to indicate that the terms of Q are built up from names as and variables
Xs (we have the usual convention that as stands for lists of names and Xs for lists of
variables; similarly Nas stands for Na1 . . . Nan and ∀Xs for ∀X1 . . . ∀Xn). We call a
D-formula closed when it has no free variables and free names, that is the formula must
be of the form Nas.∀Xs.∇as,Xs/Bas,Xs . Fig. 1 shows two examples illustrating how
D-formulae relate to the αProlog-clauses given at the beginning.

406 C. Urban and J. Cheney

subst(var(X),X,T,T).
∀X, T . ∅ / ⊃ s(var(X), X, T, T)

subst(lam(a.M),X,T,lam(a.M’)) :- a#T,a#X,subst(M,X,T,M’).
Na.∀M, X, T, M ′. {a #T, a #X} / s(M, X, T, M ′)⊃ s(lam(a.M), X, T, lam(a.M ′))

Fig. 1. Two examples showing how αProlog-clauses relate to D-formulae (s is a predicate symbol
standing for subst). We have the usual convention that clauses stand for closed D-formulae

Terms: []·Ba def= a

((a1 a2) :: π)·Ba def=

⎧⎪⎨⎪⎩
a1 if π·Ba = a2

a2 if π·Ba = a1

π·Ba otherwise

π·BX
def=

{
X if X ∈ B
π·X otherwise

π·B(π′·X) def= π@π′·X
π·B(〈〉) def= 〈〉

π·B(〈t1, t2〉) def= 〈π·Bt1, π·Bt2〉
π·B(f(t)) def= f(π·Bt)

π·B(a.t) def= (π·Ba).(π·Bt)

Formulae: π·B() def=
π·B(p(t)) def= p(π·Bt)

π·B(G1 ! G2)
def= (π·BG1) ! (π·BG2)

for ! ::= ∧|∨

π·B(G⊃A) def= (π·BG)⊃ (π·BA)

π·B(∇/B) def= ∇/(π·BB)

π·B(Na.D) def= Na.π·BD

π·B(∀X.D) def= ∀X.π·{X}∪BD

Fig. 2. Definition of the permutation operation π·B(−) for terms and formulae. In the clause for
the new-quantifier, it is assumed that a is renamed, so that the permutation π can safely be pushed
under the binder without capture

There is a delicate point with respect to binding: while in nominal terms the con-
structor a.(−) is not a binder in the traditional sense (it only acts as a binder), in for-
mulae the quantifiers Na.(−) and ∀X.(−) do bind a and X , respectively. Therefore we
have the usual convention that formulae are identified if they only differ in the names
of binders (i.e. ∀X.(−) and Na.(−)), and operations on formulae need to respect this
convention. As a result the definition of the permutation operation introduced for nom-
inal terms in [8] needs to be extended. We define a generalised permutation operation
π·B(−) that depends on a set of variables B. The permutation π only acts upon vari-
ables not in B. Whenever a permutation is “pushed” under a ∀X.(−)-quantifier, then
X is added to the set of variables the permutation does not affect. The definition of the
permutation operation is given in Fig. 2. We use the shorthand notation π·(−) in case B
is the empty set. This is a generalisation of the permutation action given in [8]; however,
when a permutation acts on a formula with quantifiers, it acts only on the free names
and free variables.

Similar problems arise in the definition of the substitution operation—with respect
to the abstractions a.(−) substitution is possibly-capturing, whereas with respect to the

N- and ∀-quantifier it must be capture-avoiding. For terms we can use the definition
given in [8]: a substitution σ is a function from variables to terms with the property
that σ(X) = X for all but finitely many variables X . If the domain of σ consists of

Avoiding Equivariance in Alpha-Prolog 407

∇ � 〈〉 ≈ 〈〉 (≈-unit)
∇ � t1 ≈ t′

1 ∇ � t2 ≈ t′
2

∇ � 〈t1, t2〉 ≈ 〈t′
1, t

′
2〉

(≈-pair) ∇ � t ≈ t′

∇ � f t ≈ f t′ (≈-fun. symbol)

∇ � t ≈ t′

∇ � a.t ≈ a.t′ (≈-abs-1)
a �= a′ ∇ � t ≈ (a a′)·t′ ∇ � a # t′

∇ � a.t ≈ a′.t′ (≈-abs-2)

∇ � a ≈ a
(≈-name)

(a # X) ∈ ∇ for all a ∈ ds(π, π′)

∇ � π·X ≈ π′·X (≈-suspension)

∇ � a # 〈〉 (#-unit)
∇ � a # t1 ∇ � a # t2

∇ � a # 〈t1, t2〉 (#-pair)
∇ � a # t

∇ � a # f t
(#-fun. symbol)

∇ � a # a.t
(#-abs-1)

a �= a′ ∇ � a # t

∇ � a # a′.t
(#-abs-2)

a �= a′

∇ � a # a′ (#-name)
(π−1·a # X) ∈ ∇
∇ � a # π·X (#-suspension)

Fig. 3. Inductive definitions for ≈ and #. The reader is referred to [8] for more details

distinct variables X1, . . . , Xn and σ(Xi) = ti for i = 1 . . .n, we sometimes write σ
as [X1 := t1, . . . , Xn := tn]. Moreover, we shall write σ(t) for the result of applying
a substitution σ to a term t; this is the term obtained from t by replacing each variable
X by the term σ(X) and each suspension π·X in t by the term π·σ(X) got by letting
π act on the term σ(X). This definition is extended to formulae as follows:

σ() def=
σ(p(t)) def= p(σ(t))

σ(G1 ! G2)
def= σ(G1) ! σ(G2)

for ! ::= ∧|∨

σ(G⊃A) def= σ(G)⊃σ(A)

σ(∇/B) def= σ(∇)/σ(B)

σ(Na.D) def= Na.σ(D)

σ(∀X.D) def= ∀X.σ(D)

with the proviso that the quantified names and variables are suitably renamed so that
no capturing is possible. For example, if σ = [X := 〈a, Y 〉] and t = a.X , then
σ(t) = a.〈a, Y 〉, but if D = Na.∀Y.∅/+⊃A(a, Y,X) then forming σ(D) gives the
formula Na′.∀Y ′.∅/+⊃A(a′, Y ′, 〈a, Y 〉). We use the notation σ(∇) to mean that ev-
ery freshness constraint a # X in ∇ is replaced by a # σ(X).

It is crucial for programming in αProlog that abstractions a.(−) have concrete
names. This allows us to formulate the type-clause for lambda-abstractions in the
usual fashion whereby the abstracted name x and its type is just added to the context
Gamma. Furthermore, the work reported in [8] provides us with a simple algorithm for
unifying nominal terms. This unification algorithm does not calculate unifiers to make
nominal terms syntactically equal, but equal modulo an equivalence relation ≈. For
example when unifying the two terms a.a ≈? b.X , the nominal unification algorithm
produces the unifier [X := b]. While the relation ≈ is intended to capture the (tradi-
tional) notion of α-equivalence, it is in fact a more general relation. For example, ≈
is not just a relation between two nominal terms, but a relation that depends on some
freshness constraints ∇. Figure 3 gives a syntax-directed inductive definition for judge-
ments of the form ∇ � (−) ≈ (−), which asserts that two terms are ≈-equal under the

408 C. Urban and J. Cheney

hypotheses ∇; the definition depends on the auxiliary relation ∇ � (−) # (−), which
defines when a name is fresh for a term under some hypotheses. This definition depends
on the auxiliary notion of a disagreement set, ds, between two permutations (the set of
names on which the permutations disagree) given by: {a | π1·a
= π2·a}.

We can extend ≈ to quantifier-free G-formulae as follows:

∇ � ≈
∇ � t ≈ t′

∇ � p(t) ≈ p(t′)
∇ � G1 ≈ G3 ∇ � G2 ≈ G4

∇ � G1 ! G2 ≈ G3 ! G4
for ! ::= ∧|∨

The advantage of setting up the formalism in this way is that the ≈-equivalence has a
number of good properties, which will play an important rôle in our proof for show-
ing that the π-rule can be eliminated. For example, ≈ is preserved under (possibly-
capturing) substitutions and behaves well with respect to the permutation operation.
This is made precise in the following lemma.

Lemma 1. The permutation and substitution operations preserve ≈ in the sense that

(i) if ∇ � t ≈ t′ then ∇ � π·t ≈ π·t′ for all permutations π and

(ii) if ∇ � t ≈ t′, then ∇′ � σ(t) ≈ σ(t′) for all substitutions σ with ∇′ � σ(∇)
(whereby ∇′ � σ(∇) means that ∇′ � a # σ(X) holds for each (a # X) ∈ ∇).

The proof of these two facts are a minor extension of the proofs given for [8]; they hold
because permutations are bijections on names, and substitutions act on variables only
(not names). The properties stated in Lemma 1 should be compared with the notion
of α-equivalence we imposed (on the meta-level) on quantified D-formulae. There,
whenever a permutation or substitution is pushed under a binder, we might have to
rename its binder in order to avoid possible capture.

Next we introduce the inference rules on which proof-search is based in αProlog

(see Figure 4). Sequents are of the form ∇;Γ ⇒ G or ∇;Γ D−→ p(t) where the for-
mer models goal-directed proof-search and the latter models focused backchaining (the
formula above the sequent arrow is usually called the stoup-formula). These inference
rules are adapted from a standard focusing approach to first-order logic programming
(for example [4]).2 The main novelty of these rules is the presence of the freshness-
constraints ∇. Traditionally axiom rules are formulated as

p(t′), Γ ⇒ p(t)
Ax

, or in focusing proofs as Γ
p(t′)−−−→ p(t)

Ax
,

where the terms t and t′ need to be syntactically equal. In αProlog this requirement is
relaxed: terms only need to be being equal modulo ≈. However, ≈ only makes sense
in the context of some freshness constraints. Consequently, in αProlog, the axiom-rule
takes the form

∇ � t′ ≈ t

∇; Γ
p(t′)−−−→ p(t)

Ax

2 The question of establishing the precise relation between the inference rules given here and
nominal logic introduced in [7] is beyond the scope of this paper, but will appear in a full
version (some results concerning this question have already been presented in [5]).

