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Abstract

The objective of this class is to experience an introduction to the rich, complex,
and powerful subject of Ordinary Differential Equations (ODEs). Specifically:

(1) Develop a working familiarity with linear algebra to the extent we need it
for the differential equations we shall consider. Linear algebra serves us
as a very robust backend for handling all higher-dimensional linear issues
which will arise.

(2) Learn how to solve a reasonably large class of differential equations. Most
differential equations cannot be solved (the solutions can only be approx-
imated with computers, which is a story for a different math class), but
we will teach you many of the differential equations for which we can find
exact solutions.

(3) Observe and investigate real-world applications which are governed by
differential equations.

(4) Study qualitative properties of both the differential equations we can solve
and those we cannot.

The textbook for the course is Differential Equations Second Edition, by John
Polking, Albert Boggess, and David Arnold [2]. These notes are based on this
textbook, except for the sake of time we only include a select curated portion of the
textbook material in these notes. Any and all comments, typos, errors, questions,
suggestions are enthusiastically welcome!

Last revised June 1, 2020.
2010 Mathematics Subject Classification. Primary .
The first author is supported by the National Science Foundation under Award No. 1703709.
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Introduction

The prerequisite for this course is Math31B: Integration and Infinite Series. Conse-
quently, we will assume you have a working familiarity with the basic properties of
differentiation and integration of common elementary functions (although we will
review the tools which are most relevant for us). In this class we will put these
existing tools to work to help us solve so-called differential equations. We begin
with a simple example of a differential equation:

Question 0.0.1. Find a differentiable function y : R → R which satisfies the
following:

(1) y′(t) = exp(t) for all t ∈ R, and
(2) y(0) = 10.

Answer. From (1) we know that the function y(t) must be of the form y(t) =
exp(t) + C for some fixed C ∈ R. By (2) we know that y(0) = exp(0) + C =
1 + C = 10. Thus C = 9 and so y(t) = exp(t) + 9. �

Question 0.0.1 illustrates a paradigm for differential equations in general. Namely,
we will often be given the following information:

(1) Information about an unknown function y’s derivative (or second deriva-
tive, etc.), for instance, saying “y′(t) = exp(t)”

(2) Information about specific function values of y (or y′, y′′, etc.), for in-
stance, saying “y(0) = 10”.

Then the game will then be to use this information to determine the unknown
function y as specifically as we can. Before we go any further, we make the following
declaration:

You will not be able to solve most differential equations.

This is by no means a commentary on anyone’s mathematical abilities, we simply
want to bring you up to speed with a cold hard fact of life: most differential equa-
tions are impossible (for anyone) to solve exactly. However, we will study in detail
many simple differential equations which we can solve exactly. Fortunately, the dif-
ferential equations we will study also have many practical real-world applications.

What about the non-solvable differential equations? Not all hope is lost in this case.
Indeed, for practical real-world applications you generally only need a sufficiently
accurate approximation of a solution. Luckily this is something that computers are
very good at and this is a very active area of applied mathematics. We will not
go down this rabbit-hole in this class, but it helps to be aware of this remedy so
you are not too discouraged if and when you encounter an impossible differential
equation.

ix



x INTRODUCTION

Algebraic equations

In this section we will review the state of affairs for one-variable algebraic equations.
Recall that a one-variable algebraic equation is an equation of the form:

p(X) = 0,

where p is a polynomial and X is a variable. A solution to this equation is a
specific real number x ∈ R which has the property that p(x) = 0 (i.e., when we
plug in the number x into p, it evaluates to the number 0).

We also hope to make a general point in this section: that even for algebraic
equations (i.e., a differential equation with no derivatives), things become very
complicated and eventually impossible very quickly.

Linear equations. A linear equation (in one variable) is an equation of the
form:

a1X + a0 = 0 (where a1, a0 ∈ R)

If a1 6= 0, then this has exactly one solution, namely:

x := −a0
a1
.

If a1 = 0, then this has either zero solutions (for instance, if a0 6= 0), or infinitely
many solutions (for instance, if a0 = 0 then every x ∈ R is a solution). These
observations foreshadow various features of systems of linear equations in multiple
variables which we will study in Chapter 1.

Quadratic equations. A quadratic equation is an equation of the form:

a2X
2 + a1X + a0 = (where a2, a1, a0 ∈ R)

If a2 6= 0, then the quadratic formula yields solutions:

x1 :=
−a1 +

√
a21 − 4a2a0

2a2
and x2 :=

−a1 −
√
a21 − 4a2a0

2a2

Recall that three things can happen depending on the sign of the discriminant
a21 − 4a2a0:

(Case 1) If a21 − 4a2a0 > 0, then x1 6= x2 are two real solutions.
(Case 2) If a21 − 4a2a0 = 0, then x1 = x2 is a single real solution (of multiplicity

two).
(Case 3) If a21 − 4a2a0 < 0, then x1 6= x2 are two distinct solutions, however, they

will be complex solutions and not real solutions.

You are expected to be able to use the quadratic formula to solve quadratic equa-
tions in this class.

Cubic equations. A cubic equation is an equation of the form:

a3X
3 + a2X

2 + a1X + a0 = 0 (where a3, a2, a1, a0 ∈ R)

You were probably never taught the formula for the cubic equation in school. This
is for good reason: it’s complicated! You do not need it for this class either, but in
case you are curious, here it is: if a3 6= 0, then the three solutions are

xk = − 1

3a3

(
a2 + ξkC +

∆0

ξkC

)
, for k = 0, 1, 2
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where

ξ :=
−1 +

√
−3

2

∆0 := a22 − 3a3a1

∆1 := 2a32 − 9a3a2a1 + 27a23a4

C :=
3

√
∆1 ±

√
∆2

1 − 4∆3
0

2

(choose either + or − provided C 6= 0)

Here there can either be three, two, or one distinct solution, and the solutions can
be either real or complex, much like the quadratic equation.

Quartic equations. A quartic equation is an equation of the form:

a4X
4 + a3X

3 + a2X
2 + a1X + a0 = 0 (where a4, a3, a2, a1, a0 ∈ R)

The general solution for the quartic equation is even more complicated than the
equation for the cubic. You definitely do not need to know it, but in case you are
curious here it is: if a4 6= 0, then the four solutions are:

x1,2 := − a3
4a4
− S ± 1

2

√
−4S2 − 2p+

q

S

x3,4 := − a3
4a4

+ S ± 1

2

√
−4S2 − 2p− q

S

where

p :=
8a4a2 − 3a23

8a24

q :=
a33 − 4a4a3a2 + 8a24a1

8a34

S :=
1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)

Q :=
3

√
∆1 +

√
∆2

1 − 4∆3
0

2

∆0 := a22 − 3a3a1 + 12a4a0

∆1 := 2a32 − 9a3a2a1 + 27a23a0 + 27a4a
2
1 − 72a4a2a0

(with special cases if S = 0 or Q = 0)

Quintic (and higher degree) equations. A quintic equation is an equa-
tion of the form:

a5X
5 + a4X

4 + a3X
3 + a2X

2 + a1X + a0 = 0 (where a5, a4, a3, a2, a1, a0 ∈ R)

You might be expecting an even longer and more complicated formula for the five
solutions to a quintic equation, but actually it is known that this is impossible. In
fact, there is a theorem which tells us that this is impossible:
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Theorem 0.0.2 (Galois). Suppose n ≥ 5. Then there is no general formula using
radicals (

√
, 3
√

, 4
√
, . . .) which gives the solutions to

anX
n + an−1X

n−1 + · · ·+ a1X + a0 = 0

in terms of the coefficients an, . . . , a0.

Of course, sometimes you will be able to solve for the solutions of a high-degree
polynomial equation (for instance, x := 1 is a solution to X100 − 1 = 0), but this
is usually because the polynomial is carefully chosen in order to admit solutions
you can find exactly. This is an exceptional case. In general, the only polynomial
equations you can expect a guaranteed solution for is degree 1 (linear) and degree
2 (quadratic). If we do encounter higher-degree polynomials in this class, they will
be chosen so that it is possible to find exact solutions. However in general we will
stick to degree 2 or lower.

Conventions and notation

In this class the natural numbers is the set N = {0, 1, 2, 3, . . .} of nonnegative
integers. In particular, we consider 0 to be a natural number.

Unless stated otherwise, the following convention will be in force throughout the
entire course:

Global Convention 0.0.3. Throughout, m and n range over N = {0, 1, 2, . . . }.



CHAPTER 1

Linear algebra I

Before commencing with differential equations, we begin with the first of three
chapters on linear algebra. This might seem initially unrelated to differential equa-
tions (like the one considered in Question 0.0.1) but we will soon find that linear
algebra is intimately connected with many of the things we will do with differential
equations and it is the best language to explain many different phenomena we will
encounter.

1.1. Systems of equations

In this section we will give a crash course in the correct way to completely solve a
system of equations (with any number of variables and any number of equations).

Systems of equations. Here is an example of a system of equations:

(1.1)
2X + Y = 1

X − Y = 1

This is a system of equations with two variables (X and Y ) and two equations. A
solution to (1.1) is a pair (x, y) of real numbers, such that when we plug in x for X
and y for Y , both equations are satisfied. We will recall how one solves (1.1) using
what we will call the naive method :

Solution to (1.1). First we will multiply the second equation by 2 so that the
coefficients on “X” are the same:

(1.2)
2X + Y = 1

2X − 2Y = 2

Next we will subtract the first equation from the second equation to eliminate the
second “X”:

(1.3)
2X + Y = 1

−3Y = 1

Now we see that y := −1/3 is the only value for Y which works. Plugging this into
the top equation yields:

2X − 1/3 = 1 and thus X = 2/3.

Thus x := 2/3 is the only value for X that works. We conclude that (x, y) =
(2/3,−1/3) is the only solution to (1.1). �

We call this the naive method because it relies on observations and ad hoc com-
putations. We include it here mainly to jog your memory of how you might have
previously learned to solve systems of equations. However, this method quickly
becomes burdensome when you consider more variables and more equations. In the

1
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rest of this section, we will introduce the correct method you should use to solve
these systems. At this point we make the following declaration:

You should never again use the naive method

to solve a system of equations.

Instead you should commit to learning and using the method introduced below.
Before we proceed, we will make a few more definitions:

Definition 1.1.1. A system of equations (with m equations and n vari-
ables) is a system

(1.4)

a11X1 + a12X2 + · · ·+ a1nXn = b1

a21X1 + a22X2 + · · ·+ a2nXn = b2

...

am1X1 + am2X2 + · · ·+ amnXn = bm

where bi, aij ∈ R for every i = 1, . . . ,m and j = 1, . . . , n. A solution to the
system (1.4) is an n-tuple (x1, x2, . . . , xn) of real numbers such that when you plug
xi in for Xi (for each i = 1, . . . , n), each equation is true.

Example 1.1.2. The following system has 3 equations and 4 variables:

X1 + 2X2 − 3X3 +X4 = 6

2X1 +X2 − 2X3 −X4 = 4

6X2 + 4X3 −X4 = 4

and it is easy to check that (1/3, 4/3,−1, 0) is a solution (although there are other
solutions as well).

In general the goal will be to find all solutions to a system of equations, not just
one single solution.

Augmented matrices. Recall that in our solution to the system (1.1) above
we first had the system

2X + 1Y = 1

2X −2Y = 2

which then we transformed into the system

(1.5)
2X + 1Y = 1

0X −1Y = 1.

Note also that every symbol colored in red has nothing to do with the specific
numbers; the presence and locations of “X”, “Y ” and “=” is always guaranteed
to be exactly the same each time we transform the system. The only thing that
matters for each system is what coefficients are in which spot.

This brings us to the first major innovation linear algebra has to offer us for systems
of equations: augmented matrices. An augmented matrix for a system of m
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equations in n variables (such as (1.4) above) is a rectangular array with m rows
and n+ 1 columns which stores all the coefficients of the system:

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


Example 1.1.3. For example, the system

3a+ 4b+ c = 2

a− 5c = 3

has corresponding augmented matrix[
3 4 1 2
1 0 −5 3

]
In other words an augmented matrix is nothing more than a compact storage device
for an entire system of equations. Whenever you see a system of equations, you
should also picture it’s augmented matrix, and vice versa.

Henceforth, we will primarily use augmented matrices

for writing systems of equations.

Now we return to the main order of business which is to efficiently solve systems
of equations (i.e., determine all solutions). Basically, we will learn how to play
a game. The game is called Gaussian Elimination. The rules of the game are
roughly as follows:

(I) There are three legal moves (so-called elementary row operations) which we
can use to transform one augmented matrix into the next augmented matrix.

(II) When starting out, the first1 goal is to transform your matrix into Row
Echelon Form.

(III) After getting to Row Echelon Form, the next goal is to continue to transform
your matrix into Reduced Row Echelon Form.

(IV) Once the matrix is in Reduced Row Echelon Form, it is very easy to read off
all solutions to the original system.

We will study these four things separately in the remainder of this section.

Row operations. Suppose we have an augmented matrix
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


The following elementary row operations are the only ways we are allowed to
transform this augmented matrix:

(1) (Row switching) A row in the matrix can be switched with another row
in the matrix. Notation: Ri ↔ Rj

1In some linear algebra books and classes, this step is skipped and the goal is to go directly
to reduced row echelon form in (III). It’s fine if you do it that way, although in general it will take

the same amount of work and effort.
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(2) (Row multiplicaton) A row can be multiplied by a non-zero constant. No-
tation: αRi → Ri

(3) (Row addition) A row can be replaced with the sum of that row and a
multiple of another row. Notation: Ri + αRj → Ri.

Here is an example of a sequence of three applications of elementary row operations:[
0 1 1 2
2 4 4 3

]
R1↔R2−−−−−→

[
2 4 4 3
0 1 1 2

]
(row switch row 1 and row 2)

1
2R1→R1−−−−−−→

[
1 2 2 3/2
0 1 1 2

]
(multiply row 1 by 1/2)

R1−2R2→R1−−−−−−−−→
[
1 0 0 −5/2
0 1 1 2

]
(add −2 times row 2 to row 1)

Question 1.1.4. Why are these the only operations allowed?

Proof. These row operations have the property that they are reversible. This
means that the set of solutions remains the same in each augmented matrix. Note
that if we allowed “multiplication by 0” to be a row operation, then this would
have the effect of deleting information in the system and it might introduce addi-
tional solutions which are not solutions of the original system (which would be very
undesirable). �

Below we will explain how to use these row operations to achieve our objective of
solving the original system of equations.

Row echelon form (REF). We will illustrate the entire process with the
following example which we will occasionally check back in with:

Example 1.1.5. Find all solutions to the system

(1.6)

3X1 + 6X2 + 6X3 = 24

−6X1 − 12X2 − 12X3 = −48

6X1 + 12X2 + 10X3 = 42

Solution to Example 1.1.5, Part I. The first step is to rewrite the system (1.6)
as an augmented matrix:  3 6 6 24

−6 −12 −12 −48
6 12 10 42

 �

Now we need to know how are we supposed to transform our augmented matrix
using the three elementary row operations. First objective is to transform our
augmented matrix into row echelon form:

Definition 1.1.6. An augmented matrix is in row echelon form (REF) if

(1) every row with nonzero entries is above every row with all zeroes (if there
are any), and

(2) the leading coefficient of a nonzero row (i.e., the leftmost nonzero entry
of that row) is to the right of the leading coefficient of the row above it.
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Example 1.1.7. The following augmented matrices are in REF (with the leading
coefficients underlined):

[
4 3 1
0 1 2

] [
0 3 1 8

] 
1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 0

 [
2 3 0 0
0 0 1 0

] [
0 0 2
0 0 0

]

The following augmented matrices are not in REF:[
0 0 0
0 1 1

] 1 0 0 1
0 0 1 2
0 1 0 3

 0 1 0
0 0 0
1 0 0


Solution to Example 1.1.5, Part II. Our augmented matrix is not in row ech-
elon form. In particular, the leading coefficients of the second and third row are
directly below the leading coefficient of the first row, which is not allowed: 3 6 6 24

−6 −12 −12 −48
6 12 10 42


To fix this, we need to use row addition with the first row to turn the leading −6
and 6 of the second and third row into a zero: 3 6 6 24

−6 −12 −12 −48
6 12 10 42

 R2+2R1→R2−−−−−−−−→

3 6 6 24
0 0 0 0
6 12 10 42


R3−2R1→R3−−−−−−−−→

3 6 6 24
0 0 0 0
0 0 −2 −6


We are still not in row echelon form since we have a row of all zeros above a row
with nonzero entries: 3 6 6 24

0 0 0 0
0 0 −2 −6


To remedy this, we will switch rows 2 and 3:

R2↔R3−−−−−→

3 6 6 24
0 0 −2 −6
0 0 0 0


We are now in row echelon form and we are done this step. �

Once our augmented matrix is in row echelon form, we can make the following
definition:

Definition 1.1.8. Given an augmented in REF, a pivot is a leading coefficient in
a nonzero row.

For instance, the augmented matrix we arrived at in Example 1.1.5 has two pivots,

which we indicate in boxes :  3 6 6 24

0 0 −2 −6

0 0 0 0
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Pivots play an important role in Gaussian Elimination. The next step is to take
our augmented matrix a little bit further to reduced row echelon form.

Reduced row echelon form (RREF). The ultimate goal is to get our aug-
mented matrix into reduced row echelon form:

Definition 1.1.9. An augmented matrix is in reduced row echelon form (RREF)
if

(1) it is in row echelon form (REF),
(2) every pivot is 1, and
(3) every entry above a pivot is 0.

Example 1.1.10. The following augmented matrices are in RREF:

[
0 1 0

]  1 2 0 0

0 0 1 0

0 0 0 1

 [
1 0 0

0 1 5

]

The following matrices are in REF but not RREF:[
4 3 1

0 1 2

] [
0 3 1 8

] [
2 3 0 0

0 0 1 0

]
We now continue on with our main example:

Solution to Example 1.1.5, Part III. We see that the augmented matrix we
left off with is not in RREF, only REF. This is because the pivots are 3 and −2,
not 1 and 1, and also the underlined 6 should be a 0: 3 6 6 24

0 0 −2 −6

0 0 0 0


To remedy this, we use row multiplication to fix the pivot values, and then row
addition to get rid of the 6:

1
3R1→R1−−−−−−→

1 2 2 8
0 0 −2 −6
0 0 0 0


− 1

2R2→R2−−−−−−−→

1 2 2 8
0 0 1 3
0 0 0 0


R1−2R2→R1−−−−−−−−→

1 2 0 2
0 0 1 3
0 0 0 0



Finally we arrive at RREF. �

Once our augmented matrix is in RREF, it is easy to read off all solutions of the
original system.
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Getting the final answer from RREF. We will describe how to get the
final answer from RREF first in terms of our main example:

Solution to Example 1.1.5, Part IV. First recall that the first three columns
correspond to the three variables X1, X2, and X3:


X1 X2 X3

1 2 0 2

0 0 1 3
0 0 0 0


Since X1 and X3 have pivots in their columns, X1 and X3 are called pivot vari-
ables and the first and third columns are called pivot columns. Since X2 does
not have a pivot, it is called a free variable and the second column is called a free
column. Now we read off the solutions using the following steps:

(1) Each free variable is can be any arbitrary value. In this case, we will say
that X2 = s, where s ∈ R is any number we like.

(2) Next we rewrite the augmented matrix as a system and solve for the pivot
variables:

X1 + 2X2 = 2

X3 = 3

0 = 0

which simplifies to:

X1 = 2− 2s

X3 = 3.

We now have our final answer: every solution is of the form:

X1 = 2− 2s

X2 = s

X3 = 3,

where s ∈ R can be any number. We write the set of all solutions as
follows: {

(2− 2s, s, 3) : s ∈ R
}

This way of describing the set of solutions is often called parametric
form because it describes the solutions in terms of the free parameter s.
Notice that there are infinitely many solutions, since there are infinitely
many values of s. To get specific solutions, you can just choose values of
s. For instance, s := 0 yields the solution (2, 0, 3), whereas s := 10 yields
the solution (−18, 10, 3). �

Example 1.1.11. In this example we will see what to do with 2 free variables.
Suppose we are given some system which has the following RREF:


X1 X2 X3 X4

0 1 2 0 7

0 0 0 1 8
0 0 0 0 0
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Then we have two free variables X1 and X3, so we need to introduce two parameters
s, t ∈ R and set X1 = s and X3 = t. Then the system becomes:

X2 + 2X3 = 7

X4 = 8

and so the general solution is:

X1 = s

X2 = −2t+ 7

X3 = t

X4 = 8

where s, t ∈ R are arbitrary. We can write the set of solutions in parametric form
as follows: {

(s,−2t+ 7, t, 8) : s, t ∈ R
}

Note that to get a specific solution, we are free to choose any s and any t we like.
For instance, s = 1, t = 0 gives the solution (1, 7, 0, 8) whereas s = 0, t = 1 gives
the solution (0, 5, 1, 8).

Example 1.1.12. We will give an example of a system with no solutions. Suppose
we are given a system with the following RREF:

[ X1 X2

1 2 0

0 0 1

]
Converting this augmented matrix back to a system of equations yields:

1X1 + 2X2 = 0

0X1 + 0X2 = 1

We claim there cannot be any solutions. Indeed, if say (x1, x2) is a solution, then
this would mean it satisfies both equations, in particular, the bottom equation.
Then 0x1 + 0x2 = 1, i.e., 0 = 1. However this is always false.

We conclude this section with some more terminology and some general facts:

Definition 1.1.13. We say that a system of equations is consistent if it has at
least one solution, and we say a system of equations is inconsistent if it does not
have any solutions.

Fact 1.1.14. Given a system of equations, exactly one of the following three things
will happen:

(1) The system has zero solutions (i.e., it is inconsistent). This happens when
the RREF contains a row of the form[

0 · · · 0 1
]

because this corresponds to the equation 0 = 1 which can never be true.
(2) The system has exactly one solution. This happens when the system is

consistent and there are no free variables in the RREF.
(3) The system has infinitely many solutions. This happens when the system

is consistent and there is at least one free variable in the RREF.



1.1. SYSTEMS OF EQUATIONS 9

In fact, all 3 of the above cases can be determined once you’re in REF. If you only
care about how many solutions there are (and not what exactly they are), then you
can just stop once you get to REF. This is one of the benefits of going through the
REF on your way to RREF.

Here are some cardinal rules to always follow:

(1) Always recopy the entire augmented matrix in each step, even if you are
copying a row of zeros. It is important that the size of the augmented
matrix (3× 4 in our example) does not change.

(2) Always denote which row operation you are performing in each step.
(3) Always do one row operation at a time, at least when you are starting

out. If you attempt to do multiple row operations in one step then this
can lead to errors.

Remark 1.1.15. Given a system of equations, we take it to RREF and obtain the
set of solutions for the original system we started out with. However, this is actually
the set of solutions for every system we encountered along the way. This is because
the RREF of the original system also works as the RREF for every intermediate
system.

Geometric interpretation. When you are solving systems of equations, it is
good to keep in mind the underlying geometric interpretation. Recall that a linear
equation in two variables:

2x+ 3y = 1

can also be viewed as an equation for a line in the plane (y = − 2
3x + 1

3 ). Thus, a
system of linear equations:

2x+ 3y = 1

5x+ 7y = 2

x+ y = 3

is really asking us to find all points (x, y) in the plane which are part of all three lines,
i.e., we want to know where do these three lines intersect, if at all. If we are consider
three variables, then we are asking where do multiple planes simultaneously inter-
sect, if at all. For more than 3 variables, we are asking where do higher-dimensional
hyper-planes intersect in higher-dimensional euclidean space (something difficult to
visualize).

In Figure 1.1, we consider five systems of equations, where each one has two vari-
ables and three equations. You can see that there are different ways that the cases
no solutions, exactly one solution, and infinitely many solutions can arise.
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(a) Unique solution (b) Infinitely many solutions

(c) No solutions (d) No solutions

(e) No solutions

Figure 1.1. Possible intersections of three lines in a plane

Some specifics about terminology. In this section, we have only been work-
ing with augmented matrices, for instance

(1.7)

[
1 2 3
4 5 6

]
An augmented matrix is just a special example of a matrix with a vertical bar
which superficially separates the columns. A matrix (with m rows and n columns)
is a rectangular array of numbers:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn
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For instance, the augmented matrix (1.7) is considered a 2 × 3 matrix. When
discussing an augmented matrix, we will always consider every column as part of
the augmented matrix. If we want to refer only to the entries to the left of the
vertical bar: [

1 2
4 5

]
this will be referred to as the coefficient matrix (of the linear system).

Definition 1.1.16. Here are some precise definitions summarized:

(1) Given a matrix, a leading entry of a row is the leftmost nonzero entry (if
there is one). In the following matrices, we underline the leading entries:2 3 0

0 2 1
1 0 2

 [
1 2 0
0 0 1

]
(2) If a matrix is in REF, then the leading entries are also called pivots. The

following matrices are in REF and the pivots are in boxes:
2 3 5 4

0 0 7 1

0 0 0 2
0 0 0 0




0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0


(3) If a matrix is not in REF, then we choose not to define what a pivot

is. In this class we will only discuss “pivots” in the context of Gaussian
Elimination and only allow ourselves to refer to “the pivots of a matrix”
if we know the matrix is already in REF. For all matrices, the expression
“leading entry” will always make sense, regardless of whether the matrix
is in REF or not.

(4) We define the rank of a matrix to be the number of pivots any REF of
that matrix has (it will be the same number even though there could be
many different REFs).

Question 1.1.17. Why are we reluctant to call leading coefficients in a non-REF
matrix “pivots”?

Answer 1.1.18. In general, a pivot (noun) is something that you pivot (verb)
around. Given a nonzero entry of a matrix, to pivot around that entry means
to use elementary row operations to turn that entry into a 1 and then use it to
turn the other entries in that column into 0. In the following example, we pivot
around the boxed entry (for no particular reason other than to show an example of
“pivoting”): 1 1 1

2 2 2
3 3 3

 1
2R2→R2−−−−−−→

1 1 1

1 1 1
3 3 3

 R1−R2→R1−−−−−−−−→

0 0 0

1 1 1
3 3 3

 R3−3R1→R3−−−−−−−−→

0 0 0

1 1 1
0 0 0
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Since this is what “pivoting” means, we define pivots so that in Gaussian Elimina-
tion we are essentially pivoting around the pivots. We do not pivot around the lead-
ing entries which are not pivots. Furthermore, there are other algorithms in linear
algebra besides Gaussian Elimination (for instance, the Simplex Algorithm2) where
you pivot around entries which are not leading coefficients. Thus, you shouldn’t
get too attached to the idea “pivot means leading entry”.

Given the above discussion, we can now recast some of the above facts in more
detail:

Fact 1.1.19. Suppose we are considering a system of equations which has aug-
mented matrix: 

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


and coefficient matrix: 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


(1) The following are equivalent:

(a) the system has no solutions,
(b) the system is inconsistent,
(c) an REF of the augmented matrix has a row of the form[

0 · · · 0 6= 0
]
,

(d) the RREF of the augmented matrix has a row of the form[
0 · · · 0 1

]
,

(e) an REF of the augmented matrix has a pivot in the last column,
(f) the RREF of the augmented matrix has a pivot in the last column,
(g) the rank of the coefficient matrix is not equal to the rank of the entire

augmented matrix.
(2) Suppose the system is consistent. Then the following are equivalent:

(a) the system has exactly one solution,
(b) every variable is a pivot variable,
(c) there are no free variables,
(d) the rank of the augmented matrix is equal to the number of columns

in the coefficient matrix (= number of variables).
(3) Suppose the system is consistent. Then the following are equivalent:

(a) the system has infinitely many solutions,
(b) at least one variable is a free variable,
(c) the rank of the augmented matrix is less than the number of columns

in the coefficient matrix (i.e., less than the number of variables).

2https://en.wikipedia.org/wiki/Simplex_algorithm

https://en.wikipedia.org/wiki/Simplex_algorithm
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1.2. Application: partial fractions

In this section, we revisit the powerful method of partial fractions, viewed as an
application of linear systems.

Case I: distinct linear factors. Suppose we want to integrate the rational
function:

3x+ 4

x3 − 3x2 + 2x

To do this, we must first factor the denominator polynomial: x3 − 3x2 + 2x =
(x− 0)(x− 1)(x− 2). Since there are no (strictly) complex roots, this polynomial
factors into linear factors (with real roots). Also, for this polynomial, every linear
factor is distinct (occurs with multiplicity one). Thus, the general form of the
partial fraction decomposition is:

3x+ 4

x(x− 1)(x− 2)
=

A

x
+

B

x− 1
+

C

x− 2
,

where A,B,C ∈ R are three unknown real numbers we need to solve for. Clearing
denominators yields:

3x+ 4 = A(x− 1)(x− 2) +Bx(x− 2) + C(x− 1)(x− 2)

This equality is to be interpreted as: for every possible real number x ∈ R, when
you plug x into both the lefthand side and the righthand side, you should get a true
equality of two numbers. We will use this observation and plug in three carefully
chosen numbers to see what they give us:

• (x = 0) In this case, the equation becomes 4 = 2A
• (x = 1) In this case, the equation becomes 7 = −B
• (x = 2) In this case, the equation becomes 10 = 2C

Thus, we have arrived at a (easy) system of equations:

2A = 4

−B = 7

2C = 10.

We can solve this system using Gaussian Elimination:2 0 0 4
0 −1 0 7
0 0 2 10

 1
2R1→R1,−R2→R2,

1
2R3→R3−−−−−−−−−−−−−−−−−−−→

1 0 0 2
0 1 0 −7
0 0 1 5


This gives us the unique solution (A,B,C) = (2,−7, 5). We conclude that

3x+ 4

x3 − 3x2 + 2x
=

2

x
− 7

x− 1
+

5

x− 2

is our desired partial fraction decomposition. The rational function can now be
integrated using the logarithm.
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Case II: repeated linear factors. Suppose now we wish to decompose

5x3 + 6x2 + 7x+ 8

x4 − 2x3 + x2

We are able to factor the denominator as x4 − 2x3 + x2 = x2(x− 1)2. We see that
there are two linear factors, each one with multiplicity two. Thus the general form
of the partial fraction decomposition is

5x3 + 6x2 + 7x+ 8

x2(x− 1)2
=

A

x
+
B

x2
+

C

x− 1
+

D

(x− 1)2

where A,B,C,D ∈ R are four unknown real numbers we need to solve for (the rule
is, for each multiplicity of a linear factor, you get another term in the expansion
and another variable). First we cross-multiply so that we have an equality of
polynomials, then we rewrite the righthand side as a single polynomial:

5x3 + 6x2 + 7x+ 8 = Ax(x− 1)2 +B(x− 1)2 + Cx2(x− 1) +Dx2

= A(x3 − 2x2 + x) +B(x2 − 2x+ 1) + C(x3 − x2) +Dx2

= (A+ C)x3 + (−2A+B − C +D)x2 + (A− 2B)x+B.

Next, we use the important observation that two polynomials are the same if and
only if they have the same degree and the corresponding coefficients are the same.
Thus the above equality of polynomials yields the system:

A+ C = 5

−2A+B − C +D = 6

A− 2B = 7

B = 8.

We can now solve the system using Gaussian Elimination:
1 0 1 0 5
−2 1 −1 1 6
1 −2 0 0 7
0 1 0 0 8

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→


1 0 0 0 23
0 1 0 0 8
0 0 1 0 −18
0 0 0 1 26


We find that the unique solution is (A,B,C,D) = (23, 8,−18, 26). Thus the desired
partial fraction decomposition is

5x3 + 6x2 + 7x+ 8

x4 − 2x3 + x2
=

23

x
+

8

x2
− 18

x− 1
+

26

(x− 1)2

Case III: irreducible quadratic factors. Technically speaking, if you are
comfortable working with complex numbers and complex-valued functions, then
you only ever have to consider factorizations of the denominator into linear factors.
However, for various reasons it is convenient to have a method of partial fraction
decomposition which does not require us to ever leave the realm of real numbers.
For instance, for the following rational function

10x2 + 11x+ 12

(x2 + 1)(x+ 1)

we could factor the denominator into linear factors

(x2 + 1)(x+ 1) = (x+ i)(x− i)(x+ 1),
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and then proceed as in Case I (which we’ll do below just to prove a point). However,
we can just as easily keep the quadratic factor x2 + 1 as is in our computation.
Since in general the number of unknowns in a partial fraction decomposition must
be equal to the degree of the denominator polynomial, the quadratic factor has to
contribute two unknowns to the general form:

10x2 + 11x+ 12

(x2 + 1)(x+ 1)
=

Ax+B

x2 + 1
+

C

x+ 1

We now proceed as in Case II by clearing denominators and getting an equality of
two polynomials:

10x2 + 11x+ 12 = (Ax+B)(x+ 1) + C(x2 + 1)

= (A+ C)x2 + (A+B)x+ (B + C)

This gives us a system of equations:

A+ C = 10

A+B = 11

B + C = 12

which we can solve using Gaussian Elimination1 0 1 10
1 1 0 11
0 1 1 12

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→

1 0 0 9/2
0 1 0 13/2
0 0 1 11/2


This gives us the desired partial fraction expansion:

10x2 + 11x+ 12

(x2 + 1)(x+ 1)
=

9x+ 13

2(x2 + 1)
+

11

2(x+ 1)

We can check our work by re-doing the decomposition with complex numbers:

10x2 + 11x+ 12

(x+ i)(x− i)(x+ 1)
=

A

x+ i
+

B

x− i
+

C

x+ 1

Cross-multiplying yields

10x2 + 11x+ 12 = A(x− i)(x+ 1) +B(x+ i)(x+ 1) + C(x− i)(x+ i)

Now we plug in the three denominator roots to get linear equations for the un-
knowns:

• (x = −i) In this case, the equation becomes 2− 11i = (−2− 2i)A
• (x = i) In this case, the equation becomes 2 + 11i = (−2 + 2i)B
• (x = −1) In this case, the equation becomes 11 = 2C

This yields the system:

(−2− 2i)A = 2− 11i

(−2 + 2i)B = 2 + 11i

2C = 11

which we can solve with Gaussian Elimination:−2− 2i 0 0 2− 11i
0 −2 + 2i 0 2 + 11i
0 0 2 11

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→

1 0 0 (9 + 13i)/4
0 1 0 (9− 13i)/4
0 0 1 11/2
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This yields the desired partial fraction decomposition:

10x2 + 11x+ 12

(x+ i)(x− i)(x+ 1)
=

9 + 13i

4(x+ i)
+

9− 13i

4(x− i)
+

11

2(x+ 1)

Finally, to pull this decomposition back into the realm of real numbers, we add
the first two fractions together (since those two correspond to a conjugate pair of
roots):

13− 9i

4(x+ i)
+

9− 13i

4(x− i)
+

11

2(x+ 1)
=

(9 + 13i)(x− i) + (9− 13i)(x+ i)

4(x+ i)(x− i)
+

11

2(x+ 1)

=
9x+ 13

2(x2 + 1)
+

11

2(x+ 1)

This shows that working with complex numbers gives the same decomposition.

