
MATH170B LECTURE NOTES

ALLEN GEHRET

Abstract. The goal of this class is to cover Chapters 4, 5 and 6 from [1]. We also will begin with
a review of the 170a material.

Note: these lecture notes are subject to revision, so the numbering of Lemmas, Theorems,
etc. may change throughout the course and I do not recommend you print out too many pages
beyond the section where we are in lecture. Any and all questions, comments, and corrections are
enthusiastically welcome!
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1. Probability Spaces, Random Variables, and Expectation

Probability spaces. The first basic notion in probability theory is that of sample space. In-
formally, this is the collection of all possible outcomes or results of an experiment. At the risk
of seeming overly-dramatic, I like to think of it as the set of all possible timelines of all possible
versions of our universe – real or fictional! Formally, it has the following definition:

Definition 1.1. (1) A sample space is a nonempty set Ω. The elements ω ∈ Ω are called
outcomes, and subsets A ⊆ Ω are called events1.

(2) A probability law is a real-valued function P defined on all events of Ω

P : {all events of Ω} → R

which satisfies the following axioms:
(a) (Nonnegativity) P(A) ≥ 0 for every event A.
(b) (Countable Additivity) SupposeA1, A2, A3, . . . is a countable sequence of disjoint events.

Then

P
(⋃∞

i=1Ai
)

=
∑∞

i=1 P(Ai).

(c) (Normalization) P(Ω) = 1.
(3) A probability space (or probabilistic model) is a pair (Ω,P) consisting of a sample

space Ω together with a probability law P.

The axioms for probability laws has many familiar consequences:

Properties of Probability Laws 1.2. Let (Ω,P) be a probability space and A,B ⊆ Ω be events.
Then

(1) (Emptyset) P(∅) = 0.
(2) (Finite Additivity) If A1, . . . , An are disjoint, then

P(A1 ∪A2 ∪ · · · ∪An) = P(A1) + P(A2) + · · ·+ P(An).

(3) (Monotonicity) If A ⊆ B, then P(A) ≤ P(B). In particular, P(A) ≤ 1 since A ⊆ Ω.
(4) (Countable Subadditivity) Suppose A1, A2, A3, . . . is a sequence of events such that A ⊆⋃∞

n=1An. Then

P(A) ≤
∑∞

n=1 P(An).

(5) (Continuity of Probability) Suppose A1, A2, A3, . . . is a sequence of events.
(a) (Increasing version) If An ⊆ An+1 for each n and A =

⋃∞
n=1An, then

P(A) = lim
n→∞

P(An)

(b) (Decreasing version) if An ⊇ An+1 for each n and A =
⋂∞
n=1An, then

P(A) = lim
n→∞

P(An).

Proof. (1) Set A1 := Ω and An := ∅ for n ≥ 2. Then the sequence A1, A2, A3, . . . is disjoint, so
by Normalization and Countable Additivity,

1 = P(Ω) = P
(⋃∞

n=1An
)

=
∑∞

n=1 P(An) = 1 +
∑∞

n=2 P(∅).

Subtracting 1 from both sides yields 0 =
∑∞

n=2 P(∅), from which it follows that P(∅) = 0.

1Technically in rigorous probability theory, not every subset of Ω is considered an event as this can sometimes
cause problems. For us, we will pretend that all subsets are events since problematic examples won’t arise in this
class, I promise.
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(2) Extend our finite sequence A1, . . . , An into a countably infinite sequence by setting Am := ∅
for m > n. This longer sequence is disjoint, so by Countable Additivity we have

P
(⋃∞

k=1Ak
)

=
∑∞

k=1 P(Ak),

which simplifies to

P(A1 ∪A2 ∪ · · · ∪An) = P(A1) + P(A2) + · · ·+ P(An),

since P(∅) = 0.
(3) If A ⊆ B, then B = A∪ (Ac ∩B), and this is a disjoint union. By Nonnegativity, it follows

that 0 ≤ P(Ac ∩B). Adding P(A) to both sides and then using Finite Additivity yields

P(A) ≤ P(A) + P(Ac ∩B) = P(B).