Avoiding Equivariance in Alpha-Prolog 409

∇; Γ ⇒ R

∇; Γ ⇒ G ∇; Γ ⇒ G′

∇; Γ ⇒ G∧G′ ∧R
∇; Γ ⇒ Gi

∇; Γ ⇒ G1∨G2
∨Ri

∇; D, Γ
D−→ p(t)

∇; D, Γ ⇒ p(t)
Sel

∇ � t′ ≈ t

∇; Γ
p(t′)−−−→ p(t)

Ax
∇ � ∇′ ∇; Γ ⇒ G ∇; Γ

p(t′)−−−→ p(t)

∇; Γ
∇′/G⊃p(t′)−−−−−−−→ p(t)

⊃L

∇; Γ
D[X:=t′]−−−−−−→ p(t)

∇; Γ ∀X.D−−−→ p(t)
∀L

b # Xs,∇; Γ
(a b)·D−−−−→ p(t)

∇; Γ Na.D−−−→ p(t)
NL

∇; Γ π·D−−→ p(t)

∇; Γ D−→ p(t)
π

Fig. 4. Proof-search rules of αProlog. In the new-left rule it is assumed that b is a fresh name not
occurring in the conclusion and Xs are all free variables in Γ and p(t)

where the context ∇ explicitly records all freshness constraints in a sequent. The only
inference rule which adds new freshness-constraints to this context is the N-rule; that
is whenever a N-quantifier is analysed, a new name is chosen and some freshness-
constraints are added to ∇ in order to enforce the “freshness” of this name.

The ⊃L-rule includes the judgement ∇ � ∇′ where ∇′ is the set of freshness con-
straints associated with the D-formula in the stoup. This judgement requires that all
constraints in ∇′ (being of the form a # t) are satisfied by the ∇, that is for all a # t
the judgement ∇ � a # t defined in Fig. 3 holds.

Of most interest in this paper is the π-rule. In a “root-first” proof-search, this rule is a

source of non-determinism. For example, if we want to prove the sequent ∅;
p(a)−−→ p(b),

we need the π-rule in order to make the terms a and b ≈-equivalent—in this case,
only after applying a permutation such as (a b) to a may the axiom-rule be used. Prima
facie the π-rule is innocuous, however, the problem of simultaneously unifying nominal
terms and finding a π is, as mentioned earlier, an NP-hard decision problem. In the next
section we shall show that such problems never need to be solved provided the program
clauses are well-formed.

3 Elimination of the π-Rule

We implemented αProlog using the nominal unification algorithm. With this im-
plementation we were able to calculate the expected results for programs such as
subst and type. The reason for this is, roughly speaking, that the name we used
for specifying the clauses dealing with λ-abstractions does not matter. When using
nominal unification, the following renamed clauses (where a and x are renamed
to b and y, respectively)

subst(lam(b.M),X,T,lam(b.M’)):- b#T,b#X,subst(M,X,T,M’).

type(Gamma,lam(y.M),arr(S,T)):- y#Gamma,type([(y,S)|Gamma],M,T).

behave just the same as the original clauses, in the sense that all queries success-
fully solved by the original versions are solved by the renamed versions. In contrast,

410 C. Urban and J. Cheney

the name a in the clauses p(a) , q(a.X,X) and r(X):-id(X,a) determines
which queries can be solved successfully using nominal unification and which cannot:
given our inference rules, which choose a fresh name for a, there are some queries
whose answers can only be found using the π-rule, and this means they cannot be
solved using nominal unification. Consider for example the following deduction.

. . .

∅ � c ≈ c

∅;
p(c)−−→ p(c)

Ax

∅;
∅/� ⊃ p(c)−−−−−−−→ p(c)

⊃L

∅;
∅/� ⊃ p(b)−−−−−−−→ p(c)

π (c b)

∅;
Na.∅/� ⊃ p(a)−−−−−−−−−→ p(c)

NL

In this deduction the π-rule, applying the permutation (c b) (annotated to the π-rule), is
crucial for the sequent being provable and it will turn out that it is impossible to elim-
inate it from this deduction. Consequently, a proof-search procedure based on nominal
unification will not find this proof.

If we impose the following well-formedness condition on D-formulae, we can
ensure that the π-rule can always be eliminated from corresponding deductions and
hence the nominal unification algorithm alone is sufficient for solving queries.

Definition 1. A closed D-formula Nas.∀Xs.∇as,Xs/Gas,Xs ⊃Aas,Xs is well-formed
if there exists a substitution σ and a permutation π such that

(i) bs # Xs,∇as,Xs � σ(Abs,Xs) ≈ Aas,Xs and
(ii) bs # Xs,∇as,Xs � σ(π·Gbs,Xs) ≈ Gas,Xs

where the bs are some fresh names (different from as).

Let us illustrate this condition with some examples. Clauses without names clearly sat-
isfy the condition. For example the first subst-clause in Fig. 1

∅ � σ(S(var(X), X, T, T)) ≈ S(var(X), X, T, T) and ∅ � σ(π·) ≈
trivially satisfies the condition by taking for σ the identity substitution and for π the
empty permutation. More complicated is the case of the second subst-clause in Fig. 1

∇ � σ(S(lam(b.M), X, T, lam(b.M ′)) ≈ S(lam(a.M), X, T, lam(a.M ′))
∇ � σ(π·S(M, X, T, M ′)) ≈ S(M, X, T, M ′)

where ∇ is {b # M, b # X, b # T, b # M ′, a # X, a # T}. In this case

σ = [M := (a b)·M, X := (a b)·X, T := (a b)·T, M ′ := (a b)·M ′] and π = (a b)

verify that the clause is well-formed.
Before we formally show that all π-rules can be eliminated from deductions con-

sisting of well-formed clauses only, we outline our proof-plan with some examples.
Consider the following deduction, which has a π-rule on the top right-hand side. The

Avoiding Equivariance in Alpha-Prolog 411

..

...
⇒s(v(z),z,v(y),v(y))

!

..�〈l(b.v(y)),y,v(z),l(b.v(z))〉≈〈l(x.v(y)),y,v(z),l(x.v(z))〉

..;
s(l(b.v(y)),y,v(z),l(b.v(z)))−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

Ax

..;
s(l(b.v(z)),z,v(y),l(b.v(y)))−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

π•

..;
∇/s(v(z),z,v(y),v(y))⊃s(l(b.v(z)),z,v(y),l(b.v(y)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

⊃L

... [M := v(z), X := z, T := v(y), M ′ := v(y)]

∀L

..;
∀M,X,T,M′.∇/s(M,X,T,M′)⊃s(l(b.M),X,T,l(b.M′))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

∀L

..;
Na.∀M,X,T,M′.∇/s(M,X,T,M′)⊃s(l(a.M),X,T,l(a.M′))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s(l(x.v(y)), y, v(z), l(x.v(z)))

NL

Fig. 5. Deduction proving the fact s(l(x.v(y)),y,v(z),l(x.v(z))) where l and v

stand for lambda-abstractions and variables, respectively

corresponding permutation (e d) transforms p(b.d) into p(b.e) so that the axiom-rule is
applicable.

. . .

� b.e ≈ d.e

∅;
p(b.e)−−−→ p(d.e)

Ax

∅;
p(b.d)−−−→ p(d.e)

π (e d)

∅;
∅/�⊃p(b.d)−−−−−−−−→ p(d.e)

⊃L

∅;
∀X.∅/�⊃p(b.X)−−−−−−−−−−−→ p(d.e)

∀L [X := d]

∅;
Na.∀X.∅/�⊃p(a.X)−−−−−−−−−−−−−→ p(d.e)

NL (a b)

Observe that the “choice” of the fresh name (namely b) introduced by the NL-rule has
no effect on whether this sequent is derivable, since this binder will not bind anything
inside the abstraction. The annotated substitution [X := d] however is important with
respect to the π-rule we are trying to eliminate. If we had instead substituted e for X ,
then the axiom is applicable without the π-rule.

Note, however, that changing the instantiation of ∀-quantifiers might have some
“non-local” consequences in deductions. Consider for example the deduction in Fig. 5.
In this deduction, the π-rule (marked by •) swaps the names z and y. If we eliminate
this π-rule by applying the swapping to the terms instantiated for the variables M , X ,
T and M ′, then the π-rule is not needed, but at the same time the subgoal (marked by �)
is changed. The well-formedness condition ensures that the modification of the terms
introduced by the ∀L-rules does not affect the provability of the sequent.

To show that π-rules can be eliminated from derivations involving well-formed pro-
grams, we first prove some auxiliary facts.

Lemma 2. For all permutations π, the sequent ∇;Γ ⇒ π·G is derivable only if the
sequent ∇;π−1·Γ ⇒ G is derivable (where we use the notation π·Γ to indicate that π
is applied to every formula in Γ).

412 C. Urban and J. Cheney

Proof. By induction on the structure of deductions. It makes use of the property of ≈
that ∇ � t ≈ π·t′ holds only if ∇ � π−1·t ≈ t′ holds. By inspection we can further see
that no additional π-rule is necessary to show the provability in both directions. /0

The following corollary is a simple consequence of this lemma by the fact that for
closed D-formulae π·D = D holds.

Corollary 1. For all permutations π and contexts Γ consisting of closed D-formulae
only, ∇;Γ ⇒ π·G is derivable only if ∇;Γ ⇒ G is derivable.

Lemma 3. If the sequent ∇;Γ ⇒ G is derivable and ∇ � G ≈ G′, then the sequent
∇;Γ ⇒ G′ is derivable.

Proof. Since ∇ � G ≈ G′ is inductively defined extending the ≈-equality of the terms
occurring in G and G′, we can prove this lemma by inspection of the inference-rules,
noting that in the (−)L-rules the right-hand side of sequents is always of the form p(t)
and the lemma for axioms follows from the transitivity of ≈.

For showing our main result, it is convenient to restrict attention to some specific
instances of the π-rule. The next lemma shows that we only need to consider unmovable
instances of the π-rule.

Definition 2. A π-rule is movable provided it is not directly under an axiom, otherwise
it is said to be unmovable.

Lemma 4. All movable instances of the π-rules can be replaced by unmovable in-
stances.

Proof. We call a derivation π-normalised if all instances of the π-rule are unmovable.