Case IV: repeated quadratic factors. Finally, we arrive at perhaps the
most involved case: repeated quadratic factors. However, the method here is really
just the same as the methods in Cases II and III provided you know the rule for
the general form. Here is an example:

6x3 + 7x2 + 8x+ 9

(x2 + x+ 1)2

Since the quadratic factor x2 +x+ 1 has multiplicity two, it has two show up twice
in the decomposition. Since the total number of unknowns needs to be four (=
degree of denominator polynomial), each occurrence of the quadratic factor has to
have two unknowns:

6x3 + 7x2 + 8x+ 9

(x2 + x+ 1)2
=

Ax+B

x2 + x+ 1
+

Cx+D

(x2 + x+ 1)2

Just as before, we cross-multiply and get an equality of polynomials:

6x3 + 7x2 + 8x+ 9 = (Ax+B)(x2 + x+ 1) + Cx+D

= Ax3 + (A+B)x2 + (A+B + C)x+ (B +D)

Equating the two polynomials gives us the system of equations:

A = 6

A+B = 7

A+B + C = 8

B +D = 9

which we can solve using Gaussian Elimination:
1 0 0 0 6
1 1 0 0 7
1 1 1 0 8
0 1 0 1 9

 to RREF (steps omitted)−−−−−−−−−−−−−−−−→


1 0 0 0 6
0 1 0 0 1
0 0 1 0 1
0 0 0 1 8


This gives us the desired partial fraction decomposition:

6x3 + 7x2 + 8x+ 9

(x2 + x+ 1)2
=

6x+ 1

x2 + x+ 1
+

x+ 8

(x2 + x+ 1)2



CHAPTER 2

Calculus review

In this section we will summarize all the important definitions and results from
calculus. In general we will state these results for arbitrary nice functions, for
summary of calculus results pertaining to special elementary functions, see Appen-
dix A. First, some terminology which will simplify some things. Given the set of
real numbers R, we artificially adjoin two new symbols +∞ and −∞ to serve as
convenient bookends of the ordering. More specifically:

Definition 2.0.1. Define the extended real numbers to be the set R±∞ :=
R ∪ {−∞,+∞}. We extend the ordering on R to all of R±∞ by declaring:

−∞ ≤ a ≤ +∞ for every a ∈ R±∞.

Unless we state otherwise, we do not extend the arithmetic operations +, · on R
to include ±∞. It is important to realize the new elements ±∞ are not numbers
and there is not supposed to be anything super deep or special about adjoining
±∞ to our real line. We primarily introduce it because it makes certain commonly
occurring statements and expressions shorter.

For instance, we can define bounded intervals and unbounded intervals with uniform
notation. Given a, b ∈ R such that a < b, an interval is a set of one of the following
forms:

(a, b) := {x ∈ R : a < x < b}
[a, b) := {x ∈ R : a ≤ x < b}
(a, b] := {x ∈ R : a < x ≤ b}
[a, b] := {x ∈ R : a ≤ x ≤ b}

(a,+∞) := {x ∈ R : a < x}
[a,+∞) := {x ∈ R : a ≤ x}
(−∞, b) := {x ∈ R : x < b}
(−∞, b] := {x ∈ R : x ≤ b}

(−∞,+∞) := R

Intervals of the form (a, b), [a, b), (a, b], [a, b] are called bounded intervals. In-
tervals of the form (a,+∞), [a,+∞), (−∞, b), (−∞, b], (−∞,+∞) are called un-
bounded intervals. Intervals of the form (a, b), (a,+∞), (−∞, b), (−∞,+∞) are
call open intervals. Intervals of the form [a, b], [a,+∞), (−∞, b], (−∞,+∞) are
called closed intervals.

Of course, intervals are not the only types of subsets of R which naturally arise
in this class. For instance, the natural domain of the tangent function is not an

17
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interval, but instead a union of intervals:

domain(tan t) = {t ∈ R : t 6= π/2 + πk for every k ∈ Z}

=
⋃
k∈Z

(π
2

+ πk,
π

2
+ π(k + 1)

)
In order to avoid too many technicalities, we will consider a subset D ⊆ R to be
nice if can show up as the true domain of some function one would encounter in
freshman calculus. To be specific:

Definition 2.0.2. We call a set D ⊆ R nice if it is an interval or a union of a
sequence of intervals, i.e., if there exists a sequence of intervals I0, I1, I2, . . . such
that

D =
⋃
n≥0

In

In general we will always restrict our attention to functions with nice domains, with
the domain of the tangent function being representative of the worst type of nice
domain. If you find the definition of nice too technical, then surprisingly very little
is lost if you just interpret the adjective nice in the colloquial sense. Really, these
things won’t matter too much for this class (since you’re being graded primarily on
learning how to do calculations), but we introduce this terminology anyway so that
way in these notes we can still restrict ourselves to making statements which are
literally true in a mathematical sense, without being overly abstract and technical.

In the exposition we will occasionally refer to elementary functions. We don’t
mean anything too precise by this, although you can take the following as a rough
definition:

Rough Definition 2.0.3. An elementary function f : D → R is any function
constructed from the following operations:

(1) arithmetic operations: +,−, ·, /
(2) algebraic operations such as taking nth roots
(3) composition of functions
(4) the exponential exp : R→ R and logarithm ln : [0,+∞)→ R,
(5) the trigonometric functions sin, cos, tan
(6) the inverse trigonometric functions arcsin, arccos, arctan

In other words, an elementary function is the type of function which shows up in
freshman calculus.

2.1. Limits

In this section D is a nice set. We will review the definition and rules for computing
limits. Recall that sometimes, even if a function f : (a, b) → R is defined on an
open interval (a, b), it sometimes still makes sense to ask what is the limit of f(x)
as x → a, i.e., limx→a f(x), even though f is not defined at a. This makes sense
because a is an endpoint of (a, b), so there are points in (a, b) which are arbitrarily
closed to a. In general we will consider functions f : D → R where the domain D
is a nice set. Before we define limit, it first makes sense to define what is the set of
all points which it might make sense to take the limit to.
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Definition 2.1.1. Define the closure of D to be the slightly larger set cl(D) ⊇ D
defined such that for every α ∈ R±∞, we say that α ∈ cl(D) if there exists x ∈ R
such that either:

(1) x < α and (x, α) ⊆ D, or
(2) α < x and (α, x) ⊆ D.

In particular, if α ∈ D, then α ∈ cl(D). In other words, cl(D) is the same thing as
D plus all the endpoints of the intervals which define D. For example:

cl
(
(1, 2]

)
= [1, 2]

cl
(
(−1, 0) ∪ (0, 1]

)
= [−1, 1]

cl
(

domain(tan t)
)

= R

We can now define in one definition every type of limit of a function encountered
in freshman calculus:

Definition 2.1.2. Suppose f : D → R is a function with nice domain D. Suppose
α ∈ cl(D) and L ∈ R±∞. We say the limit of f as x approaches α exists and is
equal to L, notation:

lim
x→α

f(x) = L

if one of the following is satisfied (depending on whether α,L = ±∞ or not):

(1) (α,L ∈ R) for every ε > 0, there exists δ > 0 such that for all x ∈ D, if
0 < |x− α| < δ, then

∣∣f(x)− L
∣∣ < ε.

(2) (α = +∞, L ∈ R) for every ε > 0, there exists M ∈ R such that for all
x ∈ D, if M < x, then

∣∣f(x)− L
∣∣ < ε.

(3) (α = −∞, L ∈ R) for every ε > 0, there exists M ∈ R such that for all
x ∈ D, if x < M , then

∣∣f(x)− L
∣∣ < ε.

(4) (α ∈ R, L = +∞) for every M ∈ R, there exists δ > 0 such that for all
x ∈ D, if 0 < |x− α| < δ, then M < f(x).

(5) (α = L = +∞) for every M ∈ R, there exists N ∈ R such that for all
x ∈ D, if N < x, then M < f(x).

(6) (α = −∞, L = +∞) for every M ∈ R, there exists N ∈ R such that for
all x ∈ D, if x < N , then M < f(x).

(7) (α ∈ R, L = −∞) for every M ∈ R, there exists δ > 0 such that for all
x ∈ D, if 0 < |x− α| < δ, then f(x) < M .

(8) (α = +∞, L = −∞) for every M ∈ R, there exists N ∈ R such that for
all x ∈ D, if N < x, then f(x) < M .

(9) (α = L = −∞) for every M ∈ R, there exists N ∈ R such that for all
x ∈ D, if x < N , then f(x) < M .

In general, for this class if and when we compute limits, we will not use directly
Definition 2.1.2. Instead we will use known formulas for limits of special functions
(see Appendix A) along with various limit laws, including facts about continuity.

Here is the general limit law for sums of limits:

Addition Limit Law 2.1.3. Suppose f, g : D → R are functions where D is a
nice domain. Further suppose α ∈ cl(D) and the limits

lim
x→α

f(x) = Lf and lim
x→α

g(x) = Lg

exist with Lf , Lg ∈ R±∞. Then:
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(1) if Lf , Lg ∈ R, then

lim
x→α

(f + g)(x) = Lf + Lg

(2) if Lf = +∞ and Lg 6= −∞, or Lg = +∞ and Lf 6= −∞, then

lim
x→α

(f + g)(x) = +∞

(3) if Lf = −∞ and Lg 6= +∞, or Lg = −∞ and Lf 6= +∞, then

lim
x→α

(f + g)(x) = −∞

(4) if Lf = +∞ and Lg = −∞, or Lf = −∞ and Lg = +∞, then more subtle
investigation is needed (l’Hôpital’s rule).

Here is the general limit law for products of limits:

Product Limit Law 2.1.4. Suppose f, g : D → R are functions where D is a nice
domain. Further suppose α ∈ cl(D) and the limits

lim
x→α

f(x) = Lf and lim
x→α

g(x) = Lg

exist with Lf , Lg ∈ R±∞. Then:

(1) if Lf , Lg ∈ R, then

lim
x→α

(f · g)(x) = Lf · Lg

(2) if one of the following is true:
(a) Lf = +∞ and Lg > 0
(b) Lf = −∞ and Lg < 0
(c) Lf < 0 and Lg = −∞
(d) Lf > 0 and Lg = +∞

then
lim
x→α

(f · g)(x) = +∞

(3) if one of the following is true:
(a) Lf = −∞ and Lg > 0
(b) Lf = +∞ and Lg < 0
(c) Lf < 0 and Lg = +∞
(d) Lf > 0 and Lg = −∞

then
lim
x→α

(f · g)(x) = −∞

(4) if one of the following is true:
(a) Lf = 0 and Lg = ±∞
(b) Lf = ±∞ and Lg = 0,

then more subtle investigation is needed (l’Hôpital’s rule).

Finally, here is the general limit law for quotients of functions:

Quotient Limit Law 2.1.5. Suppose f, g : D → R are functions where D is a
nice domain. Define the set:

D′ :=
{
x ∈ D : g(x) 6= 0

}
⊆ R.

Assume that D′ is also nice (for us it always will be) and suppose for α ∈ cl(D′) ⊆
cl(D) the limits

lim
x→α

f(x) = Lf and lim
x→α

g(x) = Lg
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exist with Lf , Lg ∈ R±∞. Then for the quotient function:

f

g
: D′ → R

we have:

(1) if Lf ∈ R, and Lg ∈ R and Lg 6= 0, we have

lim
x∈α

(
f

g

)
(x) =

Lf
Lg

(2) if Lf 6= ±∞ and Lg = ±∞, we have

lim
x∈α

(
f

g

)
(x) = 0

(3) if Lf = +∞ and Lg > 0, or Lf = −∞ and Lg < 0, then

lim
x∈α

(
f

g

)
(x) = +∞

(4) if Lf = +∞ and Lg < 0, or Lf = −∞ and Lg > 0, then

lim
x∈α

(
f

g

)
(x) = +∞

(5) otherwise a more subtle investigation is needed (l’Hôpital’s rule).

Multivariable functions. We will also need to occasionally consider func-
tions with multiple variables:

F (t, y) where F : D → R D ⊆ R2 is a subset of the ty-plane

We will not attempt to define what a “nice” subset D of the plane is, although
most of our domains will be of the form D = I × J , where I and J are intervals
(such a set could be a called a rectangle). Ultimately, we will not be in the
business of computing limits of multivariable functions in this class, although here
is a definition anyway:

Definition 2.1.6. Suppose F : D → R is a two-variable function with domain
D ⊆ R2 a nice subset of the ty-plane (think D = I × J , a rectangle). Given a real
number L ∈ R and a point (t0, y0) ∈ D, we say that L is the limit of F as (t, y)
approaches (t0, y0), notation:

lim
(t,y)→(t0,y0)

F (t, y) = L

if: for every ε > 0, there exists δ > 0, such that for every (t, y) ∈ D,

if 0 <
√

(t− t0)2 + (y − y0)2 < δ, then
∣∣F (t, y)− L

∣∣ < ε.

Even if we were computing multivariable limits in this class, we would rarely use
Definition 2.1.6 directly and instead rely on limit laws and facts about continuity.

Limit Laws for Multivariable Functions 2.1.7. Suppose F,G : D → R are
two two-variable functions defined on a nice domain and suppose (t0, y0) ∈ D.
Furthermore, suppose LF , LG ∈ R are such that

lim
(t,y)→(t0,y0)

F (t, y) = LF and lim
(t,y)→(t0,y0)

G(t, y) = LG.

Then:
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(1) lim(t,y)→(t0,y0)(F +G)(t, y) = LF + LG,
(2) lim(t,y)→(t0,y0)(F ·G)(t, y) = LF · LG.

Furthermore, define

D′ :=
{

(t, y) ∈ D : G(t, y) 6= 0
}

then, if (t0, y0) ∈ D′ and LG 6= 0, we also have:

(3) lim(t,y)→(t0,y0)(F/G)(t, y) = LF /LG.

2.2. Continuity

The most basic property we might wish for a function f : D → R to have is that it
is continuous. Here is the definition:

Definition 2.2.1. Suppose f : D → R is a function with nice domain D ⊆ R. We
say that f is continuous if for every α ∈ D,

lim
x→α

f(x) = f(α).

Example 2.2.2. Here are some continuous functions:

(1) Every constant function x 7→ c : R→ R (where c ∈ R) is continuous.
(2) The identity function x 7→ x : R→ R is continuous.

(3) The absolute value function x 7→ |x| :=
√
x2 : R→ R is continuous.

(4) The square root function x 7→
√
x : [0,+∞)→ R is also continuous.

The following shows how continuity is preserved under the basic arithmetic opera-
tions:

Proposition 2.2.3. Suppose f, g : D → R are continuous functions on a nice
domain D. Then the following functions are also continuous on D:

(1) f + g : D → R,
(2) f · g : D → R

Furthermore, define the set

D′ :=
{
x ∈ D : g(x) 6= 0

}
and assume that D′ is nice (for us it always will be). Then

(3) f/g : D′ → R is continuous.

The following tells us that continuity is preserved when you compose two compos-
able continuous functions:

Proposition 2.2.4 (Composition and continuity). Suppose f : D → R is continu-
ous with nice domain D and g : E → R is continuous with nice domain E such that
f(D) ⊆ E. Then g ◦ f : D → R is continuous.

Combining Example 2.2.2(3) with Proposition 2.2.4 gives us:

Corollary 2.2.5. If f : D → R is continuous with nice domain D, then so is
|f | : D → R, given by

|f |(x) := |f(x)|, for x ∈ D.

The following is an important theorem about continuous functions:
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Intermediate Value Theorem 2.2.6. Suppose f : [a, b]→ R is continuous, with
a < b ∈ R. Let y be a number strictly between f(a) and f(b), i.e.,

f(a) < y < f(b) or f(b) < y < f(a).

Then there is x0 ∈ (a, b) such that f(x0) = y.

The following lemma says that if a continuous function is nonzero at a point, then
it must be nonzero on a neighborhood of that point:

Bump Lemma 2.2.7. Suppose f : I → R is continuous, I ⊆ R is an interval,
and t0 ∈ I is such that f(t0) 6= 0. Then there is α < t0 < β such that for every
t ∈ (α, β) ∩ I, f(t) 6= 0.

Monotonicity and inverses. In this subsection, we discuss monotone func-
tions, the existence of inverse functions, and when inverse functions are continuous.

Definition 2.2.8. Suppose f : D → R is a function where D ⊆ R is a nice set. We
say that f is

(1) increasing if for all x, y ∈ D, if x ≤ y, then f(x) ≤ f(y),
(2) strictly increasing if for all x, y ∈ D, if x < y, then f(x) < f(y),
(3) decreasing if for all x, y ∈ D, if x ≤ y, then f(x) ≥ f(y),
(4) strictly decreasing if for all x, y ∈ D, if x < y, then f(x) > f(y).

Furthermore, we say that f is monotone if it satisfies any of properties (1)-(4),
and we say that f is strictly monotone if it satisfies property (2) or (4).

Definition 2.2.9. Suppose f : D → R is an injective function (see Definition B.5.1),
and D ⊆ R is a nice set. We define the inverse function of f to be the function
f−1 : range(f)→ R defined by:

f−1(y) = x :⇐⇒ f(x) = y

for all x ∈ D and y ∈ range(f).

Strictly monotone functions are a big source of injective functions:

Theorem 2.2.10. Suppose f : D → R is a strictly monotone function and D is
a nice set. Then f is injective and so it has an inverse function f−1 : f(D) → R.
Moreover, if one of the following holds:

(1) f is continuous, or
(2) D is an interval,

then f−1 is continuous and strictly monotone.

Multivariable functions. There is also a definition of what it means for a
multivariable function to be continuous:

Definition 2.2.11. Suppose F : D → R is a two-variable function with domain
D ⊆ R2 a nice subset of the ty-plane. We say that F is continuous (on D) if for
every point (t0, y0) ∈ D, we have:

lim
(t,y)→(t0,y0)

F (t, y) = F (t0, y0).

Most of the multivariable functions we will consider will be continuous, and their
continuity can be determined by using the following rules, as well as the continuity
of the underlying single-variable functions:
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Continuity Laws for Multivariable Functions 2.2.12. Suppose F,G : D → R
are continuous functions with domain D ⊆ R2 a nice subset of the ty-plane. Then:

(1) (Projection functions) the functions f(t, y) = t and g(t, y) = y are con-
tinuous, as functions f, g : D → R.

(2) (Linearity) Given arbitrary α, β ∈ R, the function:

αF + βG : D → R

is also continuous.
(3) (Products) The function:

F ·G : D → R

is also continuous.
(4) (Quotients) Define the set

D′ :=
{

(t, y) ∈ D : G(t, y) 6= 0
}

Then the function:
F

G
: D′ → R

is also continuous.
(5) (Compositions) Suppose f : E → R is a continuous one-variable function

where E ⊆ R is a nice domain. Furthermore, suppose F (D) ⊆ E. Then
the composition:

f ◦ F : D → R
is also a continuous function.

2.3. Differentiation

In this section D ⊆ R is a nice set. Given a function f : D → R, if it is differentiable
at a point in its domain, then that means the function f can be approximated
suspiciously well by a linear tangent line at that point. The following proposition
gives three equivalent ways of saying exactly this:

Proposition 2.3.1. Suppose f : D → R is a function and α ∈ D. The following
are equivalent:

(1) (Standard definition) The limit

lim
x→α

f(x)− f(α)

x− α
= `

exists and is finite (i.e., ` ∈ R).
(2) (Taylor definition) There exists a number d ∈ R and a function R : D → R

such that

f(x) = f(α) + d(x− α) +R(x) and lim
x→α

R(x)

x− α
= 0.

(3) (Carathéodory definition) There exists a function q : D → R which is
continuous at α such that

f(x) = f(α) + q(x)(x− α).

Furthermore, if any (equivalently all) of (1), (2), and (3) holds, then

(4) ` = d = q(α), and
(5) f is continuous at α.
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Definition 2.3.2. We say that function f : D → R is differentiable on D, if for
every α ∈ D, the equivalent conditions of Proposition 2.3.1 hold. In this case, we
define the derivative of f at α to be

f ′(α) := lim
x→α

f(x)− f(α)

x− α
.

In this class, since we will be working with special elementary functions and not
arbitrary differentiable functions, we generally will not have to use the formal def-
inition when computing derivatives. In general we will be able to compute all
relevant derivatives by employing the following rules as well as the known formulas
(see Appendix A) for the derivatives of the functions we care about.

Example 2.3.3. (1) Constant functions are differentiable with derivative 0.
(2) Let f : R→ R be such that f(x) = xn. Then f is differentiable, and and

for every α ∈ R f ′(α) = nαn−1. To see this, note by The Difference of
Powers Formula,

f(x)−f(α) = xn−αn = (x−α) ·(xn−1 +αxn−2 +α2xn−3 + · · ·+αn−2x+αn−1),

thus for x 6= α, we have

f(x)− f(α)

x− α
= xn−1 + αxn−2 + α2xn−3 + · · ·+ αn−2x+ αn−1,

and so

lim
x→α

f(x)− f(α)

x− α
= n · αn−1.

The following rules show how computing the derivative interacts with the basic
arithmetic operations:

Proposition 2.3.4. Suppose f, g : D → R are differentiable on D. Then

f + g, f · g : D → R

are differentiable on D, and for every α ∈ D
(1) (f + g)′(α) = f ′(α) + g′(α),
(2) (product rule) (f · g)′(a) = f(a)g′(a) + f ′(a)g(a),

Furthermore, with D′ := {x ∈ D : g(x) 6= 0} ⊆ D, if D′ is nice, then the function

f

g
: D′ → R

is differentiable and

(3) (quotient rule) for every α ∈ D′(
f

g

)′
(α) =

g(α)f ′(α)− f(α)g′(α)

g2(α)

Remark 2.3.5. An immediate consequence of Proposition 2.3.4(1) and (2) is that
if we have constants c, d ∈ R and differentiable functions f, g : D → R, then

(cf + dg)′ = cf ′ + dg′.

In linear algebra terms, differentiation is R-linear (i.e., it is a linear transformation
on the R-vector space of differentiable functions D → R).

Differentiation also behaves well with composition of differentiable functions:
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Chain Rule 2.3.6. Suppose f : D → R, g : E → R are differentiable functions
such that f(D) ⊆ E. Then g ◦ f : D → R is differentiable, and for every α ∈ D

(g ◦ f)′(α) = g′
(
f(α)

)
· f ′(α).

In theory, you should be able capable of computing the derivative of any elementary
function provided you know the rules 2.3.4 and 2.3.6 as well as the formulas for the
derivatives of the primitive functions of interest given in Appendix A. Of course,
this should not be news to you.

The following is a very useful consequence of the so-called Mean Value Theorem for
Derivatives. Note that Corollary 2.3.7 and Identity Criterion 2.3.8 are only true
when the domain is an interval.

Corollary 2.3.7. Suppose D is an interval and f : D → R is differentiable. Then
f is a constant function iff f ′(x) = 0 for all x ∈ I.

A common question we might ask when it comes to uniqueness of solutions of ODEs
is: when are two functions f, g : I → R the same? If f and g are differentiable (which
pretty much all of our functions will be), the following makes this question easier
to answer:

Identity Criterion 2.3.8. Suppose D is an interval and f, g : D → R are differ-
entiable such that f ′(α) = g′(α) for every α ∈ D. Then there exists a constant
C ∈ R such that f(x) = g(x) + C for all x ∈ D. Furthermore, if there is a point
x0 ∈ D such that f(x0) = g(x0), then f(x) = g(x) for all x ∈ D.

Proof. The function f − g : D → R is differentiable by Proposition 2.3.4, and
(f−g)′(x) = f ′(x)−g′(x) = 0 for all x ∈ D. By Corollary 2.3.7, there is a constant
C ∈ R such that (f − g)(x) = C for all x ∈ D, i.e., f(x) = g(x) + C for all x ∈ D.

Now, suppose there is x0 ∈ D such that f(x0) = g(x0). Then also f(x0) =
g(x0) + C, so we can conclude that C = 0. Thus f(x) = g(x) for all x ∈ D. �

Inverse functions and monotonicity. Sometimes differentiable functions
are also invertible. In this subsection we talk about the differentiability of the
inverse function.

Theorem 2.3.9. Assume f : D → R is a differentiable injective function and
D ⊆ R is a nice set. Define I := f(D) and

I ′ := {y ∈ I : f ′
(
f−1(y)

)
6= 0}

The the function f−1 : I ′ → R is differentiable, and for every y0 ∈ I ′ we have

(f−1)′(y0) =
1

f ′
(
f−1(y0)

)
We can also use derivatives to check for monotonicity, which enable us show that a
function is invertible.

Theorem 2.3.10. Suppose f : I → R is a differentiable function on an interval I.
Then:

(1) f is increasing if f ′(x) ≥ 0 for all x ∈ I,
(2) f is strictly increasing if f ′(x) > 0 for all x ∈ I,
(3) f is decreasing if f ′(x) ≤ 0 for all x ∈ I, and
(4) f is strictly decreasing if f ′(x) < 0 for all x ∈ I.
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Multivariable functions. A full exploration of multivariable calculus (differ-
entiation and integration) requires a course like Math32A or Math131B. For our
purposes, we will need to know a few things about partial derivatives:

Definition 2.3.11. Suppose F : D → R is a function with nice domain D ⊆ R2 (so
F = F (t, y) is a two-variable function). Let (t0, y0) ∈ D be a fixed point. We define
the partial derivative of F with respect to t at (t0, y0) to be the following
limit, if it exists and is finite:

∂F

∂t
(t0, y0) := lim

t→0

F (t0 + t, y0)− F (t0, y0)

t

and we define the partial derivative of F with respect to y at (t0, y0) to be
the following limit, if it exists and is finite:

∂F

∂y
(t0, y0) := lim

y→0

F (t0, y0 + y)− F (t0, y0)

y

In practice, a partial derivative is the same thing as a single-variable derivative
where you treat the other variable as a constant. In particular, all of the rules from
the preceding subsection apply to partial derivatives when you view them this way
(product rule, chain rule, etc.).

Definition 2.3.12. Suppose D ⊆ R2 is a nice subset of R2, and F : D → R is a
two-variable function. We say that:

(1) F has first-order partial derivatives if at every point (t0, y0) ∈ D, the
partial derivatives

∂F

∂t
(t0, y0) and

∂F

∂y
(t0, y0)

exist and are finite;
(2) F has second-order partial derivatives if:

(i) F has first-order partial derivatives, and
(ii) the functions ∂F

∂t ,
∂F
∂y : D → R also have first order partial deriva-

tives.
(3) F has continuous second-order partial derivatives if:

(a) F has second-order derivatives, and
(b) each of the functions:

∂2F

∂t2
,
∂2F

∂t∂y
,
∂2F

∂y∂t
,
∂2F

∂y2
: D → R

are continuous.

In general, all of the two-variable functions we’ll consider have continuous partial
derivatives of all orders, including first and second order, at least wherever they
are defined. In this case, the following theorem tells us that the “mixed” second
order partial derivatives are the same. This will be useful for getting a checkable
criterion for exactness in Section 3.5.

Clairaut-Schwarz Theorem 2.3.13 (Equality of mixed partial derivatives). Sup-
pose F : D → R where D ⊆ R2 is a nice subset of the plane R2 has continuous
second-order partial derivatives, i.e.,

∂2F

∂t2
,

∂2F

∂y2
,

∂2F

∂t∂y
,

∂2F

∂y∂t
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all exist and are continuous (the functions we’ll deal with always satisfy this prop-
erty). Then for all (t0, y0) ∈ D:

∂2F

∂t∂y
(t0, y0) =

∂2F

∂y∂t
(t0, y0)

2.4. Integration

Definite integrals. When it comes to integration, the most fundamental no-
tion is to define the following: given a function f : [a, b] → R, what does it mean

for the function f to be integrable on [a, b] and how do you define
∫ b
a
f(t) dt if this

integral is to exist? We will not dive into this question and instead assume you
have a working understanding of what this means to you. In particular, we define:

Definition 2.4.1. Suppose a < b ∈ R. We say that the function f : [a, b] → R is
integrable if the definite integral ∫ b

a

f(t) dt

exists and is finite (i.e., it equals a real number from R). If f : [a, b] → R is
integrable, then we also define:∫ a

b

f(t) dt := −
∫ b

a

f(t) dt

Given any function g : D → R and α ∈ R, we define:∫ α

α

g(t) dt := 0

Here are some basic facts about what types of functions are integrable:

Fact 2.4.2. Suppose f : [a, b]→ R is a function. Then:

(1) if f is continuous, then f is integrable,
(2) if f is piecewise continuous, then f is integrable,

(3) if f is integrable and f̃ : [a, b]→ R is a function such that the set:{
x ∈ [a, b] : f(x) 6= f̃(x)

}
is finite, then f̃ is also integrable and∫ b

a

f(t) dt =

∫ b

a

f̃(t) dt

Fact 2.4.2 tells us that basically every function f : [a, b] → R we come across in
this class will be integrable. Furthermore, 2.4.2(3) tells us that as far as computing
integrals are concerned, we can safely change finitely many values of the function
and still arrive at the same answer (for instance, if you are integrating a step
function and you’re not sure about the values at the endpoints).

The following law for computing definite integrals is used all the time:

Lemma 2.4.3 (Linearity of Integration). Let f, g : [a, b] → R be integrable func-
tions, and let α ∈ R. Then

(1) αf : [a, b]→ R is integrable, and
∫ b
a
αf(t) dt = α

∫ b
a
f(t) dt,

(2) f +g : [a, b]→ R is integrable, and
∫ b
a

(f +g)(t) dt =
∫ b
a
f(t) dt+

∫ b
a
g(t) dt.
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The following is also very useful, especially if the behavior of a function changes on
different intervals:

Lemma 2.4.4 (Additivity over intervals). Suppose f : [a, b]→ R is a function and
c ∈ (a, b). Then f is integrable on [a, b] iff f is integrable on [a, c] and [c, b]. In this
case, we have ∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt.

The following two theorems tell us that integration and differentiation are inverse
operations, which is what makes integration so useful when it comes to solving
differential equations. First a definition:

Definition 2.4.5. Suppose f : D → R is a continuous function with a nice domain
D ⊆ R. A function F : D → R is called an antiderivative of f if:

(i) F is differentiable, and
(ii) for every t ∈ D, F ′(t) = f(t).

The so-called first fundamental theorem of calculus provides us a method of comput-
ing the exact value of the definite integral of a function provided we have available
to us an antiderivative of that function:

First Fundamental Theorem of Calculus 2.4.6. Suppose f : [a, b] → R is a
continuous function on [a, b] and differentiable on (a, b). Then:∫ b

a

f ′(t) dt = f(a)− f(b).

The so-called second fundamental theorem of calculus provides us a method of using
definite integrals to construct an antiderivative of a continuous function:

Second Fundamental Theorem of Calculus 2.4.7. Suppose f : D → R is a
continuous function with a nice domain D ⊆ R, and fix t0 ∈ D. Let I ⊆ D be the
largest interval such that t0 ∈ I. Consider the function F : I → R defined by

F (t) :=

∫ t

t0

f(s) ds

for every t ∈ I. Then

(1) F is differentiable on I, and
(2) F ′(t) = f(t) for every t ∈ I, i.e., F is an antiderivative of f on the

interval I.

Indefinite integrals. When we later determine the general solution of a dif-
ferential equation, we need to be able to find (and parametrize) all solutions of
the differential equation, not just a particular one. In terms of antiderivatives, this
means we need to be able to find (and parametrize) all antiderivatives of a partic-
ular function, not just one antiderivative. This is taken care of by the notion of
indefinite integral :

Definition 2.4.8. Suppose f : D → R is a continuous function with a nice domain
D ⊆ R. The indefinite integral of f is an infinite family of functions:

F (t;C) = F (t) + C
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where C ∈ R and F : D → R is a particular antiderivative of f . This situation is
often denoted by writing: ∫

f(t) dt = F (t) + C.

Remark 2.4.9. Technically speaking, the indefinite integral of f really should
be the family of all antiderivatives of f . In particular, each so-called connected
component of the domain of f requires its own constant of integration. For instance,
for the function f(t) = 1/t viewed as a function (−∞, 0) ∪ (0,+∞) → R, the
indefinite integral really should be:∫

dt

t
=

{
ln(t) + C1 if t > 0

ln(−t) + C2 if t < 0

where C1, C2 ∈ R could be the same number, or could be different. Simply writing:∫
dt

t
= ln |t|+ C

does not actually give us every possible antiderivative of 1/t on the domain (−∞, 0)∪
(0,+∞) because it requires us to use the same constant of integration on both “con-
nected components” (−∞, 0) and (0,+∞). This is a very minor issue which we are
happy to ignore since the particular solutions to initial value problems (which we
hope to be unique) will have intervals as their domain.

We also have the second fundamental theorem of calculus for indefinite integrals:

Second Fundamental Theorem of Calculus 2.4.10 (Indefinite version). Sup-
pose f : D → R is a continuous function with a nice domain D ⊆ R. Then

d

dt

∫
f(t) dt = f(t).

Theorem 2.4.10 is to be interpreted as: for every antiderivative F (t) + C of f(t),

d

dt

(
F (t) + C

)
= f(t).



CHAPTER 3

First-order differential equations

3.1. Implicit differential equations

In this course we will be primarily concerned with first-order differential equations,
as well as higher-order linear differential equations. This begs the question:

What is a differential equation and what is the order of a differential equation?

We will answer this question by first giving a very general definition of differential
equation which will encompass nearly all differential equations we will encounter in
this Chapter and in Chapter 4:

Definition 3.1.1. An implicit differential equation (of order r) is an equation
which can be written in the form

(†) F (t, y, y′, y′′, . . . , y(r)) = 0

where F is a real-valued function of r + 2 variables. The order is the order r of
the highest derivative y(r) of y which appears in the equation.

A solution to (†) is a function y : I → R (where I ⊆ R is an interval) which is
differentiable at least r times such that

F
(
t, y(t), y′(t), . . . , y(r)(t)

)
= 0 for every t ∈ I,

i.e., for every t ∈ I, when you plug t, y(t), y′(t), . . . , y(r)(t) into the function F the
output is zero.

We now give some examples of implicit differential equations and some of their
solutions, in increasing order of order.

Zeroth order. Here is an implicit differential equation of order 0:

(3.1) y5 + 2y4 + 3y3 + 4y2 + 5y + 6 = 0

Given a solution α ∈ R of the polynomial equation

X5 + 2X4 + 3X3 + 4X2 + 5X + 6 = 0,

the function y : R → R defined by y(t) := α for all t ∈ R (i.e., the function with
constant value α) is a solution of (3.1). This example should convince you that the
subject of differential equations already encompasses all of one- and two-variable
polynomial equations. In particular, we shouldn’t get our hopes up that we will be
able to solve too many higher-order differential equations in general.

31
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First order. We will give two examples of a first-order differential equation.
The first one takes full advantage of the implicit part of the definition:

Example 3.1.2 (Clairaut). The differential equation:

(3.2) y − ty′ + exp y′ = 0

Every solution y : R→ R of (3.2) has the form

y(t) = Ct+ expC

where C ∈ R is some fixed constant. Note that even though (3.2) is complicated, it
is actually pretty easy to check that the given solution is actually correct. Indeed,
first compute the derivative of y:

y′(t) = C

and then plug t, y(t), y′(t) into (3.2) and notice that everything cancels out:

y(t)− ty′(t) + exp y′(t) = Ct+ expC − tC + expC = 0.

This illustrates another important lesson:

Checking that a given function is/is not a solution to a

differential equation is usually easy, even if the given

differential equation is hard/impossible.

Indeed, it is simply a matter of computing r derivatives and then plugging them
into the equation and seeing if everything cancels out. Of course, we will be more
interested in solving differential equations than checking whether a candidate solu-
tion is correct or not. However, it is reassuring to know that at least one direction
of the process is fairly easy.

The next differential equation is a more typical example of a differential equation
which we will study:

Example 3.1.3 (Logistic equation). Let b, c > 0 be fixed positive constants. Then
the logistic equation is the differential equation:

y′ − y(b− cy) = 0

For every nonzero constant C ∈ R \ {0} we have a solution y : R→ R defined by:

y(t) =
b

c
· 1

1 + C exp(−bt)
Furthermore, the constant functions y = 0 and y = b/c are also solutions. (Exercise:
check this!) We will study the logistic equation in more detail later, including how
to derive these solutions.

Second order. Here is a typical example of a second-order differential equa-
tion we will study:

(3.3) y′′ − 3y′ + 2y = 0

Every solution y : R→ R of (3.3) is of the form:

y(t) = C1 exp 2t+ C2 exp t

where C1, C2 ∈ R are arbitrary constants. Generally speaking, for second-order
differential equations there will be two constants of integration we need to find.
This reflects the fact that the equation involves a first and second derivative (so
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somewhere we are doing two integrals, each one with its own constant of integra-
tion). Equation (3.3) is an example of a second-order linear differential equation
with constant coefficients, which will be one of the main equations of interest in
Chapter 4.