(4) Define A′n := An ∩ A, B1 := A′1 and for each n > 1 define Bn := A′n ∩ (∪n−1
m=1A

′
m)c. Then

the sequence B1, B2, . . . is disjoint with the property that
⋃∞
n=1Bn = A. By Countable

Additivity we have

P(A) =
∑∞

n=1 P(Bn)

and since Bn ⊆ An for each n, by Monotonicity we have∑∞
n=1 P(Bn) ≤

∑∞
n=1 P(An).

(5) We will first prove (a). We will disjointify our sequence: Set B1 := A1, and for each n ≥ 2
set Bn := An∩Acn−1 (draw a picture!). Our new sequence B1, B2, B3, . . . has the properties:
• A =

⋃∞
n=1An =

⋃∞
n=1Bn.

• For each n ≥ 1, An = B1 ∪ · · · ∪Bn, and this is a disjoint union.
We now compute:

P(A) = P
(⋃∞

m=1Bm
)

=
∑∞

m=1 P(Bm) by Countable Additivity

= limn→∞
∑n

m=1 P(Bm) by Definition A.17 of infinite sum

= lim
n→∞

P(B1 ∪ · · · ∪Bn) by Finite Additivity

= lim
n→∞

P(An).

To prove (b) we take complements: the sequence Ac1, A
c
2, . . . has the properties:

• Acn ⊆ Acn+1 for each n, and

•
⋃∞
n=1A

c
n =

(⋂∞
n=1An

)c
= Ac,

so we can apply (a):

P(A) = 1− P(Ac)

= 1− lim
n→∞

P(Acn) by part (a)

= lim
n→∞

(
1− P(Acn)

)
= lim

n→∞
P(An). �

Random variables. If the sample space is the set of all random outcomes of some experiment,
then a random variable is a function which assigns a numerical value to each of these outcomes.
The introduction of random variables allows us to apply analytic methods to solve our probability
problems.
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Definition 1.3. A random variable2 is a function X : Ω→ R.

In probability theory, we think of random variables differently than how we think of functions
f : A→ B in other areas of math. Here are some unwritten rules to be aware of:

Conventions 1.4. (1) The outputs of a random variable are referred to as the (numerical)
values of the random variable.

(2) We will always use capital letters: X,Y, Z,H, T, . . . to denote random variables.
(3) We will use lower-case letters: x, y, z, h, t, . . . to denote real numbers or specific numerical

values.
(4) Given a random variable X : Ω → R, the domain is always Ω and the codomain is always

R. For this reason, we will just talk about “X” and it is understood that we mean the
function “X : Ω→ R”.

(5) In fact, we will often suppress entirely any mention of the domain Ω or outcomes ω ∈ Ω.
The focus will always be on the behavior of the values of a random variable.

(6) We will often define events using very compact notation which suppresses ω,Ω and it is
your responsibility to correctly infer the meaning of such events. For instance:
• {X = x} means {ω ∈ Ω : X(ω) = x}
• {X > 0} means {ω ∈ Ω : X(ω) > 0}
• {X ∈ S} means {ω ∈ Ω : X(ω) ∈ S}

(7) Given multiple random variables, X,Y, Z, . . ., our default assumption is that they are
jointly defined, i.e., that they have a common domain Ω (the same Ω for each random
variable!).

Definition 1.5. Given a random variable X, we define its cumulative distribution function
(CDF) to be the function FX : R→ R defined by

FX(x) := P(X ≤ x)

for all x ∈ R. A CDF always enjoys the following properties:

(1) (Monotonically Increasing) If x ≤ y, then FX(x) ≤ FX(y).
(2) (Limits at Infinity) limx→−∞ FX(x) = 0 and limx→+∞ FX(x) = 1.
(3) (Right Continuity) Given x ∈ R, limt→x+ FX(t) = FX(x).

Conversely, any function F : R→ R with properties (1), (2), and (3) above is a valid CDF for some
random variable.

Comments. (1) follows from Monotonicity 1.2(3). (2) and (3) are consequences of Continuity of
Probability 1.2(5) �

There are two main flavors of random variables we will consider in this class, the first kind is the
discrete random variables:

Definition 1.6 (Discrete random variables). (1) A discrete random variable is a random
variable X such that Range(X) ⊆ R is either finite or countable infinite.