We first show that if Γ
π·D−−→ A has a π-normalised derivation, then we can construct

a π-normalised derivation of Γ
D−→ A. Using this construction, we can eliminate the

movable π-rules from any derivation one at a time.
There is one case for each left-rule. For Ax, we have

∇; Γ π·A−−→ π·A
Ax −→

∇; Γ π·A−−→ π·A
Ax

∇; Γ A−→ π·A
π−1

since π−1·π·A = A. A π-normalised derivation ending in a π′-rule must be immedi-
ately followed by Ax, we can derive

∇; Γ π′·π·A−−−−→ π′·π·A
Ax

∇; Γ π·A−−→ π′·π·A
π′ −→

∇; Γ π′@π·A−−−−−→ π′·π·A
Ax

∇; Γ A−→ π′·π·A
π′@π

since π′·π·A = π′@π·A. For ∀L, since π·∀X.D = ∀X.π·{X}D and (π·{X}D)[X :=
t] = π·(D[X := π−1·t]), so we have

Avoiding Equivariance in Alpha-Prolog 413

∇; Γ
(π·{X}D)[X:=t]−−−−−−−−−−→ A

∇; Γ
∀X.π·{X}D−−−−−−−→ A

∀L −→
∇; Γ

D[X:=π−1·t]−−−−−−−−→ A

∇; Γ ∀X.D−−−→ A
∀L

where by induction ∇;Γ
D[X:=π−1·t]−−−−−−−−→ A has a π-normalised derivation obtained from

that of ∇;Γ
π·D[X:=π−1·t]−−−−−−−−−→ A . The cases for ∧L and NL are straightforward since

π·B(−) commutes with ∧ and N. For ⊃L we have

∇ � ∇ ∇; Γ ⇒ π·G ∇; Γ π·A−−→ A′

∇; Γ
∇/(π·G)⊃(π·A)−−−−−−−−−−→ A′

⊃L −→
∇ � ∇ ∇; Γ ⇒ G ∇; Γ A−→ A′

∇; Γ
∇/G⊃A−−−−−→ A′

⊃L

using Lemma 3 to derive ∇;Γ ⇒ G from ∇;Γ ⇒ π·G and the induction hypothesis

to obtain a π-normalised derivation of ∇;Γ A−→ A′ from that of ∇;Γ π·A−−→ A′.

Theorem 1. If Γ consists of well-formed clauses and the sequent ∇;Γ ⇒ G is deriv-
able, then it is derivable without using the π-rule.

Proof. Since Γ consists of well-formed clauses only, all Γ ’s in the deduction consist
of well-formed clauses (formulae on the left-hand side are analysed only if they are
selected to be in the stoup-position). By Lemma 4, we can replace this deduction by
one in which all π-rules are unmovable. So we need to consider how unmovable π-
rules can be eliminated. Recall that unmovable π-rules occur in segments of the form

:
∇′′

bs ,∇′ � ∇ts

:
∇′′

bs ,∇′; Γ ⇒ Gbs,ts

∇′′
bs ,∇′ � π·sbs,ts ≈ t

∇′′
bs ,∇′; Γ

π·p(sbs,ts)−−−−−−→ p(t)
Ax

∇′′
bs ,∇′; Γ

p(sbs,ts)−−−−−→ p(t)
π

∇′′
bs ,∇′; Γ

∇ts/Gbs,ts⊃p(sbs,ts)−−−−−−−−−−−−−→ p(t)
⊃L

: } N∀
∇′; Γ

Nas.∀Xs.∇Xs/Gas,Xs⊃p(sas,Xs)−−−−−−−−−−−−−−−−−−−−→ p(t)

∇′; Γ ⇒ p(t)
Sel

(4)

where the N-quantifier introduces the names bs and the ∀-quantifiers replace the vari-
ables Xs with the terms ts . We indicate this by using the notation Gas,Xs and Gbs,ts .
The freshness constraints ∇′′

bs stand for the constraints introduced by the N-quantifiers,
that is b # FV (t) for each b in bs . Let σ be the substitution of the terms ts for the
variables Xs , that is the terms introduced by the ∀-quantifiers.

Below we give a deduction without the π-rule where the bs and ts are suitably
changed. For this we choose first some fresh names cs with the proviso that π·cs = cs,
which means they are unaffected by the permutation introduced by the π-rule (such
fresh names always exist). From the well-formedness of the clause in the stoup-position,
we know that there is a substitution σ′ and a permutation π′ such that

cs # Xs,∇Xs � σ′(p(scs,Xs)) ≈ p(sbs,Xs)
cs # Xs,∇Xs � σ′(π′·Gcs,Xs) ≈ Gbs,Xs

(5)

414 C. Urban and J. Cheney

hold where we use the short-hand notation cs # Xs to refer the sets of freshness con-
straints ci # X1, . . . , ci # Xn for all names ci in cs . By Lemma 1(ii), ≈ is preserved
under substitutions, so we can infer from (5) that

cs # Xs � σ ◦ σ′(p(scs,Xs)) ≈ σ(p(sbs,Xs))
cs # Xs � σ ◦ σ′(π′·Gcs,Xs) ≈ σ(Gbs,Xs)

(6)

hold where the right-hand sides are p(sbs,ts) and Gbs,ts , respectively. Note that the ∇Xs
“vanish” because we have that cs # Xs � σ(∇Xs). From (6) we can further infer that

cs # Xs � π·σ ◦ σ′(p(scs,Xs)) ≈ π·(p(sbs,ts)) (7)

cs # Xs � π·σ ◦ σ′(π′·Gcs,Xs) ≈ π·(Gbs,ts) (8)

hold by Lemma 1(i) asserting that ≈ is preserved under permutations. Recall that we
chosen the cs so that π does not affect them. So if we apply the substitution σ ◦ σ′ and
the permutation π to the left-hand side of (7) we have π·σ ◦ σ′(p(scs,Xs)) = p(scs,ts′)
for some terms ts ′. Moreover we have cs # Xs � scs,ts′ ≈ π·sbs,ts which means we
can replace in the deduction (4) π·sbs,ts by scs,ts′ and get by transitivity of ≈ a correct
instance of the axiom. Thus we can form the deduction:

...
∇′′

cs ,∇′ � ∇ts′

...
∇′′

cs ,∇′; Γ ⇒ Gcs,ts′

∇′′
cs ,∇′ � scs,ts′ ≈ t

∇′′
cs ,∇′; Γ

p(scs,ts′)−−−−−→ p(t)
Ax

∇′′
cs ,∇′; Γ

∇ts′ /Gcs,ts′ ⊃p(scs,ts′)−−−−−−−−−−−−−−→ p(t)
⊃L

: } N∀
∇′; Γ

Nas.∀Xs.∇Xs/Gas,Xs⊃p(sas,Xs)−−−−−−−−−−−−−−−−−−−−→ p(t)

∇′; Γ ⇒ p(t)
Sel

without the π-rule. We still need to ensure that ∇′′
cs ,∇′;Γ ⇒ Gcs,ts′ and ∇′′

cs ,∇′ �
∇ts′ are derivable. The second sequent is derivable because cs # Xs � σ(∇Xs). For
the first sequent we can infer from the original (sub)deduction ∇′′

bs ,∇′;Γ ⇒ Gbs,ts
by Corollary 1 that ∇′′

bs ,∇′;Γ ⇒ π·Gbs,ts is derivable (this deduction does not in-
troduce any new π-rules). In (8) we can pull out the permutation π′ and we have
π·σ ◦ σ′(π′·Gcs,Xs) = π@π′·(σ ◦ σ′(Gcs,Xs)). Therefore applying the substitution
to Gcs,Xs gives π@π′·(σ ◦ σ′(Gcs,Xs)) = π@π′·Gcs,ts′ (taking the ts ′ we introduced
for scs,ts′ earlier). Thus by Lemma 3 we can show that ∇′′

cs ,∇′;Γ ⇒ Gcs,ts′ is deriv-
able.

Each transformation decreases the number of π-rules in a deduction by one and thus
by repeated application we will eventually end up with a π-free proof. /0

We have shown that when all the formulas in Γ are well-formed, every deduction of
Γ ⇒ G containing π-rules can be replaced by one without π-rules. Consequently,
nominal unification is sufficient for executing well-formed αProlog-programs.

Avoiding Equivariance in Alpha-Prolog 415

4 Verification of Well-Formedness Using Nominal Matching

In this section we consider the question of how to verify the well-formedness condition
given in Definition 1. For a clause Nas.∀Xs.∇as,Xs/Gas,Xs⊃Aas,Xs , we need to find
a substitution σ and permutation π which make the two judgements

bs # Xs,∇as,Xs � σ(Abs,Xs) ≈ Aas,Xs and bs # Xs,∇as,Xs � σ(π·Gbs,Xs) ≈ Gas,Xs

hold. For the first judgement, σ can be found by nominal matching. But for the second
judgement, finding both substitution σ and permutation π requires solving (NP-hard)
equivariant matching problems. This seemingly negative result should, however, be seen
in the context that well-formedness only needs to be verified once per clause, rather
than repeatedly during proof-search. Thus, the one-time cost of performing equivariant
unification in checking well-formedness is negligible compared to the cost of perform-
ing equivariant unification throughout computation. Furthermore, as can be seen from
the examples, the number of names in a clause is usually small. Taking the following
proposition (whose proof we omit)

Proposition 1. If Gbs,Xs equivariantly matches with Gas,Xs , then a matching exists in
which the permutation π consists of swappings (ai bi) only.

into account, we can just enumerate all possible cases (2n given n names) and solve
each of the nominal matching problems. If one problem can be solved, then we have a
σ and a π as required by the condition.

5 Conclusion

We have shown that for well-formed αProlog programs, all instances of the π-rule can
be removed from deductions. As a result, proof search using only nominal unification
is complete for such programs, which coincides with our experimental results gained
from our implementation of αProlog. This is a significant result, because the alternative
is to use an NP-hard equivariant unification algorithm for proof search.

In order to be well-formed, the type-program given in the Introduction needs to be
stated as follows

type(Gamma,lam(x.M),arr(S,T)) :-
x#Gamma,x#S,x#T,type([(x,S)|Gamma],M,T).

explicitly giving the freshness constraints x#S and x#T. These constraints do not af-
fect the meaning of the program because term variables are expected (by programmer
convention) not to appear in types. In fact, our implementation of αProlog is strongly
typed and therefore can determine automatically from type information that lambda-
term variables can never occur in types. Thus, our analysis could be made more precise
by taking type information into account.