3.2. Differential equations in normal form

Definition 3.1.1 casts a very wide net. In general most differential equations we will
encounter can be put into a slightly simpler form: normal form.

Definition 3.2.1. A differential equation of order r in normal form (or an
explicit differential equation of order r) is a differential equation which can
be written in the form

(†) y(r) = F (t, y, y′, y′′, . . . , y(r−1))

where F is a real-valued function of r+ 1 variables. A solution of (†) is a function
y : I → R (where I ⊆ R is an interval) which is at least r times differentiable, such
that for every t ∈ I:

y(r)(t) = F
(
t, y(t), y′(t), . . . , y(r−1)(t)

)
In other words, an implicit differential equation of order r can be put into normal
form if it is possible to solve for the highest derivative y(r) in terms of the lower
derivative y, y′, . . . , y(r−1) and t.

Example 3.2.2. (1) A zeroth-order differential equation in normal form is
an equation of the form:

y = F (t)

Clearly, the function y(t) := F (t) is a solution. We will never be interested
in explicit zeroth-order differential equations.

(2) A first-order differential equation in normal form is an equation of the
form:

y′ = F (t, y)

The logistic equation from Example 3.1.3 can be put into normal form:

y′ = y(b− cy)

It is not clear whether the equation from Example 3.1.2

y − ty′ + exp y′ = 0

can be put into normal form since this would involve solving for y′. In
general, for the equations we deal with there will be no issue with rewriting
them in normal form.

(3) A second-order differential equation in normal form is an equation of the
form:

y′′ = F (t, y, y′).

Equation (3.3) can be written in normal form:

y′′ = 3y′ − 2y

This concludes our discussion of general-order differential equations. For the rest
of the chapter we will focus on first-order differential equations in normal form.
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Explicit first-order differential equations. Recall that an explicit first-
order differential equation is an equation which can be written in the form:

(3.4) y′ = F (t, y)

where F is a real-valued function of two variables. A solution to (3.4) is a differ-
entiable function y : I → R (I ⊆ R is an interval) such that for all t ∈ I,

y′(t) = F
(
t, y(t)

)
Solutions are also referred to as integral curves or solution curves, especially
when we want to emphasize the geometric properties of the solution.

We will often be interested in obtaining a specific solutions which passes through
a given point (t0, y(t0)). The best way to do this is to first find all solutions of the
differential equation, and then find the particular solution we are interested in.

Definition 3.2.3. The general solution of (3.4) is a family1 of functions y(t;C)
which depends on a parameter C ∈ R such that:

(1) for every valid parameter C0, the function y(t;C0) is a solution of (3.4),
and

(2) every solution of (3.4) is of the form y(t;C1) for some valid parameter C1.

A particular solution is a function of the form y(t) = y(t;C0) for some fixed
value C0.

Example 3.2.4. Consider the differential equation

(3.5) y′ = t

We wish to find the general solution to (3.5). Integrating both sides, we find that

y(t) =
1

2
t2 + C

for some constant of integration C ∈ R. We claim that the general solution is

y(t;C) =
1

2
t2 + C

where C can be any real number. Indeed, for every specific C0 ∈ R, the function
y(t) = 1

2 t
2 +C0 is a solution. Furthermore, if ȳ(t) is also a solution, then ȳ′(t) = t,

and thus (
ȳ(t)− y(t; 0)

)′
=
(
ȳ(t)− 1

2
t2
)′

= t− t = 0

which shows that ȳ(t) and y(t; 0) differ by a constant. Thus there exists C1 ∈ R
such that ȳ(t) = y(t;C1). We conclude that y(t;C) is the general solution of (3.5).
Here are some particular solutions:

y(t) = y(t; 3) =
1

2
t2 + 3

y(t) = y(t;−10) =
1

2
t2 − 10.

The problem of finding a specific particular solution will be formulated as an initial
value problem:

1The notation y(t;C) is meant to suggest that the function y(t) depends also on the parameter
C. Each time you choose a specific value C0 for C, then you get a particular solution y(t) :=

y(t;C0).
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Definition 3.2.5. An initial value problem is a pair of two conditions:

(i) a differential equation:

y′ = F (t, y)

(ii) a specific point which the solution must pass through:

y(t0) = y0,

where (t0, y0) ∈ R2. This is called the initial condition.

Example 3.2.6. We wish to solve the following initial value problem:

(i) y′ = t
(ii) y(3) = 7

We have already found that the general solution to (i) is

y(t;C) =
1

2
t2 + C

We will use (ii) to solve for the exact value of C:

y(3) = 7 =
1

2
· 32 + C

and so

C = 7− 9

2
=

5

2
.

We conclude that the solution to the above initial value problem is:

y(t) = y(t; 5/2) =
1

2
t2 +

5

2
.

Direction fields. One of the remarkable features of explicit first-order differ-
ential equations is that, even if some of them might be difficult to solve, it is usually
pretty easy to make a rough sketch of the general solutions. This is because the
equation

y′ = F (t, y)

tells us what the derivative of the solution needs to be at each point (t, y) in the
plane. We make this precise with the notion of a direction field.

Definition 3.2.7. A direction field for the equation

y′ = F (t, y)

is a plot where at each point (t0, y0) you draw a tiny line segment with slope
F (t0, y0).

Of course in practice when you (or a computer) draw a direction field, you can’t
possibly draw such a line segment at every point in the plane (since there are
infinitely many such points). Instead you draw enough tiny line segments (say, at
integer or half-integer coordinates) in order to get a sense of the general behavior
of the direction field. Once you have an accurate direction field, you can sketch an
approximation of a solution by “following the direction of the direction field”.

Example 3.2.8. Consider the logistic equation

(3.6) y′ = y(3− y)

In Figure 3.1 we plot the direction field for (3.6). We also include four solution
curves corresponding to four different initial conditions.
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Figure 3.1. Direction field for the logistic equation y′ = y(3− y)
and several solution curves.

We make the following observations:

(1) At each point (t0, y0), the slope only depends on y0. This is because
y(3− y) only depends on y and not on t.

(2) This suggests that if y(t) is a solution to (3.6), then so is y(t+C) for any
constant C.

(3) The direction field suggests that the constant functions

y(t) = 0 and y(t) = 3

are both solutions to (3.6). This is indeed the case, as can be easily
verified.

(4) There are many other non-constant solutions as well, we will learn how to
solve for them in Section 3.5.

Of course, by merely plotting a direction field and sketching a solution curve, you are
not actually solving the differential equation yet. However, this procedure provides
valuable insight into the nature of the solutions which can be very fruitful. In some
sense, this is the starting point for the qualitative study of differential equations.

3.3. First-order linear differential equations

We now arrive at the first family of differential equations which we will study in
detail, the so-called first-order linear differential equations.

Definition 3.3.1. A first-order linear differential equation is a differential
equation which can be written in the form:

y′ + f(t)y = g(t)
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where f, g are real-valued functions of the variable t. The function f(t) and g(t)
are called2 the coefficient functions.

As we shall see, solving a first-order linear differential equation really boils down
to performing an integration. We will work up to the general case (where both f(t)
and g(t) are nonzero functions) in several steps.

Direct integration. Consider first the case where f(t) = 0 for all t. We call
the resulting differential equation:

y′ = g(t)

a direct integration differential equation. This is because you can directly solve
this differential equation by integrating g and, if need be, solving for C with the
initial condition. Here is an example:

Example 3.3.2. Consider the initial value problem:

(i) y′ =
√
t,

(ii) y(4) = 6.

Integrating the differential equation we obtain

y(t) = 2/3t3/2 + C.

Using the initial condition we get

y(4) = 6 = 2/3(4)3/2 + C

and so C = 6− 16/3 = 2/3. So the solution to the above initial value problem is

y(t) = 2/3t3/2 + 2/3.

In Figure 3.2 we plot the corresponding solution curve together with the direction
field. Notice that the solution exists on the interval [0,+∞), and this is the possible
interval on which the solution can exist and remain a solution because g(t) =

√
t is

only defined on [0,+∞).

We also remark that in Figure 3.2 we see that the direction field only depends on
t and not on y. This observation allows us to guess (if we didn’t know it already)
that any two solutions of (i) differ by a vertical translation (i.e., adding a constant).
This indeed is also the case for general direct integration differential equations.

2sometimes just f(t) is called the coefficient function and g(t) is called the forcing func-
tion.
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Figure 3.2. Direction field for the equation y′ =
√
t and the

solution curve passing through the point (4, 6).

Theorem 3.3.3 (Direct Integration). Suppose g : D → R is a continuous function
with nice domain D ⊆ R. Consider the differential equation:

(i) y′ = g(t)

(1) The general solution of (i) is given by

y(t) = y(t;C) =

∫
g(t) dt+ C

Furthermore, suppose we are also given an initial condition

(ii) y(t0) = y0, where t0 ∈ D and y0 ∈ R.

(2) Then the initial value problem (i)+(ii) has the unique solution:

y(t) =

∫ t

t0

g(s) ds+ y0

(3) The interval of existence of this solution (i.e., the largest interval con-
taining t0 for which this function remains a solution) is the largest interval
I ⊆ R such that:
(a) t0 ∈ I, and
(b) I ⊆ D.

The homogeneous case. We next consider the case where g(t) is the constant
zero function and f(t) is possibly nonzero.

Definition 3.3.4. A first-order linear differential equation is said to be homoge-
nous if it is of the form:

y′ + f(t)y = 0.
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Solving the homogeneous case requires knowing a trick: multiplication by a so-called
integrating factor. We illustrate this first with an example:

Example 3.3.5. Consider the homogeneous first-order linear differential equation:

(3.7) y′ +
1

t
y = 0

Here we are regarding the coefficient function 1/t to have domain (−∞, 0)∪(0,+∞).
First observe that if µ(t) is any function which is never zero, then the differential
equation

µ(t)

(
y′ +

1

t
y

)
= 0

has the same solutions as equation (3.7). We will use the following choice of µ(t):

µ(t) := exp

(∫
dt

t

)
= exp ln |t| = |t|

where the domain of µ(t) is also (−∞, 0)∪ (0,+∞). Then we multiply the lefthand
side of (3.7) by µ(t) to obtain:

|t|
(
y′ +

1

t
y

)
= |t|y′ + sgn(t)y =

(
|t|y
)′

= 0.

In other words, multiplying through by the integrating factor µ(t) allows us to view
the lefthand side as the derivative of a single function of t. Next we integrate both
sides of (

|t|y
)′

= 0

to obtain
|t|y(t) = C,

or rather,

y(t) =
C

|t|
.

Here the function y(t) also has domain (−∞, 0) ∪ (0,+∞).

Here is how to handle the general homogeneous case:

Theorem 3.3.6. Suppose f : D → R is a continuous function with nice domain
D ⊆ R consider the differential equation:

(i) y′ + f(t)y = 0

(1) Define the integrating factor to be the function µ : D → R given by:

µ(t) := exp

(∫
f(t) dt

)
(here

∫
f(t) dt can be any antiderivative of f(t), the constant of integration

does not matter). Then we can multiply (i) by µ to obtain:

µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
= 0.

(2) The general solution of (i) is given by:

y(t) = y(t;C) =
C

µ(t)
= C exp

(
−
∫
f(t) dt

)
Furthermore, suppose we are also given an initial condition

(ii) y(t0) = y0, where t0 ∈ D and y0 ∈ R.
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(3) Then the initial value problem (i)+(ii) has the unique solution:

y(t) = y0 exp

(
−
∫ t

t0

f(s) ds

)
=

y0
µ(t)

where µ(t) := exp(
∫ t
t0
f(s) ds).

(4) The interval of existence of this solution is the largest interval I ⊆ R such
that:
(a) t0 ∈ I, and
(b) I ⊆ D.

The general case. The general first-order linear case contains both the direct
integration case and the homogeneous case. The trick with the integrating factor
also works for the general case. We give an example first:

Example 3.3.7. Consider the first-order linear differential equation:

(3.8) y′ + sin(t)y = sin3 t

The first thing to do is to compute the integrating factor:

µ(t) = exp

(∫
sin t dt

)
= exp(− cos t)

Next we multiply both sides of (3.8) by µ(t) to obtain:

µ(t)
(
y′ + sin(t)y

)
=
(

exp(− cos t)y
)′

= sin3 t exp(− cos t)

Integrating both sides yields:

exp(− cos t)y(t) =

∫
sin3 t exp(− cos t) dt = −4 exp(− cos t) cos4(t/2) + C

Solving for y(t) gives us the general solution:

y(t) = −4 cos4(t/2) + C exp cos t

The general case works much the same way:

Theorem 3.3.8. Suppose f : D → R and g : E → R are continuous functions with
nice domains D,E ⊆ R and consider the differential equation

(i) y′ + f(t)y = g(t)

(1) Define the integrating factor to be the function µ : D → R given by:

µ(t) := exp

(∫
f(t) dt

)
(here

∫
f(t) dt can be any antiderivative of f(t), the constant of integration

does not matter). Then we can multiply (i) by µ to obtain:

µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
= µ(t)g(t).

(2) Then general solution of (i) is then given by:

y(t) = y(t;C) =
1

µ(t)

∫
µ(t)g(t) dt+

C

µ(t)

Furthermore, suppose we are also given an initial condition

(ii) y(t0) = y0, where t0 ∈ D ∩ E and y0 ∈ R.
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(3) Then the initial value problem (i)+(ii) has the unique solution:

y(t) =
1

µ(t)

∫ t

t0

µ(s)g(s) ds+
y0
µ(t)

where µ(t) := exp(
∫ t
t0
f(s) ds).

(4) The interval of existence of this solution is the largest interval I ⊆ R such
that:
(a) t0 ∈ I,
(b) I ⊆ D, and
(c) I ⊆ E.

Proof. (1) First we will justify the key property of the integrating factor:

µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
Note that:(
µ(t)y

)′
= µ(t)y′ + µ′(t)y by the product rule 2.3.4(2)

= µ(t)y′ +
d

dt

[
exp

(∫
f(t) dt

)]
y

= µ(t)y′ + exp

(∫
f(t) dt

)
d

dt

[∫
f(t) dt

]
y by the Chain Rule 2.3.6

= µ(t)y′ + µ(t)f(t)y by Theorem 2.4.10

= µ(t)
(
y′ + f(t)y

)
(2 part 1) Next, we will check that for every C ∈ R, the function y(t;C) is

a solution. Since µ(t) is a function which is everywhere nonzero, it follows that
y(t;C) is a solution of

y′ + f(t)y = g(t)

if and only if y(t;C) is a solution of

(†) µ(t)
(
y′ + f(t)y

)
= µ(t)g(t).

We will verify that y(t;C) is indeed a solution of (†). Note that:

µ(t)
(
y′(t;C) + f(t)y(t;C)

)
=
(
µ(t)y(t;C)

)′
by (1)

=

(∫
µ(t)g(t) + C

)′
= µ(t)g(t) by Theorem 2.4.10

This verifies part (1) of Definition 3.2.3. We will return to verifying part (2) of the
definition later.

(3 part 1) We now verify that

y(t) =
1

µ(t)

∫ t

t0

µ(s)g(s) ds+
y0
µ(t)

is a solution to the initial value problem (i)+(ii). It is clear that y(t) is a solution
to (i) since it is a particular instance of the general solution in (2). To verify (ii),
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we notice first that:

µ(t0) = exp

(∫ t0

t0

f(s) ds

)
= exp(0) by Definition 2.4.1

= 1.

Next, we observe:

y(t0) =
1

µ(t0)

∫ t0

t0

µ(s)g(s) ds+
y0
µ(t0)

=

∫ t0

t0

µ(s)g(s) ds+ y0

= 0 + y0 by Definition 2.4.1

= y0.

Thus y(t) is a solution to the initial value problem (i)+(ii). We will prove uniqueness
below.

(4) First observe that the interval I ⊆ D is the largest possible interval which
contains t0 which we could hope to have as the domain of the solution. This is
because the differential equation (i) is only defined on the set D ∩E (the on which
both coefficient functions f and g are defined).

(2 part 2) and (3 part 2) are taken care of by the next lemma. �

Lemma 3.3.9. Suppose f : D → R and g : E → R are continuous functions
with nice domains D,E ⊆ R. Suppose that y0, y1 : I → R are two differentiable
functions such that:

(a) I ⊆ R is an interval contained in both D and E,
(b) for i = 0, 1, y′i(t) + f(t)yi(t) = g(t) for every t ∈ I, i.e., y0 and y1 are both

solutions to the differential equation:

y′ + f(t)y = g(t)

Then:

(1) there exists a constant C ∈ R such that for every t ∈ I,

y0(t) = y1(t) +
C

µ(t)

where µ(t) = exp(
∫
f(t) dt).

(2) Furthermore, if there is t0 ∈ I such that y0(t0) = y1(t0), then C = 0 and
so for every t ∈ I, y0(t) = y1(t).

Proof. It follows from (b) that for every t ∈ I,

(y0 − y1)′(t) + f(t)(y0 − y1)(t) = 0.

Multiplying both sides by µ(t) yields for every t ∈ I:

µ(t)
(
(y0 − y1)′(t) + f(t)(y0 − y1)(t)

)
= 0

which we can rewrite as: (
µ(t)(y0 − y1)(t)

)′
= 0
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for every t ∈ I. Since I is an interval, by Corollary 2.3.7 there is a constant C ∈ R
such that for every t ∈ I:

µ(t)(y0 − y1)(t) = C.

Thus for every t ∈ I,

y0(t) = y1(t) +
C

µ(t)
.

This establishes (1). For (2), suppose there is t0 ∈ I such that y0(t0) = y1(t0).
Plugging in t0 into the above equation then yields:

y0(t0) = y1(t0) +
C

µ(t0)

which simplifies to

0 =
C

µ(t0)
.

This gives us C = 0. In particular, for every t ∈ I, we have

y0(t) = y1(t).

This establishes (2). �

Remark about absolute values in the integrating factor. In this sub-
section we make a few remarks about the role of absolute values in the integrating
factor µ(t) which appears when computing a solution of a first-order linear differ-
ential equation. We begin with a soft rule-of-thumb:

Rule of Thumb 3.3.10. If there are absolute values which arise in

µ(t) = exp

(∫
f(t) dt

)
as a result of an expression ln | · · · | arising in

∫
f(t) dt, then these absolute values

can be safely removed in the final expression for µ(t).

tldr explanation. Suppose we are looking at the first-order linear differential
equation:

y′ + f(t)y = g(t)

The only relevant property that we need an integrating factor µ(t) to satisfy is that
it simplifies the lefthand side:

(†) µ(t)
(
y′ + f(t)y

)
=
(
µ(t)y

)′
However, if µ(t) satisfies (†), then so does −µ(t):

−µ(t)
(
y′ + f(t)y

)
=
(
− µ(t)y

)′
since this amounts to multiplying (†) through by −1. Now suppose that µ(t) =
|u(t)| for some differentiable function u(t). Then by definition,

µ(t) =

{
u(t) if u(t) > 0

−u(t) if −u(t) < 0

The claim is that the function u(t) (i.e., µ without the absolute values) can serve
as an integrating factor. This is essentially because:

u(t) =

{
µ(t) if u(t) > 0

−µ(t) if u(t) < 0
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Since both µ(t) and −µ(t) work perfectly well as integrating factors, it follows that
in all cases, the function u(t) works as an integrating factor. �

We hesitate to call 3.3.10 a “Fact” or “Theorem” because this would require a
complete investigation into all possible ways that an absolute value could show up
in a formula for an antiderivative of an elementary function. However, we will give
a justification as to why dropping absolute value signs is allowed and what we are
actually doing to the integrating factor when we do drop the absolute value signs.
For this discussion, we first make more precise what we mean by an integrating
factor :

Definition 3.3.11. Suppose f : D → R is a continuous function with a nice domain
D ⊆ R and I ⊆ D is a nice subset of D. We call a differentiable function µ : I → R
an integrating factor for y′ + fy on I if:

(1) µ(t) 6= 0 for every t ∈ I, and
(2) for every differentiable function y : I → R, the following equality holds:

µ(t)
(
y′(t) + f(t)y(t)

)
=
(
µ(t)y(t)

)′
for every t ∈ I.

Certainly, the integrating factors we’ve been using:

µ(t) := exp

(∫
f(t) dt

)
satisfy the definition of an integrating factor according to Definition 3.3.11. But an
integrating factor is by no means unique. Indeed, we are free to multiply an inte-
grating factor by any nonzero constant and it remains a perfectly valid integrating
factor:

Observation 3.3.12. Suppose f : D → R is a continuous function with a nice
domain D ⊆ R, I ⊆ D is a nice subset of D, and µ : I → R is an integrating
factor for y′+fy on I. Then for any nonzero constant α ∈ R (α 6= 0), the function
αµ : I → R is also an integrating factor for y′ + fy on I.

However, we have a little bit more freedom in modifying our integrating factors than
just multiplying everything through by nonzero constants. For instance, consider
the differential equation:

y′ +
1

t
y = 0

We find that an integrating factor is µ(t) = exp(
∫
dt/t) = |t|. However, 3.3.10

claims that we can switch to using µ̃(t) = t as an integrating factor. The modifica-
tion from µ(t) to µ̃(t) is more involved than just scaling µ(t) by a nonzero constant.
First, note that in this example, f(t) = 1/t and so f : (−∞, 0)∪ (0,+∞)→ R does
not have 0 in its domain, so we are also considering µ(t) = |t| also to be a function
µ : (−∞, 0) ∪ (0,+∞)→ R without zero in its domain. Furthermore, note that:

µ(t) =

{
t if t > 0

−t if t < 0
and µ̃(t) =

{
t if t > 0

t if t < 0

In other words, to change µ(t) into µ̃(t), we had to multiply µ(t) by −1 on the
(−∞, 0) portion of its domain, and keep µ(t) the same on the (0,+∞) portion of
its domain. The reason this type of “selective” multiplication of µ(t) is allowed is
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because (−∞, 0) and (0,+∞) are not connected to each other, so we don’t have to
worry about the portion of µ̃ on (−∞, 0) joining up nicely with the portion of µ̃ on
(0,+∞). This is an instance of the following general observation:

Observation 3.3.13. Suppose f : D → R is a continuous function with a nice
domain D ⊆ R, and suppose µ : D → R is an integrating factor for y′ + fy on D.
Furthermore:

(1) Suppose the domain D = I1 ∪ I2 ∪ I3 ∪ · · · is a union of disconnected
intervals Ik (i.e., there is no i 6= j and a < b ∈ R such that [a, b] ⊆ Ii∪Ij),
and

(2) Suppose α1, α2, α3, . . . is a sequence of nonzero constants from R.

Then the function µ̃ : D → R defined by:

µ̃(t) := αkµ(t) if t ∈ Ik
is also an integrating factor for y′ + fy on D.

We now arrive at a more precise version of 3.3.10:

Observation 3.3.14. Suppose f : D → R is a continuous function with a nice
domain D ⊆ R, and suppose

µ(t) := exp

(∫
f(t) dt

)
=
∣∣u(t)

∣∣ for every t ∈ D

where u : D → R is some differentiable function. Then:

(1) for every t ∈ D, u(t) 6= 0,
(2) the sets,

D1 :=
{
t ∈ D : u(t) > 0

}
and D2 :=

{
t ∈ D : u(t) < 0

}
are disconnected and D = D1 ∪D2, and thus

(3) the function µ̃ : D → R defined by

µ̃(t) := u(t)

for every t ∈ D is also an integrating factor of y′ + fy.

Justification. (1) is clear because µ(t) is defined as an exponential of a certain
function, and exp never takes the value zero.

(2) Suppose towards a contradiction that there is an interval [a, b] ⊆ D such
that a ∈ D1 and b ∈ D2 (the other case is similar). Then since u : [a, b] → R
is differentiable, and hence continuous, by the Intermediate Value Theorem 2.2.6
there is y ∈ (a, b) such that u(y) = 0. This contradicts (1). Thus D1 and D2 are
disconnected. The claim that D = D1 ∪D2 also follows from (1).

(3) is an application of Observation 3.3.13. In order to obtain µ̃ from µ, on
every interval I ⊆ D1, we can keep µ the same, and on every interval J ⊆ D2, we
can multiply µ by −1. �

Remark 3.3.15. In general, you only need to worry about absolute value signs
(and whether to drop them) when computing the general solution of a first-order
linear differential equation. For an initial value problem, you use the precise inte-
grating factor:

µ(t) := exp

(∫ t

t0

f(s) ds

)
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where t0, t are both included in the same interval in the domain of f . Since your
attention is restricted to this interval, the context should tell you, when faced with
|u(t)|, whether to treat this as u(t) or −u(t) (depending on whether u(t0) > 0 or
u(t0) < 0); only one of them can happen on an interval in the domain of f which
contains t0.

We now give a very carefully worked out example, where we show how to apply the
above discussion on absolute values. In general, when you are doing computations,
you are free to drop absolute values in this context without justification provided
that you still get the full correct answer.

Example 3.3.16. Consider the following initial value problem:

(1) y′ + tan(t)y = sec(t)
(2) y(0) = 5.

Find the general solution to (i) and the particular solution to (i)+(ii).

Solution. First notice that the domain of f(t) = tan(t) and g(t) = sec(t) is

D := domain(tan t) = domain(sec t) =
⋃
k∈Z

(π
2

+ πk,
π

2
+ π(k + 1)

)
i.e., the domain is all of R except points of the form π/2 + πk, where k ∈ Z. Next
we compute the usual integrating factor:

µ(t) := exp

(∫
tan t dt

)
= exp ln | sec t| = | sec t|.

The domain of µ(t) is the same as the domain of tan t and sec t above (= D).
Furthermore, note that

D1 := {t ∈ D : sec t > 0} =
⋃

k∈Z,k odd

(π
2

+ πk,
π

2
+ π(k + 1)

)
D2 := {t ∈ D : sec t < 0} =

⋃
k∈Z,k even

(π
2

+ πk,
π

2
+ π(k + 1)

)
As we see, the intervals in D1 are not connected to the intervals in D2. Thus we
can define µ̃ : D → R by

µ̃(t) :=

{
µ(t) if t ∈ D1

−µ(t) if t ∈ D2

= sec t

for every t ∈ D. By Observation 3.3.13, we know that µ̃(t) = sec t also works as an
integrating factor, so we will use that instead. Continuing on with the problem, we
multiply (i) through by µ̃ to obtain:(

sec(t)y
)′

= sec2 t

Integrating both sides yields:

sec(t)y = tan t+ C
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where C ∈ R is an arbitrary constant. Thus the general solution3 is:

y(t) = y(t;C) =
tan t+ C

sec t
on the domain D.

Next, we will solve the initial value problem (i)+(ii) from scratch. Since t0 = 0,
we see that the interval of existence of the solution will be (−π/2, π/2), so we can
restrict our attention to this interval. First we compute the integrating factor
(where t ∈ (−π/2, π/2)):

µ(t) := exp

(∫ t

0

tan s ds

)
= exp

(
ln | sec s|

∣∣∣∣t
0

)

= exp

(
ln sec s

∣∣∣∣t
0

)
(∗)

= exp
(

ln sec t− ln sec 0
)

= exp
(

ln sec t− ln 1
)

= exp
(

ln sec t
)

= sec t

where in step (∗) we removed the absolute value signs because sec s is positive at
s = 0 (if the initial condition had t0 = π for instance, then we would have to replace
ln | sec s| with ln(− sec s) in that step). Now that we have the integrating factor,
we can proceed with the particular solution (which is only defined on the interval
of existence (−π/2, π/2)):

y(t) =
1

sec t

∫ t

0

sec2 s ds+
5

sec t
because y0 = 5

=
tan t

sec t
+

5

sec t

=
tan t+ 5

sec t
. �

Mixing problems. We now discuss a practical application of first-order linear
differential equations, the so-called mixing problems. We will introduce mixing
problems with an example from [1] and an example from [2]. All mixing problems
basically follow the same general outline, although the differential equations which
show up might vary.

Example 3.3.17 (Constant volume example). Suppose a tank contains 10L of
brine solution (salt dissolved in water). Assume the initial concentration of salt
is 100g/L. Another brine solution flows into the tank at a rate of 3L/min with a
concentration of 400g/L. Suppose the mixture is well stirred and flows out of the
tank at a rate of 3L/min. Let y(t) denote the amount of salt in the tank at time t.
Find y(t).

3Technically speaking, the general solution would have a possible different constant +C on
each connected component (π/2 + kπ, π/e + (k + 1)π) of the domain, however we are sweeping

this point under the rug. See Remark 2.4.9.
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Solution. We are interested in solving for

y(t) = amount of salt, units: g.

We will determine the function y(t) by setting up and solving a differential equation
for y′(t):

y′(t) = rate of change in amount of salt, units: g/min

The main equation we will use is the so-called balance law:

y′(t) = rate in− rate out

Note that y′(t), the “rate in” and “rate out” all have units g/min, whereas the
information given in the question has units of either g/L or L/min. Thus we will
need to use the following dimensional analysis:

amount of salt

unit of time
=

volume of brine

unit of time
× amount of salt

volume of brine

We now will determine the “rate in” and “rate out”:
Rate in: The brine flows in at a rate of 3L/min with a fixed concentration of

400g/L. Thus the rate in of salt is:

rate in = 3L/min× 400g/L = 1200g/min.

Rate out: The brine flows out at a rate of 3L/min. The concentration of the
brine in the tank changes, however, depending on the value of y(t). Since the tank
contains a constant volume of brine, the concentration at time t in the tank is

concentration in tank =
y(t)

10
g/L

and thus the rate out is:

rate out = 3L/min× y(t)

10
g/L =

3y(t)

10
g/min

IVP: We conclude that the differential equation that y satisfies is:

y′(t) = 1200− 3

10
y(t)

which we recognize as a first-order linear differential equation:

y′ +
3

10
y = 1200.

Furthermore, at time t = 0, we know that y(0) = 100g/L × 10L = 1000g. To
summarize, we need to solve the IVP:

(i) y′ + 3
10y = 1200,

(ii) y(0) = 1000.

Using the usual method, we find that the solution is:

y(t) = 4000− 3000e−3t/10

where the units of y(t) is g (grams). �

Here is a similar example, except that in this example, the volume of solution in
the tank changes, as a result of an imbalance between the rate in and rate out:
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Example 3.3.18 (Nonconstant volume example). Suppose a 600L tank is filled
with 300L of pure water at time t = 0. A spigot is opened above the tank and a
brine solution with concentration 1.5g/L begins flowing into the tank at a rate of
3L/min. Simultaneously, a drain is opened at the bottom of the tank allowing the
solution to leave the tank at a rate of 1L/min. What will be the salt content in the
tank at the precise moment that the volume of solution in the tank is equal to the
tank’s capacity (=600L)?

Solution. We need to perform a similar analysis as in Example 3.3.17 to get the
function y(t), but we also need to know at what time tfull is the volume of solution
in the tank equal to 600L. Let V (t) be the volume in the tank (in units of L). Then
the change in volume is also governed by a balance law:

V ′(t) = rate in− rate out = 3g/min− 1g/min = 2g/min

and thus

V (t) = 2t+ C.

Since V (0) = 300, we get that C = 300 and so V (t) = 2t + 300. This allows us to
determine the time tfull at which the tank is full:

600 = V (tfull) = 2tfull + 300

and thus tfull = 150min (so the tank will be full at the 3-hour mark).
Next we determine the function y(t), again using the balance law:

y′(t) = rate in− rate out

Rate in: We are given that the solution which flows in has a rate of 3L/min,
and a constant concentration of 400g/L. Thus:

rate in = 1.5
g

L
× 3

L

min
= 4.5

g

min

So the rate in of salt is constant.
Rate out: We are given that the solution flows out at a constant rate of

1L/min. The concentration in the tank, however, depends on the amount of salt in
the tank y(t), as well as the volume of solution in the tank V (t). Thus:

rate out = volume rate out× concentration in tank

= 1
L

min
× y(t)g

V (t)L
=

y(t)

2t+ 300

g

L

Thus our differential equation for y(t) is:

y′ = 4.5− y

2t+ 300

and our initial value is y(0) = 0 (since the tank starts with pure water, with no
salt). This is a first-order linear differential equation. The solution is:

y(t) = 450 + 3t− 4500
√

3√
300 + 2t

And thus the salt content at tfull = 150 is:

y(150) = 450 + 3 · 150− 4500
√

3√
300 + 2 · 150

≈ 582g. �
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Variation of parameters. In this subsection we summarize an alternative
method of solving a first-order linear differential equation, the method of variation
of parameters. From a raw computational standpoint, this method requires you to
compute the same integrals you otherwise would compute using the usual method,
and for this reason we will not spend much time on it. However, it illustrates a
certain idea in solving differential equations which we will encounter again:

A solution to the homogeneous equation can be used

to find a solution to the inhomogeneous equation.

We will illustrate the method of variation of parameters first through an example,
and then give some general statements. We will only look at finding the general
solution, a particular solution to an IVP is found using the initial condition from
the general solution in the usual way (solving for C).

Example 3.3.19. Find the general solution to the following differential equation:

(3.9) y′ + y = exp(t)

Solution. We will solve this using variation of parameters in multiple steps:
Step 1: Get the general solution to the homogeneous equation:

y′ + y = 0.

For this we do the same thing as before, first compute the integrating factor:

µ(t) = exp

(∫
dt

)
= exp(t)

Now we multiply the differential equation through by µ(t) to obtain:(
exp(t)y

)′
= 0

and then integrate to get the homogeneous solution (which we call yn):

exp(t)yh(t) = C

and thus the general solution is:

yh(t) = C exp(−t)
Step 2: Replace C with an unknown function, plug this into (i), and solve for

the unknown function.
Essentially, we will guess that the solution to y(t) = v(t) exp(−t), where v(t) is

an unknown function we need to find. Since µ(t) = exp(−t) is everywhere nonzero,
every solution of (i) technically can be written in the form v(t) exp(−t) (i.e., if y(t)
is a solution of (i), then v(t) := y(t) exp(t) works). If y(t) = v(t) exp(−t), then
y′(t) = v′(t) exp(−t)− v(t) exp(−t). Plugging these things into (i) yields:

y′ + y = exp(t)

v′(t) exp(−t)− v(t) exp(−t) + v(t) exp(−t) = exp(t)

v′(t) exp(−t) = exp(t)

v′(t) = exp(2t).

Solving for v(t) (by integrating), we get that

v(t) =
1

2
exp(2t) + C.
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Thus the general solution to (i) is

y(t) =

(
exp(2t)

2
+ C

)
exp(−t) =

exp(t)

2
+ C exp(−t). �

Here are the steps in general for the method of variation of parameters:

Variation of Parameters 3.3.20. Consider the first-order linear differential equa-
tion:

(3.10) y′ + f(t) = g(t)

with corresponding homogeneous equation:

(3.11) y′ + f(t) = 0.

The method of variation of parameters to solve 3.10 consists of:

(1) First find the solution yh(t) to the homogeneous equation 3.11:

yh(t) = exp

(
−
∫
f(t) dt

)
=

1

µ(t)

where µ(t) = exp(
∫
f(t) dt) is the usual integrating constant.

(2) Either substitute y = v(t)yh(t) into 3.10 and solve for v(t), or else directly
solve:

v′ =
g(t)

yh(t)

with direct integration. The general solution will contain a constant of
integration C.

(3) Write down the general solution to 3.11:

y(t) = v(t)yh(t).

Note that in steps (1) and (2) you are basically performing the same two integrations
that you do in the usual method of solving first-order linear differential equations.
Thus not much is gained from choosing to use variation of parameters, except
perhaps another point of view.