(2) Given a discrete random variable X, we define its probability mass function (PMF) to
be the function pX : R→ R defined by

pX(x) = P(X = x) = P
(
{ω ∈ Ω : X(ω) = x}

)
.

2Just like the definition of a probability space, we are sweeping things under the rug here also. The key technical
point we are omitting is that X needs to be measurable in the sense that for all “nice” subsets A ⊆ R, the set
{ω ∈ Ω : X(ω) ∈ A} needs to be an event and thus have a well-defined probability. This will always be the case for
all subsets A ⊆ R and all random variables X that we consider in this class.
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(3) If X is discrete, we can recover the CDF from the PMF:

FX(x) =
∑
t≤x

pX(t).

We will encounter many different discrete random variables. Here are the important ones (so
important, they have special names and you need to know everything about them):

Example 1.7. (1) (Indicator random variable) Suppose A ⊆ Ω is an event. We define the
random variable IA : Ω→ R to by setting

IA(ω) :=

{
1 if ω ∈ A
0 if ω 6∈ A

for each ω ∈ Ω. Since Range(IA) ⊆ {0, 1} is finite, the indicator random variable is a very
simple example of a discrete random variable. The role of IA is to indicate whether the
event A has occurred or not. It also allows us to talk about events as a special case of
random variables (so in some sense much of Chapter 1 of [1] is subsumed in later chapters).

(2) (Bernoulli) For p ∈ [0, 1], we say that a random variable X is Bernoulli p (notation:
X ∼ Bernoulli(p)) if Range(X) = {0, 1} and X has PMF given by

pX(k) =


p if k = 1

1− p if k = 0

0 otherwise.

We think of a Bernoulli p random variable as conveying the outcome of a single flip of a
coin that has probability p of landing heads. A Bernoulli random variable by itself might
not be very exciting, but it will serve as a building block for more complicated scenarios we
may wish to model.

(3) (Binomial) For n ∈ {0, 1, 2, . . .} and p ∈ [0, 1], we say that a random variable X is Binomial
n, p (notation: X ∼ Binomial(n, p)) if Range(X) = {0, 1, . . . , n} and X has PMF given by

pX(k) =

{(
n
k

)
pk(1− p)n−k if k = 0, 1, . . . , n

0 otherwise.

We think of a Binomial n, p random variable as conveying the number of times we flip a
heads when we flip a coin n times and that coin has probability p of landing heads on each
toss.

(4) (Geometric) For p ∈ [0, 1], we say that a random variable X is Geometric p (notation:
X ∼ Geometric(p)) if Range(X) = {1, 2, 3, . . .} and X has PMF given by

pX(k) =

{
p(1− p)k−1 if k = 1, 2, 3, . . .

0 otherwise.

We think of a Geometric p random variable as conveying the number of trials it takes to
flip a heads, if we flip a coin of weight p indefinitely until we flip a heads.

(5) (Poisson) Give λ ∈ R such that λ > 0, we say that a random variable X is Poisson λ
(notation: X ∼ Poisson(λ)) if Range(X) = {0, 1, 2, 3, . . .} and X has PMF given by

pX(k) =

{
e−λ λ

k

k! if k = 0, 1, 2, . . .

0 otherwise.

A Poisson random variable conveys the number of arrivals during a given time interval
during a so-called Poisson process. We will study this later.
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(6) (Discrete Uniform) Given integers a, b such that a ≤ b, we say that a random variable X is
discrete uniform on [a, b] (notation: X ∼ Uniform(a, b)) if Range(X) = {a, a+1, . . . , b} =
{c ∈ Z : a ≤ c ≤ b} and X has PMF given by

pX(k) =

{
1

b−a+1 if k ∈ Z and k ∈ [a, b]

0 otherwise.

We think of a discrete uniform [a, b] random variable as conveying the result of some ex-
periment that can take any integer value between a and b (inclusive), with all values being
equally likely.

The second flavor of random variable we will consider is the continuous random variables. Note:
it is not the case the every random variable is either discrete or continuous – many are neither.