Let us briefly mention whether our result can be strengthened. The logic program-
ming language λProlog [6] has convincingly demonstrated the usefulness of implica-
tions in G-formulae (that is extending logic programming to the setting of Hereditary
Harrop formulae). In αProlog we would like to allow implications in G-formulae as

416 C. Urban and J. Cheney

well. Whether our result extends to such formulae is still open. It seems that our defini-
tion of G-formulae can be extended to include existential and universal formulae. How-
ever, our proving technique for showing this would require some subtle modifications—
for example we would need to define when two formulae with quantifiers are ≈-equal,
which is non-trivial. However, we expect that this can be done. What is impossible is to
allow N-quantifiers in goal-formulae. Such formulae really need equivariant unification.

Acknowledgements. This research was supported by a fellowship for Urban from the
Alexander-von-Humboldt foundation.

References

1. J. Cheney. The complexity of equivariant unification. In Proc. of International Colloquium
on Automata, Languages and Programming, volume 3142 of LNCS, pages 332–344, 2004.

2. J. Cheney. Nominal Logic Programming. PhD thesis, Cornell University, Ithaca, NY, 2004.
3. J. Cheney and C. Urban. Alpha-prolog: A logic programming language with names, binding,

and α-equivalence. In B. Demoen and V. Lifschitz, editors, Proc. of International Conference
on Logic Programming, volume 3132 of LNCS, pages 269–283, 2004.

4. R. Dyckhoff and L. Pinto. Proof Search in Constructive Logic. In S. Barry Cooper and John K.
Truss, editors, Proc. of the Logic Colloquium 1997, volume 258 of London Mathematical
Society Lecture Note Series, pages 53–65. Cambridge University Press, 1997.

5. M. J. Gabbay and J. Cheney. A proof theory for nominal logic. In Proc. of Annual IEEE
Symposium on Logic in Computer Science, pages 139–148, 2004.

6. G. Nadathur and D. Miller. Higher-order logic programming. In D. M. Gabbay, C. J. Hog-
ger, and J. A. Robinson, editors, Handbook of Logics for Artificial Intelligence and Logic
Programming, volume 5, pages 499–590. Clarendon Press, 1998.

7. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186:165–193, 2003.

8. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science,
323(1-2):473–497, 2004.

Higher-Order Abstract Non-interference

Damiano Zanardini

Dipartimento di Informatica, Università di Verona,
Strada Le Grazie 15, I-37134 Verona, Italy

zanardini@sci.univr.it

Abstract. This work proposes a type system for checking Abstract
Non-Interference in the setting of simply-typed lambda calculus with
basic types and recursion. A lambda-expression satisfies Abstract Non-
Interference relatively to a given semantic property if an attacker which
can only see program data up to that property cannot infer, by observ-
ing a computation, private data from public ones. Attackers are abstract
interpretations of program semantics. The type analysis infers, for an
expression, a security type which approximates the secret kernel for the
expression, i.e. the most powerful harmless attacker for which the expres-
sion is secure. The type system is proven to be correct, that is, private
information is not revealed to an attacker which is unable to distinguish
different values belonging to the inferred type.

1 Introduction

Problem. Information flow [12] is one of the relevant properties of programs,
regarding the possibility that some pieces of secret information can be mali-
ciously acquired by an attacker observing the execution of the program. Data
are splitted into private and public: the requirement for a program to be secure
is that no attacker should be able to guess the value of private data by observing
only public data and the execution of the program. A program for which this
information leakage is impossible is said to have the Non-Interference property
[8]: two executions differing only on the value of the private input cannot be
distinguished by merely observing the public output.

Non-Interference turns out to be too restrictive: some information flows are
actually harmless and should be allowed in order not to reject many useful pro-
grams. This led to several efforts to weaken the notion of Non-Interference into
a more useful and easy to obtain property; in particular, Giacobazzi and Mas-
troeni [6] proposed Abstract Non-Interference (ANI), an approximated property
defined into the framework of Abstract Interpretation [3, 4]. In ANI an attacker
can see public data only to a certain degree of precision, then it is not able to
exploit some information flows which would be detected (and result in a rejecting
of the program) in standard Non-Interference analysis.

Main Contribution. Abstract Non-Interference was first defined for a simple
imperative language with integers as the only data type. This paper defines

P. Urzyczyn (Ed.): TLCA 2005, LNCS 3461, pp. 417–432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

418 D. Zanardini

ANI and the relative analysis for a typed lambda calculus with recursion by
developing a type system which infers for a lambda-expression a type describing
the class of attackers for which the expression is secure.

Dealing with a functional language involves the definition of ANI on higher-
order values: two functions can be distinguished by an observer iff, when applied,
they give distinguishable results. Our type system is constructive in the sense
that it tries to compute the secret kernel [6], i.e. the most powerful attacker for
which a given program is secure, rather than checking if a program is secure for
a given attacker. The result of the type inference is an upper approximation of
the secret kernel: some expressions are rejected for a certain degree of precision
even if they satisfy Abstract Non-Interference to that degree.

The type system is in general undecidable (even the basic domain of integers
does not need to have finite abstract domains); decidability can only be reached
if the abstract domains on values are divided into a finite number of classes and
some rules are added at hand to help the analysis.

Related Work. The type-based approach for security analyses was proposed
by Volpano and Smith [14], then it was translated into Abstract Interpretation
in [15]. Programs are given security types (public or private) which are propa-
gated in the composition of bigger programs; the type of the main expression
is public if there is not interference. Standard information flow was defined for
functional languages in the SLam calculus [9] and in Flow Caml [13], which is
a real implementation of control flow analysis. SLam calculus is proven to be a
special case of the Dependency Core Calculus [1], a small extension of Moggi’s
computational lambda calculus which aims to unify into a single calculus sev-
eral dependency concepts arising in security, partial evaluation, program slicing
and call-tracking. In developing the type analysis we use a notion of ternary
relation similar to [10]; this allows comparing properties displayed by pairs of
computations instead of considering a single evaluation.

2 Preliminary Notions

Information Flow and Non-interference. If a user wants to keep some data
confidential, he or she could take as a policy requirement that confidential data
cannot affect data which are visible to other (untrusted) users. This policy al-
lows programs to manipulate private data as long as the visible outputs of a
computation do not reveal information about the hidden data. The notion of
Non-Interference was introduced by Goguen and Meseguer in [8]: a program has
the property of Non-Interference if any two executions differing only in the pri-
vate input data (and therefore indistinguishable by an untrusted user) cannot
be distinguished in their output by observing only public data: there must be
no information flow from private to public data. Information flow security tech-
niques are more powerful than standard access control methods [11, 12], since
they do not deal only with the ability to read information, but also with the
possibility that information is dangerously propagated.

Higher-Order Abstract Non-interference 419

Abstract Interpretation. Abstract Interpretation, introduced by the Cousots
in [3], is a framework to systematically derive non-standard approximated se-
mantics. The main notion in defining approximation is that of abstract domain.

Abstract domains can be formulated either in terms of Galois connections
or closure operators [4]. An upper closure operator (uco) on a poset 〈C,≤〉 is a
function ρ : C
→ C monotone, idempotent and extensive (∀x. x ≤ ρ(x)). The
set of all ucos on C is uco(C). A closure operator is uniquely determined by
the set of its fixpoints (called abstract values); this set is (isomorphic to) the
abstract domain A approximating the concrete domain C. A set X ⊆ C is the
set of fixpoints of a uco iff X is a Moore-family, i.e. X = M(X) = {∧S|S ⊆ X}.

The notion of approximation formalizes the idea that in the abstract domain
there is less complexity (A is a subset of C) together with a loss of precision (some
elements of C cannot be used when doing computations on A). A computation
FC on C can be approximated with an abstract computation FA by providing
the abstract versions of constants and functions. The abstraction is sound if the
abstract result is always a correct approximation of the concrete one: ∀x.FC(x) ≤
FA(x) (where ≤ should be read as more concrete or more precise).

If C is a complete lattice (with ⊥ and + as bottom and top elements), then
uco(C) ordered pointwise is also a complete lattice with λx.x and λx.+ as bottom
and top elements. The first describes the identity abstraction, with A = C and
no loss of information; the second is the trivial abstraction that reduces the
concrete domain into a one-element abstract domain. The reduced product � [4]
of a set of abstract domains {Ai} is the most abstract among the domains more
concrete (i.e. closer to C) than each Ai: �iAi = M(

⋃
i Ai).

Abstract Non-interference. The program property of Non-Interference can
be weakened (abstracted) by modelling secrecy relatively to some observable
property: a secure program is one that preserves secrecy only as regards of a
particular amount of information, the one that the attacker can observe.

The concrete domain is the set of all properties of values (e.g. ℘(N) for in-
tegers, where P ⊆ N is the set of values satisfying the property), representing
which values can be possibly distinguished by the attacker (Sec. 4). The abil-
ity of an attacker to observe data is described by abstract domains: if an at-
tacker has precision ρ it is unable to distinguish two values v1 and v2 such that
ρ({v1}) = ρ({v2}) (i.e. values having the same property ρ). A program P is
secure for a pair of domains η and ρ (written [η]P (ρ)) if no information flows
are detected by an attacker which can see public input and output data only up
to a level of precision characterized respectively by η and ρ:

η(l1) = η(l2) ⇒ ρ([[P]](h1, l1)) = ρ([[P]](h2, l2))

where li are public data and hi can be any (private) values; if the input values l1
and l2 cannot be distinguished, then it is not possibile to guess the value of hi by
observing the (abstracted) output. For a given η, the secret kernel is the most
concrete ρs such that [η]P (ρs). ANI allows to describe several kinds of attackers
by using the opportune abstract domains; standard Non-Interference is a special
case, obtained by using the identity abstract domain for all data.

420 D. Zanardini

3 Syntax and Semantics of the Language

Syntax. The language is the eager lambda calculus with arithmetical and boolean
operations, conditional and recursion μ. X is the set of variables (denoted by x,
y, F . . .). The set E of expressions is defined by

e ::= n | b | x | e + e | λx.e | e(e) | μF.e | if e then e else e

where n and b are an integer and a boolean constant.