3.4. Implicit equations and differential forms

In this section we recall some facts from calculus about implicit equations and intro-
duce the auxiliary tool of differentials and differential forms. By way of motivation,
recall that we are ultimately interested in this chapter in solving explicit differential
equations:

y′ = F (t, y)

These equations can in general be much nastier than the first-order linear differential
equations we studied in Section 3.3. The reason is because in general the two-
variable function F (t, y) might entangle the variables t and y together in some
more complicated way than just “−f(t)y + g(t)”. In calculus, we are used to most
of the time y being an explicit function of t, i.e., y = h(t) for some one-variable
function h. However, this is ultimately a very special case and rather restrictive.
Consequently:

We must abandon our desire for

y to always be an explicit function of t.

Instead, we will work with implicitly defined equations:
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Definition 3.4.1. A implicit equation is a relation which can be written in the
form:

F (t, y) = 0

where F is a function of two4 variables. Given a two-variable function F (t, y) and
a constant C ∈ R, we call the implicit equation:

F (t, y) = C

a level set of F .

Here is a very natural example of an implicit equation:

Example 3.4.2 (Circles). Consider the function:

F (t, y) := t2 + y2

Then for C ∈ R, the level set:

t2 + y2 = C2

is the implicit equation which defines the circle of radius |C| in the ty-plane. If
C 6= 0, then the graph of t2 + y2 = C2 is not a function since it fails the vertical
line test. However, if we are interested in a certain point, say (

√
2/2,
√

2/2) on the
circle t2 + y2 = 1, then we can obtain an explicit function:

y(t) =
√

1− t2, y : [−1, 1]→ R

which passes through this point, and matches up with the top half of the full circle.
If we are instead interested in the point (1, 0), then we can instead look at the
function:

t(y) =
√

1− y2, t : [−1, 1]→ R
which passes through this point and matches up with the right half of the full circle.
We illustrate this example in Figure 3.3.

t
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00

(a) Explicit equation
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(b) Implicit equation
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(c) Explicit equation

Figure 3.3. Implicit equation versus explicit equations for a circle

This illustrates in general how implicit equations work: implicit equations are not
functions, but given a certain point (t0, y0) on the equation, there will be some
function y(t) or t(y) which passes through the point and satisfies the equation.

4This definition generalizes to more than two variables, but we will restrict our attention to
two variables in this section.
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Question 3.4.3. We know how to compute the derivative of an explicit function
y = f(t). The derivative is again an explicit function dy/dt = f ′(t). How do you
“take the derivative” of an implicit equation F (t, y) = 0, and what type of object is
“the derivative”?

Answer. “The derivative” of an implicit equation F (t, y) = 0 is a brand new type
of object, called a differential form:

Definition 3.4.4. A differential form is a formal expression of the form:

P (t, y) dt+Q(t, y) dy

where P,Q are two-variable functions and dt and dy are meaningless placeholders
associated to the variables t and y called differentials. Differential forms can be
added together in the natural way, and you can multiply them (from the left) by
arbitrary functions R(t, y).

The right notion of “taking the derivative” here is to compute the differential
of F (t, y):

Definition 3.4.5. Given a two-variable function F (t, y), the differential of F
(notation: dF ) is the differential form:

dF :=
∂F

∂t
(t, y) dt+

∂F

∂y
(t, y) dy

Ultimately, we don’t have to fully understand what the differential really does or
what a differential form really is. We just need to know how to use them for certain
types of computations. For us differential forms will appear as transient objects
which make our calculations easier (for instance, see Example 3.4.6), especially
when working with implicit equations and general first-order explicit differential
equations. If you like, you can think of the differential dF as a “storage device”
which contains all the “derivative information” associated with F (t, y). �

We give an application of how you can use differential forms to compute implicit
derivatives:

Example 3.4.6 (Implicit derivatives). Consider the implicitly defined equation

t2+y2−1 = 0 (circle of radius 1 in the ty-plane) and the point (
√

2/2,
√

2/2). What

is the derivative dy/dt of the implicitly defined function at the point (
√

2/2,
√

2/2)?

Solution. One way to do this is to first notice that (
√

2/2,
√

2/2) lies on the upper
half-circle, so it is a point on the graph of the explicit function:

y(t) =
√

1− t2

Then we can compute:
dy

dt
(t) = − t√

1− t2

and then plug in t =
√

2/2:

dy

dt

(√
2

2

)
= −

√
2/2√
1/2

= −1.

This seems like an annoying way to answer this question because you have to:
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(1) First, find an explicit function y(t) which goes through the point and
agrees with the implicit equation. This can sometimes be very hard or
impossible to do exactly.

(2) Second, take the derivative of said explicit function. In our case, it also
was annoying because we had to deal with the derivative of a square-root.

Here is a better way to do it:
First: Compute the differential of the equation t2 + y2 − 1 = 0. This will be:

2t dt+ 2y dy = 0.

Second: “Solve” for dy/dt: since

2t dt+ 2y dy = 0,

we can subtract 2t dt from both sides:

2y dy = −2t dt

and then divide both sides by 2y and “divide” both sides by dt:

dy

dt
= − 2t

2y
= − t

y

Third: Plug in the point of interest:

dy

dt
= −

√
2/2√
2/2

= −1.

Although we write “solve” and “divide”, we aren’t actually doing anything
sketchy. Given a correct and careful definition of differential forms and differential
(which we won’t go into), all of these steps are completely legitimate. Hopefully
you are convinced that this is a much easier way to answer the question.

Another benefit of the differential form is that it is in some sense “coordinate
neutral”. For instance, suppose we asked a followup question: what is the derivative
dt/dy at the point (1, 0)? Then we could just take the differential and “solve” for
dt/dy in the same way:

dt

dy
= −y

t

and so at (1, 0):

dt

dy
= −0

1
= 0. �

In some sense, the general process we will learn for solving differential equation
y′ = F (t, y) is just this process in reverse (with a few more complications).

3.5. Separable and exact differential equations

In this section we will see how to essentially do the process in Example 3.4.6 in
reverse, in order to solve an explicit first-order differential equation. As we will see, a
much larger family of differential equations (beyond just the first-order linear ones)
can be solved with this method. However, this method doesn’t always guarantee an
exact solution because in the worst case it requires you to solve a partial differential
equation (PDE) which can be hard or impossible to solve exactly.
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Obtaining a differential form equation. Given an explicit first-order linear
differential equation

(3.12)
dy

dt
= f(t, y)

the first step is to rewrite this as a differential form equation:

(3.13) P (t, y) dt+Q(t, y) dy = 0

This can be done with the following steps:

(Step 1) “Multiply” both sides of (3.12) by dt to get:

dy = f(t, y) dt

(Step 2) Subtract from both sides f(t, y) dt to get:

−f(t, y) dt+ dy = 0

(Step 3) If necessary, multiply both sides by some carefully chosen integrating fac-
tor µ(t, y):

−f(t, y)µ(t, y) dt+ µ(t, y) dy = 0

Step 3 is the most important step, as this puts the differential form equation into a
form we can “integrate” (i.e., compute an inverse of the differential d). We will see
through examples some heuristics for how to do this for certain families of functions.
We will also show how to check if the differential form equation can be solved. In
the worst case, however, finding the right integrating factor µ(t, y) requires solving
a PDE.

Separable differential equations. As a warmup, we will study a family of
equations for which this process always works, the so-called separable differential
equations:

Definition 3.5.1. A separable equation is an explicit first-order differential
equation of the form:

(i) either
dy

dt
= f(t)g(y)

(ii) or
dy

dt
=

f(t)

g(y)

where f, g are one-variable functions. Note that every equation of the form
(ii) is also an equation of the form (i):

dy

dt
= f(t)

(
1

g(y)

)
= f(t)h(t)

where h = 1/g. Thus we will restrict our attention to equations of the form
(i).

The reason that a separable equation is called “separable”, is because we can sep-
arate the variables t and y when performing Steps 1-3 above. Here are some exam-
ples:

Example 3.5.2. Here are some examples of separable equations and the corre-
sponding “separated” differential form equation:
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(1) dy
dt = ty. In this case, Step 1 and Step 2 yield:

−ty dt+ dy = 0.

Now multiply both sides by 1/y to obtain:

−t dt+
dy

y
= 0.

(2) dy
dt = et−y. Recognize this equation as dy/dt = ete−y. Then Step 1 and
Step 2 yield:

−ete−y dt+ dy = 0

Multiplying both sides by ey then gives us:

−et dt+ ey dy = 0

(3) dy
dt = ty + y. Rewrite this as dy/dt = (t+ 1)y. Then get:

−(t+ 1)y dt+ dy = 0

and multiplying by 1/y yields:

−(t+ 1) dt+
dy

y
= 0.

These examples show that in general a separable equation

dy

dt
= f(t)g(y)

gives rise to the differential form equation

−f(t) dt+
dy

g(y)
= 0.

Since each differential dt and dy has as coefficient functions a one-variable function
in the same variable, we can “integrate” this differential form equation using the
following:

Observation 3.5.3. Given a separated differential form equation:

(3.14) P (t) dt+Q(y) dy = 0

Define the two-variable function:

F (t, y) :=

∫
P (t) dt+

∫
Q(y) dy

Then

dF =
∂

∂t

(∫
P (t) dt

)
dt+

∂

∂y

(∫
Q(y) dy

)
dy = P (t) dt+Q(y) dy

Thus, the implicit equation
F (t, y) = C

where C ∈ R is arbitrary, is the “general solution” to the differential form equa-
tion (3.14).

In other words, to integrate a separated differential form equation, you just compute
two one-variable integrals, a dt-integral and a dy-integral. Each one gives you a
constant of integration, but these constants of integration can be combined into
one and put on the righthand side of the equation. We illustrate this with a few
examples:
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Example 3.5.4. Continuing with our examples from 3.5.2:

(1) Given our differential form equation

−t dt+
dy

y
= 0

we integrate both parts of the lefthand side separately to get:∫
−t dt+

∫
dy

y
= − t

2

2
+ ln |y| = C.

Thus the general solution, as an implicit equation, is:

− t
2

2
+ ln |y| = C.

(2) Given our differential form equation

−et dt+ ey dy = 0

we integrate to get:∫
−et dt+

∫
ey dy = −et + ey = C.

Thus the general solution, as an implicit equation, is:

−et + ey = C.

(3) Given our differential form equation

−(t+ 1) dt+
dy

y
= 0

we integrate to get∫
−(t+ 1) dt+

∫
dy

y
= − (t+ 1)2

2
+ ln |y| = C

Thus the general solution, as an implicit equation, is:

− (t+ 1)2

2
+ ln |y| = C.

Here is a convention for this class involving separable (and also exact) equations
below:

Convention 3.5.5. If we ask for the general solution to a separable or exact
differential equation, you may leave the general solution in implicit form unless we
specifically ask you to put it in explicit form, in which case you have to solve for y
in terms of C. If a term |y| = u(t;C) shows up, then this simplifies to y = ±u(t;C).

Example 3.5.6. We will continue with the three examples from Example 3.5.4,
giving the general solution in explicit form:
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(1) Our general solution in implicit form is −t2/2 + ln |y| = C. Solving for y
yields:

ln |y(t)| =
t2

2
+ C

|y(t)| = exp

(
t2

2
+ C

)
y(t) = ± exp

(
t2

2
+ C

)
(general solution)

(2) Our general solution in implicit form is −et+ey = C. Solving for y yields:

−et + ey = C

ey = et + C

y(t) = ln
(
et + C

)
(general solution)

Note: we do not put absolute values in the last step. The second equa-
tion ey = et + C tells us that et + C must be positive. This places
additional conditions on the constant C and the domain of the general
solution (which will be a function of C) — something we will not bother
with.

(3) Our general solution in implicit form is −(t+ 1)2/2 + ln |y| = C. Solving
for y yields:

ln |y| =
(t+ 1)2

2
+ C

|y(t)| = exp

(
(t+ 1)2

2
+ C

)
y(t) = ± exp

(
(t+ 1)2

2
+ C

)
(general solution)

Here is the convention for initial value problems:

Convention 3.5.7. Suppose our separable or exact differential equation as implicit
general solution:

F (t, y) = C

and we also have an initial condition y(t0) = y0. Then:

(1) First solve for C by noticing C = F (t0, y0). If we do not explicitly ask for
the particular solution in explicit form, then you may stop here.

(2) If we do ask for the explicit solution, then solve F (t, y) = C (with the new
exact value for C) for y, using the initial condition y(t0) = y0 anytime you
have to make a choice (e.g., dealing with absolute values, or square roots).
The interval of existence will be the largest interval which contains t0 for
which y(t) is naturally defined.

Example 3.5.8. Find the particular solution (in explicit form) for the following
initial value problem:

(i) y′ = ty
(ii) y(1) = 1
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Solution. We have found the implicit general solution in Example 3.5.4 to be:

− t
2

2
+ ln |y| = C

Solving for C yields:

C = −12

2
+ ln |1| = −1

2
.

Next we solve for y(t):

− t
2

2
+ ln |y(t)| = −1

2

ln |y(t)| =
t2

2
− 1

2

|y(t)| = exp

(
t2

2
− 1

2

)
y(t) = exp

(
t2

2
− 1

2

)
Here we needed to take the righthand side to be positive when we removed the
absolute values because y0 = 1 is positive. The interval of existence is all of R as
this is the natural domain of the righthand function of t. �

We end our separable discussion with a remark about dividing by zero:

Remark 3.5.9. Suppose we have an initial value problem:

(i) y′ = f(t)g(y)
(ii) y(t0) = y0.

and g(y0) = 0. Then the constant function y(t) = y0 for all t is a solution and the
interval of existence is the largest possible interval which contains t0 for which f(t)
is defined.

Exact differential equations. Now we move on to the general case:

(3.15) y′ = f(t, y)

where f is a two-variable function which might not be separable (i.e., it might not
be of the form f(t, y) = g(t)h(y)). Recall that the first order of business is to
translate equation (3.15) into a suitable differential form equation:

(Step 1) Rewrite (3.15) as dy
dt = f(t, y).

(Step 2) “Multiply” both sides by dt, then add −f(t, y) dt to both sides to obtain:

−f(t, y) dt+ dy = 0

(Step 3) Multiply both sides by a carefully chosen integrating factor µ(t, y):

−f(t, y)µ(t, y) dt+ µ(t, y) dy = 0.

This will give us a differential form equation:

(3.16) P (t, y) dt+Q(t, y) dy = 0.

Of course, we have said nothing yet about how to find the integrating factor µ(t, y),
or what it needs to do. Ultimately, to solve a differential form equation of the
form (3.16), we need to find a so-called potential function:
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Definition 3.5.10. A potential function for (3.16) is a two-variable function
F (t, y) such that

dF =
∂F

∂t
dt+

∂F

∂y
dy = P (t, y) dt+Q(t, y) dy,

i.e.,

(1) ∂F
∂t = P (t, y), and

(2) ∂F
∂y = Q(t, y).

In other words, a potential function is like an antiderivative of a differential form.

Unfortunately, not every differential form has a potential function. This begs the
question:

Question 3.5.11. When does the differential form P (t, y) dt + Q(t, y) dy have a
potential function?

Answer. First, we will define what it means for a differential form to have a
potential function:

Definition 3.5.12. Suppose P,Q : D → R are continuous two-variable functions
on a nice domain D ⊆ R2. We say that the differential form

P dt+Qdy

is exact if there exists a continuously differentiable function F : D → R such that

dF = P dt+Qdy.

Next, we isolate a necessary condition (which is easily checkable) for a differ-
ential form to be exact. We will further assume that P and Q are continuously
differentiable (this will be the case for all the functions we shall encounter). Sup-
pose F (t, y) is a potential function of P (t, y) dt+Q(t, y) dy, so F will have to have
continuous second-order partial derivatives (in order for P and Q to have continu-
ous first-order partial derivatives). Then by the Clairaut-Schwarz Theorem 2.3.13
it follows that:

∂2F

∂t∂y
=

∂2F

∂y∂t

Thus, since ∂F
∂t = P and ∂F

∂y = Q, then this says that

∂Q

∂t
=

∂P

∂y

i.e., the partial derivatives of P and Q with respect to the other variable must be
the same. This motivates the following definition:

Definition 3.5.13. Suppose P,Q : D → R are continuously differentiable two-
variable functions on a nice domain D ⊆ R2. We say that the differential form

P dt+Qdy

is closed if
∂P

∂y
− ∂Q

∂y
= 0

i.e., if the lefthand side is the constant zero function.
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Clearly, in order for a differential form to be exact, it must also be closed (which
is a very easy condition to check). What about the converse? As it turns out, if we
impose a natural condition on the domain D, then these two are equivalent:

Theorem 3.5.14. Suppose P,Q : I × J → R are continuously differentiable func-
tions and I, J ⊆ R are intervals (so the common domain of P and Q is a rectangle).
Then the following are equivalent:

(1) the differential form P dt+Qdy is exact.
(2) the differential form P dt+Qdy is closed.

This provides an answer to the original question, namely, if the functions P
and Q are nice (continuously differentiable, which they always will be for us), and
the domain is a rectangle, then the differential form P dt + Qdy has a potential
function iff P dt+Qdy is closed, i.e., iff ∂P

∂y = ∂Q
∂t . �

Here is an example which shows how Theorem ?? can fail if the domain of P,Q
is not a rectangle:

Example 3.5.15. Consider the differential form equation:

−y
t2 + y2

dt+
t

t2 + y2
dy = 0.

Here the domain of the coefficient functions is R2 \
{

(0, 0)
}

, i.e., the entire ty-plane
except the origin. It is easy to see that this differential form is closed:

∂

∂y

(
−y

t2 + y2

)
=

y2 − t2

(t2 + y2)2

∂

∂t

(
t

t2 + y2

)
=

y2 − t2

(t2 + y2)2

However, the differential form is not exact. Assume towards a contradiction that
there exists a potential function F : R2 \

{
(0, 0)

}
→ R. Then on the one hand we

would have ∫ 2π

0

d

dθ
F (cos θ, sin θ) dθ = F (1, 0)− F (1, 0) = 0.

On the other hand, we have by the (multivariable) chain rule:

d

dθ
F (cos θ, sin θ) =

∂F

∂t
· (− sin θ) +

∂F

∂y
· cos θ

=
sin θ

cos2 θ + sin2 θ
· sin θ +

cos θ

cos2 θ + sin2 θ
· cos θ

= 1,

which implies that
∫ 2π

0
d
dθF (cos θ, sin θ) dθ = 2π 6= 0. This is a contradiction, and

so no such potential function F can exist.

We now provide an example of checking whether a given differential form is closed
(and also exact):
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Example 3.5.16. (1) (2t+ y) dt+ (t− 6y) dy. First we compute the partial

derivatives ∂P
∂y and ∂Q

∂t :

∂

∂y
(2t+ y) = 1

∂

∂t
(t− 6y) = 1

Thus (2t + y) dt + (t − 6y) dy is closed. Since both P and Q are defined
on the rectangle R×R, by Theorem 3.5.14 this differential form is exact,
hence there exists a potential function for it.

(2) (2t+ ln y) dt+ ty dy. First we compute the relevant partials:

∂

∂y
(2t+ ln y) =

1

y

∂

∂t
(ty) = y

Since these partial derivatives are not equal, the differential form is not
closed, hence it is not exact.

The next order of business is to solve for a potential function of an exact differential
form. This can be done with the following steps:

Finding a potential function of an exact differential form 3.5.17. Suppose
the differential form P (t, y) dt+Q(t, y) dy is exact. The solution to the differential
form equation

P (t, y) dt+Q(t, y) dy = 0

is F (t, y) = C, where F is a potential function of P (t, y) dt+Q(t, y) dy. A potential
function F can be found in the following steps:

(1) First solve ∂F
∂t = P by integrating with respect to t:

(3.17) F (t, y) =

∫
P (t, y) dt+ φ(y)

where φ(y) is an unknown function of y only. Here φ(y) plays the role
of “constant of integration”, except that since we are considering partial
derivatives and integrating with respect to t only, we have to allow our
constant of integration to in fact be a function of y.

(2) Next, we need to find what φ(y) is. Since we know ∂F
∂y = Q(t, y), we can

differential (3.17) with respect to y:

∂

∂y

∫
P (t, y) dt+ φ′(y) = Q(t, y),

and thus

φ(y) =

∫ (
Q(t, y)− ∂

∂y

∫
P (t, y) dt

)
dy

(3) Now that we know what function φ(y) is, our general solution (in implicit
form) is:

F (t, y) = C.

We give some examples as to how this process works:
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Example 3.5.18. In each of the following examples, the differential form is exact
and we will solve the indicated differential form equation.

(1) (2t sin y + y3et) dt + (t2 cos y + 3y2et) dy = 0. First we verify that the
differential form is exact. Indeed:

∂

∂y
(2t sin y + y3et) = 2t cos y + 3y2et

∂

∂t
(t2 cos y + 3y2et) = 2t cos y + 3y2et

Now we will find a potential function F (t, y) for this differential form.
First using that ∂F

∂t = 2t sin y + y3et, we get that

F (t, y) =

∫
(2t sin y + y3et) dt+ φ(y) = t2 sin y + y3et + φ(y)

for some unknown function φ(y) which is solely a function of y. Next we
take the partial derivative of this F with respect to y and set it equal to
t2 cos y + 3y2et:

∂F

∂y
=

∂

∂y
(t2 sin y + y3et + φ(y)) = t2 cos y + 3y2et + φ′(y) = t2 cos y + 3y2et

Thus φ′(y) = 0. Integrating with respect to y finally yields φ(y) = C.
Thus our potential function is:

F (t, y) = t2 sin y + y3et + C.

We conclude that our general solution is:

t2 sin y + y3et + C = 0.

Replacing C with −C, this general solution is equivalent to:

t2 sin y + y3et = C.

(2)
(
1+(1+ ty)ety

)
dt+(1+ t2ety) dy = 0. First we verify that the differential

for is exact. Indeed:

∂

∂y

(
1 + (1 + ty)ety

)
= (1 + ty)etyt+ tety = ety(2t+ t2y)

∂

∂t
(1 + t2ety) = 2tety + t2etyy = ety(2t+ t2y)

Now we will find a potential function for this differential form. First, using
that ∂F

∂t = 1 + (1 + ty)ety, we get that

F (t, y) =

∫ (
1 + (1 + ty)ety

)
dt+ φ(y) = tety + t+ φ(y)

for some unknown function φ(y). Next, we take the partial derivative of
this F with respect to y and set it equal to 1 + t2ety:

∂F

∂y
=

∂

∂y

(
tety + t+ φ(y)

)
= t2ety + φ′(y) = 1 + t2ety

Thus φ′(y) = 1. Integrating with respect to y yields φ(y) = y + C. We
conclude that our potential function is:

F (t, y) = tety + t+ y + C
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and thus our general solution is:

tety + t+ y + C = 0.

The integrating factor µ(t, y). We have not said anything about the inte-
grating factor yet. Its role is as follows:

The integrating factor makes a non-exact equation exact.

Specifically, here is the definition:

Definition 3.5.19. Suppose P,Q : D → R are continuous on a nice domain
D ⊆ R2. We say that a function µ : D → R is an integrating factor for the
differential form equation

P (t, y) dt+Q(t, y) dy = 0

if

(i) µ(t, y) 6= 0 for every (t, y) ∈ D, and
(ii) µ(t, y)P (t, y) dt+ µ(t, y)Q(t, y) dy is exact.

In particular, if D ⊆ R2 is a rectangle, then by Theorem 3.5.14 (ii) is satisfied if
and only if:

∂

∂y

(
µ(t, y)P (t, y)

)
=

∂

∂y

(
µ(t, y)Q(t, y)

)
= 0

i.e., if and only if:

(3.18)
∂µ

∂y
Q(t, y) + µ(t, y)

∂Q

∂y
=

∂µ

∂t
P (t, y) + µ(t, y)

∂P

∂t

In general, if a differential form equation is not-exact, then finding an integrating
factor involves solving the partial differential equation (PDE) given in (3.18). This
can be hard/impossible to do. For this reason, we will not study techniques for
finding this integrating factor in this class. Here are the conventions for this class
as to what you’re expected to know how to do with regards to this integrating
factor:

Convention 3.5.20. You need to know how to do the following things for this
class:

(1) Be able to check if a differential form equation is exact, and solve it if it
is exact.

(2) Given a non-exact differential form equation, and supplied with a valid
integrating factor, you need to be able to use the integrating factor to
solve the equation.

Here is an example of solving a non-exact differential form equation after being
supplied with a valid integrating factor.

Example 3.5.21. Consider the differential form equation (3t2y+2ty+y3) dt+(t2+
y2) dy = 0 and the integrating factor µ(t, y) = e3t. First note that the differential
form is not exact:

∂

∂y
(3t2y + 2ty + y3) = 3t2 + 2t+ 3y2

∂

∂t
(t2 + y2) = 2t
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however, multiplying through by µ(t, y) = e3t yields the differential form equation:

(3t2y + 2ty + y3)e3t dt+ (t2 + y2)e3t dy = 0

which is exact:

∂

∂y
(3t2y + 2ty + y3)e3t = (3t2 + 2t+ 3y2)e3t

∂

∂t
(t2 + y2)e3t = (t2 + y2)3e3t + 2te3t = (3t2 + 3y2 + 2t)e3t

Now we will solve for the potential function. Using ∂F
∂t = (3t2y + 2ty + y3)e3t we

get

F (t, y) =

∫
(3t2y + 2ty + y3)e3t dt+ φ(y) = e3ty(t2 +

y2

3
) + φ(y)

Next, taking a partial derivative with respect to y and setting this equal to (t2 +
y2)e3t yields:

∂F

∂y
= e3t(t2 + y2) + φ′(y) = (t2 + y2)e3t.

We conclude that φ′(y) = 0. Integrating this with respect to y yields φ(y) = C.
We conclude that our potential function is:

F (t, y) = (t2 + y2)e3t + C

and thus our general solution is:

(t2 + y2)e3t + C = 0.

3.6. Existence and uniqueness theorems

We have already seen the full existence and uniqueness theorem for first-order linear
differential equations (Theorem 3.3.8). In this section we will give statements of
other existence and uniqueness theorems.

We have already given the relevant existence and uniqueness theorem for first-order
linear differential equations in Theorem 3.3.8. The following is the corresponding
statement for separable differential equations. Note that in general for separable
differential equations, we are only guaranteed local uniqueness, i.e., a unique solu-
tion on a tiny interval I ′ which contains t0 (provided g(y0) 6= 0). At this level of
generality, we can’t really say what the largest possible interval of existence will be
(unlike the statement of Theorem 3.3.8), although in practice you may be able to
determine this when solving for the explicit solution to an IVP.

Existence and Uniqueness Theorem 3.6.1 (Separable case). Suppose f : I →
R and g : J → R are continuous functions defined on intervals I and J . Consider
the initial value problem:

(i) y′ = f(t)g(y)
(ii) y(t0) = y0, where t0 ∈ I, y0 ∈ J .

(1) If y0 is not an endpoint of J and g(y0) 6= 0, then
(a) the initial value problem (i)+(ii) has a unique solution y(t) : I ′ → R,

where I ′ ⊆ I is some open interval containing t0, and
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(b) the solution to the initial value problem can be obtained by solving for
y in the following equation:∫ y

y0

ds

g(s)
=

∫ t

t0

f(s) ds.

(2) If g(y0) = 0, then the constant function y(t) = y0, y : I → R, is a solution
to (i)+(ii), but it may not be unique.

We now present the main existence theorem for explicit first-order differential equa-
tions:

Existence Theorem 3.6.2 (General case). Suppose f : I×J → R is a continuous
two-variable function defined on a rectangle I × J in the ty-plane (so I, J ⊆ R are
intervals). Then given any point (t0, y0) ∈ I × J , the initial value problem

(i) y′ = f(t, y)
(ii) y(t0) = y0

has a solution y(t) define on some interval I ′ ⊆ I which contains t0. Furthermore,
the solution will be defined at least until the solution curve t 7→

(
t, y(t)

)
leaves the

rectangle I × J .

The following example illustrates what we mean by “leaving the rectangle”:

Example 3.6.3. Consider the IVP:

(i) y′ = 1 + y2

(ii) y(0) = 0

For this differential equation, the function f(t, y) is f(t, y) = 1+y2, which is defined
everywhere on the ty-plane. Thus we can consider its domain to be the rectangle
R × R. Solving this as a separable equation yields the solution y(t) = tan t. The
interval of existence is (−π/2, π/2), since this is the interval in the domain of tan t
which contains t0 = 0. This agrees with the Existence Theorem 3.6.2 since y(t)
“leaves the rectangle” at ±π/2 in the sense that it has vertical asymptotes at these
t-values, so it shoots down/up to ±∞ at these points and “leaves” the ty-plane.

We also have the main uniqueness theorem for explicit first-order differential equa-
tions. Note that the uniqueness theorem requires stronger hypotheses than the
existence theorem, so it holds in fewer situations.

Uniqueness Theorem 3.6.4 (General case). Suppose f : I × J → R is a contin-
uous two-variable function defined on a rectangle I×J in the ty-plane (so I, J ⊆ R
are intervals). Furthermore, suppose the partial derivative ∂f

∂y exists and is contin-

uous on all of I × J . Let (t0, y0) ∈ I × J , and suppose we have have two solutions
y(t), ỹ(t) to the same IVP:

(1) y′(t) = f
(
t, y(t)

)
and ỹ′(t) = f

(
t, ỹ(t)

)
for every t, and

(2) y(t0) = y0 and ỹ(t0) = y0.

Then for every t such that
(
t, y(t)

)
and

(
t, ỹ(t)

)
remain in the rectangle I × J , we

have
y(t) = ỹ(t).

One of the practical benefits of the Uniqueness Theorem 3.6.4 is that, provided the
hypotheses of 3.6.4 are satisfied, then

Different solution curves cannot cross.



3.7. AUTONOMOUS EQUATIONS 67

Here is a (somewhat exaggerated and contrived) example of this principle:

Example 3.6.5. Consider the differential equation:

(3.19) y′ = (y − 10) sin(x+ y)ee
x−y

and suppose that ỹ : I → R is a solution to the equation (3.19) on an interval I
which contains 0. Furthermore, assume that ỹ(0) = 0. Then ỹ(t) ≤ 10 for all t ∈ I.

Justification. First note that ȳ : I → R defined by ȳ(t) := 10 for all t ∈ I is
also a solution of 3.19. Then ȳ(0) = 10 whereas ỹ(0) = 0. Thus by the Uniqueness
Theorem 3.6.4, there can be no t0 ∈ I such that ȳ(t0) = ỹ(t0). Thus the two
differentiable (hence continuous) functions ȳ and ỹ never intersect. Finally, since
ỹ(0) < ȳ(0), it follows that for all t ∈ I that ỹ(t) < ȳ(t) = 10 (since these functions
cannot intersect). �

Notice that the inequality established in Example 3.6.5 would be hard to estab-
lish directly without the Uniqueness Theorem, since the equation (3.19) looks
hard/impossible to solve exactly.

3.7. Autonomous equations

In this final section, we will take a look at qualitative properties of solutions of the
so-called autonomous equations:

Definition 3.7.1. A first-order differential equation is called an autonomous
equation if it can be written in the form:

y′ = f(y)

i.e., if the equation does not depend on the independent variable t.

Autonomous equations are a special case of separable equations, and hence could
be solved using the methods from Section 3.5. However, we will be more interested
in studying the qualitative properties of its solutions, i.e., saying as much as we can
about the solutions without explicitly solving for them.

Example 3.7.2. Consider the autonomous equation

y′ = (y + 1)(y2 − 9)

Below we have a sketch of the direction field along with several solutions curves:
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Figure 3.4. Direction field for the autonomous equation y′ =
(y + 1)(y2 − 9) and several solution curves.

Example 3.7.2 is a rather typical example of an autonomous equation. We make
a few remarks about what we see in Example 3.7.2 which hold for all autonomous
equations:

Remark 3.7.3. Suppose y′ = f(y) is an autonomous equation.

(1) The direction field does not change as you go from left to right, it only
changes as you go from bottom to top. This is because the function
f(t, y) = f(y) is only a function of y and does not depend on t.

(2) Suppose y0(t) is a particular solution and C ∈ R is a constant. Then
y0(t+ C) (a shift of y0 to the left by C) is also a solution. Indeed:(

y0(t+ C)
)′

= y′0(t+ C) = f
(
y0(t+ C)

)
(3) Suppose y0 ∈ R is such that f(y0) = 0. Then the constant function

y(t) := y0 for all t is a solution to y′ = f(y). Such a number y0 is called
an equilibrium point and the constant function y(t) := y0 is called an
equilibrium solution.

What about the nonequilibrium solutions? As Example 3.7.2 illustrates, these
solutions are strictly increasing/decreasing and will be asymptotic to one of the
equilibrium solutions. For this we make the following observations:

(1) Since y′ = f(y), if f(y0) < 0, then the solution going through the point
(t0, y0) will be strictly decreasing.
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(2) Likewise, if f(y0) > 0, then the solution going through the point (t0, y0)
will be strictly increasing.

This qualitative behavior can be succinctly captured by a so-called phase line:

Definition 3.7.4. A phase line for the equation y′ = f(y) is a plot of the y-axis
(displayed horizontally) with the following features:

(1) At every equilibrium point y0 (i.e., where f(y0) = 0), there is a dot.
(2) In a region between two equilibrium points (or between an equilibrium

point and ±∞), if f(y) < 0 in that region, then there is an arrow to the
left. This tells us that for these y-values, the solution is strictly decreasing.

(3) In a region where f(y) > 0, then there is an arrow to the right. This tells
us that for these y-values, the solution is strictly increasing.

(4) At each equilibrium point y0, if the two arrows on either side of y0 are
both pointing towards y0, then the dot at y0 is filled in. Otherwise, the
dot is not filled in.

Often the phase line is plotted with a vertical f(y)-axis as well, superimposed with
a graph of the function f(y).

Example 3.7.5. Example of phase line of above example y′ = (y+ 1)(y2 − 9). To
be included.

There are two types of equilibrium points:

Definition 3.7.6. Consider the autonomous equation y′ = f(y). Suppose y0 ∈ R
is an equilibrium point (i.e., f(y0) = 0). We say that y0 is

(1) asymptotically stable if a solution which goes through a point (t0, y0 +
ε), where |ε| � 1 is very tiny, will asymptotically approach the solution
y(t) = y0. These correspond to the filled-in dots on the phase line.

(2) unstable if it is not asymptotically stable, i.e., if there is some solution
which goes through a point (t0, y0 + ε) which “peels off” and is not as-
ymptotic to the solution y(t) = y0. These correspond to the non-filled-in
dots on the phase line.

In other words, asymptotically stable equilibrium points act like “sinks”, bringing
nearby solution curves towards the constant solution at that point. Unstable equi-
librium points, at least on one of the two sides, will “repel” nearby solution curves.
Since the type of equilibrium point at y0 is determined by the sign of the function
f(y) on both sides of y0, if we know whether f is strictly increasing/decreasing as
it goes through y0 we can determine its type:

First Derivative Test for Stability 3.7.7. Suppose y0 is an equilibrium point
for the autonomous equation y′ = f(y), and suppose f is differentiable. Then:

(1) if f ′(y0) < 0, then f is strictly decreasing at y0 and y0 is asymptotically
stable,

(2) if f ′(y0) > 0, then f is strictly increasing at y0 and y0 is unstable,
(3) if f ′(y0) = 0, then no conclusion can drawn and further investigation is

needed.

This suggests a general procedure for plotting a direction field with various solution
curves:
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(1) By studying the function f(y), first construct the phase line, including
classifying the equilibrium points as either asymptotically stable or un-
stable,

(2) In the direction field, plot the equilibrium solutions.
(3) In the other regions, plot solution curves that behave according to the

phase line: if the phase line points to the left, the solution should be
strictly decreasing and asymptotic to the next lower equilibrium solution
(or diverge to −∞). If the phase line points to the right, the solution
should be strictly increasing and asymptotic to the next higher equilibrium
solution (or diverge to +∞).