Definition 1.8 (Continuous random variables). (1) A random variable X is continuous if
there exists a function3 fX : R→ R, called the probability density function (PDF) of
X, such that

P(a ≤ X ≤ b) =

∫ b

a
fX(x)dx for all a < b.

(2) If X is continuous, then actually

P(X ∈ A) =

∫
A
fX(x)dx for all subsets A ⊆ R.

(3) If X is continuous, then we can recover the CDF from the PDF:

FX(x) =

∫ x

−∞
fX(t)dt, for all x ∈ R.

Here are the famous named continuous random variables that you need to know everything about:

Example 1.9. (1) (Continuous Uniform) Given real numbers a, b ∈ R such that a < b, we say
that a random variable X is continuous uniform on [a, b] (notation4: X ∼ Uniform(a, b))
if Range(X) = [a, b] and if X is a continuous random variable with PDF fX given by

fX(x) =

{
1
b−a if x ∈ [a, b]

0 otherwise.

A continuous uniform random variable conveys the result of an experiment that takes values
in the entire interval [a, b], with every value in the interval being “equally likely” in the sense
that any two subintervals of the same length have the same probability. We also derive the

3Implicit in this definition is that the PDF is integrable on R in the sense that
∫ b

a
fXdx always exists (possibly

as an improper integral) and is finite, even for a = −∞ or b = ∞. There is no requirement that a PDF is itself a
continuous function, but for us all PDFs we will encounter will be piecewise continuous.

4Although the notation for discrete uniform and continuous uniform are the same, the context will dictate which
one is meant and there will never be any confusion.

6



CDF of X:

FX(x) =

∫ x

−∞
fX(t)dt

=


∫ b
a

dt
b−a if x > b∫ x

a
dt
b−a if x ∈ [a, b]∫ x

−∞ 0dt if x < a

=


1 if x > b
x−a
b−a if x ∈ [a, b]

0 if x < a.

(2) (Exponential) Given a real number λ ∈ R such that λ > 0, we say that a random variable
X is exponential λ (notation: X ∼ Exponential(λ)) if Range(X) = [0,∞) and if X is a
continuous random variable with PDF fX given by

fX(x) =

{
λe−λx if x ∈ [0,∞)

0 if x < 0.

An exponential random variable conveys how much time you have to wait until the first
arrival in some Poisson process. We will study this more later. We also derive the CDF
FX of X:

FX(x) =

∫ x

−∞
fX(t)dt

=

{∫ x
0 λe

−λtdt if x ≥ 0∫ x
−∞ 0dt if x < 0

=

{[
− e−λt

]x
0

if x ≥ 0

0 if x < 0

=

{
1− e−λx if x ≥ 0

0 if x < 0.

(3) (Normal) Given real numbers µ, σ ∈ R such that σ > 0, we say that a random variable X
is Normal µ, σ2 (notation: X ∼ Normal(µ, σ2)) if Range(X) = R and if X is a continuous
random variable with PDF fX given by

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

Normal random variables (also called Gaussian) arise naturally when modeling noise, error,
averages, or the aggregate effect of many independent random variables on a system. If
X ∼ Normal(0, 1), then we say that X is a standard normal random variable. It is
known5 that the antiderivative of fX is not a so-called elementary function. Thus, the best
we can do is to write the CDF as

FX(x) =
1√
2πσ

∫ x

−∞
e−(t−µ)2/2σ2

dt

5This is Liouville’s Theorem, see en.wikipedia.org/wiki/Liouville%27s_theorem_(differential_algebra)
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for x ∈ R. When X ∼ Normal(0, 1), then we use the letter Φ to denote the CDF FX :

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

There are tables you can look up specific Φ-values in.

We will often consider multiple random variables at once. In which case we have the following
definitions:

Definition 1.10. Suppose X1, . . . , Xn are random variables.