Semantics. The language semantics (see [2]) is described in Fig. 1 (here con-
stants are not distinguished from their semantic interpretation). Every domain
of values has a bottom element ⊥; for functions the bottom element is λv.⊥.
The denotational semantics [[]] : E
→ S defines a call-by-value evaluation with
run-time type checking (checking for type errors is left implicit).

n ∈ N⊥
Δ= N ∪ {⊥} integers b ∈ B⊥

Δ= {true, false,⊥} booleans
f ∈ U Δ= N⊥ ∪ B⊥ ∪ [U �→ U] values W Δ= {ω} wrong value
ε ∈ Senv

Δ= X �→ U environments φ ∈ S Δ= Senv �→ U semantic domain

[[n]]ε
Δ= n [[b]]ε

Δ= b

[[x]]ε
Δ= ε(x) [[e1 + e2]]ε

Δ= [[e1]]ε + [[e2]]ε
[[λx.e]]ε

Δ= λv.[[e]]ε[x←v] [[e(e′)]]ε
Δ= [[e]]ε([[e′]]ε)

[[μF.e]]ε
Δ= lfp(λv.[[e]]ε[F←v]) [[e′ = e′′]]ε

Δ= ([[e′]]ε = [[e′′]]ε)
[[if e then e′ else e′′]] Δ= if [[e]]ε then [[e′]]ε else [[e′′]]ε

Fig. 1. The semantics of simply-typed lambda calculus

4 The Type System

Non-Interference refers to the possibility that two computations can be distin-
guished by observing some public parts of data. By means of security annota-
tions, this type analysis computes a pair of (abstract) values representing the
possible simultaneous outcomes of two evaluations of e with indistinguishable
input. e is secure if the attacker cannot distinguish the elements of the pair.

The type system has monomorphic types extended with security annotations.
The set T of types contains the basic types int and bool and has → as the only
constructor: τ, τ ′ ∈ T ⇒ (τ → τ ′) ∈ T . Each type is a description of a set of
semantic values: the function V : T
→ ℘(U) is defined as

V(int) = N⊥ V(bool) = B⊥ V((τ → τ ′)) = [V(τ)
→ V(τ ′)]

The Abstract Domains. The power of an attacker in observing a computation
is described by abstract domains; in general an attacker can see the n input data
(free variables) and the output of the computation, then its observational power
can be described by at most n + 1 abstract domains (on various types).

Higher-Order Abstract Non-interference 421

Let Cτ = 〈℘(V(τ)),⊆〉 be the concrete domain on the type τ , ordered by
inclusion (⊥ ∈ X for each X ⊆ Cτ). Cτ describes all the possible properties of
values (a property p is described by the set of values satisfying it).

An abstract domain ρ ∈ Dτ is the set of fixpoints of a closure operator
ρ ∈ uco(Cτ) (we keep the same name for simplicity). The set of all abstract
domains is D =

⋃
τ Dτ .We write ρ(v) for ρ({v}). The ordering ≤ is ⊆ (the

described property is more precise); 0 and / are defined accordingly.
Two values cannot be distinguished by the domain iff they are mapped into

the same (abstract) value: v1 ≡ρ v2 ⇐⇒ ρ(v1) = ρ(v2).

The Security Types. The type system uses normal types equipped with se-
curity annotations: this is described by a security relation which links the values
of an expression after two possible computations.

Definition 1 (security relations and types). An expression e : τ is given a
security type [(τ)]R, where R ∈ R is a security relation defined as follows:

R = ℘(P (τ) × P (τ))

where P (τ) is an abstract domain on τ (to be defined in Def. 8). ⊥ is used as a
shorthand for {(⊥,⊥)}; usually (s1, s2) or s1s2 is written instead of {(s1, s2)}.
The predicate ST checks if two values v1 and v2 belong to the same type σ, i.e.
if it is possible that, in two different computations (with possibly different input
values) of an expression of type σ, the two outputs are, respectively, v1 and v2.

Definition 2 (same-type predicate). The predicate ST describes a ternary
relation [10] between a security type and two values: the predicate is true (the
triple is an element of the relation) if the values both belong to the security type.

ST[(τ)]⊥(v1, v2) ≡ v1 = v2 = ⊥τ

ST[(τ)]R(v1, v2) ≡ ∃(s1, s2) ∈ R. (v1 ∈ s1 ∧ v2 ∈ s2)

– An expression of type [(τ)]⊥ must have value ⊥τ in every execution (then its
semantics is the constant ⊥τ -function).

– For e : [(τ)](s1,s2) any two computations must yield values belonging resp. to
the classes s1 and s2. By definition of ⊥, ST[(τ)]R(⊥τ ,⊥τ) for every R.

– For functional values the definition amounts to

ST[((τ→τ ′))]R(f1, f2) ≡ ∀(s1, s2) ∈ R. ∀v1, v2.
ST[(τ)](t1,t2)

(v1, v2) ⇒ ST[(τ ′)](s1(t1),s2(t2))
(f1(v1), f2(v2))

ST induces an ordering on security types: [(τ)]R ≤ [(τ ′)]R′ ≡ τ = τ ′ ∧ R ≤ R′ and

R ≤ R′ ≡ ∀v1, v2. ST[(τ)]R(v1, v2) ⇒ ST[(τ)]R′ (v1, v2)

On security relations least upper bound and greatest lower buond are defined:

0 = ∪ R′ / R′′ = {(s1 / t1, s2 / t2) | (s1, s2) ∈ R′ ∧ (t1, t2) ∈ R′′}

422 D. Zanardini

Remark 3. Given a security relation R with S × S ⊆ R and 0S = t, it can
be normalized into an equivalent relation R′ with S × S replaced by (t, t), and
viceversa. R′ is equivalent to R but is structurally (and computationally) smaller:
when applying the typing rules we do not need to consider all the pairs in S×S,
but only (t, t) (see also the second part of Section 9).

Lemma 4. ∀v1 ≤ v2. STσ(v2, u) ⇒ STσ(v1, u) (on both arguments).

Proof. – Basic types: N⊥ and B⊥ are flat domains with bottom; the partial
ordering is v1 ≤ v2 ⇔ v1 = v2 ∨ v1 = ⊥; lemma holds by def. of ⊥ and ST.

– Higher-order types: Ordering on functions is pointwise, then, v1 ≤ v2 implies
v1(x) ≤ v2(x) for all x. Result follows by induction and Def. 2 on functions.

Lemma 5. Let STτ be the restriction of ST on the type τ , i.e. STτ
σ(v1, v2) is

defined if σ = [(τ)]R and v1, v2 ∈ V(τ). Then STτ is continuous on its arguments,
i.e. for directed sets S, X and Y

STτ
�S(0X,0Y) = 0σ∈S /x∈X /y∈Y STτ

σ(x, y)

Proof. STτ is a function mapping T τ
sec × V(τ) × V(τ) to B (with false < true,

0 ≡ ∨ and / ≡ ∧). For basic types v 0 v = v, v 0 ⊥ = ⊥ 0 v = v and �(v 0 u) if
⊥
= v
= u
= ⊥; for functional types (f 0 g)(x) = f(x) 0 g(x). The continuity of
STτ can be proven separately on the three arguments:

– Continuity on the first argument: STτ
�S(x, y) = 0σ∈SSTτ

σ(x, y) for every
directed set S. This is easily proven by seeing that on booleans 0 ≡ ∨ and
STτ

�S(x, y) =
∨

σ∈S STτ
σ(x, y).

– Continuity on the second argument (third is similar): for every directed set
X, STτ

σ(0X, y) = /x∈XSTτ
σ(x, y).

• Basic types: a directed set on integers or booleans must be either {⊥},
{v} or {⊥, v} for a certain v. In the first two cases the result is trivial,
in the third it follows from Lemma 4.

• Functional types: for higher order types X is directed iff for each v the
set Xv = {f(v) | f ∈ X} is directed. Then (by def. of app, see Fig. 2):

STτ
[((τ ′→τ ′′))]R(0X, g) ≡

∀v1, v2. STτ
[(τ ′)]R′ (v1, v2) ⇒ STτ

[(τ ′′)]app(R,R′)((0X)(v1), g(v2)) ≡ [hyp.]
∀v1, v2. STτ

[(τ ′)]R′ (v1, v2) ⇒ /f∈XSTτ
[(τ ′′)]app(R,R′)(f(v1), g(v2)) ≡

∀v1, v2. /f∈X (STτ
[(τ ′)]R′ (v1, v2) ⇒ STτ

[(τ ′′)]app(R,R′)(f(v1), g(v2))) ≡
/f∈X∀v1, v2. (STτ

[(τ ′)]R′ (v1, v2) ⇒ STτ
[(τ ′′)]app(R,R′)(f(v1), g(v2))) ≡
/f∈XSTτ

[((τ ′→τ ′′))]R(f, g)

In Non-Interference data are splitted into a public and a private part: an
attacker can read information from the public but not from the private. In our
language input data are the free variables of an expression, and the security type
of a variable characterizes it as public or private.

Higher-Order Abstract Non-interference 423

Definition 6 (public and private variables). E(x) is the security type of x
in the type environment E ∈ Tenv = [X
→ Tsec].

∀1(ρ)
Δ= {(ρ(x), ρ(x)) | x ∈ V(τ)} ∀2(ρ)

Δ= {(ρ(x), ρ(y)) | x, y ∈ V(τ)}
public(x : τ) ⇒ E(x) = [(τ)]∀1(P (τ)) private(x : τ) ⇒ E(x) = [(τ)]∀2(P (τ))

where P (τ) is an abstract domain on τ , to be defined in def. 8.

It is now possible, with ST, to understand the meaning of public and private:
(i) In two different computations the values of a public variable must belong

to the same element of the domain; if s describes a singleton, then v1 = v2 as
in the definition of standard Non-Interference. In Abstract Non-Interference we
allow public data to be different as long as they cannot be distinguished by an
observer. It should be noted that no restrictions are posed on the value of a
public variable in itself: the constraints apply to values in pairs of computations.
For example, in the parity abstract domain {⊥, even, odd,+} a public variable
would have {(even, even), (odd, odd)} as its security relation.

(ii) Nothing can be said about the values of a private variable: every two
values of type τ are possible values in two different computations.