CHAPTER 4

Second-order linear differential equations

Recall that an explicit second-order differential equation is an equation of the form

y′′ = f(t, y, y′)

where f is a three-variable function. A solution to this equation is a function y(t)
which is at least twice-differentiable such that for every t,

y′′(t) = f
(
t, y(t), y′(t)

)
In this chapter, we will study a very special type of second-order differential equa-
tion, the so-called linear second-order differential equations.

4.1. Overview of second-order linear equations

In general, second-order differential equations (in the fullest generality) are an order
of magnitude more complicated than first-order differential equations. For this
reason, we will restrict our attention to the simplest type of second-order differential
equation, the second-order linear differential equations. As we shall see, there is
much we can say about these equations and they have many practical applications.

Definition 4.1.1. A second-order linear differential equation is a differential
equation which can be put in the form:

y′′(t) + p(t)y′ + q(t)y = g(t)

where the coefficient functions p, q, g are functions of the independent variable
t only. The function g(t) is referred to as the forcing term. If g(t) = 0 is the
constant zero function, then the differential equation

y′′ + p(t)y′ + q(t)y = 0

is said to be homogeneous.

Here is a representative example:

Example 4.1.2 (Simple harmonic motion). Consider the homogeneous second-
order linear equation:

y′′ + ω2y = 0

where ω ∈ R is a constant with ω 6= 0. Consider the functions:

y1(t) = cosωt and y2(t) = sinωt

71
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We claim that these are both solutions (in Section 4.2 we will learn how one finds
these solutions). Indeed, note that:

y′1(t) = −ω sinωt

y′2(t) = ω cosωt

y′′1 (t) = −ω2 cosωt

y′′2 (t) = −ω2 sinωt

and thus

y′′1 (t) + ω2y1(t) = −ω2 cosωt+ ω2 cosωt = 0

and

y′′2 (t) + ω2y2(t) = −ω2 sinωt+ ω2 sinωt = 0.

Are there any other solutions? In this section we will study general properties of
the set of solutions to a second-order linear equation. We will not learn techniques
for actually solving second-order equations in this section, but instead just assume
(for the moment) that we have some method of obtaining solutions. Along these
lines, the following is relevant:

Existence and Uniqueness Theorem 4.1.3 (Second-Order Linear). Suppose
p, q, g : I → R are continuous functions with domain I ⊆ R an interval. Then given
t0 ∈ I and any two real numbers y0, y1 ∈ R there is a unique function y : I → R
which satisfies the initial value problem:

(i) y′′ + p(t)y′ + q(t) = g(t)
(ii) y(t0) = y0 and y′(t0) = y1.

In example 4.1.2 we saw that we had at least two solutions y1(t), y2(t) to the
equation y′′ + ω2y = 0. For homogeneous linear equations, given two solutions, we
can mass-produce many more solutions.

Definition 4.1.4. Suppose y1, y2 : I → R are two functions defined on an interval
I ⊆ R. A linear combination of y1 and y2 is any function of the form:

C1y1 + C2y2 : I → R

where C1, C2 ∈ R are constants.

For example, 3 cosωt − 7 sinωt is a linear combination of cosωt and sinωt. The
following proposition says that the collection of all solutions to a homogeneous
second-order linear equation is “closed under linear combinations”:

Proposition 4.1.5. Suppose y1(t), y2(t) are solutions to the homogeneous second-
order differential equation

y′′ + p(t)y′ + q(t)y = 0.

Then for any C1, C2 ∈ R, the function C1y1 + C2y2 is also a solution.
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Proof. Let C1, C2 ∈ R be arbitrary. Note that

(C1y1 + C2y2)′′ + p(t)(C1y1 + C2y2)′ + q(t)(C1y1 + C2y2)

= (C1y
′′
1 + C2y

′′
2 ) + p(t)(C1y

′
1 + C2y

′
2) + q(t)(C1y1 + C2y2)

(because the derivative is linear)

= C1y
′′
1 + p(t)C1y

′
1 + q(t)C1y1 + C2y

′′ + p(t)C2y
′
2 + q(t)C2y2

= C1

(
y′′1 + p(t)y′1 + q(t)y1

)
+ C2

(
y′′2 + p(t)y′2 + q(t)y2

)
= C1 · 0 + C2 · 0
= 0,

because y1 and y2 both solutions. Thus C1y1 + C2y2 is also a solution. �

When are two solutions “essentially different”? This is captured by the notion of
linear independence:

Definition 4.1.6. Suppose y1, y2 : I → R are functions defined on an interval
I ⊆ R. We say that y1 and y2 are linearly independent if: for every C1, C2 ∈ R,
if

C1y1(t) + C2y2(t) = 0 for every t ∈ I,

then C1 = C2 = 0. In other words, y1 and y2 are linearly independent if the only
way for a linear combination of y1 and y2 to be the constant zero function is with
the trivial linear combination 0y1 + 0y2. If y1 and y2 are not linearly independent,
then we say they are linearly dependent.

For two functions y1 and y2 to be linearly dependent, this means that either
y1 is a constant multiple of y2 (i.e., y1 = Cy2 for some C ∈ R) or y2 is a constant
multiple of y1 (y2 = Cy1 for some C ∈ R).

Linear independence is ultimately a linear algebra concept and it is one of the most
important definitions in undergraduate mathematics.

Example 4.1.7. Here are some examples of pairs of linearly (in)dependent func-
tions:

(1) The functions y1 = cos t and y2 = sin t are linearly independent.

Justification. Suppose C1, C2 ∈ R are arbitrary such that

(†) C1 cos t+ C2 sin t = 0 for every t ∈ R.

We must show that it must be the case that C1 = C2 = 0. Since (†) holds
for all t ∈ R, it holds for t0 := 0. Plugging in this t-value tells us:

0 = C1 cos 0 + C2 sin 0 = C1 · 1 + C2 · 0 = C1

and so C1 = 0. Likewise, (†) must also hold for t1 := π/2. Plugging in
this t-value tells us:

0 = C1 cosπ/2 + C2 sinπ/2 = C1 · 0 + C2 · 1 = C2,

and so C2 = 0 as well. Since C1 = C2 = 0, we conclude that cos t and
sin t are linearly independent. �

(2) The functions et and 2et are not linearly independent (i.e., they are lin-
early dependent).
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Justification. Note that for C1 := 2 and C2 = −1 we have

C1e
t + C22et = 2et − 2et = 0 for every t ∈ R,

however C1 and C2 are not both zero. �

(3) Suppose f : R → R is any function and g : R → R is the constant
zero function (g(t) := 0 for all t ∈ R). Then f(t) and g(t) are linearly
dependent.

Justification. Note that for C1 := 0 and C2 := 1 we have

C1f(t) + C2g(t) = 0 · f(t) + 1 · 0 = 0 for every t ∈ R,

although C1 and C2 are not both zero (only C1 is zero, but we need both
of them to be zero in order to conclude linear independence). �

As Example 4.1.7 illustrates, it can sometimes be a little tedious to show di-
rectly that two functions are linearly independent. Miraculously, for differentiable
functions there is a much more systematic way to determine the linear depen-
dence/independence of a pair of functions. This involves computing the so-called
Wronskian:

Definition 4.1.8. Suppose u, v : I → R are two differentiable functions defined on
an interval I ⊆ R. Define the Wronskian of u and v to be the function W : I → R
defined by

W (t) := det

[
u(t) v(t)
u′(t) v′(t)

]
:= u(t)v′(t)− v(t)u′(t)

for all t ∈ I.

You might think that the Wronskian W (t) could in general be any function, but in
fact it satisfies the following surprising dichotomy:

Proposition 4.1.9 (Wronskian dichotomy I). Suppose p, q, u, v : I → R are func-
tions defined on an interval I ⊆ R such that u and v are solutions to

y′′ + p(t)y′ + q(t)y = 0

Let W (t) be the Wronskian of u and v. Then exactly one of the following two things
is true:

(Case 1) W (t) = 0 for all t ∈ I, or
(Case 2) W (t) 6= 0 for all t ∈ I.

Proof. We are assuming that both u and v satisfy:

u′′ + pu′ + qu = 0 and v′′ + pv′ + qv = 0.
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We wish to show that W = uv′ − vu′ is either everywhere zero, or everywhere
nonzero. First, differentiate W :

W ′ = uv′′ + u′v′ − vu′′ − v′u′

= uv′′ − vu′′

= u(−pv′ − qv)− v(−pu′ − qu)

because u, v are solutions

= −puv′ − quv + pvu′ + quv

= −p(uv′ − vu′)
= −pW.

Thus, the function W (t) is a solution to the first-order linear homogeneous equation
W ′ + pW = 0. Pick t0 in the domain of W , and suppose W (t0) = W0. Then by
Theorem 3.3.6 we have that

W (t) = W0 exp

(
−
∫ t

t0

p(s) ds

)
Thus, if W0 = 0, we are in Case 1. Otherwise, if W0 6= 0, we are in Case 2, since
the exponential function is never zero. �

Proposition 4.1.9 essentially says that W (t) must be always zero or never zero.
It can’t be sometimes zero and sometimes not-zero. The dichotomy in Proposi-
tion 4.1.9 gives rise to the linear dependence/independence dichotomy:

Proposition 4.1.10 (Wronskian dichotomy II). Suppose p, q, u, v : I → R are
functions defined on an interval I ⊆ R such that u and v are solutions to

y′′ + p(t)y′ + q(t)y = 0

Let W (t) be the Wronskian of u and v. Then:

(Case 1) if there is some t0 ∈ I such that W (t0) = 0 (which implies W (t) = 0 for
all t ∈ I), then u and v are linearly dependent, and

(Case 2) if there is some t0 ∈ I such that W (t0) 6= 0 (which implies W (t) 6= 0 for
all t ∈ I), then u and v are linearly independent.

Proof. Case 1: Assume first that we are in Case 1, i.e., there is some t0 ∈ I such
that W (t0) = 0. Then by Proposition 4.1.9 we know that W (t) = 0 for all t ∈ I.
We have two subcases.

Case 1(a): Assume that v(t) = 0 for every t ∈ I. Then 1 · v(t) + 0 · u(t) = 0
for every t ∈ I and so u and v are linearly dependent.

Case 1(b): Assume there is t0 ∈ I such that v(t0) 6= 0. By the Bump
Lemma 2.2.7, there is α < t0 < β such that v(t) 6= 0 for every t ∈ (α, β) ∩ I. On
this interval (α, β) ∩ I, we have

d

dt

u

v
=

u′v − uv′

v2
=
−W
v2

= 0.

Thus by Corollary 2.3.7 there is a constant C ∈ R such that u(t)/v(t) = C for every
t ∈ (α, β) ∩ I. I.e., u(t) = Cv(t) for every t ∈ (α, β) ∩ I. In particular, both u(t)
and Cv(t) are solutions to the IVP:

(1) y′′ + py′ + qy = 0
(2) y(t0) = u(t0), y′(t0) = u′(t0).
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By the Existence and Uniqueness Theorem 4.1.3, we conclude that u(t) = Cv(t)
for every t ∈ I. Thus u(t) and v(t) are linearly dependent.

Case 2: Suppose there is t0 ∈ I such that W (t0) 6= 0. By Proposition 4.1.9 we
know that W (t) 6= 0 for all t ∈ I. Assume towards a contradiction that u(t), v(t) are
linearly dependent. Thus there exists constants C1, C2 ∈ R such that (C1, C2) 6=
(0, 0) and that C1u(t) + C2v(t) = 0 for every t ∈ I. This gives us two cases:

Case 2(a): Suppose C1 6= 0. Then for C := −C2/C1 we have u(t) = Cv(t) for
every t ∈ I. Thus the Wronskian is:

W (t) = uv′ − vu′ = Cvv′ − v(Cv)′ = 0,

a contradiction.
Case 2(b): Suppose C2 6= 0. This case is similar. �

Example 4.1.11. We return to the first two examples from Example 4.1.7:

(1) Consider the equation:

y′′ + y = 0

This has solutions y1 = cos t and y2 = sin t. Next we compute the Wron-
skian:

W (t) = cos t(sin t)′ − sin t(cos t)′ = cos2 t+ sin2 t = 1.

We see that this is everywhere 6= 0. Thus by Proposition 4.1.10 we con-
clude that y1, y2 are linearly independent.

(2) Consider the equation:

y′′ − 2y′ + y = 0

We see that y1 = et and y2 = 2et are both solutions. Next we compute
the Wronskian:

W (t) = et(2et)′ − 2et(et)′ = 2e2t − 2e2t = 0

Since W (t) = 0 for all t, we conclude by Proposition 4.1.10 that y1, y2 are
linearly dependent.

We now arrive at the main result of this section:

Theorem 4.1.12. Suppose y1, y2 are linearly independent solutions to the homo-
geneous second-order linear equation

y′′ + p(t)y′ + q(t)y = 0

Then the general solution is:

y(t;C1, C2) = C1y1(t) + C2y2(t).

Proof. Suppose y : I → R is an arbitrary solution to y′′ + py′ + qy = 0. We must
show there exists constants C1, C2 ∈ R such that y = C1y1 +C2y2. Let t0 ∈ I. We
first must find constants C1, C2 ∈ R which satisfy:

C1y1(t0) + C2y2(t0) = y(t0)

C1y
′
1(t0) + C2y

′
2(t0) = y′(t0)

This is possible because y1, y2 are assumed to be linearly independent, and thus

W (t0) = det

[
y1(t0) y2(t0)
y′1(t0) y′2(t0)

]
6= 0.
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This implies that the above system has a unique solution. The function C1y1+C2y2
is also a solution to y′′ + py′ + qy = 0 by Proposition 4.1.5. Furthermore, both
y : I → R and C1y1 + C2y2 : I → R are solutions to the IVP:

(i) y′′ + py′ + qy = 0
(ii) y(t0) = y(t0), y′(t0) = y′(t0),

and so by the Existence and Uniqueness Theorem 4.1.3 if follows that y = C1y1 +
C2y2 (i.e., these functions I → R are equal). This finishes the proof. �

Since a pair of linearly independent solutions to a homogeneous second-order linear
equation is capable of producing all other solutions, we call such a pair a funda-
mental set of solutions:

Definition 4.1.13. A fundamental set of solutions to the homogeneous second-
order equation

y′′ + p(t)y′ + q(t)y = 0

is a pair y1, y2 of linearly independent solutions. Ultimately, “fundamental set of
solutions” refers to the fact that the pair y1, y2 satisfies the following two properties:

(1) y1 and y2 “generate” all other solutions in the sense that the general
solution is y(t;C1, C2) = C1y1 + C2y2, and

(2) there is no “redundancy” among y1 and y2 (since they are linearly inde-
pendent), i.e., both solutions are needed to generate all other solutions.

[In linear algebra terms, a “fundamental set of solutions” is a basis of the subspace
of all solutions.]

Example 4.1.14 (Simple harmonic motion). Find the particular solution to the
following initial value problem:

(1) y′′ + ω2y = 0 (ω ∈ R a constant, ω 6= 0)
(2) y(0) = 1, y′(0) = 2.

We already know that y1 = cosωt and y2 = sinωt form a fundamental set of
solutions (since W (t) = ω 6= 0). By Theorem 4.1.12, the general solution is:

y(t;C1, C2) = C1 cosωt+ C2 sinωt

for some C1, C2 ∈ R. We will use the initial conditions to solve for C1, C2. First
note that since y(0) = 1, we have

1 = y(0) = C1 cos 0 + C2 sin 0 = C1.

Second, taking a derivative of the general solution yields:

y′(t) = −C1ω sinωt+ C2ω cosωt

and the condition y′(0) = 2 gives

2 = y′(0) = −C1ω sin 0 + C2ω cos 0 = C2ω

and so C2 = 2/ω. Thus the particular solution is

y(t) = cosωt+
2

ω
sinωt.

Note: really we obtained a system of equations:

1 · C1 + 0 · C2 = 1

0 · C1 + ω · C2 = 2
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This particular system is immediate to solve, but in general it might be more
complicated and require Gaussian Elimination (or whatever your favorite method
of solving a 2× 2 system is).

We end by answering a question which is implicit in the above discussion:

Question 4.1.15. Given p, q : I → R defined on an interval I ⊆ R, does there
always exist two linearly independent solutions y1, y2 : I → R of the homogeneous
second-order linear differential equation:

y′′ + p(t)y′ + q(t)y = 0.

Answer. Yes! By the Existence Uniqueness Theorem 4.1.3, we can arbitrarily
choose t0 ∈ I and then obtain two solutions y1, y2 : I → R which satisfy the initial
conditions:

(1) y1(t0) = 1, y′1(t0) = 0
(2) y2(t0) = 0, y′2(t0) = 1.

We claim that y1, y2 are linearly independent. Indeed, note that:

W (t0) = det

[
y1(t0) y2(t0)
y′1(t0) y′2(t0)

]
= det

[
1 0
0 1

]
= 1.

Thus the Wronskian of y1, y2 is nonzero at least at the value t0. By Proposi-
tion 4.1.10 it follows that W (t) 6= 0 for every t ∈ I and also that y1, y2 are linearly
independent. �

4.2. Homogeneous second-order linear equations with constant
coefficients

In this section we study a very special case of homogeneous second-order linear
equations, those with constant coefficients:

y′′ + py′ + qy = 0

where p, q ∈ R are constant functions. The simple harmonic motion equation (Ex-
ample 4.1.2) is already an example of such an equation. To study these equations,
we need to introduce an auxiliary device, the so-called characteristic polynomial :

Definition 4.2.1. The characteristic polynomial associated to the homoge-
neous second-order linear equation

y′′ + py′ + qy = 0

(where p, q ∈ R are constant functions) is the quadratic polynomial

f(λ) = λ2 + pλ+ q

in the variable λ. A root of the characteristic polynomial is called a characteristic
root.

Recall that the quadratic formula gives us the roots of a quadratic equation:

λ1, λ2 =
−p±

√
p2 − 4q

2
Furthermore, the nature of the two roots λ1, λ2 fall into three cases, depending on
the value of the discriminant p2 − 4q:

(1) If p2 − 4q > 0, then λ1 6= λ2 are distinct and both real numbers.
(2) If p2 − 4q = 0, then λ1 = λ2 are the same real number.
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(3) If p2 − 4q < 0, then λ1 6= λ2 are distinct but they are not real numbers
(they are complex numbers).

We shall study these three cases separately.

Distinct real roots. In this subsection, we fix a homogeneous second-order
linear differential equation with constant coefficients:

y′′ + py′ + qy = 0

and we let

f(λ) = λ2 + pλ+ q

be its characteristic polynomial. Furthermore, we assume that f has two distinct
real roots λ1 and λ2.

Theorem 4.2.2 (Distinct real roots). The general solution to

y′′ + py′ + qy = 0

when λ1 6= λ2 are distinct and real is:

y(t;C1, C2) = C1e
λ1t + C2e

λ2t.

Proof. We first claim that eλit is a solution, for i = 1, 2. Note that

(eλit)′′ + p(eλit) + qeλit = λ2i e
λit + pλie

λit + qeλit

= (λ2i + pλi + q)eλit

= f(λi)e
λit

= 0eλit because λi is a root of f(λ)

= 0.

Thus both eλ1t and eλ2t are solutions. Next, we claim they are linearly independent.
Indeed, note that:

W (t) = det

[
eλ1t eλ2t

(eλ1t)′ (eλ2t)′

]
= det

[
eλ1t eλ2t

λ1e
λ1t λ2e

λ2t

]
= λ2e

λ1teλ2t − λ2eλ1teλ2t

= (λ2 − λ1)e(λ1+λ2)t

6= 0

since λ2−λ1 6= 0 and e(λ1+λ2)t is never zero. Thus by Theorem 4.1.12 we conclude
that eλ1t, eλ2t is a fundamental set of solutions and that

y(t;C1, C2) = C1e
λ1t + C2e

λ2t.

is the general solution. �

Example 4.2.3. We will solve the IVP:

(i) y′′ − 3y′ + 2y = 0
(ii) y(0) = 2, y′(0) = 1.
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First we compute the zeros of the characteristic polynomial:

f(λ) = λ2 − 3λ+ 2

By the quadratic formula, the two zeros are

λ1, λ2 =
3±
√

9− 8

2
= 2, 1

Thus by Theorem 4.2.2 the general solution is

y(t;C1, C2) = C1e
2t + C2e

t.

Now we need to use the initial condition to find the values of C1, C2. First note
that

2 = y(0) = C1e
2·0 + C2e

0 = C1 + C2

and since y′(t) = 2C1e
4t + C2e

t, we also have

1 = y′(0) = 2C1e
2·0 + C2e

0 = 2C1 + 1C2

Thus we have a system of equations:

C1 + C2 = 2

2C1 + C2 = 1

There are many ways to solve this, one way is Gaussian Elimination:[
1 1 2
2 1 1

]
to RREF−−−−−−→

[
1 0 −1
0 1 3

]
Thus C1 = −1 and C2 = 3. We conclude that the particular solution to the IVP is:

y(t) = −e2t + 3et.

Repeated real roots. In this subsection, we study the situation where

y′′ + py′ + qy = 0

has repeated characteristic roots λ1 = λ2. Note that the proof of Theorem 4.2.2
above already shows that eλ1t is a solution. This begs the following question:

Question 4.2.4. How do we find a second linearly independent solution to y′′ +
py′ + qy = 0?

Answer. Let y1(t) = eλ1t be the first known solution. Since λ1 is a double root
of f(λ) = λ2 + pλ + q, it follows that f(λ) = (λ − λ1)2 = λ2 − 2λ1λ + λ21. Thus
p = −2λ1, i.e., λ1 = −p/2, and q = λ21 = p2/4.

We shall guess that a second solution is of the form y2(t) = v(t)eλ1t, where v(t)
is an unknown function. We shall determine v(t). First we compute:

y′2 = eλ1t(v′ + λ1v)

y′′2 = eλ1t(v′′ + 2λ1v
′ + λ21v)

Thus, in order for y2 to be a solution, we need the following to be equal to zero:

y′′2 + py′2 + qy2 = eλ1t(v′′ + 2λ1v
′ + λ21v) + peλ1t(v′ + λ1v) + qveλ1t

= eλ1t(v′′ + 2λ1v
′ + λ21v + p(v′ + λ1v) + q)

= eλ1t
(
v′′ − pv′ + p2v/4 + p(v′ − pv/2) + p2v/4

)
= eλ1tv′′.
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Since eλ1t 6= 0 for all t, we require that v′′ = 0. In this case, we get v = At + B
is linear, and so we can take a second solution of the form y2(t) = (At + B)eλ1t.
Since we require that y2(t) is linearly independent with y1(t), it suffices to take
y2(t) = teλ1t. �

We summarize the above as follows:

Theorem 4.2.5 (Repeated real roots). The general solution to

y′′ + py′ + qy = 0

when λ1 = λ2 are not distinct (and real) is:

y(t;C1, C2) = C1e
λ1t + C2te

λ1t.

Proof. This is a worksheet exercise. �

Example 4.2.6. We will solve the following IVP:

(1) y′′ − 2y′ + y = 0
(2) y(0) = 2, y′(0) = −1

First we consider the characteristic polynomial:

f(λ) = λ2 − 2λ+ λ = (λ− 1)2.

We see that λ1 = λ2 = 1 is a repeated root. Thus by Theorem 4.2.5 the general
solution is

y(t;C1, C2) = C1e
t + C2te

t

Now we need to use our initial condition to solve for C1, C2. First note that

2 = y(0) = C1e
0 + C2 · 0 · e0 = C1.

Next we differentiate our general solution:

y′(t) = (C1 + C2)et + C2te
t

to get

−1 = y′(0) = C1 + C2.

This yields the system

C1 = 2

C1 + C2 = −1

We see that C1 = 2, C2 = −3. Thus our particular solution is

y(t) = 2et − 3tet.

Complex (non-real) roots. We finally consider the case where λ1 6= λ2 ∈ C,
i.e., the case when the discriminant p2 − 4q < 0 of the characteristic polynomial is
negative which yields two distinct complex (non-real) roots. First we briefly recall
some fact about the complex numbers:

(1) A complex number is a number of the form z = a+ bi, where a, b ∈ R
and i2 = −1 is the imaginary unit. We denote the set of all complex
numbers by C.

(2) Given a complex number z = a+bi, we define its real part to be Re(z) :=
a and its imaginary part to be Im(z) := b.

(3) Given a complex number z = a + bi, we define its complex conjugate
to be z := a− bi.
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(4) Here are some facts about the complex conjugate of a complex number
z = a+ bi:
(a) z = z
(b) Re(z) = (z + z)/2
(c) Im(z) = (z − z)/2i
(d) z = z iff z ∈ R iff b = 0.
(e) for w ∈ C we have z + w = z + w and zw = z · w

(5) The complex exponential function behaves according to Euler’s formula:

ea+bi = ea(cos b+ i sin b)

(6) Suppose f(λ) = λ2 + pλ+ q is a polynomial with real coefficients p, q ∈ R
and a complex (non-real) root λ1 = a + bi. Then λ2 := λ1 = a − bi is
also a complex root, i.e., the complex roots of a real polynomial occur in
complex conjugate pairs.

(7) Suppose z(t) is a complex-valued function such that z(t) = x(t) + y(t)i,
where x(t), y(t) are real valued functions. Then

d

dt
z(t) =

d

dt
x(t) + i

d

dt
y(t)

i.e., complex-valued functions can be differentiated by separately differen-
tiating the real and imaginary parts in the usual way.

If we allow ourselves to consider complex-valued functions as a solution to our
differential equation, then we obtain the following analogue of the distinct real-
roots case (Theorem 4.2.2):

Theorem 4.2.7 (Distinct complex roots, complex version). The general solution
to

y′′ + py′ + qy = 0

when λ1 = a+ bi, λ2 = a− bi are distinct and complex is:

y(t;C1, C2) = C1e
(a+bi)t + C2e

(a−bi)t = C1e
λ1t + C2e

λ2t

Proof. The proof is the same as the proof of Theorem 4.2.2. �

Of course, ultimately we are interested in real-valued functions as solutions. For
this, the following is useful:

Observation 4.2.8. Suppose z(t) is a complex-valued function which is a solution
to

y′′ + py′ + qy = 0,

where p, q ∈ R. Then:

(1) the function z(t) is also a solution.

Furthermore, since the set of all solutions is closed under linear combinations, it
follows that:

(2) Re
(
z(t)

)
is a real-valued solution, and

(3) Im
(
z(t)

)
is a real-valued solution.

This observation and Euler’s formula yield the following:
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Theorem 4.2.9 (Distinct complex roots, real version). The general solution to

y′′ + py′ + qy = 0

when λ1 = a+ bi, λ2 = a− bi are distinct and complex is:

y(t;C1, C2) = C1e
at cos bt+ C2e

at sin bt.

Proof. This is a worksheet exercise. �

Example 4.2.10. We will solve the following IVP:

(1) y′′ + 2y′ + 2y = 0
(2) y(0) = 2, y′(0) = 3.

First we consider the characteristic polynomial:

f(λ) = λ2 + 2λ+ 2

By the quadratic formula, we see that the characteristic roots are:

λ1, λ2 =
−2±

√
4− 8

2
= −1± i

Thus λ1 = a+ bi = −1 + i, where a = −1 and b = 1. By Theorem 4.2.9 the general
solution is

y(t;C1, C2) = C1e
−t cos t+ C2e

−t sin t

Next we use our initial condition to solve for C1, C2. Note that

2 = y(0) = C1

Then we differentiate the general solution:

y′(t) = −e−t(C1 cos t+ C2 sin t) + e−t(−C1 sin t+ C2 cos t)

to get

3 = y′(0) = −C1 + C2.

This yields the system

C1 = 2

−C1 + C2 = 3

and so C1 = 2, C2 = 5. We conclude that our particular solution is

y(t) = 2e−t cos t+ 5e−t sin t.

4.3. The method of undetermined coefficients

In this section we discuss a method for solving inhomogeneous second-order linear
equations. The method is called the method of undetermined coefficients which
also is sometimes called the method of (judicious) guessing. This method does not
always work, but it works for a large enough class of differential equations that it is
worth discussing. The first order of business is to discuss inhomogeneous equations
in general.
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Inhomogeneous equations. Recall that we are ultimately interested in second-
order linear differential equations of the form

y′′ + p(t)y′ + q(t)y = g(t)

When the forcing term g(t) = 0 for all t, then the differential equation is homo-
geneous; otherwise, it is inhomogeneous. We have already studied the structure of
the general solution to a homogeneous equation in Section 4.1, and we have seen
how to solve homogeneous equations with constant coefficients in Section 4.2. The
following theorem tells us how to form the general solution of an inhomogeneous
solution provided that we know the general solution of the corresponding homoge-
neous equation and we are somehow able to obtain at least one particular solution
to the inhomogeneous equation:

Theorem 4.3.1 (General solution to inhomogeneous equation). Suppose yp(t) is
a particular solution to the inhomogeneous equation

(A) y′′ + p(t)y′ + q(t)y = g(t)

and that y1(t), y2(t) form a fundamental set of solutions to the corresponding ho-
mogeneous equation

(B) y′′ + p(t)y′ + q(t)y = 0.

Then the general solution to the inhomogeneous equation (A) is

y(t) = y(t;C1, C2) = C1y1(t) + C2y2(t) + yp(t).

Proof. We need to show two things. First we will show that for any choice of
C1, C2 ∈ R, y(t) is indeed a solution to (A). Note that:(

y(t)
)′′

+ p(t)
(
y(t)

)′
+ q(t)y(t)

=
(
C1y1(t) + C2y2(t) + yp(t)

)′′
+ p(t)

(
C1y1(t) + C2y2(t) + yp(t)

)′
+ q(t)

(
C1y1(t) + C2y2(t) + yp(t)

)
=
(
C1y1 + C2y2

)′′
+ p(t)

(
C1y1 + C2y2

)′
+ q(t)

(
C1y1 + C2y2

)
+ y′′p + p(t)y′p + q(t)yp

because the derivative is linear

= 0 + y′′p + p(t)y′p + q(t)yp

because C1y1 + C2y2 is a solution to (B)

= g(t) because yp is a solution to (A).

Thus y(t) = C1y1 + C2y2 + yp is a solution to (A).
Next we will show that an arbitrary solution y(t) of (A) must be of the form

y(t) = C1y1 + C2y2 + yp for some choice of C1, C2 ∈ R. Consider the function
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ỹ(t) := y(t)− yp(t). Note that

ỹ′′ + p(t)ỹ′ + q(t)ỹ

= (y − yp)′′ + p(t)(y − yp)′ + q(t)(y − yp)
= y′′ + p(t)y′ + q(t)y − y′′p − p(t)y′p − q(t)yp

because the derivative is linear

= g(t)− g(t)

because both y and yp are solution to (A)

= 0.

Thus ỹ(t) is a solution to (B). Since y1(t), y2(t) form a fundamental set of solutions
to (B), there are constants C1, C2 ∈ R such that ỹ = C1y1 + C2y2. Thus y(t) −
yp(t) = C1y1 + C2y2 and thus y(t) = C1y1 + C2y2 + yp. �

In other words, to find the general solution to an inhomogeneous solution

y′′ + p(t)y′ + q(t)y = g(t),

you need to do the following:

(1) First, find a fundamental set of solutions y1, y2 to the homogeneous equa-
tion y′′ + p(t)y′ + q(t)y = 0 (possibly using techniques from Section 4.2 if
p and q are constants).

(2) Second, find one particular solution yp to the inhomogeneous equation
y′′ + p(t)y′ + q(t)y = g(t) (possibly using the method of undetermined
coefficients below if p and q are constants, or the method of variation of
parameters from Section 4.4).

(3) Third, write down the general solution:

y(t) = C1y1(t) + C2y2(t) + yp(t)

(4) (If necessary) Fourth, if you are solving an IVP, then use the initial con-
ditions to solve for the precise values of C1, C2 from the general solution
in the same way you would solve an IVP for a homogeneous equation.

Finally, we remark that Theorem 4.3.1 (and its proof) ultimately belongs to the
subject of linear algebra (when viewed appropriately). Note that the only relevant
feature from differential equations that got used in the proof was that the LHS
is linear as a result of the derivative being linear (i.e., (f + g)′ = f ′ + g′). We
will revisit this theme of “general solution to inhomogeneous is general solution of
homogeneous plus particular solution of inhomogeneous” in the next chapter.

Method of undetermined coefficients. We now introduce the method of
undetermined coefficients. This method allows us to find particular solutions of an
inhomogeneous second-order linear differential equation

y′′ + p(t)y′ + q(t)y = g(t)

provided :

(1) p and q are constant functions, and
(2) g(t) is a “nice enough” function.

Ultimately, the method of undetermined coefficients involves guessing a so-called
trial solution, and then plugging in that trial solution to determine a specific
particular solution. We illustrate this first with an example:
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Example 4.3.2. Find a particular solution to:

y′′ + 3y′ + 2y = 4e−3t.

Solution. Here the forcing term is g(t) = 4e−3t. We will guess that there is a
particular solution of the form yp(t) = ae−3t, where a ∈ R is an undetermined
coefficient (i.e., an unknown coefficient we need to somehow determine). Thus in
this case our “trial solution” is a function yp(t) = ae−et To find a, we plug the trial
solution yp(t) into the equation:

y′′p + 3y′p + 2yp = 9ae−3t − 9ae−3t + 2ae−3t = 4e−3t.

This simplifies to

(9a− 9a+ 2a)e−3t = 2ae−3t = 4e−3t

and so 2a = 4, i.e., a = 2. Thus the function yp(t) = 2e−3t is a particular solution
to y′′ + 3y′ + 2y = 4e−3t. �

How did we know to guess the trial solution ae−3t in the above example? For many
cases, the trial solution can be correctly guessed by using the following heuristics:

(1) The trial solution should include the function g(t) as a special case. In
the above example, g(t) = 4e−3t is also of the form ae−3t.

(2) The trial solution should be a family of functions “closed under the de-
rivative.” In the above example, the derivative of a function of the form
“ae−3t” is −3ae−et which is also of the form “ae−3t” (where “−3a” plays
the role of “a”).

In practice you can just look up the trial solution you are supposed to guess ac-
cording to:

Method of Undetermined Coefficients 4.3.3. Suppose y′′ + py′ + qy = g(t) is
an inhomogeneous differential equation such that:

(a) p, q ∈ R are constants, and
(b) g(t) is not a solution to the homogeneous solution y′′ + py′ + qy = 0.

Then the following gives the trial solution you should guess depending on the form
of the forcing function g(t) (where A,B, a, b, r, ω ∈ R, P (t) is a polynomial and
p0(t), p1(t) are polynomials of the same degree as P ). If the forcing function g(t)
is of the form...

(1) ert, then the trial solution is yp(t) = aert.
(2) A cosωt+B sinωt, then the trial solution is yp(t) = a cosωt+ b sinωt.
(3) P (t), then the trial solution is yp(t) = p0(t).
(4) P (t) cosωt or P (t) sinωt, then the trial solution is

yp(t) = p0(t) cosωt+ p1(t) sinωt.

(5) ert cosωt or ert sinωt, then the trial solution is

yp(t) = ert(a cosωt+ b sinωt).

(6) ertP (t) cosωt or ertP (t) sinωt, then the trial solution is

yp(t) = ert
(
p0(t) cosωt+ p1(t) sinωt

)
.

If g(t) is a solution to y′′ + py′ + qy, then use the trial solution typ(t), and if that
does not work, then use the trial solution t2yp(t).

Here is an example which falls in case (2) in 4.3.3
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Example 4.3.4. Find a particular solution to

y′′ + 4y = cos 3t.

Solution. Since g(t) = cos 3t, the Method of Undetermined Coefficients 4.3.3
tells us our trial solution should be yp(t) = a cos 3t + b sin 3t, where a, b ∈ R are
undetermined coefficients we need to determine. First, we need to compute y′p and
y′′p :

y′p(t) = −3a sin 3t+ 3b cos 3t

y′′p (t) = −9a cos 3t− 9b sin 3t

Plugging this into the LHS of the differential equation yields:

y′′p + 4yp = −9a cos 3t− 9b sin 3t+ 4(a cos 3t+ b sin 3t) = −5a cos 3t− 5b sin 3t.