(1) We define the joint CDF of X1, . . . , Xn to be the function FX1,...,Xn : Rn → R defined by

FX1,...,Xn(x1, . . . , xn) := P(X1 ≤ x1, . . . , Xn ≤ xn)

for all x1, . . . , xn ∈ R.
(2) If each Xi is discrete, then we define their joint PMF to be the function pX1,...,Xn : Rn → R

defined by
pX1,...,Xn(x1, . . . , xn) := P(X1 = x1, . . . , Xn = xn)

for all x1, . . . , xn ∈ R.
(3) We say that X1, . . . , Xn are jointly continuous if there is a function fX1,...,Xn : Rn → R,

called the joint PDF, such that

P
(
(X1, . . . , Xn) ∈ A

)
=

∫
· · ·
∫
A
fX1,...,Xndx1 · · · dxn

for all A ⊆ Rn.

Expectation. To nearly all random variables, we can associate a number called its expected value.
We will not give the precise definition of how to calculate the expected value in general (just for
discrete and continuous).

Definition 1.11. Given a random variable X, the expected value (or expectation, mean,
1st moment) of X is a quantity E[X] which represents an average value of the random variable.
Exactly one of the following three things is true6 about E[X]:

(i) E[X] ∈ R, i.e., the expected value exists and is a (finite) real number.
(ii) E[X] = +∞ or E[X] = −∞, i.e., the expected value exists, but is infinite.

(iii) E[X] does not exist. If X ≥ 0, then this case cannot happen.

For discrete and continuous random variables it is computed as follows:

(1) If X is discrete with PMF pX(x), then

E[X] =
∑

x∈Range(X)

xpX(x).

(2) If X is continuous with PDF fX(x), then

E[X] =

∫ ∞
−∞

xfX(x)dx.

For random variables which is neither discrete nor continuous, the expected value is computed by
more abstract, measure-theoretic methods which are outside the scope of this class. On occasion,
we will nevertheless talk about the expected value, even if we don’t know how it’s computed. The
following will be useful for this:

Properties of Expectation 1.12. Suppose X,Y are random variables, A ⊆ Ω is an event and
a ∈ R, then

6Most of the time we will be in case (i), but you should be aware that (ii) and (iii) can happen.
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(1) (Linearity) E[X + Y ] = E[X] + E[Y ] and E[aX] = aE[X].
(2) (Monotonicity) If X ≤ Y , then E[X] ≤ E[Y ].
(3) (Indicator Expectation) E[IA] = P(A).
(4) (Constant Expectation) E[a] = a.
(5) (Almost Sure Property) If P(X = 0) = 1, then E[X] = 0.

Comments. For discrete and continuous random variables, (1) and (2) follow from properties of
summations and integrals, but they are true in general. (3) is a very special case of computing the
expectation for a discrete random variable. For (4), when taking the expectation of the constant
a, we are regarding a as the random variable that takes constant value a for all outcomes, i.e.,
a = aIΩ, so (4) follows from (1) and (3). Property (5) essentially says that events of probability
zero do not affect the expected value. �

Most of the time, the expected value for a random variable g(X) can be computed7 in terms of the
function g and the probability law for X:

Formulas for Expectation 1.13. Suppose X and Y are random variables and g : R → R and
h : R2 → R are functions. Then

(1) If X is discrete, then

E
[
g(X)

]
=

∑
x∈Range(X)

g(x)pX(x).

(2) If X is continuous, then

E
[
g(X)

]
=

∫ ∞
−∞

g(x)fX(x)dx.

(3) If X and Y are both discrete with joint PMF pX,Y , then

E
[
h(X,Y )

]
=

∑
(x,y)∈Range(X,Y )

h(x, y)pX,Y (x, y).

(4) If X and Y are jointly continuous with joint PDF fX,Y , then

E
[
h(X,Y )

]
=

∫ ∞
−∞

∫ ∞
−∞

h(x, y)fX,Y (x, y)dxdy.

Similar formulas exist for three or more random variables.

We now derive the expected values for most of our famous random variables directly from the
definition (geometric will be done later):

Example 1.14. (1) (Bernoulli) Suppose X ∼ Bernoulli(p). Then

E[X] = 0 · pX(0) + 1 · pX(1) = 0 · (1− p) + 1 · p = p.

(2) (Binomial) Suppose X ∼ Binomial(n, p). Since E[X] is completely determined by the
PMF, by possibly changing X and Ω, we can assume that X actually gives the number of
heads flipped during some experiment where we flip n coins, each of weight p. For such
an experiment, let Xi denote the ith coin toss (so Xi = 1 if the ith toss is heads, Xi = 0
otherwise). Then we have X = X1 + · · · + Xn and also each Xi ∼ Bernoulli(p). Then by
Linearity we have

E[X] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] = np.