Typing Rules. The type analysis assigns a security type to basic expressions
(constants, variables) and infers the types for composed expressions following
a set of typing rules. It is an approximate (abstract) analysis because abstract
values (sets of values) rather than concrete are taken into account in computing
properties: the abstract values are elements of abstract domains.

The observational power of an attacker can be described by the n + 1-tuple
IO of the abstract domains describing the ability to see input and output values
(i.e. the n domains ρx on the n input variables and ρout on the result of the
computation). When assigning a type to a (public or private) variable the natural
choice is to use, in Def. 6, the domain ρx as P (τ). This has some limitations, as
shown in the example:

Example 7. Let e ≡ x and IO = {ρx, ρout} where ρx = {⊥, pos, neg,+} is the
domain on x (public) and ρout = {⊥, even, odd,+} is the one on the output. Then
an attacker can observe only the sign of the input and the parity of the output.
If x is given a security type based on ρx (i.e. [(int)]{(pos,pos),(neg,neg)}), then,
since two numbers with the same sign can have different parities, the expression
is classified as insecure because the attacker can distinguish two computations
with the same input sign by watching the output parity.

In the above example ρx is a too abstract domain to capture information about
parity. Then, in general, we need to choose the right domains to assign types to
basic expressions, in order to avoid some unexpected losses of information and
to deal with constants. The idea is to build two sets Zint and Zbool as follows:
while IO
= ∅ pick a ρ from IO:

– If ρ ∈ Dint, then ρ is inserted into Zint.
– If ρ ∈ Dbool, then ρ is inserted into Zbool.
– If ρ ∈ D(τ ′→τ ′′), then there exist ρ′ and ρ′′ such that the elements of ρ map

elements of ρ′ to elements of ρ′′; ρ′ and ρ′′ are inserted into IO.

424 D. Zanardini

When IO is empty the two sets Zint and Zbool cointain all the relevant infor-
mation about basic types; collecting the information into a single domain is done
by computing the reduced product (Sec. 2) of all the elements of the sets, thus
obtaining ρi and ρb: they are the most abstract domains capturing the relevant
properties of the analysis: ρi = �Zint and ρb = �Zbool. It is easy to see that,
in Example 7, using ρi = �{ρx, ρout} instead of ρx avoids the loss of information
on the variable value: the expression is now considered as secure.

Definition 8 (abstract domains on a given type). The function P : T
→ D
extends the construction of ρi and ρb to function types:

P (int) = ρi P (bool) = ρb P ((τ → τ ′)) = P (τ ′)P (τ)

where ρρ′
is the Reduced Cardinal Power [4] of two domains, building the domain

of the monotone functions from ρ′ to ρ [5].

The syntax of the typing rules is standard: the basic judgement is E � e : σ
and holds if an expression e is given a security type σ when the computation is
performed in a type environment E ∈ Tenv (input variables x have type E(x)).

The typing rules are described in Figure 2 and explained below (the function
F is a rewriting of the typing rules: F(e, E) = σ ⇐⇒ E � e : σ):

– Iconst, Bconst: The type for constants expresses the condition that, in any
two computations, the value is indistinguishable by the abstract domain.

– eq: eq(R′, R′′) specifies when it is possible to have equal values for e′ and
e′′. The (dis)equalities in the formula are treated as boolean values.

– add: The security type of the sum is such to contain all the values that can
be obtained by adding two values of the addendi. Rules sub, mul and div
for integers are similar, as well as rules and, or, not for boolean connectives.

– lam, app: The type of a function is inferred by collecting the types obtained,
for all possible types of the abstraction variable, by evaluating the function
body in the updated environment. Application rule is dual.

– rec: To compute the security type of a recursive function we need to find the
fixpoint of a functional GE,e = λσ.F(e, E[F ← σ]). Since G is continuous,
this can be done by starting from [(τ)]⊥ and iterating the application of G,
thus obtaining the least fixed point.

– if: In defining if’ we have in mind these requirements:
(1) If x = y we have ST[(τ)]if’(t t,R′,R′′)(v1, v2) ⇔ ST[(τ)]R′ (v1, v2). That is, if in
two computations the boolean guard is true (false), then the values of the
expression are the same as the first (second) branch; therefore they belong
to its security type.
(2) If x
= y, then ST[(τ)]if’(t f,R′,R′′)(v1, v2) ⇔ ST[(τ)]R′ (v1, u2) ∧ ST[(τ)]R′′ (u1, v2)
for each u1, u2. That is, if in the two computations the boolean guards eval-
uate respectively to true and false (false and true), then the expression
evaluates, in the first one, to the value of the then (else) branch, and in the
second one to the value of the else (then) branch.

Higher-Order Abstract Non-interference 425

E � n : [(int)](ρi(n),ρi(n))
[Iconst]

E � b : [(bool)](ρb(b),ρb(b))
[Bconst]

E � x : E(x)
[var]

E � e′ : [(int)]R′ E � e′′ : [(int)]R′′

E � e′ = e′′ : [(bool)]eq(R′,R′′)
[eq]

E � e′ : [(int)]R′ E � e′′ : [(int)]R′′

E � e′ + e′′ : [(int)]add(R′,R′′)
[add]

∀s1, s2 ∈ P (τ). E[x← [(τ)](s1,s2)] � e : [(τ ′)]Rs1,s2

E � λx : τ. e : [((τ → τ ′))]lam(P (τ),λx,y.Rx,y)
[lam]

E � e : [((τ ′ → τ))]R E � e′ : [(τ ′)]R′

E � e(e′) : [(τ)]app(R,R′)
[app]

E[F ← σ] � e : σ σ minimal
E � μF.e : σ

[rec]

E � b : [(bool)]Rb E � e′ : [(τ)]R′ E � e′′ : [(τ)]R′′

E � if b then e′ else e′′ : [(τ)]if(Rb,R′,R′′)
[if]

E � e : [(τ)]R R ≤ R′

E � e : [(τ)]R′
[subt]

eq(R′, R′′) =
⋃
{{ρb(s1) t1 �= ⊥), ρb(s1 = t1 = {v})} ×

{ρb(s2) t2 �= ⊥), ρb(s2 = t2 = {u})}|(s1, s2) ∈ R′, (t1, t2) ∈ R′′}
s + t = ρi({v + u | v ∈ s ∧ u ∈ t})

add(R′, R′′) = {(s1 + t1, s2 + t2) | (s1, s2) ∈ R′, (t1, t2) ∈ R′′}
lam(X,F) = {(t1, t2) | ∀s1, s2 ∈ X.(t1(s1), t2(s2)) ∈ F (s1, s2)}

app(R′, R′′) = {(t1(s1), t2(s2)) | (t1, t2) ∈ R′ ∧ (s1, s2) ∈ R′′}
if(Rb, R

′, R′′) =
⋃
{if’(xy,R′, R′′) | (X,Y) ∈ Rb ∧ x ∈ X ∧ y ∈ Y }

if’(t t, R′, R′′) = R′ (t ≡ true, f ≡ false)

if’(f f, R′, R′′) = R′′

if’(t f, R′, R′′) = {(s′, t′′) | (s′, t′) ∈ R′ ∧ (s′′, t′′) ∈ R′′}
if’(f t, R′, R′′) = {(s′′, t′) | (s′, t′) ∈ R′ ∧ (s′′, t′′) ∈ R′′}

Fig. 2. The typing rules

The derivation of if’(t f, v1, v2) is illustrated in the following equalities:

∃u1, u2. ST[(τ)]R′ (v1, u2) ∧ ST[(τ)]R′′ (u1, v2) ⇔
∃u1, u2, (s′1, s

′
2) ∈ R′, (s′′1 , s

′′
2) ∈ R′′.v1 ∈ s′1 ∧ v2 ∈ s′′2 ∧ u1 ∈ s′′1 ∧ u2 ∈ s′2 ⇔

ST[(τ)]if’(t f,R′,R′′)(v1, v2)

5 Correctness of Type Inference

We are interested in a soundness result for the type inference algorithm: the
inferred type is correct if it is not possible to have computations with values not
belonging to the type. The function ENVE(ε1, ε2) = ∀x. STE(x)(ε1(x), ε2(x))
extends the ST predicate to environments.

The correctness theorem is proven by induction on the structure of a deriva-
tion: this is the same as induction on expressions (every typing rule builds an

426 D. Zanardini

expression out of zero, one or more subexpressions), except for subtyping (in
this rule the expression is not composed). Subtyping rule can be applied vir-
tually everywhere and many times without affecting the validity of the proof.
In reasoning about the application of rules, we can infer (backwards) the type
of the subexpressions by observing the main type: for example, if add rule is
applied, then from the type [(int)]R of an expression e′ + e′′ it is possible to say
that e1 and e2 have types [(int)]R′ and [(int)]R′′ with R = add(R′, R′′) (otherwise
the rule would not have been applicable).

Theorem 9 (Correctness). E � e : σ ∧ ENVE(ε1, ε2) ⇒ STσ([[e]]ε1 , [[e]]ε2)

Proof. Induction on the last rule applied in the derivation (some cases omitted).

– e ≡ n : We have [[e]]ε1 = [[e]]ε2 = n and E � n : [(int)](ρi(n),ρi(n)); then
ST[(int)](ρi(n),ρi(n))

(n, n) since, by definition of closure operators, n ∈ ρi(n).
– e ≡ x : E � x : E(x) and [[x]]εi

= εi(x) imply (def. ENV) STE(x)(ε1(x), ε2(x)).
– e ≡ e′ + e′′ :

E � e′ + e′′ : [(int)]add(R′,R′′) =⇒
E � e′ : [(int)]R′ ∧ E � e′′ : [(int)]R′′ =⇒ [hyp.]

ST[(int)]R′ ([[e
′]]ε1 , [[e

′]]ε2) ∧ ST[(int)]R′′ ([[e
′′]]ε1 , [[e

′′]]ε2) =⇒ [def. add]
ST[(int)]add(R′,R′′)

([[e′ + e′′]]ε1 , [[e
′ + e′′]]ε2)

– e ≡ λx : τ. e0 : let us suppose to have, for every pair (s1, s2) ∈ P (τ) ×P (τ),
two values vs1,s2

1 and vs1,s2
2 such that ST[(τ)](s1,s2)

(vs1,s2
1 , vs1,s2

2).
Then, by def. of ENV, ENVE[x←[(τ)](s1,s2)](ε1[x ← vs1,s2

1], ε2[x ← vs1,s2
2]).