This needs to equal cos 3t, so we get:

−5a cos 3t− 5b sin 3t = cos 3t = 1 cos 3t+ 0 sin 3t.

This yields the system:

−5a = 1

−5b = 0

so we find that a = −1/5 and b = 0. Thus we find that a particular solution is:

yp(t) = −1

5
cos 3t. �

Here is an example which falls into case (3) of 4.3.3:

Example 4.3.5. Find a particular solution to

y′′ + 6y′ + 8y = 2t− 3.

Solution. Since g(t) = 2t − 3 is a polynomial of degree 2, the Method of Unde-
termined Coefficients 4.3.3 tells us our trial solution should be yp(t) = a1t + a0
(a polynomial of the same degree as g(t)), where a1, a0 ∈ R are undetermined
coefficients which we need to determine. First we compute y′p and y′′p :

y′p(t) = a1

y′′p (t) = 0

Next we plug yp(t) into the LHS of the differential equation to get:

y′′p + 5y′p + 8yp = 0 + 5a1 + 8(a1t+ a0) = 8a1t+ (5a1 + 8a0)

which needs to equal the RHS 2t− 3, which gives:

8a1t+ (5a1 + 8a0) = 2t− 3.

This yields the system:

8a1 = 2

5a1 + 8a0 = −3

We can solve this using Gaussian Elimination:[
8 0 2
5 8 −3

]
to RREF−−−−−−→

[
1 0 1/4
0 1 −17/32

]
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Thus a particular solution is

yp(t) =
8t− 17

32
. �

The following superposition principle shows how to handle forcing terms which are
a linear combination of forcing terms covered in 4.3.3:

Superposition Principle 4.3.6. Suppose yf (t) is a particular solution to

y′′ + p(t)y′ + q(t)y = f(t)

and yg(t) is a particular solution to

y′′ + p(t)y′ + q(t)y = g(t).

Then for α, β ∈ R, the function y(t) := αyf (t) + βyg(t) is a solution to

y′′ + p(t)y′ + q(t)y = αf(t) + βg(t).

Here is an example of the Superposition Principle in use:

Example 4.3.7. Find a particular solution to

y′′ + 2y′ + 2y = 2 + cos 2t.

Solution. We have two forcing terms here, f(t) := 2 and g(t) := cos 2t. We need
to handle each one separately.

First we will find a particular solution yf (t) to

y′′ + 2y′ + 2y = 2.

Since f(t) = 2 is a degree 0 polynomial, the trial solution is yf (t) = a0, also a
degree 0 polynomial. Plugging this in to the LHS and equating this to the RHS
yields:

y′′f + 2y′f + 2yf = 2a0 = 2.

Thus we find that a0 = 1 and thus yf (t) = 1 is a particular solution.
Next we will find a particular solution yg(t) to

y′′ + 2y′ + 2y = cos 2t.

Since g(t) = cos 2t, the trial solution is yg(t) = a cos 2t+ b sin 2t. First note that

y′g(t) = −2a sin 2t+ 2b cos 2t

y′′g (t) = −4a cos 2t− 4b sin 2t

Plugging this into the LHS and equating it to the RHS yields:

y′′g+2y′g+2yg = (−4a cos 2t−4b sin 2t)+2(−2a sin 2t+2b cos 2t)+2(a cos 2t+b sin 2t)

= (−2a+ 4b) cos 2t+ (−2b− 4a) sin 2t = cos 2t

This yields the system:

−2a+ 4b = 1

−4a− 2b = 0

We can find a, b by Gaussian Elimination:[
−2 −4 1
−4 −2 0

]
to RREF−−−−−−→

[
1 0 1/6
0 1 −1/3

]
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Thus we find that a = 1/6, b = −1/3, and so

yg(t) =
cos 2t− 2 sin 2t

6
.

We conclude that a particular solution to the original differential equation is:

yp(t) = yf (t) + yg(t) = 1 +
cos 2t− 2 sin 2t

6
. �

4.4. Variation of parameters

In this section we introduce a method of finding a particular solution to an inho-
mogeneous equation

y′′ + p(t)y′ + q(t)y = g(t)

provided we already know a fundamental set of solutions y1(t), y2(t) to the associ-
ated homogeneous equation:

y′′ + p(t)y′ + q(t)y = 0.

The method essentially will rely on the following fact about 2× 2 systems of equa-
tions (which will be justified in the next chapter):

Fact 4.4.1. Suppose a, b, c, d, e, f ∈ R are numbers such that

W := det

[
a b
c d

]
= ad− bc 6= 0.

Then the system

ax+ by = e

cx+ dy = f

has the unique solution:

x =
de− bf
W

, y =
−ce+ af

W
.

Variation of Parameters 4.4.2. Suppose y1(t), y2(t) is a fundamental set of
solutions to:

y′′ + p(t)y′ + q(t)y = 0,

(in particular, W (t) := y1y
′
2−y2y′1 6= 0 for all t). Then the inhomogeneous equation:

y′′ + p(t)y′ + q(t)y = g(t)

has the following as a particular solution:

yp(t) = y1

∫
−y2(t)g(t) dt

W (t)
+ y2

∫
y1(t)g(t) dt

W (t)
.

Proof. We know that
y(t) = C1y1(t) + C2y2(t)

is the general solution to the homogeneous equation. The idea is to replace the
constants C1, C2 with unknown functions v1v2 and look for a particular solution to
the inhomogeneous equation of the form

yp = v1y1 + v2y2.

First we compute the first derivative of yp:

y′p = v1y
′
1 + v′1y1 + v2y

′
2 + v′2y2 = (v1y

′
1 + v2y

′
2) + (v′1y1 + v′2y2)
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Ideally, we do not want to deal with any second-order derivatives of v1 and v2,
since otherwise we would not be making our lives any easier. Furthermore, in some
sense requiring yp to be a solution to the inhomogeneous equation places only one
condition on the two unknown functions v1, v2, thus we have some “freedom” to
impose a second condition in case it helps. Thus, we will additionally assume:

(A) v′1y1 + v′2y2 = 0.

Now we compute the second derivative of yp:

y′′p =
[
(v1y

′
1 + v2y

′
2) + (v′1y1 + v′2y2)︸ ︷︷ ︸

=0

]′
= v1y

′′
1 + v′1y

′
1 + v2y

′′
2 + v′2y

′
2

Next we plug yp into the LHS of the differential equation and simplify. Note that:

y′′p + py′p + qyp = v1y
′′
1 + v′1y

′
1 + v2y

′′
2 + v′2y

′
2 + p(v1y

′
1 + v2y

′
2) + q(v1y1 + v2y2)

= v1(y′′1 + py′1 + qy1) + v2(y′′2 + py′2 + qy2)

+ v′1y
′
1 + v′2y

′
2

= v′1y
′
1 + v′2y

′
2,

because y1, y2 are solutions to the homogeneous equation. Setting LHS equal to
RHS yields:

(B) v′1y
′
1 + v′2y

′
2 = g(t).

Now, we combine (A) and (B) into a single system in the unknown “variables”
v′1, v

′
2:

y1v
′
1 + y2v

′
2 = 0

y′1v
′
1 + y′2v

′
2 = g(t)

Since y1, y2 is a fundamental set of solutions, we see that

W (t) = det

[
y1(t) y2(t)
y′1(t) y′2(t)

]
6= 0

for every t. Thus by Fact 4.4.1, we get

v′1 =
−y2(t)g(t)

W (t)
and v′2 =

y1(t)g(t)

W (t)
.

Finally, v1, v2 are obtained by integrating v′1, v
′
2 with respect to t. �

Example 4.4.3. Find a particular solution to the inhomogeneous equation

y′′ + y = tan t

on the interval (−π/2, π/2).

Solution. First we find a fundamental set of solutions to y′′+y = 0. Note that the
characteristic polynomial is f(λ) = λ2 + 1 = (λ− i)(λ+ i). Thus λ1, λ2 = ±i, and
so a fundamental set of solutions is y1(t) = cos t, y2(t) = sin t. Next we compute
the Wronskian:

W (t) = det

[
y1 y2
y′1 y′2

]
= cos t(cos t)− sin t(− sin t) = cos2 t+ sin2 t = 1.
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Next, we get v1:

v1(t) =

∫
−y2(t)g(t) dt

W (t)

=

∫
− sin t tan t dt

= −
∫

sin2 t

cos t
dt

= −
∫

cos2 t− 1

cos t
dt

= sin t− ln | sec t+ tan t|
= sin t− ln(sec t+ tan t)

since sec t+ tan t ≥ 0 on the interval (−π/2, π/2). Next we get v2:

v2(t) =

∫
y1(t)g(t) dt

W (t)

=

∫
cos t tan t dt

=

∫
sin t

= − cos t.

We conclude that a particular solution is:

yp(t) = y1v1 + y2v2 = cos t
(

sin t− ln(sec t+ tan t)
)

+ sin t(− cos t)

= − cos t ln(sec t+ tan t). �

Example 4.4.4. Find a particular solution to:

t2y′′ + ty′ − y = t ln t,

where y1(t) = t and y2(t) = 1/t is a fundamental set of solutions to

t2y′′ + ty′ − y = 0.

Proof. In order to use Variation of Parameters, the coefficient of y′′ in the inho-
mogeneous equation needs to equal 1. Thus we will divide the equation through by
t2 to obtain:

y′′ +
y′

t
− y

t2
=

ln t

t
.

Thus g(t) = (ln t)/t. Furthermore, since the differential equation only makes sense
on the interval (0,+∞), this is where we will work. Next, we need to compute the
Wronskian of the two fundamental solutions:

W (t) = det

[
y1 y2
y′1 y′2

]
= t(−1/t2)− (1/t) · 1 = −1

t
− 1

t
= −2

t
.
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Next we compute v1(t):

v1(t) =

∫
−y2(t)g(t) dt

W (t)

=

∫
−(1/t)(ln t)/t

−2/t
dt

=
1

2

∫
ln t

t
dt

=
(ln t)2

4
.

We also compute v2(t):

v2(t) =

∫
y1(t)g(t) dt

W (t)

=

∫
t(ln t)/t dt

−2/t

= −1

2

∫
t ln t dt

= − t
2(2 ln t− 1)

8
.

We conclude that a particular solution is:

yp(t) = y1v1 + y2v2 =
t(ln t)2

4
− t(2 ln t− 1)

8
�



CHAPTER 5

Linear algebra II

We have already seen in Chapter 1 that the device of augmented matrix is very
useful for systematically solving systems of equations. For the next step in our
linear algebra journey, we will treat matrices as a fundamental object of interest in
their own right and work with them almost exclusively.

5.1. Matrices and vectors

Definition 5.1.1. Suppose m,n ≥ 1. A matrix (of size m× n) is a rectangular
array of real numbers with m rows and n columns:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Sometimes we abbreviate a matrix by writing:

A = (aij)1≤i≤m,1≤j≤n or just A = (aij)

if the size of the matrix A is clear from context. Given i ∈ {1, . . . ,m} and j ∈
{1, . . . , n}, the number aij is called the (i, j)-entry (or component) of A. We
denote the set of all m×n matrices (with real numbers as entries) by Matm×n(R).

A matrix in Matm×1(R) with only one column:
a11
a21
...

am1


is often called a column vector. We will often denote Matm×1 by Rm, and write
column vectors with bold letters a,b, c,x,y, z, etc.

For each m,n ≥ 1, we define the zero matrix in Matm×n(R) to be the m × n
matrix where every entry is = 0:

0m×n :=


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


Sometimes we will denote 0m×n as just 0 when it is clear from context that we are
talking about the m× n zero matrix (and not, for instance, the number 0 ∈ R).

93
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A matrix is, in a certain sense, a vast generalization of a number. Just as we
can add, subtract, multiply, and divide numbers, we can sometimes do versions of
these things with matrices. Here are the most fundamental operations defined for
matrices:

Definition 5.1.2. Fix m,n ≥ 1. Given two matrices A,B ∈ Matm×n(R), we define
their matrix sum A+B ∈ Matm×n(R) to be the m× n matrix whose (i, j)-entry
is aij + bij , i.e.,

A+B =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

+


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn



:=


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn


Furthermore, given α ∈ R, we define the scalar multiple of A by α to be the
matrix αA ∈ Matm×n(R) whose (i, j)-entry is αai,j , i.e.,

αA = α


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 :=


αa11 αa12 · · · αa1n
αa21 αa22 · · · αa2n

...
...

. . .
...

αam1 αam2 · · · αamn


Example 5.1.3. (1) Here is an example of how matrix addition works (for

matrices in Mat3×2(R)):1 2
3 4
5 6

+

1 1
2 3
5 8

 =

 2 3
5 7
10 14


(2) Here is an example of how scalar multiplication works (for column vectors

in R4, which is the same thing as matrices in Mat4×1(R)):

3


0
1
0
−1

 =


0
3
0
−3


Fact 5.1.4. Suppose m,n ≥ 1, A,B,C ∈ Matm×n(R), and α, β ∈ R. Then the
following facts1 about matrix addition and scalar multiplication hold:

(1) (A+B) + C = A+ (B + C) (associativity of addition)
(2) 0m×n +A = A+ 0m×n = A (additive identity)
(3) A+ (−1)A = 0m×n (additive inverse)
(4) A+B = B +A (commutativity of addition)
(5) α(A+B) = αA+ αB (right distributivity)
(6) (α+ β)A = αA+ βA (left distributivity)

1These facts say that the set Matm×n(R) equipped with matrix addition and scalar multi-
plication is a vector space over the real numbers R.
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(7) (αβ)A = α(βA) (associativity of scalar multiplication)
(8) 1 ·A = A (here 1 ∈ R is a scalar)

Definition 5.1.5. Suppose n ≥ 1. A linear combination of column vectors
v1, . . . ,vm ∈ Rn is an expression of the form:

α1v1 + α2v2 + · · ·+ αmvm,

where α1, α2, . . . , αm ∈ R are scalars.

5.2. Matrix equations

Matrices and vectors give us a superior way of writing and talking about system of
equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

In order to make sense of this, the first step is to define the product of a matrix
with a column vector:

Definition 5.2.1. Suppose A ∈ Matm×n(R) and x ∈ Rn. We define the product
to be the column vector Ax ∈ Rm whose (i, 1)-entry is

(Ax)i,1 =

n∑
k=1

Ai,kxk

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 and x =


x1
x2
...
xn


Another way to say this: we can write the matrix A as a collection of n column
vectors in Rm:

A =
[
a1 a2 · · · an

]
Then the product Ax is defined to be the linear combination:

Ax := x1a1 + x2a2 + · · ·+ xnan.

Written yet another way, this is:

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


Here is an example of a product of a matrix with a column vector:

Example 5.2.2. Consider the matrix and column vector:

A =

[
1 3 5
7 −2 4

]
and x =

−1
2
3
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Then the product Ax is:

Ax =

[
1 3 5
7 −2 4

]−1
2
3

 =

[
1(−1) + 3(2) + 3(5)

7(−1) + 2(−2) + 4(3)

]
=

[
20
1

]
Warning 5.2.3. In order for the product of a matrix A and a column vector x to
be defined and make sense, the number of columns of A needs to equal the number
of rows of x. Otherwise, the product Ax is not defined and thus does not make
sense. For example, you can multiply a 2 × 2 matrix with a 2 × 1 column vector,
but you cannot multiply a 2× 3 matrix with a 2× 1 column vector.

Here are some basic facts about matrix multiplication which we will use:

Fact 5.2.4. Suppose A ∈ Matm×n(R), x,y ∈ Rn, and α ∈ R. Then:

(1) A(αx) = αAx
(2) A(x + y) = Ax +Ay.

Systems of equations. Now, we can interpret a system of equations:

(5.1)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

as a matrix equation:

(1) First, we define the coefficient matrix to be the m × n matrix A ∈
Matm×n(R) defined by:

A :=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


(2) Second, we combine our unknown variables x1, . . . , xn into a single vector

of unknowns x (of size n× 1):

x :=


x1
x2
...
xn


(3) Third, we combine our right-hand side parameters b1, . . . , bm into a single

column vector b ∈ Rm:

b :=


b1
b2
...
bm


(4) Finally, we can translate the system (5.1) into the matrix equation:

(5.2) Ax = b
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If we write A =
[
a1 a2 · · · an

]
in terms of its column vectors, then

we can also express the equation (5.2) as:

x1a1 + x2a2 + · · ·+ xnan = b.

We could also express (5.2) by writing everything out fully:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm


There are advantages and disadvantages to each choice of notations, al-
though ultimately these are just equivalent ways of rewriting (5.1) in terms
of matrices and vectors.

Remark 5.2.5. When it comes to solving matrix equations Ax = b, everything
from Chapter 1 applies. For instance, suppose we wish to solve the matrix equation:[

1 2
3 4

] [
x1
x2

]
=

[
0
1

]
To solve this, we set up the corresponding augmented matrix and take it to RREF:[

1 2 0
3 4 1

]
R2−3R1→R2−−−−−−−−→

[
1 2 0
0 −2 1

]
− 1

2R2→R2−−−−−−−→
[
1 2 0
0 1 −1/2

]
R1−2R2→R1−−−−−−−−→

[
1 0 1
0 1 −1/2

]
and we see that (x1, x2) = (1,−1/2) is the unique solution to the system of equation.
In other words, the column vector

x =

[
1
−1/2

]
is the unique solution to the matrix equation[

1 2
3 4

] [
x1
x2

]
=

[
0
1

]
Indeed, note that the product[

1 2
3 4

] [
1
−1/2

]
=

[
1(1) + 2(−1/2)
3(1) + 4(−1/2)

]
=

[
0
1

]
gives the correct right-hand side of the equation.

5.3. Nullspace, linear independence, and dimension

In this section we will dive deeper into important features of a matrix equation:

Ax = b

Ultimately, we will be establishing important definitions and basic properties in-
volving these definitions, in order to better understand how the solutions to a matrix
equation look and behave. Since we already learned how to completely solve matrix
equations (disguised as systems of equations) in Chapter 1, there will not be any
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new computational methods in this section, however, we will repurpose the method
of Gaussian Elimination to answer many more types of questions related to matrix
equations and their solutions.

There will be a strong analogy between the nature of solutions to a matrix equation
and the nature of solutions to a linear differential equation (since both are secretly
applications of abstract linear algebra). The first similarity already shows up in the
following definition:

Definition 5.3.1. Suppose A ∈ Matm×n(R) and consider the matrix equation

(5.3) Ax = b

where b ∈ Rm. We say that the equation (5.3) is homogeneous if b = 0m×1 is
the zero vector in Rm. Otherwise, if b 6= 0, then we say that the equation (5.3) is
inhomogeneous.

We will first be interested in studying homogeneous matrix equations. In this
context, the following is a very important definition:

Definition 5.3.2. Suppose A ∈ Matm×n(R). We define the nullspace of A to be
the following subset of Rn:

null(A) := {x ∈ Rn : Ax = 0} ⊆ Rn

In other words, the nullspace null(A) of the matrix A is the set of all solutions to
the homogeneous equation Ax = 0.

From Chapter 1 we already know how to compute the nullspace of a matrix:

Example 5.3.3. Find the nullspace of the following matrix:

A =

[
1 1 0 4
0 0 1 2

]
Proof. We need to find the set of all vectors x ∈ R4 such that Ax = 0. This
means the same thing as finding all solutions to the system of equations:

x1 + x2 + 4x4 = 0

x3 + 2x4 = 0.

To do this, we set up the system as an augmented matrix and take it to RREF:[
1 1 0 4 0
0 0 1 2 0

]
Here we see that the augmented matrix is already in RREF, so we can read off the
solutions. We see that x2, x4 are free variables, so the general solution is:

x1 = −x2 − 4x4

x2 = x2

x3 = −2x4

x4 = x4

Which we can write in parametric form as a set of linear combination of R4-vectors:

null(A) =

x2

−1
1
0
0

+ x4


−4
0
−2
1

 : x2, x4 ∈ R

 �
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The nullspace of a matrix is also closed under linear combinations (analogous to
Proposition 4.1.5):

Proposition 5.3.4. Suppose A ∈ Matm×n(R). Let x0,x1 ∈ null(A), α ∈ R be
arbitrary. Then:

(1) 0 ∈ null(A), where 0 = 0n×1 is the zero vector in Rn,
(2) x + y ∈ null(A), and
(3) αx ∈ null(A).

[In linear algebra terms, this says that null(A) is a subspace of Rn.]

Proof. (1) Let 0 = 0n×1 be the zero vector in Rn. Then by Definition 5.2.1 it
follows that A0n×1 = 0m×1. Thus 0n×1 ∈ null(A).

(2) Note that

A(x + y) = Ax +Ay

= 0m×1 + 0m×1 since x,y ∈ null(A)

= 0m×1

and thus x + y ∈ null(A).
(3) Note that

A(αx) = αAx

= α0m×1 since x ∈ null(A)

= 0m×1.

Thus αx ∈ null(A). �

Next, we want to say a few words about how to efficiently describe a nullspace. We
now define a notation which allows us to describe a large set of vectors in Rn:

Definition 5.3.5. Suppose x1, . . . ,xk ∈ Rn. The span of x1, . . . ,xk is the set of
all linear combinations of x1, . . . ,xk:

span(x1, . . . ,xk) := {α1x1 + · · ·+ αkxk : α1, . . . , αk ∈ R}
In other words, the span of x1, . . . ,xk is the set of all vectors which can be “created”
from x1, . . . ,xk.

Example 5.3.6. Here are some common usages of span:
(1) We can describe R2 as a span, in multiple different ways:

R2 = span

([
1
0

]
,

[
0
1

])
= span

([
1
0

]
,

[
0
1

]
,

[
1
1

]
,

[
1
−1

])
= span

([
1
1

]
,

[
1
−1

])
(2) We can describe R3 as a span:

R3 = span

1
0
0

 ,
0

1
0

 ,
0

0
1


(There are infinitely many other ways to describe R3 as a span).

(3) Returning to Example 5.3.3 above, we found that

null(A) =

x2

−1
1
0
0

+ x4


−4
0
−2
1

 : x2, x4 ∈ R
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Another way of writing this in terms of span:

null(A) = span



−1
1
0
0

 ,

−4
0
−2
1




In some sense, it is better to express:

R2 = span

([
1
0

]
,

[
0
1

])
or R2 = span

([
1
1

]
,

[
1
−1

])
instead of

R2 = span

([
1
0

]
,

[
0
1

]
,

[
1
1

]
,

[
1
−1

])
The reason is because in this last description, two of the four vectors are redundant.
For instance, the third and fourth can already be written as linear combinations
of the first and second vectors, and vice-versa. The next concept we will introduce
is “non-redundancy”, better known as linear independence (compare to Defini-
tion 4.1.6, also recall our earlier statement: the notion of linear independence is
one of the most important definitions in undergraduate mathematics):

Definition 5.3.7. Suppose x1, . . . ,xk ∈ Rn. We say that x1, . . . ,xk are linearly
independent if for every c1, . . . , ck ∈ R, if c1x1+· · · ckxk = 0, then c1 = c2 = · · · =
ck = 0. In other words, x1, . . . ,xk are linearly independent iff the homogeneous
matrix equation

Ac = 0 where A =
[
x1 x2 · · · xk

]
has exactly one solution, c = 0n×1.

Otherwise, we say that x1, . . . ,xk are linearly dependent. In other words,
x1, . . . ,xk are linearly dependent if there exists c1, . . . , xk ∈ Rn such that ci 6= 0 for
at least one i ∈ {1, . . . , k}. In this case, the linear combination c1x1 + · · · ckxk = 0
is called a nontrivial dependence relation.

We can use Gaussian Elimination to check if a collection of vectors is linearly
(in)dependent:

Example 5.3.8. Here is an example of linear independence and linear dependence.

(1) The vectors 1
2
3

 ,
2

4
8

 ,
 3

9
27


are linearly independent. Why? We need to show that the the equation
c1x1 + c2x2 + c3x3 = 03×1 has only one solution (c1, c2, c3) = (0, 0, 0).
This is equivalent to showing that the system of equations:

c1 + 2c3 + 3c3 = 0

2c1 + 4c2 + 9c3 = 0

3c1 + 8c2 + 27c3 = 0
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has a unique solution. To see this, we set up an augmented matrix and
take it to RREF:1 2 3 0

2 4 9 0
3 8 27 0

 to RREF−−−−−−→

1 0 0 0
0 1 0 0
0 0 1 0


Since every variable is a pivot variable and there are no free variables, we
see that there is a unique solution, which must be (c1, c2, c3) = (0, 0, 0).

(2) The vectors 0
1
2

 ,
 3
−1
4

 ,
−3

3
0


are linearly dependent. Why? We need to find a nontrivial dependence
relation between these three vectors which is equivalent to finding a non-
trivial solution to the following system of equations:

3c2 − 3c3 = 0

c1 − c2 + 3c3 = 0

2c1 + 4c2 = 0

To do this, we set up an augmented matrix and take it to RREF:0 3 −3 0
1 −1 3 0
2 4 0 0

 to RREF−−−−−−→

1 0 2 0
0 1 −1 0
0 0 0 0


We see that c3 is a free variable and so the general solution is:

c1 = −2c3

c2 = c3

c3 = c3

which we can write in parametric form:c3
−2

1
1

 : c3 ∈ R


To get a nontrivial solution, we can choose, for instance, c3 := 1 to get the solution
(c1, c2, c3) = (−2, 1, 1). This gives us a nontrivial dependence relation:

(−2) ·

0
1
2

+ 1 ·

 3
−1
4

+ 1 ·

−3
3
0

 =

0
0
0


We conclude these three vectors are linearly dependent.

Remark 5.3.9. (1) The empty set ∅ of vectors in, say, Rn is considered to
be linearly independent. This corresponds to k = 0 in Definition 5.3.7.

(2) Suppose k = 1 in Definition 5.3.7. This means we have a set of one vector
x1 ∈ Rn. Then x1 is linearly independent iff x1 6= 0n×1. This is because
the linear combination c1x1 = 0m×1 requires either c1 = 0 or x1 = 0m×1
in order to be true. If x1 6= 0m×1, then necessarily c1 = 0.

(3) For two vectors x1,x2 ∈ Rn, x1,x2 are linearly dependent iff there exists
α ∈ R such that either x1 = αx2 or x2 = αx1.
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(4) For three or more vectors, linear dependence does not mean “one vector
is a constant multiple of one of the others”. For instance, the follow three
vectors in R2: [

1
0

]
,

[
0
1

]
,

[
1
1

]
are linearly dependent because we have a nontrivial dependence relation:

1 ·
[
1
0

]
+ 1 ·

[
0
1

]
+ (−1) ·

[
1
1

]
=

[
0
0

]
,

even though none of the three vectors is exactly a multiple of the other
two.

(5) If x1, . . . ,xk in Rn are linearly independent, then for ` ≤ k, the smaller
collection x1, . . . ,x` is automatically linearly independent.

(6) If x1 . . . ,xk in Rn are linearly dependent, then any larger collection

x1, . . . ,xk,xk+1, . . . ,xk+`

is automatically linearly dependent.
(7) If x1, . . . ,xk are k distinct vectors in Rn, and n < k, then necessarily

x1, . . . ,xk are linearly dependent. This is because the corresponding ho-
mogeneous matrix equation

Ac = 0n×1 where A =
[
x1 x2 · · · xk

]
corresponds to an n× k matrix A with more columns than rows, so there
is guaranteed to be at least one free variable (hence infinitely many solu-
tions).

Combining the notions of span and linear independence, we arrive at the notion of
basis and dimension (of a nullspace):

Definition 5.3.10. Suppose A ∈ Matm×n(R). A basis of null(A) is a collection
of vectors x1, . . . ,xk ∈ Rn such that:

(1) null(A) = span(x1, . . . ,xk) (so x1, . . . ,xk can make all of null(A) by linear
combinations), and

(2) x1, . . . ,xk are linearly independent (so none of the vectors x1, . . . ,xk are
unnecessary or redundant).

We define the dimension of null(A) to be the number of vectors in a basis of
null(A). Thus

dim null(A) := k ⇐⇒ there is a basis x1, . . . ,xk of null(A) with k vectors

Example 5.3.11. Returning to Example 5.3.3, we already saw that:

null(A) = span



−1
1
0
0

 ,

−4
0
−2
1




Since the vectors 
−1
1
0
0

 ,

−4
0
−2
1
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are linearly independent, we conclude that

−1
1
0
0

 ,

−4
0
−2
1




is a basis of null(A) and thus dim null(A) = 2.

Here are some general facts to know, which we state without proof:

Fact 5.3.12. Suppose A ∈ Matm×n(R)

(1) In general, null(A) will have infinitely many possible bases, but all of
these bases have the same size. Thus the definition of dim null(A) does
not depend on a particular choice of basis.

(2) Recall that the rank of A (denoted rank(A)) is the number of pivots in
the RREF of A. In general, dim null(A) is equal to the number of free
variables in the RREF of A. Since the number of pivot variables plus the
number of free variables, this yields the important rank-nullity formula:

rank(A) + dim null(A) = n = # of columns of A.

(3) A basis for null(A) can be obtained by solving the homogeneous equation
Ac = 0m×1 in the usual way with Gaussian Elimination, writing the
solutions in parametric form with the free variables as parameters, then
collecting each vector which gets multiplied by a free variable. This (finite)
collection of vectors will be a basis for null(A).

Finally, we have the following fact for inhomogeneous equations (analogous to The-
orem 4.3.1):

Proposition 5.3.13. Suppose A ∈ Matm×n(R) and b ∈ Rm, and assume b 6=
0m×1. Consider the inhomogeneous equation:

(†) Ax = b

Suppose we have one particular solution xp ∈ Rn to (†). Then the set of all solutions
to (†) is: {

xp + xh : xh ∈ null(A)
}

In other words, every solution to (†) is equal to our particular solution xp plus a
solution xh to the homogeneous solution Ax = 0m×1.

Proof. Let xh ∈ null(A) and xp be our particular solution to (†). Note that:

A(xp + xh) = Axp +Axh

= b + 0m×1

= b.

Thus xp+xh is also a solution to (†). Conversely, suppose xi is an arbitrary solution
to (†). Note that

A(xi − xp) = Axi −Axp

= b− b

= 0m×1.

Thus xi − xp ∈ null(A), so there is xh ∈ null(A) such that xi − xp = xh. Thus
xi = xp + xh. �
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Here are some more facts about the number of solutions of a matrix equation in
terms of the terminology from this section:

Fact 5.3.14. Suppose A ∈ Matm×n(R) and b ∈ Rm.

(1) The following are equivalent:
(a) there does not exist any solutions to Ax = b,
(b) the system corresponding to Ax = b is inconsistent,
(c) there does not exist a particular solution xp to Ax = b.

We define the matrix equation Ax = b to be inconsistent if any of the equivalent
conditions of (1) above. We say that Ax = b is consistent otherwise.

(2) Suppose Ax = b is consistent. The following are equivalent:
(a) there is a unique solution to Ax = b,
(b) there is a unique solution to the system corresponding to Ax = b,
(c) null(A) = {0n×1},
(d) dim null(A) = 0,
(e) there are no free variables,
(f) every variable is a pivot variable,
(g) rank(A) = n.

(3) Suppose Ax = b is consistent. The following are equivalent:
(a) there are infinitely many solutions to Ax = b,
(b) there are infinitely many solutions to the system corresponding to

Ax = b,
(c) null(A) 6= {0n×1},
(d) dim null(A) ≥ 1,
(e) there is at least one free variable,
(f) rank(A) < n.

Thus, the distinction between 1 solution versus infinitely many solutions to Ax = b
is entirely determined by null(A).

5.4. Square matrices and determinants

In anticipation of Chapter 6, in this section we take a closer look at square matrices.

Definition 5.4.1. We call a matrix A a square matrix if A ∈ Matn×n(R) for
some n ≥ 1.

Example 5.4.2. (1) Here are some square matrices of various sizes:

[
1
]
,

[
1 2
3 4

]
,

1 2 3
4 5 6
7 8 9

 ,


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


(2) Suppose n ≥ 1. We define the identity matrix to be the square matrix

I = In×n ∈ Matn×n(R) which has 1’s on the main diagonal and 0’s in all
other entries, i.e.,

(I)i,j =

{
1 if i = j

0 if i 6= j
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Written out, the identity matrix looks like:

In×n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


The special property of the identity matrix is that for every v ∈ Rn,
In×nv = v, i.e., multiplying a column vector by an appropriately-sized
identity matrix always returns the original vector.

We are interested in answering the following question about square matrices:

Question 5.4.3. Given a square matrix A ∈ Matn×n(R), how can we tell if
null(A) 6= {0}? Put another way, how can we tell if there exists v ∈ Rn such
that Av = 0 but v 6= 0?

Of course, one way to answer Question 5.4.3 is to just compute a basis for null(A),
and then check whether the basis is empty or nonempty. However for our purposes
this method is way too cumbersome (in the next section, we will ask this question
for an infinite family of matrices simultaneously). Fortunately, there is a much
easier way to answer this question: with determinants.

Suppose A ∈ Matn×n(R) is a square matrix. Then associated to A is a number
det(A) ∈ R called the determinant of A. In other words, there is a function:

det : Matn×n(R)→ R
We will not carefully define this function, but we will give the formula for how to
compute it. For this class, ultimately we will treat the determinant as a black-box
and take on faith all of its relevant properties.

Computing the determinant. For n = 1, computing the determinant is
easy:

Given A =
[
a11
]
∈ Mat1×1(R), we have detA = a11.

For n = 2, there is also a fairly simple formula for computing the determinant:

Given A =

[
a11 a12
a21 a22

]
∈ Mat2×2(R), we have detA = a11a22 − a21a12.

Now suppose n ≥ 2, and let A ∈ Matn×n(R). Then for any i, j ∈ {1, . . . , n}
we define the ij-cofactor matrix of A to be the matrix Ãij ∈ Mat(n−1)×(n−1)(R)
obtained from A by deleting the ith row and the jth column. Then we can compute
the determinant of A by cofactor expansion:

det(A) =

n∑
j=1

(−1)i+jAij · det(Ãij) for any 1 ≤ i ≤ n,

i.e., we can use cofactor expansion along any row, not just the top row i = 1. Simi-
larly, we can use cofactor expansion along any column to compute the determinant
of A:

det(A) =

n∑
i=1

(−1)i+jAij · det(Ãij) for any 1 ≤ j ≤ n.

Note that the cofactor expansion formulas reduce the computation of the determi-
nant of an n× n matrix down to the computation of several (n− 1)× (n− 1) sized
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determinants. Applying cofactor expansion recursively, eventually the computation
will reduce to 2 × 2 or 1 × 1-sized determinants, which we know how to compute
directly from above.

Example 5.4.4. Consider the 3× 3 matrix

A =

 1 3 −3
−3 −5 2
−4 4 −6

 ∈ Mat3×3(R).

We will calculate the determinant using cofactor expansion along the 1st row (i =
1):

det

 1 3 −3
−3 −5 2
−4 4 −6

 = (−1)1+1A11 det(Ã11) + (−1)1+2A12 det(Ã12)

+ (−1)1+3A13 det(Ã13)

= det

[
−5 2
4 −6

]
− 3 det

[
−3 2
−4 −6

]
− 3 det

[
−3 −5
−4 4

]
=
[
(−5)(−6)− 2 · 4

]
− 3
[
(−3)(−6)− 2(−4)

]
− 3
[
(−3)4− (−5)(−4)

]
= 22− 3 · 26− 3(−32) = 40.

In general, when using cofactor expansion to compute determinants, it helps to
judiciously pick a row or a column that has many zeros, if there is one.

Properties of the determinant. The determinant gives us an answer to
Question 5.4.3:

Determinant Property 5.4.5. Suppose A ∈ Matn×n(R). Then the following are
equivalent:

(1) det(A) 6= 0
(2) null(A) = {0}.

In other words, to check if the nullspace has a nontrivial vector in it, just compute
the determinant and check if it is 6= 0 or = 0. As it turns out, the Determinant
Property 5.4.5 is really the only thing we need to know about determinants going
forward.

Nevertheless, here are some other properties of the determinant which might be
useful for computing determinants:

Fact 5.4.6. Suppose A,B ∈ Matn×n(R) and α ∈ R. Then

(1) det(In×n) = 1
(2) det(αA) = αnA
(3) if B is obtained from A by either switching two rows or switching two

columns (but not both), then det(B) = −det(A).

5.5. Eigenvalues and eigenvectors

Recall that the identity matrix I has the property that Iv = v for any (appropriately-
sized) vector v. Another way to say this is that the identity matrix “scales the vector
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by λ = 1”, e.g. 1 0 0
0 1 0
0 0 1

1
2
3

 = 1 ·

1
2
3


Likewise, the matrix αI will scale a vector by λ = α, e.g.2 0 0

0 2 0
0 0 2

1
2
3

 =

2
4
6

 = 2 ·

1
2
3


Along similar lines, a diagonal matrix will scale certain vectors, but possibly with
different scaling factors depending on the vector:1 0 0

0 2 0
0 0 3

1
0
0

 =

1
0
0

 = 1 ·

1
0
0


1 0 0

0 2 0
0 0 3

0
1
0

 =

0
2
0

 = 2 ·

0
1
0


1 0 0

0 2 0
0 0 3

0
0
1

 =

0
0
3

 = 3 ·

0
0
3



For this reason, diagonal matrices are often very nice matrices to work with (in
general the operation of scaling is computationally easier than the operation of
matrix multiplication).

The concepts of eigenvalue, eigenvector, eigenspace, and eigenbasis will allow us to
treat any square matrix almost as if it were a diagonal matrix.

Definition 5.5.1. Suppose A ∈ Matn×n(R) is a square matrix and λ ∈ R. We say
that λ is an eigenvalue for A if there exists a nonzero vector v ∈ Rn such that

Av = λv.

If λ is an eigenvalue of A, then we call a nonzero vector v ∈ Rn which satisfies
Av = λv an eigenvector of A associated to λ.

The goal of this section is to answer the following question:

Question 5.5.2. Given A ∈ Matn×n(R), how do we

(1) find all eigenvalues λ of A,

and for each eigenvalue λ how do we

(2) find all eigenvectors v associated to λ?

The answer to Question 5.5.2(1) actually follows quite nicely from the Determinant
Property 5.4.5. Indeed, suppose A ∈ Matn×n(R), λ ∈ R and note that we have the
following equivalences:
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λ is an eigenvalue of A

⇐⇒ there exists nonzero v ∈ Rn such that Av = λv

⇐⇒ there exists nonzero v ∈ Rn such that Av − λv = 0

⇐⇒ there exists nonzero v ∈ Rn such that Av − λIv = 0

⇐⇒ there exists nonzero v ∈ Rn such that (A− λI)v = 0

⇐⇒ null(A− λI) 6= {0}
⇐⇒ det(A− λI) = 0, by the Determinant Property 5.4.5.

Comparing the first and last part of the equivalence gives us an answer to part (1)
of our question:

Eigenvalue Theorem 5.5.3. Suppose A ∈ Matn×n(R) and λ ∈ R. Then the
following are equivalent:

(1) λ is an eigenvalue of A,
(2) det(A− λI) = 0.

In other words, the eigenvalues of A are zeros of the “function” det(A − λI). As
it turns out, the expression det(A − λI) is always a polynomial in the variable λ.
This polynomial has a special name:

Definition 5.5.4. Suppose A ∈ Matn×n(R). The polynomial2

p(λ) := (−1)n det(A− λI) = det(λI −A)

is called the characteristic polynomial of A, and the equation

p(λ) = 0

is called the characteristic equation.

Thus the Eigenvalue Theorem 5.5.3 states that the eigenvalues of A are precisely
the zeros of its characteristic polynomial.

Example 5.5.5. Find the eigenvalues for the following matrix:

A =

4 0 −2
1 1 2
0 0 2


Solution. We will first determine the characteristic polynomial of A. Note that

det(A− λI) = (−1)3 det

4− λ 0 −2
1 1− λ 2
0 0 2− λ


= −(4− λ) det

[
1− λ 2

0 2− λ

]
+ 2

[
1 1− λ
0 0

]
(using cofactor expansion along the top row)

= −(4− λ)(1− λ)(2− λ)

= (λ− 4)(λ− 1)(λ− 2).

2The factor (−1)n ensures that the polynomial is monic.
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Thus we get three distinct eigenvalues: λ1 = 1, λ2 = 2, and λ3 = 4. �

Next we turn our attention to finding eigenvectors corresponding to a particular
eigenvalue. Suppose λ is an eigenvalue of A. We already saw that an eigenvector v
is a nonzero vector such that (A− λI)v = 0. Thus v ∈ null(A− λI). In fact, every
nonzero vector in null(A − λI) is an eigenvector associated to λ. This motivates
the following definition:

Definition 5.5.6. Suppose A ∈ Matn×n(R) and λ is an eigenvalue of A. We define
the eigenspace of λ to be

Eλ := null(A− λI),

i.e., the eigenspace Eλ is the set of all eigenvectors associated to λ together with
the zero vector3.

Since an eigenspace is a nullspace, we know how to find a basis for it:

Example 5.5.7. Find all eigenvectors of the matrix

A =

4 0 −2
1 1 2
0 0 2


Solution. In Example 5.5.5 we found three distinct eigenvalues: λ1 = 1, λ2 = 2,
and λ3 = 4. For each of these eigenvalues, we need to compute a basis of its
eigenspace.

(λ1 = 1) We will compute a basis of

null(A− I) = null

3 0 −2
1 0 2
0 0 1


Note that 3 0 −2 0

1 0 2 0
0 0 1 0

 to RREF−−−−−−→

1 0 0 0
0 0 1 0
0 0 0 0


We see that x2 is a free variable and thus the general solution is:

x1 = 0

x2 = x2

x3 = 0

Thus we can express the eigenspace E1 as

E1 = null(A− I) = span

0
1
0


(λ2 = 2) We compute a basis of null(A− 2I):2 0 −2 0

1 −1 2 0
0 0 0 0

 to RREF−−−−−−→

1 0 −1 0
0 1 −3 0
0 0 0 0


3The zero vector is always included in every eigenspace, although the zero vector is never

considered an eigenvector.
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We see that x3 is a free variable and the general solution is

x1 = x3

x2 = 3x3

x3 = x3

Thus we can express the eigenspace E2 as

E2 = null(A− 2I) = span

1
3
1


(λ3 = 4) We compute a basis of null(A− 4I):0 0 −2 0

1 −3 2 0
0 0 −2 0

 to RREF−−−−−−→

1 −3 0 0
0 0 1 0
0 0 0 0


We see that x2 is a free variable and the general solution is

x1 = 3x2

x2 = x2

x3 = 0

Thus we can express the eigenspace E4 as

E4 = null(A− 4I) = span

3
1
0

 �

We have one final definition:

Definition 5.5.8. Suppose A ∈ Matn×n(R) is a square matrix. An eigenbasis of
A is a basis of Rn which is composed of eigenvectors of A. In other words, a set of
vectors v1, . . . ,vn ∈ Rn is an eigenbasis of A if

(1) Avi = λivi for some λi, for each i = 1, . . . , n.
(2) Rn = span(v1, . . . ,vn)
(3) v1, . . . ,vn are linearly independent.

Here is a fact about eigenbases which we are happy to assume:

Fact 5.5.9. Suppose A ∈ Matn×n(R) has distinct eigenvalues λ1, . . . , λk, for some
k ≤ n. If

(1) βi is a basis of Eλi for each i = 1, . . . , k and
(2) |β1|+ |β2|+ · · ·+ |βk| = n,

then β := β1 ∪ β2 ∪ · · · ∪ βk is an eigenbasis of A. In particular, if k = n, then
β = β1∪· · ·∪βn is always an eigenbasis (i.e., condition (2) is automatically satisfied).

Example 5.5.10. Find an eigenbasis of

A =

4 0 −2
1 1 2
0 0 2
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Solution. In example 5.5.7 we found that E1 had basis
0

1
0


E2 had basis 

1
3
1


and E4 had basis 

3
1
0


Then by Fact 5.5.9 the following is an eigenbasis of A:

0
1
0

 ,
1

3
1

 ,
3

1
0

 �

We conclude this section with a few remarks:

Remark 5.5.11. Suppose A ∈ Matn×n(R).

(1) It is possible that an eigenbasis of A does not exist. This can only happen
when p(λ) has repeated roots. We will see what to do in this situation in
the next chapter.

(2) It is possible that some of the eigenvalues of A are complex. In this case,
the corresponding eigenvectors will have complex entries, but otherwise
everything else is the same. We will see what complex eigenvalues/vectors
means for us in the next chapter.

(3) If all the roots of p(λ) are distinct and real, then there will be n distinct
real eigenvalues and thus an eigenbasis will always exist.





CHAPTER 6

Systems of differential equations

Up until this point, we have only considered differential equations with one un-
known function y(t), e.g.,

y′ = f(t, y)

y′′ + p(t)y′ + q(t)y = g(t)

Unfortunately, in real world problems you generally have many unknown variables
you are interested in and you are rarely ever lucky enough to have just a single
unknown. Therefore, just like with linear equations, we have to consider now
differential equations with multiple unknown functions which might be entangled
with each other in various ways.

In this final chapter, we will study systems of differential equations, i.e., multiple
equations which relate multiple unknown functions and their derivatives. For the
sake of time, we will focus on a very special case: homogeneous linear first-order
systems with constant coefficients.

6.1. Homogeneous linear systems with constant coefficients

Here is a typical example of the type of system we will consider:

Example 6.1.1. What are the solutions to the following system:

x′1 = x1 + 2x2

x′2 = 2x1 + x2

Here, a solution is a pair of functions x1(t), x2(t) such that when you plug both
functions in, then both equations are satisfied. One can easily check that the pair
x1 = e−t, x2 = −e−t and the pair x1 = e3t, x2 = e3t are both solutions to the
system. In fact, we will see that the set of all solutions is precisely the set of all
linear combinations of these two pairs.

Our first goal is to learn how to solve systems like the one in Example 6.1.1 above.
This requires basically two things:

(1) Reinterpret these systems in terms of linear algebra (i.e., column vectors
and matrices)

(2) Exploit as much of the Chapter 5 material as possible to make computa-
tions as straightforward as possible.

113
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Definition 6.1.2. A homogeneous linear system of differential equations
(with constant coefficients) is a set of differential equations of the following form:

(†)

x′1(t) = a11x1(t) + · · ·+ a1nxn(t)

x′2(t) = a21x1(t) + · · ·+ a2nxn(t)

...

x′n(t) = an1x1(t) + · · ·+ annxn(t)

where each aij ∈ R and x1(x), . . . , xn(t) are unknown functions. A solution to the
(†) is a collection of n differentiable functions x1, x2, . . . , xn : I → R (where I ⊆ R
is an interval) such that plugging these functions in to (†) makes each equation
true.

We will prefer to write systems in terms of matrices and vectors, so we can rewrite
(†) above as: 

x′1(t)
x′2(t)

...
x′n(t)

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



x1(t)
x2(t)

...
xn(t)


or even as:

x′ = Ax

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 and x =


x1(t)
x2(t)

...
xn(t)

 .
Note that with this notation, a solution is now a vector-valued function

x(t) : R→ Rn.

Example 6.1.3. We can rewrite Example 6.1.1 now as:[
x1(t)
x2(t)

]′
=

[
1 2
2 1

] [
x1(t)
x2(t)

]
or as just

x′ = Ax where

[
1 2
2 1

]
.

We were given two distinct solutions, which we can now write as:

x0(t) =

[
e−t

−e−t
]

and x1(t) =

[
e3t

e3t

]
To verify x0(t) is a solution, first we can compute the lefthand side:

x′0(t) =

[
e−t

−e−t
]′

=

[
e−t

−e−t
]

= −x0(t)

Next we compute the righthand side:

Ax0(t) =

[
1 2
2 1

] [
e−t

−e−t
]

=

[
e−t − 2e−t

2e−t − e−t
]

=

[
−e−t
e−t

]
= −x0(t)
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Since the lefthand side equals the righthand side, we see that x0(t) is indeed a
solution. (x1(t) can be verified in a similar way).

Before proceeding with how to find the solutions to systems like (†), we will first
say a few general things about what the set of all solutions can look like. Our first
result should come as no surprise:

Proposition 6.1.4. Suppose A ∈ Matn×n(R) and x1(t), . . . ,xk(t) are solutions to
the system

x′ = Ax.

Then for every c1, . . . , ck ∈ R the linear combination c1x1(t) + · · ·+ ckxk(t) is also
a solution.

Proof idea. This is because “taking the derivative” and “multiplying on the left
by A” are both linear operations. �

Definition 6.1.5. Suppose x1(t),x2(t), . . . ,xk(t) : I → Rn are vector-valued func-
tions. We say that x1(t),x2(t), . . . ,xk(t) are linearly independent if for every
c1, . . . , ck ∈ R, if

c1x1(t) + · · ·+ ckxk(t) = 0 for all t ∈ I,

then c1 = c2 = · · · = ck = 0.
Otherwise, we say that x1(t),x2(t), . . . ,xk(t) are linearly dependent.

Fortunately, the next fact says that checking linear (in)dependence of vector-valued
functions boils down to checking whether certain Rn vectors are linearly (in)dependent:

Fact 6.1.6. Suppose x1(t),x2(t), . . . ,xk(t) are solutions to x′ = Ax. If there is
some fixed t0 such that the column vectors x1(t0), . . . ,xk(t0) ∈ Rn are linearly de-
pendent (respectively, linearly independent), then the functions x1(t),x2(t), . . . ,xk(t)
are linearly dependent (resp., linearly independent).

We can now state (without proof) the general theorem describing the structure
of the set of all solutions.

Theorem 6.1.7. Suppose A ∈ Matn×n(R) and x1(t), . . . ,xn(t) are n linearly in-
dependent solutions to

x′ = Ax.

Then x1(t), . . . ,xn(t) form a fundamental set of solutions, i.e., if x0(t) is an arbi-
trary solution, then there are (necessarily unique) c1, . . . , cn ∈ R such that

x0(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) for every t.

Therefore, just as with homogeneous second-order linear differential equations and
homogeneous matrix equations, the goal for linear systems x′ = Ax is to find an ap-
propriate number of linearly independent solutions. We now proceed with actually
computing solutions to equations x′ = Ax. The primary idea is the following:

Proposition 6.1.8. Suppose A ∈ Matn×n(R), λ is an eigenvalue of A, and v is
an eigenvector associated to λ. Then

x(t) := eλtv

is a solution to the system x′ = Ax and satisfies the initial condition x(0) = v.
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Proof. Let x(t) = eλtv be as in the statement of the proposition. Note that the
lefthand side yields:

x′(t) =
(
eλtv

)′
= (eλt)′v = λeλtv = λx(t)

Whereas the righthand side yields:

Ax(t) = Aeλtv = eλtAv = eλtλv = λx(t). �

Example 6.1.9. Find all solutions to the linear system:

x′ = Ax where A =

[
−4 6
−3 5

]
.

Solution. Proposition 6.1.8 suggests we should first look for eigenvalues and eigen-
vectors of A. First we obtain the characteristic polynomial:

p(λ) = det

[
−4− λ 6
−3 5− λ

]
= (−4− λ)(5− λ)− 6(−3)

= −20 + 4λ− 5λ+ λ2 + 18

= λ2 − λ− 2

= (λ− 2)(λ+ 1).

Thus our eigenvalues are λ1 = 2 and λ2 = −1. Now we will find the associated
eigenvectors:

(λ1 = 2) We will find a basis for null(A− 2I). Solving the associated homoge-
neous equation yields: [

−6 6 0
−3 3 0

]
to RREF−−−−−−→

[
1 −1 0
0 0 0

]
Thus we found one eigenvector:

v1 =

[
1
1

]
(λ2 = −1). We will find a basis for null(A+ I). Solving the associated homo-

geneous equation yields:[
−3 6 0
−3 6 0

]
to RREF−−−−−−→

[
1 −2 0
0 0 0

]
Thus we found one eigenvector

v2 =

[
2
1

]
Proposition 6.1.8 tells us that the following two vector-valued functions are

solutions to x = Ax:

x1(t) := e2tv1 = e2t
[
1
1

]
x2(t) := e−tv2 = e−t

[
2
1

]
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Since v1,v2 are linearly independent, Fact 6.1.6 tells us that x1(t),x2(t) are
linearly independent vector-valued functions. Finally, Theorem 6.1.7 tells us that
the general solution to x′ = Ax is:

x(t;C1, C2) = C1e
2t

[
1
1

]
+ C2e

−t
[
2
1

]
=

[
C1e

2t + 2C2e
−t

C1e
2t + C2e

−t

]
�

6.2. Planar systems

In this section we will take a closer look at the 2× 2 case. In this case, the charac-
teristic polynomial is a quadratic polynomial, so there are three cases: distinct real
roots case, complex conjugate roots case, and double real root case. Furthermore,
the double real root case splits into two cases (because of the linear algebra): an
easy case and an interesting case. We will say what to do in all four of these cases.

Distinct real roots case. The first case is when p(λ) has two distinct real
eigenvalues. We first give an example and then proceed with a general statement.

Example 6.2.1. Find the general solution to the following linear system:

x′ = Ax where A =

[
−1 1
1 −1

]
Solution. First we need to find the eigenvalues and associated eigenvectors of A.
The characteristic polynomial is

p(λ) = det

[
−1− λ 1

1 −1− λ

]
= (−1− λ)2 − 1 = λ2 + 2λ = (λ+ 2)(λ− 0)

Thus the eigenvalues are λ1 = −2 and λ2 = 0. Now we find the associated eigen-
vectors.

(λ1 = −2) We need to find a basis for null(A+ 2I). Note that[
1 1 0
1 1 0

]
to RREF−−−−−−→

[
1 1 0
0 0 0

]
This yields the following eigenvector:

v1 =

[
−1
1

]
(λ2 = 0) We need to find a basis for null(A− 0I) = null(A). Note that[

−1 1 0
1 −1 0

]
to RREF−−−−−−→

[
1 −1 0
0 0 0

]
This yields the following eigenvector:

v2 =

[
1
1

]
Next, Proposition 6.1.8 tells us that the following are both solutions to x′ = Ax:

x1(t) = eλ1tv1 = e−2t
[
−1
1

]
x2(t) = eλ2tv2 =

[
1
1

]
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Next, since the two column vectors x1(0) = v1 and x2(0) = v2 are linearly inde-
pendent, by Fact 6.1.6 it follows that the two solutions x1(t) and x2(t) are linearly
independent. Thus, by Theorem 6.1.7 we conclude the general solution is

x(t;C1, C2) = C1x1(t) + C2x2(t) = C1e
−2t
[
−1
1

]
+ C2

[
1
1

]
=

[
−C1e

−2t + C2

C1e
−2t + C2

]
�

The general case works exactly the same way:

Theorem 6.2.2 (Distinct real roots). Suppose A ∈ Mat2×2(R) has two distinct
real eigenvalues λ1 6= λ2 ∈ R. Furthermore, suppose v1 is an eigenvector associated
with λ1 and v2 is an eigenvector associated with λ2. Then the general solution to
x′ = Ax is

x(t;C1, C2) = C1e
λ1tv1 + C2e

λ2tv2.

Complex conjugate roots case. The next case we will consider is when p(λ)
has a complex conjugate pair of complex (non-real) roots.

Example 6.2.3. Find the general solution to Find the general solution to the
following linear system:

x′ = Ax where A =

[
0 1
−2 2

]
Solution. First we need to find the eigenvalues and associated eigenvectors of A.
The characteristic polynomial is

p(λ) = det

[
−λ 1
−2 2− λ

]
= −λ(2− λ) + 2 = λ2 − 2λ+ 2

and so the eigenvalues are

λ1, λ2 =
2±
√

4− 8

2
= 1± i

so λ1 = 1 + i and λ2 = 1− i = λ1.
(λ1 = 1 + i) We need to find a basis for null(A− (1 + i)I). Note that[

−1− i 1 0
−2 1− i 0

]
to RREF−−−−−−→

[
1 (−1 + i)/2 0
0 0 0

]
This yields the following eigenvector:

v1 =

[
(1− i)/2

1

]
However, for convenience, we can scale v1 by 1 + i and instead use:

v1 =

[
1

1 + i

]
(λ2 = 1 − i) In this case, since λ2 = λ1, Av1 = λ1v1, and A = A, taking

complex conjugates yields:

Av1 = λ1v1 =⇒ Av1 = λ2v1

This yields the following eigenvector associated to λ2:

v2 = v1 =

[
1

1− i

]
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Next, Proposition 6.1.8 tells us that the following are both solutions to x′ = Ax:

z1(t) := eλ1tv1 = e(1+i)t
[

1
1 + i

]
z2(t) := eλ2tv2 = e(1−i)t

[
1

1− i

]
However, we are not done yet since z1(t) and z2(t) = z1(t) are complex-valued
solutions and we are ultimately looking for two linearly independent real-valued
solutions. To find real-valued solutions, we can essentially do the same trick we
used for Theorem 4.2.9, i.e., taking the real- and imaginary-parts of z1(t). To
justify this, recall from Proposition 6.1.4 that the set of all solutions to x′ = Ax is
closed under linear combinations. Thus

x(t) :=
z1(t) + z2(t)

2
= Re

(
z1(t)

)
y(t) :=

z1(t)− z2(t)

2i
= Im

(
z1(t)

)
are also both solutions. Now we will use Euler’s formula to get a better description
of x(t) and y(t). Note that

z1(t) = e(1+i)t
[

1
1 + i

]
= et(cos t+ i sin t)

([
1
1

]
+ i

[
0
1

])
= et

(
cos t

[
1
1

]
− sin t

[
0
1

])
+ iet

(
cos t

[
0
1

]
+ sin t

[
1
1

])
= et

[
cos t

cos t− sin t

]
+ iet

[
sin t

cos t+ sin t

]
Taking real and imaginary parts yields:

x(t) = et
[

cos t
cos t− sin t

]
y(t) = et

[
sin t

cos t+ sin t

]

Finally, since x(0) =

[
1
1

]
and y(0) =

[
0
1

]
are linearly independent, it follows that

x(t) and y(t) are linearly independent. Thus the general solution to x′ = Ax is

w(t;C1, C2) = C1x(t) + C2y(t) = C1e
t

[
cos t

cos t− sin t

]
+ C2e

t

[
sin t

cos t+ sin t

]
�

The general case works exactly the same way.

Theorem 6.2.4 (Complex conjugate roots). Suppose A ∈ Mat2×2(R) has complex
conjugate eigenvalues λ, λ 6∈ R, and w is an eigenvector associated to λ. Then w
is an eigenvector associated with λ. Furthermore:
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(1) (Complex version) The general solution to x′ = Ax in terms of complex-
valued functions is:

x(t;C1, C2) = C1e
λtw + C2e

λtw

(2) (Real version) The general solution to x′ = Ax is terms of real-valued
functions is:

x(t;C1, C2) = C1e
αt(cosβt v1 − sinβt v2) + C2e

αt(sinβt v1 + cosβt v2)

where λ = α+ iβ and w = v1 + iv2.

Double real root easy case. We now turn our attention to the case when
p(λ) = (λ − λ1)2, i.e., when the characteristic polynomial has only one root of
multiplicity two. First, we point out that exactly one of two things can happen:

(1) (Easy case) Either we can find two linearly independent eigenvectors
v1,v2 ∈ R2 associated to λ0. An example of this case is

A =

[
λ0 0
0 λ0

]
which has linearly independent eigenvectors:

v1 =

[
1
0

]
and v1 =

[
0
1

]
(actually any two linearly independent vectors in R2 would work for this).

(2) (Interesting case) Or we can only find one linearly independent eigenvector
v1 ∈ R2 associated to λ0. An example of this is case is

A =

[
λ0 1
0 λ0

]
which has only one linearly independent eigenvector:

v1 =

[
1
0

]
We will first look at the easy case. We will actually be able to completely solve the
easy case, due to the following fact:

Fact 6.2.5. Suppose A ∈ Mat2×2(R) has one real eigenvalue λ of multiplicity two.
Furthermore, suppose we can find two linearly independent eigenvectors associated
to A. Then

A =

[
λ 0
0 λ

]
and

e1 =

[
1
0

]
and e2 =

[
0
1

]
form an eigenbasis of A.

Proof. Suppose v1,v1 ∈ R2 are two linearly independent eigenvectors of A asso-
ciated to λ. Then null(A − λI) = Span(v1,v2) = R2. In particular, we know the
following two vectors are also linearly independent eigenvectors of A associated to
λ:

e1 =

[
1
0

]
and e2 =

[
0
1

]
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Now suppose a, b, c, d ∈ R are such that

A =

[
a b
c d

]
Then the condition Ae1 = λe1 tells us that a = λ, c = 0, and the condition
Ae2 = λe2 tells us that b = 0, d = λ. Thus

A =

[
λ 0
0 λ

]
�

This yields the following:

Theorem 6.2.6 (Double real root; easy case). Suppose A ∈ Mat2×2(R) has only
one eigenvalue λ ∈ R (of multiplicity two). Furthermore, suppose we can find two
linearly independent eigenvectors of A associated to λ. Then the general solution
to x′ = Ax is

x(t;C1, C2) = C1e
λt

[
1
0

]
+ C2e

λt

[
0
1

]
=

[
C1e

λt

C2e
λt

]
Proof. Let

x1(t) := eλt
[
1
0

]
x2(t) := eλt

[
0
1

]
By assumption, the eigenspace of λ is two-dimensional, so it must be all of R2,
Thus the following two vectors are eigenvectors associated to λ:

e1 =

[
1
0

]
and e2 =

[
0
1

]
Thus by Proposition 6.1.8 both x1(t) and x2(t) are solutions to x′ = Ax. Further-
more, since x1(0),x2(0) are linearly independent, it follows that x1(t),x2(t) are also
linearly independent. Thus by Theorem 6.1.7 it follows that the general solution is

x(t;C1, C2) = C1x1(t) + C2x2(t) = C1e
λt

[
1
0

]
+ C2e

λt

[
0
1

]
=

[
C1e

λt

C2e
λt

]
�

Double real root interesting case. We now proceed with the interesting
case. We investigate it by example.

Example 6.2.7. Find the general solution to x′ = Ax, where

A =

[
1 1
0 1

]
Solution. We begin by finding the eigenvalues and associated eigenvectors of A.
The characteristic polynomial is

p(λ) = det

[
1− λ 1

0 1− λ

]
= (1− λ)(1− λ) = (λ− 1)2.

Thus λ1 = 1 is the only eigenvalue (of multiplicity two). Now we find all of the
associated eigenvectors, i.e., we compute a basis for null(A− 1I). Note that[

1− 1 1
0 1− 1

]
=

[
0 1
0 0

]
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is already in RREF. Since there is one free variable, there is only one linearly
independent eigenvector:

v1 =

[
1
0

]
This tells us that

x1(t) = et
[
1
0

]
is a solution to x′ = Ax. We are not done yet because we still need a second linearly
independent solution. However, it appears that we are stuck since we don’t have
any more linearly independent eigenvectors of A (i.e., A fails to have an eigenbasis).

The solution is to guess that x′ = Ax has a solution of the form:

x(t) = eλ1t(v2 + tv1)

for some vectors v1,v2 ∈ R2. Supposing we have a solution of this form, lets see
what this means for the vectors v1,v2. Note that

x′(t) = λ1e
λ1t(v2 + tv1) + eλ1tv1 = eλ1t

(
(λ1v2 + v1) + λ1tv1

)
whereas

Ax(t) = eλt1(Av2 + tAv1)

Equating these expressions and dividing by eλ1t (which is never zero) yields

(λ1v2 + v1) + λ1tv1 = Av2 + tAv1

Since this needs to be true for all t, this yields:

Av2 = λ1v2 + v1

Av1 = λ1v1.

In other words, v1 must be an eigenvector associated to λ1, and v2 must be a
solution to the equation

(A− λ1I)v2 = v1.

We have already found above that

v1 =

[
1
0

]
works as an eigenvector. Now we will solve the equation

(A− λ1I)v2 = v1.

Setting up the augmented matrix yields:[
0 1 1
0 0 0

]
which is already in RREF. We find that x1 is a free variable, x2 is a pivot variable,
and the general solution is

x1 = x1

x2 = 1

which in vector form is [
x1
x2

]
= x2

[
1
0

]
+

[
0
1

]
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Thus

v2 =

[
0
1

]
is a particular vector that works. This gives us the solutions:

x2 = eλ1t(v2 + tv1) = et
([

0
1

]
+ t

[
1
0

])
=

[
tet

et

]
We conclude the general solution is

x(t;C1, C2) = C1x1(t) + C2x2(t) = C1e
t

[
1
0

]
+ C2e

t

([
0
1

]
+ t

[
1
0

])
=

[
C1e

t + C2te
t

C2e
t

]
�

The general situation works exactly the same way:

Theorem 6.2.8. Suppose A ∈ Mat2×2(R) has only one eigenvalue λ ∈ R (of
multiplicity two). Furthermore, suppose we can only find one linearly independent
eigenvector v1 of A associated to λ. Then the general solution to x′ = Ax is

x(t;C1, C2) = C1e
λtv1 + C2e

λt(v2 + tv1)

where v2 ∈ R2 is any particular solution to the matrix equation (A− λI)v2 = v1.

6.3. Higher-order linear equations

This section is a sequel to Chapter 4, specifically Sections 4.1 and ??. There we
considered second-order linear equations:

y′′ + p(t)y′ + q(t)y = g(t),

and specifically homogeneous second-order linear equations with constant coeffi-
cients:

y′′ + py′ + qy = 0 with p, q ∈ R.

In this section1 we will discuss homogeneous nth order linear equations with con-
stant coefficients:

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0 with a1, . . . , an ∈ R.

We will solve these equations in a three-step process:

(1) Convert the nth order linear system (in one unknown function) to an n×n
linear system (with n unknown functions).

(2) Solve the nth order linear system.
(3) Convert the solution back in terms of a solution of the original linear

differential equation.

We begin with a fairly representative example:

Example 6.3.1. Find the general solution to:

y(4) − 13y′′ + 36y = 0.

1In [2, §9.8] they consider more general linear equations of the form y(n)+a1(t)y(n−1)+ · · ·+
an−1y′ + an(t)y = F (t) which might not have constant coefficients and might be inhomogeneous
with a nonconstant forcing term. For us we will restrict our discussion to the homogeneous

constant coefficient case.
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Solution. This is an equation with one unknown function. The first thing we
do is convert this into an equation with four unknown functions by introducing
three more auxiliary variables. Note that we will have to deal with four derivatives
of y(t), so to turn this into a first-order linear system, we define x2(t) := y′(t),
x3(t) := y′′(t) = x′2(t), and x4(t) := y′′′(t) = x′3(t). Finally, to make the notation
uniform, we also set x1(t) := y(t). This gives us the obvious conditions:

x′1(t) = x2(t)

x′2(t) = x3(t)

x′3(t) = x4(t)

What about x′4(t) = y(4)(t)? The original differential equation itself tells us how to
relate this to the lower derivatives:

x′4(t) = 13y′′(t)− 36y(t) = 13x3(t)− 36x1(t)

Combining these four equations yields the system:
x′1(t)
x′2(t)
x′3(t)
x′4(t)

 =


0 1 0 0
0 0 1 0
0 0 0 1
−36 0 13 0



x1(t)
x2(t)
x3(t)
x4(t)


Of course, ultimately we are only interested in the first unknown function x1(t), but
this is a quantity which we can read off as the first unknown function in a solution
to the above system. Let’s proceed to solve this system.

The first step is to compute the characteristic polynomial:

p(λ) = det(A− λI)

=


−λ 1 0 0
0 −λ 1 0
0 0 −λ 1
−36 0 13 −λ


= 36 det

 1 0 0
−λ 1 0
0 −λ 1

− 13 det

−λ 1 0
0 −λ 0
0 0 1

− λ det

−λ 1 0
0 −λ 1
0 0 −λ


cofactor expansion along bottom row

= 36− 13λ2 + λ4

= (λ− 2)(λ+ 2)(λ− 3)(λ+ 3)

This gives us four eigenvalues, λ1 = 2, λ2 = −2, λ3 = 3, λ4 = −4. Next we compute
the corresponding eigenvectors (calculation omitted):

v1 =


1
2
4
8

 , v2 =


−1
2
−4
8

 , v3 =


1
3
9
27

 , v4 =


−1
3
−9
27
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In this case we have a real eigenbasis, so the general solution to x′ = Ax is:

x(t;C1, C2, C3, C4) = e2t


1
2
4
8

+ C2e
−2t


−1
2
−4
8

+ C3e
3t


1
3
9
27

+ C4e
−3t


−1
3
−9
27



=


C1e

2t − C2e
−2t + C3e

3t − C4e
−3t

2C1e
2t2C2e

−2t + 3C3e
3t + 3C4e

−3t

4C1e
2t − 4C2e

−2t + 9C3e
3t − 9C4e

−3t

8C1e
2t + 8C2e

−2t + 27C3e
3t + 27C4e

−3t


In particular, the general solution to y(4) − 13y′′ + 36y = 0 is

y(t;C1, C2, C3, C4) = x1(t) = C1e
2t − C2e

−2t + C3e
3t − C4e

−3t

which we might as well instead write as

y(t) = C1e
2t + C2e

−2t + C3e
3t + C4e

−3t �

In general, suppose we have an nth order homogeneous linear differential equation
with constant coefficients:

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0 with a1, . . . , an ∈ R.

Then we can introduce n− 1 additional unknown functions to stand for the higher
derivatives of y: x1(t) := y(t), x2(t) := x′1(t) = y′(t), x3(t) := x′2(t) = y′′(t), . . . , xn(t) :=
x′n−1(t) = y(n−1)(t). This gives the equations:

x′1(t) = x2(t)

x′2(t) = x3(t)

...

x′n−1(t) = xn(t)

Additionally, we can relate x′n(t) = y(n)(t) to the lower derivatives using the original
differential equation:

x′n(t) = −anx1(t)− an−1x2(t)− · · · − a1xn(t)

We then form the linear system:
x′1(t)
x′2(t)

...
x′n−1(t)
x′n(t)

 =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−an −an−1 −an−2
... −a1




x1(t)
x2(t)

...
xn−1(t)
xn(t)


This gives us an n × n linear system of the form x′ = Ax. The matrix A in this
context is called the companion matrix. The following sums up what is true in
general:
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Theorem 6.3.2. Consider the nth order homogeneous linear differential equation
with constant coefficients:

(A) y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0 with a1, . . . , an ∈ R.

and let

(B) x′ = Ax

be the associated linear system.

(1) The following are equivalent:
(a) y(t) is a solution to (A)
(b) the vector-valued function

x(t) =


y(t)
y′(t)
y′′(t)

...
y(n−1)(t)


is a solution to (B).

(2) Suppose y1(t), . . . , yn(t) are solutions to (A). The following are equivalent:
(a) y1(t), . . . , yn(t) are linearly independent (as real-valued functions)
(b) The following vector-valued functions are linearly independent:

y1(t)
y′1(t)
y′′1 (t)

...

y
(n−1)
1 (t)

 , . . . ,


yn(t)
y′n(t)
y′′n(t)

...

y
(n−1)
n (t)


(c) For some t0 the following determinant is nonzero:

det


y1(t0) y2(t0) · · · yn(t0)
y′1(t0) y′2(t0) · · · y′n(t0)

...
...