Let lam(P (τ), λx, y.Rx,y) be defined as in the rule for abstraction. Then

E � λx : τ. e0 : [((τ → τ ′))]lam(P (τ),λx,y.Rx,y) =⇒
∀s1, s2 ∈ P (τ). E[x ← [(τ)](s1,s2)] � e0 : [(τ ′)]Rs1,s2

=⇒ [hyp.]
∀s1, s2 ∈ P (τ). ST[(τ ′)]Rs1,s2

([[e0]]ε1[x←v
s1,s2
1], [[e0]]ε2[x←v

s1,s2
2]) =⇒

STlam(P (τ),λx,y.Rx,y)([[e]]ε1 , [[e]]ε2)

The last step follows from the definition of [[•]], ST and lam.
– e ≡ e′(e′′):

E � e′(e′′) : [(τ)]app(R′,R′′) =⇒
E � e′ : [((τ ′′ → τ))]R′ ∧ E � e′′ : [(τ ′′)]R′′ =⇒ [hyp.]

ST[((τ ′′→τ))]R′ ([[e′]]ε1 , [[e
′]]ε2) ∧ ST[(τ ′′)]R′′ ([[e′′]]ε1 , [[e

′′]]ε2) =⇒ [def. app]
ST[(τ)]app(R′,R′′)([[e

′(e′′)]]ε1 , [[e
′(e′′)]]ε2)

– e ≡ μF.e0 : We take σ = [(τ)]R; the non-security part τ is the type inferred
for e by a standard type inference algorithm (we have no problems with non-
termination since the type system is monomorphic). Then lfp(GE,e0) = [(τ)]R
where G is defined above (rec rule).
The following result (for each f1, f2, σ0) is true by inductive hypothesis
(Hε,e = λv. [[e]]ε[F←v] is the semantic function for recursion):

STσ0(f1, f2) ⇒ STGE,e0 (σ0)(Hε1,e0(f1),Hε2,e0(f2))

Higher-Order Abstract Non-interference 427

So we have the chain of implications

true = ST[(τ)]⊥(⊥,⊥) ⇒
STGE,e0 ([(τ)]⊥)(Hε1,e0(⊥),Hε2,e0(⊥)) ⇒ . . . ⇒
STGn

E,e0
([(τ)]�)(Hn

ε1,e0
(⊥),Hn

ε2,e0
(⊥))

Let Gn = Gn
E,e0

([(τ)]⊥), S = {Gn}, H1
n = Hn

ε1,e0
(⊥), X = {H1

n}, H2
n =

Hn
ε2,e0

(⊥) and Y = {H2
n}. Then, by Lemma 5,

ST[(τ)]R([[e]]ε1 , [[e]]ε2) ≡ ST�S(0X,0Y) ≡ 0σ∈S /x∈X /y∈Y STσ(x, y)

and, for every H1
n ∈ X, H2

m ∈ Y , we can take p = max(m,n) to have
STσ(H1

p , H
2
p) ⇒ STσ(H1

n, H
2
m) (by Lemma 4) and STGp

(H1
p , H

2
p) (by the

chain of implications above).
Therefore it is always possible to find σ ∈ S such that STσ(x, y) is true;
consequently ST[(τ)]R([[e]]ε1 , [[e]]ε2) is also true.

6 Computations and Attackers

As shown above, there is a close correspondence between abstract domains and
security types: types identify properties which domains cannot distinguish. This
relation between Tsec and D can be formalized as ρ�σ = ∀v1, v2. STσ(v1, v2) ⇒
v1 ≡ρ v2, meaning that ρ cannot distinguish σ-related values. In this case we
say that ρ is corresponding to σ.

For a given σ there always exists such a ρ (the top abstract domain, character-
izing a blind observer, is corresponding to every type). The functions α : T τ

sec
→
Dτ = λσ. � {ρ | ρ�σ} and γ : Dτ
→ T τ

sec = λρ.[(τ)]{(s1,s2)|∀v1∈s1,v2∈s2.v1≡ρv2}
clearly identify a Galois connection [3] between T τ

sec and Dτ .
We say that a type environment E defines a policy consistent with IO (Sec.

4) if, for every variable x, E(x) is defined (Defs. 6 and 8) using the domains ρi

and ρb induced by IO and the information about public and private data. The
meaning of this notion is that the policy, together with the classification of the
variables into private and public, is calibrated on the data we want to protect
and on the attacker we want to be protected from.

The Abstract Non-Interference condition for an expression e, an attacker
IO and a consistent policy described by E can be written as:

ANIE(e, IO) Δ= ENVE(ε1, ε2) ⇒ [[e]]ε1 ≡ρout
[[e]]ε2

Thus, if an attacker cannot distinguish inputs, neither can he distinguish outputs.
It is easy to see that this is a translation of the original definition of ANI into
our functional framework.

A direct corollary of Theorem 9 is (for E consistent with IO and ρout ∈ IO):

Theorem 10. ρout�σ ∧ E � e : σ ⇒ ANIE(e, IO)

The inferred type is an upper approximation of the secret kernel (Sec. 2):
some non-interfering expressions are rejected since the abstraction induced by

428 D. Zanardini

the abstract domains leads to a loss of information. For example, let ρi be the
parity domain; then e ≡ x + x, where x is a private input variable, would
be typed with [(int)]��, even if it clearly is always even. In terms of abstract
interpretation, this is an incompleteness situation [7]: viewing the type of an
object as an abstraction of its meaning, it turns out that abstracting (typing)
the final value of the concrete computation (yielding, in this case, (even, even))
is not equal to performing the abstract computation (the type inference process)
starting from the abstract values (types) of the input. To avoid this kind of
problems there should be a set of axioms and rules (in this case a rule stating
that x+x = 2∗x is needed) giving informations about special cases; however, in
general it is not possible to have a complete rule system to handle such situations.

7 An Example

In this example it is possible to see how an expression showing (standard) dan-
gerous information flows can be accepted by this type system if an attacker
cannot see anything but the parity of integer numbers.

The evaluation of the expression yields a function from integers to integers,
then the observational power of the attacker on the output must be an abstract
domain on (int → int). The only input datum is the secret free variable y;
since y is referred in the body of the function an algorithm for standard Non-
Interference would find a forbidden information flow from y to the result of the
computation (in facts, the result of the function applied to a value v depends
on both v and y). However, our type system is able to accept the expression as
secure since no information about the secret data can be revealed by observing
the parity of numbers (for every value of y, [[e]](v) is an even value).

The expression to analyze is

e ≡ μF. λx. if x = 0 then 2 else 2 ∗ y ∗ F (x − 1)

and the observational power of a generic attacker is

ρi = {⊥, e, o,+} ρb = B⊥ × B⊥
ρout = {〈e
→ e; o
→ e〉, 〈e
→ e; o
→ o〉, 〈e
→ o; o
→ e〉, 〈e
→ o; o
→ o〉}

– the only visible information on integers is parity (e is even, o is odd);
– no abstraction on boolean values (the attacker can see the truth value of

boolean data). In this case we are not following the definition of ρb (Zbool =
∅ should imply ρb = �(∅) = +): the analysis will be more precise.

– functions from integers to integers are divided by the abstract domain into
five classes (the notation should be clear): functions (i) mapping all numbers
to even numbers; (ii) keeping the parity value; (iii) inverting the parity value;
(iv) mapping all numbers to odd numbers; (v) all the other functions (these
functions are mapped to +). ρout is an abstraction of P ((int → int)).

We evaluate e in the type environment E (with ENVE(ε1, ε2)); the fact that
y is private is written as E(y) = (+,+) = {ee, eo, oe, oo} (ab stands for (a, b)).

Higher-Order Abstract Non-interference 429

The evaluation begins with the first iteration of the fixpoint construction; let
E′ be E[F ← [((int → int))]⊥⊥], and E′

ab be E′[x ← ab].

(0) E′
ee � 0 : [(int)]ee [Iconst] (1) E′

ee � 1 : [(int)]oo [Iconst]
(2) E′

ee � 2 : [(int)]ee [Iconst] (3) E′
ee � y : [(int)]ee,eo,oe,oo [var]

(4) E′
ee � x : [(int)]ee [var] (5) E′

ee � x − 1 : [(int)]oo [(1, 4), min]
(6) E′

ee � F : [((int → int))]⊥⊥ [var]
(7) E′

ee � F (x − 1) : [(int)]⊥⊥ [(5, 6), app]
(8) E′

ee � y ∗ F (x − 1) : [(int)]⊥⊥ [(3, 7), mul]
(9) E′

ee � 2 ∗ y ∗ F (x − 1) : [(int)]⊥⊥ [(2, 8), mul]
(10) E′

ee � x = 0 : {t t, t f, f t, f f} [(0, 4), eq]
(11) E′

ee � if x = 0 then 2 else 2 ∗ y ∗ F (x − 1) : [(int)]Re⊥ [(2, 9, 10), if]
Re⊥ = {ee,⊥⊥, e⊥,⊥e} = ee

To get the value of the lambda-expression the evaluation must be done also in
the other E′

ab, where a, b ∈ {⊥, e, o,+}; the final security relation is

R0 = {(f, g) | f(e) ∈ {e,⊥} ∧ f(o) = ⊥ ∧ g(e) ∈ {e,⊥} ∧ g(o) = ⊥}
giving the typing judgement E′ � e : [((int → int))]R0 .

So far the first step of the fixpoint computation; the second step is performed
in the type environment E′′ = E[F ← [((int → int))]R0].

The rest of the computation is omitted; at the second step the fixpoint is
reached, giving a functional security type σfix for which the result of the appli-
cation is [(int)]ee for every parity value of the input:

σfix = [((int → int))]{(λs.e,λs.e)}

It is then easy to see that ρout�σfix, i.e. if two functions f1 and f2 satisfy
STσfix

(f1, f2), then they both belong to the first equivalence class described by
the abstract domain ρout: the expression e is secure.

8 Making It More Practical

Type Approximation. Remark 3 shows how a security relation R can be
transformed into an equivalent yet simpler one R′ by replacing some elements
of an abstract domain with their least upper bound; namely, given a set S of
elements, the set of pairs S × S ⊆ R can be replaced by {(0S,0S)}.