. . .
...

y
(n−1)
1 (t0) yn−12 (t0) · · · y

(n−1)
n (t0)

 6= 0

(d) For every t the following determinant is nonzero:

det


y1(t) y2(t) · · · yn(t)
y′1(t) y′2(t) · · · y′n(t)

...
...

. . .
...

y
(n−1)
1 (t) yn−12 (t) · · · y

(n−1)
n (t)

 6= 0

This motivates the following definition:

Definition 6.3.3. Let y1, . . . , yn : I → R be real-valued functions (I ⊆ R is an
interval). We define the Wronskian of y1, . . . , yn to be the function

W (t) = det


y1(t) y2(t) · · · yn(t)
y′1(t) y′2(t) · · · y′n(t)

...
...

. . .
...

y
(n−1)
1 (t) yn−12 (t) · · · y

(n−1)
n (t)
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We can now summarize everything in terms only of the original differential equation:

Proposition 6.3.4. Suppose y1(t), . . . , yn(t) are solutions to

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0 with a1, . . . , an ∈ R.

Then y1, . . . , yn are linearly independent iff W (t) 6= 0 iff W (t0) 6= 0 for some fixed
t0. In this case, the general solution is

y(t) = C1y1(t) + C2y2(t) + · · ·+ Cnyn(t).

Of course, we are sweeping a few explanations under the rug. However, at this point
you should believe that everything is properly justified using routine linear algebra
arguments similar to those needed for homogeneous second-order linear equations,
homogeneous matrix equations, and homogeneous linear systems.





APPENDIX A

Special functions

In this appendix we will include an overview of relevant properties of common
elementary functions which arise in calculus and differential equations. In general
we will work within the realm of real numbers, although everything we say has an
appropriate extension to the bigger world of complex numbers. However, we might
occasionally have to refer to complex numbers every now and then.

A.1. Polynomials

A polynomial (in the single variable X) is an expression of the form:

p(X) = anX
n + an−1X

n−1 + · · ·+ a2X
2 + a1X + a0 (where each ai ∈ R)

If an 6= 0, then we call n the degree of p(X), denoted deg p = n. We may also
choose to write a polynomial in summation notation:

p(X) =

n∑
k=0

akX
k

We naturally construe a polynomial as a function p : R→ R by declaring for α ∈ R:

p(α) := anα
n + an−1α

n−1 + · · ·+ a2α
2 + a1α+ a0

Recall that given two polynomial p(X) =
∑n
k=0 akX

k and q(X) =
∑n
k=0 bkX

k, we
can form their sum:

(p+ q)(X) :=

n∑
k=0

(ak + bk)Xk

and their product:

(p · q)(X) :=
∑
k

 ∑
i+j=k

aibj

Xk

where the above sum ranges over all possible indices.

Polynomials are perhaps the most well-behaved type of function which shows up in
calculus. Indeed:

Fact A.1.1. Suppose

p(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0 =

n∑
k=0

akX
k

is a polynomial of degree n. Then the following facts are true about p(X) as a
function p : R→ R:

(1) p is continuous on all of R. In particular, for every α ∈ R:

lim
x→α

p(x) = p(α)

129
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(2) The limits at infinity are computed as follows:
(a) if n = 0, then

lim
x→∞

p(x) = lim
x→−∞

p(x) = a0

(b) if n ≥ 1 is even, then

lim
x→∞

p(x) = lim
x→−∞

p(x) =

{
∞ if an > 0

−∞ if an < 0

(c) if n ≥ 1 is odd, then

lim
x→∞

p(x) =

{
∞ if an > 0

−∞ if an < 0
and lim

x→−∞
p(x) =

{
−∞ if an < 0

∞ if an > 0

(3) p is differentiable on all of R with derivative

dp

dX
(X) = nanX

n−1 + (n− 1)an−1X
n−2 + · · ·+ 2a2X + a1

=

n∑
k=1

kakX
k−1 =

n−1∑
k=0

(k + 1)ak+1X
k

(4) Since the derivative of a polynomial is again a polynomial, p is infinitely
differentiable on all of R,

(5) Define the degree n+ 1 polynomial:

P (X) :=
an
n+ 1

Xn+1 +
an−1
n

Xn + · · ·+ a1
2
X2 + a0X

=

n+1∑
k=1

ak−1
k

Xk =

n∑
k=0

ak
k + 1

Xk+1

Then:
(a) P (X) is an antiderivative of p(X), i.e.,

d

dx
P (X) = p(X),

(b) the indefinite integral of p(X) is∫
p(X) dX = P (X) + C,

(c) the definite integral of p(X) is∫ b

a

p(X) dX = P (b)− P (a),

for every a, b ∈ R.

The following is an important theoretical tool for studying polynomials:

Fundamental Theorem of (Complex) Algebra A.1.2. Suppose n ≥ 1. Then
for every polynomial

p(X) = anX
n + an−1X

n − 1 + · · ·+ a1X + a0

of degree n, there exists complex numbers α1, . . . , αn ∈ C such that

p(X) = an(X − α1)(X − α2) · · · (X − αn).
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The numbers α1, . . . , αn in A.1.2 need not be distinct. One (very minor) drawback
of A.1.2 is that some of the roots might be complex numbers which are not real
numbers. Since we usually want to stick to working entirely with real numbers, the
following variant will be useful for us:

Fundamental Theorem of (Real) Algebra A.1.3. Suppose n ≥ 1. Then for
every polynomial

p(X) = anX
n + an−1X

n − 1 + · · ·+ a1X + a0

of degree n, there exists r, s ∈ N with r + 2s = n, and real numbers

α1, . . . , αr, β1, . . . , βs, γ1, . . . , γs ∈ R

such that:

(1) p can be factored into linear and quadratic factors

p(X) = an (X − α1) · · · (X − αr)︸ ︷︷ ︸
linear factors

(X2 + β1X + γ1) · · · (X2 + βsX + γs)︸ ︷︷ ︸
quadratic factors

,

and
(2) for each i = 1, . . . , s, we have β2

i − 4γi < 0, i.e., the quadratic factor
X2 + βiX + γi does not have real roots.

Theorem A.1.3 is an easy consequence of Theorem A.1.2 since complex roots of
polynomials occur in conjugate pairs. Combining these conjugate pairs together is
what give rise to the quadratic factors.

When dealing with quadratic polynomials with no real roots, the following trick is
essential:

Completing the Square A.1.4. Suppose a, b, c ∈ R are arbitrary such that a 6= 0.
Then

aX2 + bX + c = a

(
X +

b

2a

)2

+ c− b2

4a
= a

[(
X +

b

2a

)2

+
4ac− b2

4a2

]
If the discriminant b2 − 4ac < 0 is negative, then the constant (4ac − b2)/4a2 > 0
is positive.

A.2. Rational functions

A rational function (in the single variable X) is an expression of the form

r(X) =
amX

m + am−1X
m−1 + · · ·+ a1X + a0

bnXn + bn−1Xn−1 + · · ·+ b1X + b0
(where ai, bj ∈ R)

i.e., a rational function is a quotient

r(X) =
p(X)

q(X)

of polynomials, where p(X) = amX
m + · · ·+ a0 and q(X) = bnX

n + · · ·+ b0.

Recall that given two rational functions r0(X) = p0(X)/q0(X) and r1(X) =
p1(X)/q1(X), we can form their sum:

(r0 + r1)(X) :=
p0(X)q1(X) + p1(X)q0(X)

q0(X)q1(X)
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and their product:

(r0 · r1)(X) :=
p0(X)p1(X)

q0(X)q1(X)

Just as with polynomials, we naturally construe a rational function as a real-valued
function. Since the denominator of a fraction is never allowed to be zero, the domain
of r(X) = p(X)/q(X) is:

domain(r) :=
{
α ∈ R : q(α) 6= 0

}
⊆ R

Then we define the function r : domain(r)→ R by declaring for α ∈ R:

r(α) :=
p(α)

q(α)

Warning A.2.1. In general the domain of a rational function might exclude so-
called removable singularities. For example, consider the following two rational
functions:

r0(X) :=
(X + 1)(X + 2)

(X + 1)(X + 3)
and r1(X) :=

X + 2

X + 3

Then as real-valued functions, we have

domain(r0) = R \ {−1,−3} and domain(r1) = R \ {−3}
i.e., r0 is defined everywhere except −1 whereas r1 is defined everywhere except
−3. However, for every α ∈ R \ {−1,−3}, we have r0(α) = r1(α). In other words,
r0 and r1 are essentially the same real-valued function except that r1 is defined
at one more point than r0 is. In some sense, the fact that r0 does not have −1
in its domain is an artificial obstacle. It is due to the factor x + 1 occurring in
both the numerator and denominator. Since this has no effect on the value of the
function (since it contributes multiplication by 1), we can just cancel these factors
out and gain an extra point where the function is defined. In practice, when working
with rational functions, you always want to make sure that the numerator and the
denominator have no common factors so that you can work with the largest possible
“true” domain of the rational function.

In the rest of this section, we will ignore the issue of removable singularities. After
polynomials, rational functions are the second best-behaved family of functions
which show up in calculus:

Fact A.2.2. Suppose

r(X) =
p(X)

q(X)

is a rational function with domain D := domain(r). Then the following facts are
true about r(X) as a function r : D → R:

(1) r is continuous on all of D. In particular, for every α ∈ D:

lim
x→α

r(x) = r(α)

(2) r is differentiable on all of D with derivative

dr

dX
(X) =

q(X) dpdX (X)− p(X) dqdX (X)(
q(X)

)2
which is also a rational function with domain D.

(3) It follows that r(X) is infinitely differentiable on D.
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Integration of rational functions is a little bit more complicated and requires so-
called partial fraction decomposition. First, some terminology:

Definition A.2.3. Suppose r(X) = p(X)/q(X) is a rational function. We say that
r(X) is a proper rational function if deg p < deg q. Otherwise, we say that r(X)
is an improper rational function.

We have two versions of partial fraction decomposition, depending on whether every
factor of the denominator is linear or not:

Partial Fraction Decomposition A.2.4 (Complex Case). Suppose

r(X) =
p(X)

q(X)

is a proper rational function with deg q = n. Then:

(1) By Theorem A.1.2 there exists a nonzero real number a ∈ R, distinct
complex numbers α1, . . . , αr ∈ C, and positive integers n1, . . . , nr ∈ N
such that
(a) n1 + · · ·+ nr = n, and
(b) q(X) = a(X − α1)n1 · · · (X − αr)nr

(2) there exists a family of complex numbers (Ai,j)1≤i≤r,1≤j≤ni
such that

(A.1) r(X) =
p(X)

q(X)
=

r∑
i=1

ni∑
j=1

Ai,j
(X − αi)j

You should use A.2.4 any time every root of q(X) is real, or if you want to work
with complex numbers. If not every root of q(X) is real and you want to avoid
using complex numbers, then you should use the following:

Partial Fraction Decomposition A.2.5 (Real Case). Suppose

r(X) =
p(X)

q(X)

is a proper rational function with deg q = n. Then:

(1) By Theorem A.1.3 there exists r, s ∈ N such that r + 2s = n, a nonzero
real numbers a ∈ R, distinct real numbers α1, . . . , αt ∈ R, positive integers
n1, . . . , nt, distinct pairs of real numbers (β1, γ1), . . . , (βu, γu) ∈ R2 and
positive integers n′1, . . . , n

′
u such that:

(a) n1 + · · ·+ nt = r,
(b) n′1 + · · ·+ n′u = s,
(c) the denominator factors as:

q(X) = a(X − α1)n1 · · · (X − αr)nr (X2 + β1X + γ1)n
′
1 · · · (X2 + βuX + γu)n

′
u

(d) for every i = 1, . . . , u, we have β2
i −4γi < 0, i.e., the quadratic factor

X2 + βiX + γi does not have real roots.
(2) There exists families of real numbers (Ai,j)1≤i≤r,1≤j≤ni

, (Bi,j)1≤i≤s,1≤j≤n′i ,

(Ci,j)1≤i≤s,1≤j≤n′i such that

(A.2) r(X) =
p(X)

q(X)
=

r∑
i=1

ni∑
j=1

Ai,j
(X − αi)j

+

s∑
i=1

n′i∑
j=1

Bi,jX + Ci,j
(X2 + βiX + γi)j
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For improper rational functions, we can write it as a polynomial plus a proper
rational function:

Polynomial Division A.2.6. Suppose p(X) and q(X) are polynomials:

p(X) = amX
m + · · ·+ a0

q(X) = bnX
n + · · ·+ b0

with deg p = m ≥ deg q = n, i.e., the rational function r(X) = p(X)/q(X) is
improper. Then:

(1) The following identity reduces the degree of the polynomial in the numer-
ator:

p(X)

q(X)
=

am
bn
Xm−n +

p(X)− (am/bn)Xm−nq(X)

q(X)

where deg
(
p(X)− (am/bn)Xm−nq(X)

)
< deg p(X).

(2) By repeating (1) enough times, there are real numbers cm−n, cm−n−1, . . . , c0 ∈
R with cm−n 6= 0, and a polynomial p̃(X) with deg p̃(X) < n, such that:

p(X)

q(X)
= cm−nX

m−n + cm−n−1X
m−n−1 + · · ·+ c1X + c0 +

p̃(X)

q(X)

It follows that any rational function can be written as a polynomial (possibly zero)
plus a partial fraction decomposition of the form (A.1) or (A.2). Once we decompose
a rational function like this, then we can integrate it according to the following rules:

(1) Integrate the polynomial part according to Fact A.1.1(5).
(2) For functions of the form 1/(X − α), α ∈ R, the indefinite integral is:∫

dX

X − α
= ln |X − α|+ C

with domain (−∞, α) ∪ (α,+∞). Given a < b ∈ R, the definite integral
is:: {∫ b

a
dX
X−α = ln(b− α)− ln(a− α) if α < a < b∫ b

a
dX
X−α = ln(α− b)− ln(α− a) if a < b < α

(3) For n ≥ 2, functions of the form 1/(X−α)n, α ∈ R, the indefinite integral
is: ∫

dX

(X − α)n
= − 1

(n− 1)(X − α)n−1
+ C

with domain (−∞, α) ∪ (α,+∞). Given a < b ∈ R such that α < a < b
or a < b < α, the definite integral is:∫ b

a

dX

(X − α)n
=

1

(n− 1)(a− α)n−1
− 1

(n− 1)(b− α)n−1

(4) If β, γ ∈ R are such that β2− 4γ < 0, to compute the integral of 1/(X2 +
βX + γ), you first complete the square in the denominator:

1

X2 + βX + γ
=

1

(X − β/2)2 + (4γ − β2)/4
=

1

(X − β/2)2 + δ
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(where δ := (4γ − β2)/4) and the integrate using arctangent. The indefi-
nite integral is:∫

dX

X2 + βX + γ
=

∫
dX

(X − β/2)2 + δ

=
1√
δ

arctan

(
X − β/2√

δ

)
+ C

with domain R. Given a < b ∈ R, the definite integral is:∫ b

a

dX

X2 + βX + γ
=

1√
δ

(
arctan

(
b− β/2√

δ

)
− arctan

(
a− β/2√

δ

))
(5) If β, γ ∈ R are such that β2−4γ < 0 and B ∈ R, to compute the integral of

(X+B)/(X2+βX+γ), you first complete the square in the denominator:

X +B

X2 + βX + γ
=

X +B

(X − β/2)2 + δ

Then you rewrite the numerator into two parts:

X +B

(X − β/2)2 + δ
=

1

2

2(X − β/2)

(X − β/2)2 + δ
+

B + β/2

(X − β/2)2 + δ

The integral is the second part is done as in (4), the indefinite integral of
the first part is:∫

1

2

2(X − β/2) dX

(X − β/2)2 + δ
=

1

2
ln
∣∣(X − β/2)2 + δ

∣∣+ C

with domain R.
(6) If β, γ ∈ R are such that β2 − 4γ < 0 and n ≥ 2, to compute the integral

of 1/(X2 + βX + γ)n, you first complete the square in the denominator:

1

(X2 + βX + γ)n
=

1(
(X − β/2)2 + δ

)n
Then to compute the antiderivative, you first do the substitution U =
X − β/2, dU = dX:∫

dX(
(X − β/2)2 + δ

)n =

∫
dU(

U2 + δ
)n

Then you do the substitution W = U/
√
δ, dW = dU/

√
δ:∫

dU(
U2 + δ

)n =

∫ √
δ dW(

(
√
δW )2 + δ

)n =

√
δ

δn

∫
dW

(W 2 + 1)n

Then to compute
∫
dW/(W 2 +1)n you use the trigonometric substitution

W = tan Θ, dW = sec2 Θ dΘ:∫
dW

(W 2 + 1)n
=

∫
sec2 Θ dΘ

(tan2 Θ + 1)n

=

∫
sec2 Θ dΘ

sec2n Θ
=

∫
cos2n−2 Θ dΘ.

At this point you use the rules for integrating powers of cosine.
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(7) If β, γ ∈ R are such that β2 − 4γ < 0, B ∈ R, and n ≥ 2, to compute the
integral of (X + B)/(X2 + βX + γ) you complete the square and break
up the numerator as in (5):

X +B(
(X − β/2)2 + δ

)n =
1

2

2(X − β/2)(
(X − β/2)2 + δ

)n +
B + β/2(

(X − β/2)2 + δ
)n

Then the second integral is computed as in (6), and the first integral is:∫
1

2

2(X − β/2) dX(
(X − β/2)2 + δ

)n = − 1

2(n− 1)
(
(X − β/2)2 + δ

)n−1
A.3. Algebraic functions

A.4. The exponential function

The exponential function is the most important function in mathematics.1 Here is
its definition:

Definition A.4.1. Define the exponential function to be the function exp :
R→ R defined by

exp(α) :=

∞∑
n=0

αn

n!

for every α ∈ R.

In general we will never use the definition of the exponential function explicitly in
this class, we will only use known properties of the exponential function. Here are
some basic properties of the exponential function:

Fact A.4.2. Suppose α, β ∈ R are arbitrary. Then we have:

(1) exp(α+ β) = exp(α) exp(β),
(2) exp(0) = 1,
(3) exp is strictly increasing, i.e., if α < β, then exp(α) < exp(β), and
(4) for every α, exp(α) > 0, and in particular, exp(α) 6= 0.

The exponential function is an extremely well-behave function in calculus:

Fact A.4.3. The function exp : R→ R has the following properties:

(1) exp is continuous. In particular, for every α ∈ R,

lim
x→α

exp(x) = exp(α)

(2) the limits at ±∞ are as follows:

lim
x→+∞

exp(x) = +∞ and lim
x→−∞

exp(x) = 0.

(3) In particular, range(exp) = {x ∈ R : x > 0} = (0,+∞).
(4) exp is differentiable and

d

dx
exp(x) = exp(x).

(5) It follows that exp is infinitely differentiable.

1See [3, pg. 1].
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(6) The indefinite integral of exp is:∫
exp(x) dx = exp(x) + C

(7) Give a < b ∈ R, the definite integral of exp is computed as:∫ b

a

exp(x) dx = exp(b)− exp(a).

A.5. The logarithm

We saw in Section A.4 that the exponential function exp : R→ (0,+∞) is strictly
increasing. In particular, it is invertible.

Definition A.5.1. We define the logarithm (or natural logarithm) to be the
function ln : (0,+∞)→ R defined by:

ln(y) = x :⇐⇒ exp(x) = y

for all x ∈ R and y ∈ (0,+∞). We also denote ln by log.

Here are some basic properties of the logarithm:

Fact A.5.2. Suppose α, β ∈ R are arbitrary. Then we have:

(1) ln(αβ) = lnα+ lnβ,
(2) ln 1 = 0, and
(3) ln is strictly increasing, i.e., if α < β, then lnα < lnβ.

The logarithm is also a well-behaved function in calculus:

Fact A.5.3. The function ln : (0,+∞)→ R has the following properties:

(1) ln is continuous. In particular, for every α ∈ (0,+∞),

lim
x→α

lnx = lnα

(2) the limits at 0 and +∞ are as follows:

lim
x→0+

lnx = −∞ and lim
x→+∞

lnx = +∞.

(3) In particular, range(ln) = R.
(4) ln is differentiable and

d

dx
lnx =

1

x

(5) It follows that ln is infinitely differentiable on (0,+∞).
(6) The indefinite integral of ln is:∫

lnx dx = x lnx− x+ C,

where this family of antiderivatives is defined on (0,+∞).
(7) Given 0 < a < b ∈ R, the definite integral of ln is computed as:∫ b

a

lnx dx = b ln b− b− a ln a+ a
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A.6. Power functions

A.7. Trigonometric functions

A.8. Inverse trigonometric functions



APPENDIX B

Foundations

Occasionally in this class we shall mention things like:

• Sets
• Operations on sets, like union, intersection,...
• Ordered pairs and cartesian products
• Relations and functions

For this class, you only need a working understanding of these concepts at the level
of Math31B. However, we include a more rigorous treatment of these topics in this
appendix if you desire a deeper understanding.

B.1. A Word about Definitions

When we write “X := Y ”, we mean that the object X does not have any meaning
or definition yet, and we are defining X to be the same thing as Y . When we write
“X = Y ” we typically mean that the objects X and Y both already are defined and
are the same. In other words, when writing “X := Y ” we are performing an action
(giving meaning to X) and when we write “X = Y ” we are making an assertion of
sameness.

In making definitions, we will often use the word “if” in the form “We say that . . .
if . . .” or “If . . ., then we say that . . .”. When the word “if” is used in this way
in definitions, it has the meaning of “if and only if” (but only in definitions!). For
example:

Definition B.1.1. Given integer d, n we say that d divides n if there exists an
integer k such that n = dk.

This convention is followed in accordance with mathematical tradition. Also, we
shall often write “iff” or “⇔” to abbreviate “if and only if.” (Only mathematicians
do this!)

B.2. Sets

A set is a collection of mathematical objects. Mathematical objects can be almost
anything: numbers, other sets, functions, vectors, relations, matrices, graphs etc.
For instance:

{2, 5, 7},
{

3, 5, {8, 9}
}
, and {1, 3, 5, 7, . . .}

are all sets. A member of a set is called is called an element of the set. The
membership relation is denoted with the symbol “∈”, for instance, we write “2 ∈
{2, 5, 7}” (pronounced “2 is an element of the set {2, 5, 7}”) to denote that the
number 2 is a member of the set {2, 5, 7}. There are several ways to describe a set:

(1) by explicitly listing the elements in that set, i.e., the set {2, 5, 7} is a set
with three elements, the number 2, the number 5, and the number 7.
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(2) by specifying a “membership requirement” that determines precisely which
objects are in that set. For instance:{

n ∈ Z : n is positive and odd︸ ︷︷ ︸
membership requirement

}
is the set of all odd positive integers. The above set is pronounced “the set
of all integers n such that n is positive and odd”. The colon “:” is usually
pronounced “such that”, and the condition to the right of the colon is the
membership requirement. Defining a set in this way is sometimes referred
to as using set-builder notation since you are describing how the set
is built (in the above example, the set is built by taking all integers and
keeping the ones that are positive and odd), instead of explicitly specifying
which elements are in the set. We could also choose to describe the set
above by writing

{1, 3, 5, 7, . . .},
although this might be a less ideal description because it requires the
reader to guess or infer the meaning of “. . .”.

The following is a very famous set:

Definition B.2.1. The empty set is the set which contains no elements (hence
the name). It is denoted by either ∅ or {}.

The following are some of the main relationships two sets can have:

Definition B.2.2. Suppose A and B are sets. We say that

(1) A is a subset of B (notation: A ⊆ B) if every element of A is also an
element of B, i.e.,
• For every x, if x ∈ A, then x ∈ B

(2) A is equal to B (notation: A = B) if A and B have exactly the same
elements, i.e.,
• For every x, x ∈ A if and only if x ∈ B

equivalently, A = B means the same thing as A ⊆ B and B ⊆ A
(3) A is a proper subset of B (notation: A ( B) if A ⊆ B and A 6= B.

Note that for any set A, we automatically have ∅ ⊆ A.

Definition B.2.3. Given sets A and B, we define their union (notation: A ∪ B)
to be the set of all elements that are in either A or B, i.e.,

A ∪B := {x : x ∈ A or x ∈ B}.

A B

Figure B.1. Venn diagram of the union A ∪B of the sets A and B
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Definition B.2.4. Given sets A and B, we define their intersection (notation:
A ∩B) to be the set of all elements they have in common, i.e.,

A ∩B := {x : x ∈ A and x ∈ B}.

We say that two sets A and B are disjoint if A ∩B = ∅.

A B

Figure B.2. Venn diagram of the intersection A ∩ B of the sets
A and B

Definition B.2.5. Given sets A and B, we define their (set) difference (or
relative complement) (notation: A \B) to be the subset of A of all elements in
A that are not in B, i.e.,

A \B := {x : x ∈ A and x 6∈ B}.

A B

Figure B.3. Venn diagram of the difference A \B of the sets A and B

Suppose we have elements a, b, c, d such that {a, b} = {c, d}. It is tempting in this
situation to conclude that “a = c and b = d”, but in general this is false. Indeed,
we have {1, 2} = {2, 1}, but 1 6= 2 and 2 6= 1. This is because elements of a set
are unordered. To get an ordered version of a two-element set we introduce the
so-called ordered pair construction.

Definition B.2.6. Given objects a and b, we define their ordered pair to be the
object:

(a, b) :=
{
{a}, {a, b}

}
The righthand side of the definition might seem a little funny, but it guarantees the
following:

Ordered Pair Property B.2.7. For every a, b, c, d,

(a, b) = (c, d) if and only if a = c and b = d.
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Proof. Exercise! �

In practice, the Ordered Pair Property B.2.7 is really the only feature of ordered
pairs that is ever relevant. You will almost never have to actually deal with the
definition “

{
{a}, {a, b}

}
”, except when it comes proving the Ordered Pair Property.

Definition B.2.8. Given sets X and Y , we define the cartesian product (of X
and Y ) (notation: X × Y ) to be the following set:

X × Y :=
{

(x, y) : x ∈ X and y ∈ Y
}

Example B.2.9. Suppose X = {0, 1} and Y = {a, b, c}. Then the cartesian
product of X and Y is

X × Y =
{

(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)
}
.

Note that |X| = 2, |Y | = 3, and |X × Y | = 2 · 3 = 6.

The construction of pairs can be repeated:

Definition B.2.10. We define ordered triples, ordered quadruples, and more
generally ordered n-tuples recursively as follows:

(a1, a2, a3) :=
(
(a1, a2), a3

)
(a1, a2, a3, a4) :=

(
(a1, a2, a3), a4

)
...

(a1, . . . , an+1) :=
(
(a1, . . . , an), an+1

)
for any objects a1, a2, a3, . . .. It follows that two ordered n-tuples (a1, . . . , an) and
(b1, . . . , bn) are equal iff ai = bi for each i ∈ {1, . . . , n}. Given sets A1, . . . , An, we
define their n-fold cartesian product to be the set

A1 × · · · ×An :=
{

(a1, . . . , an) : ai ∈ Ai for each i = 1, . . . , n
}
.

B.3. Relations

The mathematical structures we will deal with usually have more structure on it
beyond the underlying set. For instance, we know that when we talk about the set
R, we also want to be able to talk about the linear order ≤ and the usual arithmetic
binary functions + and ·. If we didn’t have these notions available to us, then there
wouldn’t be anything that special about the set R except that it’s a very very large
set. The formal way to make things like this is through relations.

Definition B.3.1. Given sets X and Y , we define a (binary) relation on X×Y
(or a (binary) relation from X to Y ) to be a subset R ⊆ X × Y . If R is a
relation on X × Y , then for an ordered pair (x, y) ∈ X × Y we will often write

xRy instead of (x, y) ∈ R, and

x 6Ry instead of (x, y) 6∈ R.

(Note: xRy is pronounced “x is related to y (by R)”; and x 6Ry is pronounced “x is
not related to y (by R)”.)

Remark B.3.2. The word binary in Definition B.3.1 refers to the fact that R is a
relation on a cartesian product on two sets: X and Y . One can also define ternary
relations on X × Y × Z and every n-ary relations on X1 ×X2 × · · · ×Xn. In this
class we will (for the most part) restrict our attention to binary relations.
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Example B.3.3. Consider X := {1, 2, 3, 4} and Y := {a, b, c} and the binary
relation R on X × Y given by:

R =
{

(1, a), (1, b), (2, a), (4, b), (4, c)
}

The relation R tells us, among other things, 1Ra but 3 6Ry for every y ∈ R. Since
X, Y are small, we can picture all the relations specified by R with the following
arrow diagram:

•1

•2

•3

•4

• a

• b

• c

X Y

Figure B.4. Arrow diagram from X to Y illustrating the relation
R on X × Y

B.4. Functions

We are already familiar with functions f : X → Y as being some sort of machine
that assigns to each input x ∈ X a unique output y ∈ Y . The formal way to view
functions is as a special case of relations:

Definition B.4.1. Suppose f is a relation on X×Y . We say that f is a function
from X to Y (notation: f : X → Y ) if for every x ∈ X there is exactly one y ∈ Y
such that (x, y) ∈ f , i.e.,

(i) For each x ∈ X, there exists y ∈ Y such that (x, y) ∈ f .
(ii) For each x ∈ X, and for every y1, y2 ∈ Y , if (x, y1) ∈ f and (x, y2) ∈ f , then

y1 = y2.

Note: (i) asserts there is at least one y ∈ Y , and (ii) asserts there is at most one
y ∈ Y . Taken together, (i) and (ii) assert there is exactly one y ∈ Y (with the
property (x, y) ∈ f).

Suppose f : X → Y . Then:

(1) We shall use the notation f(x) = y to indicate that (x, y) ∈ f .
(2) The set X is called the domain of f (notation: domain(f) = X).
(3) The set Y is called the codomain of f (notation: codomain(f) = Y ).
(4) The following subset of Y

range(f) :=
{
f(x) : x ∈ X

}
=
{
y ∈ Y : there exists x ∈ X such that f(x) = y

}
is called the range of f .

(5) We also may use the notation “x 7→ f(x) : X → Y ” instead of f : X → Y ,
especially when the function f is determined by a formula in x and/or
it is not necessary to give a name to the function; see Example B.4.2(2)
below.
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Example B.4.2.

(1) Given a setX we define the identity function onX (notation: idX : X →
X) to be the function that sends every x ∈ X to itself, i.e.,

idX(x) := x, for every x ∈ X.

Note that in this case, domain(idX) = codomain(idX) = range(idX) = X.
(2) The function

k 7→ k2 : Z→ Z
has domain Z, codomain Z and range {0, 1, 4, 9, 16, . . .}.

(3) The function

x 7→ x2 : R→ R
has domain R, codomain R and range {y ∈ R : y ≥ 0}.

Question B.4.3. What is the codomain of the following function:

f :=
{

(1, a), (2, c), (3, c), (4, b)
}

Answer B.4.4. Trick question! The domain is definitely the set X := {1, 2, 3, 4},
however, the codomain can technically be any set which contains Y := {a, b, c}.
Indeed, f is a valid function of type “X → Y ” (in which case, the codomain would
be Y ), but it is also a valid function of type “X → Y ∪ {d, e, f}” (in which case,
the codomain would be Y ∪ {d, e, f} = {a, b, c, d, e, f}). The lesson here is that the
codomain is determined by what we say it is when we are specifying the function
as either f : X → Y or f : X → Y ∪ {d, e, f}. This annoyance only occurs for the
codomain. The domain is always uniquely determined (as mentioned above) from
the underlying set of ordered pairs, as is the range (which in this case is Y ).

Just as with relations, we can form a new function from two given functions by
composition.

Definition B.4.5. Suppose f : X → Y and g : Y → Z are functions. Then the
composition of g with f is the function g ◦ f : X → Z defined by:

(g ◦ f)(x) := g
(
f(x)

)
:= the unique z ∈ Z such that there is a y ∈ Y

such that f(x) = y and g(y) = z.

Remark B.4.6.

(1) Suppose we have three function f : X → Y , g : Y → Z and h : Z → W .
Then we can create two new functions through composition: g◦f : X → Z
and h ◦ g : Y →W . Finally, we can create two new functions:

h ◦ (g ◦ f) : X →W and (h ◦ g) ◦ f : X →W.

It is a nice exercise to show that these functions are the same, i.e.,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
Thus we say that functional composition is associative.

(2) Functional composition allows us to highlight the two main properties of
the identity function idX : X → X:
(a) For every function f : X → Y we have f ◦ idX = f ,
(b) For every function g : W → X we have idX ◦g = g.

We can also (sometimes) consider the inverse of a function.
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Definition B.4.7. Suppose f : X → Y is a function. We say that a function
g : Y → X is an inverse to f if

f ◦ g = idY and g ◦ f = idX .

We say that f : X → Y is an invertible function if there exists an inverse g : Y →
X.

At this point, it is not clear whether every function has an inverse (answer: no),
or even in the cases when a function does have an inverse whether that inverse is
unique (answer: yes). The following clears up the latter issue:

Lemma B.4.8 (Uniqueness of function inverse). Suppose f : X → Y is a function
and g, h : Y → X are inverses to f . Then g = h.

Proof. Note that

g = g ◦ idY by Remark B.4.6(2)

= g ◦ (f ◦ h) since h is an inverse of f

= (g ◦ f) ◦ h since composition is associative

= idX ◦h since g is an inverse of f

= h by Remark B.4.6(2). �

One special feature of the proof of Lemma B.4.8 is that it used very general prin-
ciples (compositional property of identity, definition of inverse, associativity) and
did not mention specific elements x ∈ X at all. Analogues of this argument show
up in many other areas of math, for example, in the proof that the inverse of an
invertible matrix is unique. At any rate, we can now unambiguously define the
inverse f−1 of an invertible function f :

Definition B.4.9. Suppose f : X → Y is an invertible function. Then we define
f−1 : Y → X to be the (unique) inverse of f .

B.5. Three Special Types of Functions

There are three special flavors of functions which permeate all of mathematics:

Definition B.5.1. A function f : X → Y is called

(1) injective (or one-to-one) if for every x1, x2 ∈ X, if f(x1) = f(x2), then
x1 = x2.

(2) surjective (tacitly: surjective onto Y ) (or onto) if for every y ∈ Y
there exists an x ∈ X such that f(x) = y. Equivalently, f is surjective if
range(f) = codomain(f).

(3) bijective (or a bijection, or one-to-one and onto) if f is both injective
and surjective

Note that the notion of surjective (as well as bijective) only makes sense when it is
clear what the codomain is. If you change what the codomain is, the function might
change whether it is surjective or not. For instance, in Question B.4.3, the function
f : X → Y is surjective, but the function f : X → Y ∪ {d, e, f} is not surjective,
even though the two f ’s have the same underlying set!

We give some simple examples of functions which either have or do not have each
of these properties:
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Example B.5.2.

(1) Suppose X = {a, b, c} and Y = {d, e, f}. Then the function f : X → Y
specified in Figure B.5 is a bijection, i.e., it is both injective and surjective.

•a

•b

•c

• d

• e

• f

Figure B.5. A bijective (i.e., an injective and surjective) function

(2) Suppose X = {a, b, c} and Y = {d, e}. Then the function f : X → Y
specified in Figure B.6 is a surjective function but it is not injective.

•a

•b

•c

• d

• e

Figure B.6. A surjective function that is not bijective

(3) Suppose X = {a, b} and Y = {c, d, e}. Then the function f : X → Y
specified in Figure B.7 is an injective function but it is not surjective.

•a

•b

• c

• d

• e

Figure B.7. An injective function that is not surjective

(4) Suppose X = {a, b} and Y = {c, d}. Then the function f : X → Y
specified in Figure B.8 is neither injective nor surjective.
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•a

•b

• c

• d

Figure B.8. A function that is neither injective nor surjective

These notions allow us to characterize which functions are invertible:

Theorem B.5.3. Suppose f : X → Y is a function. The following are equivalent:

(1) f is a bijection.
(2) f is invertible.

Proof. Exercise! �
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