This can be done even if some elements of S × S are missing in R, thus
introducing an upper approximation R′′ of R: if X ⊆ S × S and X ⊆ R, R′′ is
obtained by replacing X with {(0S,0S)}, and would be equivalent to R∪(S×S).

This approximation could be performed via subtyping after the application of
each typing rule. However, it is not clear when such an operation can be applied
without losing too much precision; in particular, we have to choose the right S
and decide whether X contains enough elements of S × S.

A possible approach is to consider S and X good candidates if X contains
all the elements of {(s, s)|s ∈ S} plus some pair (s, t) with s
= t, thus leading to
the following modified subtyping rule:

430 D. Zanardini

E � e : [(τ)]R X ⊆ R X ⊆ S × S X ⊃ {(s, s)|s ∈ S}
E � e : [(τ)](R\X)∪{(�S,�S)}

[subt2]

The bigger S is, the more the loss of information; then, in order not to lose
too much precision, this rule should be applied to a small enough set S. This
approximation acts on non-public types (containing at least one pair (s1, s2))
and transforms them into approximated (less precise) types with less elements,
thus improving complexity results.

Lazy Lambda Abstraction. In the rule lam some computations are necessary
for every pair in P (τ)×P (τ); however, in many cases most of them are not used
in the rest of type inference (e.g. when the function is applied to a constant
value). In order to avoid useless computations, the type of a function shall be
computed only as long as it is used in the following derivations; for example, if
F is applied to a constant with type [(int)]ee it is useless to infer its type for oo
or ⊥e. Such a strategy can reduce considerably the complexity of type inference.

Abstract Operators. The application of arithmethic rules, such as add, in-
volves performing integer operations on possibly infinite sets (such as even num-
bers). This is clearly impractical unless some computation rules are provided; for
example, rules like even plus odd equals odd would solve the problem of adding
infinite sets in the parity abstract domain. Such a set of rules cannot, in general,
be complete nor automatically generated.

9 Conclusions

This type system is an attempt to compute the secret kernel for a given expres-
sion; the inferred security type is an upper approximation of the secret kernel
(Section 6), i.e. some harmless attackers are erroneously considered as dangerous.

Computability. This type system is, in general, undecidable: it is not surpris-
ing, since there are infinite semantic domains (e.g. integers and functions).

When a concrete domain is infinite, either the abstract domain is infinite
or some elements of the abstract domain represent an infinite set of concrete
values. In the first case some rules, like lam, can diverge, because of the universal
quantification on the infinite set P (τ). In the second some operators on security
types must deal with infinite sets (e.g. the sum of the sets of evens and odds).

Then, to have decidability the abstract domains must be finite and some set
of rules must be provided to help computations (see third part of Section 8).

Complexity. Provided decidability conditions are met, some complexity results
can be obtained. Let N be the (finite) cardinality of ρi and p be the highest num-
ber of arrow constructors occurring in the type of subexpressions. The cardinality
of a domain on functions is, in the worst case, superexponential on N (bounded
by λn.2n applied p times to N); since, in lam rule, every pair of elements of the
domain must be checked, the complexity of the algorithm is exponential on N .

Higher-Order Abstract Non-interference 431

Section 8 (first part) shows how a security relation can be transformed into
a simpler one by introducing some loss of information. This can have significant
benefits on complexity, since it decreases the numbers of elements to check in
a security relation. Some rule better than subt2 could be possibly found to
improve the ratio complexity benefits / precision loss.

Again, Section 8 (second part) outlines lazy type inference as a method to
avoid useless computations in lambda abstractions. This is particularly useful in
presence of big domains and many applications to constant values.

Future Work. Some features can be added to the language, such as product
types or polymorphism. A real-world language could be considered, as in [13].

The complexity of the algorythm could be improved by finding simpler ways
to manipulate security types; in particular, the set of operation rules (Sec. 8,
third part) should be designed in order to be efficient and partially mechanizable
(i.e. automatically generated given an abstract domain).

The approximation of security relations can significantly improve the com-
plexity; however, a proper rule to do abstractions should be found in order to
reach the best tradeoff between complexity and precision.

One of the main features of the type system is that it builds the secret kernel
rather than checking Non-Interference for a given attacker; this constructive
method could be applied to other classes of languages, such as imperative and
object-oriented.

References

1. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency.
In Proc. ACM Symp. on Principles of Programming Languages, pages 147–160.
ACM Press, Jan. 1999.

2. P. Cousot. Types as abstract interpretations, invited paper. In Proc. ACM Symp.
on Principles of Programming Languages, pages 316–331. ACM Press, Jan. 1997.

3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. ACM
Symp. on Principles of Programming Languages, pages 238–252. ACM Press, 1977.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. ACM Symp. on Principles of Programming Languages, pages 269–282. ACM
Press, 1979.

5. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages), invited paper. In Proc. International Conf. on
Computer Languages, pages 95–112. IEEE Computer Society Press, May 1994.

6. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. ACM Symp. on Principles of
Programming Languages, pages 186–197. ACM Press, Jan. 2004.

7. R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation: A domain
perspective. In Proc. International Conf. on Algebraic Methodology and Software
Technology, volume 1349 of LNCS, pages 231–245. Springer-Verlag, 1997.

8. J. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE
Symp. on Security and Privacy, pages 11–20. IEEE Computer Society Press, 1982.

432 D. Zanardini

9. N. Heintze and J. Riecke. The SLam calculus: Programming with secrecy and
integrity. In Proc. ACM Symp. on Principles of Programming Languages. ACM
Press, Jan. 1998.

10. S. Hunt. Abstract Interpretation of Functional Languages: From Theory to Prac-
tice. PhD thesis, Dept. of Computing, Imperial College of Science Technology and
Medicine, 1991.

11. B. Lampson. Protection. In Proc. Princeton Symp. on Information Sciences and
Systems, pages 437–443, Princeton University, Mar. 1971. Reprinted in Operating
Systems Review, vol. 8, no. 1, pp. 18–24, Jan. 1974.

12. A. Myers and A. Sabelfeld. Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications, 21(1):5–19, Jan. 2003.

13. F. Pottier and V. Simonet. Information flow inference for ML. ACM TOPLAS,
25(1):117–158, Jan. 2003.

14. D. Volpano and G. Smith. A type-based approach to program security. In Proc.
TAPSOFT’97, volume 1214 of LNCS, pages 607–621. Springer-Verlag, Apr. 1997.

15. M. Zanotti. Security typings by abstract interpretation. In Proc. Symp. on Static
Analysis, volume 2477 of LNCS, pages 360–375. Springer-Verlag, Sept. 2002.

Author Index

Abel, Andreas 23
Aehlig, Klaus 39
Ahmed, Amal 293

Baillot, Patrick 55
Barthe, Gilles 71
Benton, Nick 86
Bertot, Yves 102
Boulm, Sylvain 324
Bove, Ana 116

Capretta, Venanzio 116, 278
Cheney, James 401
Coppola, Paolo 131
Coquand, Thierry 1, 23

Dal Lago, Ugo 131
Damiani, Ferruccio 146
David, René 162
de Miranda, Jolie G. 39
de Vries, Fer-Jan 369
Di Cosmo, Roberto 179

Felty, Amy P. 10, 278
Fluet, Matthew 293
Fujita, Ken-etsu 194

Grégoire, Benjamin 71

Hayashi, Susumu 11
Herbelin, Hugo 209
Hermant, Olivier 221
Hernádvölgyi, István 278

Laird, J. 234
Lamarche, François 246

Leperchey, Benjamin 86
Lindley, Sam 262

Matwin, Stan 278
Morrisett, Greg 293

Nour, Karim 162

Ong, C.-H.L. 39

Pastawski, Fernando 71
Poswolsky, Adam 339
Pottier, François 179
Power, John 308
Prevosto, Virgile 324

Rémy, Didier 179
Ronchi Della Rocca, Simona 131

Sarnat, Jeffrey 339
Schürmann, Carsten 339
Selinger, Peter 354
Severi, Paula 369
Sinot, François-Régis 386
Stark, Ian 262
Straßburger, Lutz 246

Tanaka, Miki 308
Terui, Kazushige 55

Urban, Christian 401

Valiron, Benôıt 354

Zanardini, Damiano 417

	Frontmatter
	Completeness Theorems and λ-Calculus
	A Tutorial Example of the Semantic Approach to Foundational Proof-Carrying Code: Abstract
	Can Proofs Be Animated By Games?
	Contributed Papers
	Untyped Algorithmic Equality for Martin-L\"{o}f's Logical Framework with Surjective Pairs
	The Monadic Second Order Theory of Trees Given by Arbitrary Level-Two Recursion Schemes Is Decidable
	A Feasible Algorithm for Typing in Elementary Affine Logic
	Practical Inference for Type-Based Termination in a Polymorphic Setting
	Relational Reasoning in a Nominal Semantics for Storage
	Filters on CoInductive Streams, an Application to Eratosthenes' Sieve
	Recursive Functions with Higher Order Domains
	Elementary Affine Logic and the Call-by-Value Lambda Calculus
	Rank-2 Intersection and Polymorphic Recursion
	Arithmetical Proofs of Strong Normalization Results for the Symmetric $\lambda\mu$-Calculus
	Subtyping Recursive Types Modulo Associative Commutative Products
	Galois Embedding from Polymorphic Types into Existential Types
	On the Degeneracy of Σ-Types in Presence of Computational Classical Logic
	Semantic Cut Elimination in the Intuitionistic Sequent Calculus
	The Elimination of Nesting in SPCF
	Naming Proofs in Classical Propositional Logic
	Reducibility and \top \top-Lifting for Computation Types
	Privacy in Data Mining Using Formal Methods
	L<Superscript>3</Superscript>: A Linear Language with Locations
	Binding Signatures for Generic Contexts
	Proof Contexts with Late Binding
	The ∇-Calculus. Functional Programming with Higher-Order Encodings
	A Lambda Calculus for Quantum Computation with Classical Control
	Continuity and Discontinuity in Lambda Calculus
	Call-by-Name and Call-by-Value as Token-Passing Interaction Nets
	Avoiding Equivariance in Alpha-Prolog
	Higher-Order Abstract Non-interference

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