7This is referred to as the Law of the unconscious statistician because people often use these formulas as if its just
the definition, but the validity of the formulas really is something to be proved. See en.wikipedia.org/wiki/Law_

of_the_unconscious_statistician

9

en.wikipedia.org/wiki/Law_of_the_unconscious_statistician
en.wikipedia.org/wiki/Law_of_the_unconscious_statistician


(3) (Poisson) Suppose X ∼ Poisson(λ). Then

E[X] =

∞∑
k=0

kpX(k) =

∞∑
k=0

ke−λ
λk

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
`=0

λ`

`!
= λe−λeλ = λ.

(4) (Discrete Uniform) Let X be a discrete random variable such that X ∼ Uniform(a, b).
Intuitively, we expect E[X] = (a+b)/2, as this is the “center of gravity” of the distribution.
We verify this with computation:

E[X] =

b∑
k=a

kpX(k)

=
1

b− a+ 1

b∑
k=a

k

=
1

b− a+ 1

b−a∑
n=0

(n+ a) by reindexing

=
1

b− a+ 1

[
b−a∑
n=0

n+
b−a∑
n=0

a

]

=
1

b− a+ 1

[
(b− a)(b− a+ 1)

2
+ (b− a+ 1)a

]
by Formula A.2

=
b− a

2
+ a

=
a+ b

2
.

(5) (Continuous Uniform) Let X ∼ Uniform(a, b) be a continuous uniform random variable.
Then we also expect E[X] = (a + b)/2 for the same reason. Computation verifies this
intuition:

E[X] =

∫ ∞
−∞

xfX(x)dx =

∫ b

a

xdx

b− a
=

[
x2

2(b− a)

]b
a

=
b2 − a2

2(b− a)
=

a+ b

2
.

(6) (Exponential) Let X ∼ Exponential(λ). Then

E[X] =

∫ ∞
−∞

xfX(x)dx

=

∫ ∞
0

xλe−λxdx

=
[
− xe−λx

]∞
0

+

∫ ∞
0

e−λxdx

(using u = x, du = dx, v = −e−λxdv = λe−λxdx)

= 0−
[
e−λx

λ

]∞
0

=
1

λ
.

(7) (Standard Normal) Assume X ∼ Normal(0, 1). Then

E[X] =

∫ ∞
−∞

xfX(x)dx =
1√
2π

∫ ∞
−∞

xe−x
2/2dx =

[
−e
−x2/2
√

2π

]∞
−∞

= 0.

10



Thus E[X] = µ = 0 for the standard normal random variable. We’ll see later that for
arbitrary normal random variables that E[X] = µ.
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2. Derived Distributions

In this section, we consider the following natural question:

Question 2.1. Suppose X is a random variable and g : R → R is a function. Define the new
random variable Y := g(X). How can we determine the probability law of Y in terms of the
probability law of X?

Obtaining a probability law for Y in this way is referred to as an derived distribution because we
will derive the distribution for Y from the distribution of X. We are primarily interested in derived
distributions in the setting of continuous random variables, but for the sake of completeness, we
will also briefly discuss them for discrete random variables.

Discrete Derived Distributions 2.2. Suppose X is a discrete random variable with PMF pX
and g : R→ R is a function. Define Y := g(X). Then Y is a discrete random variable with PMF
given by

pY (y) =
∑

{x:g(x)=y}

pX(x)

for every y ∈ R.

Proof. If the range of X is finite or countably infinite, then so is the range of g(X), so Y is discrete.
Next note that

{Y = y} =
{
ω ∈ Ω : g(X(ω)) = y

}
=

⋃
{x:g(x)=y}

{
ω ∈ Ω : X(ω) = x

}
.

Taking probabilities of both sides and applying countable additivity yields the desired formula.
There is a subtlety in this argument you should be aware of: depending on the function g, the
union could be an uncountable union (i.e., the index set {x : g(x) = y} could be uncountable).
However, since X is itself a discrete random variable, all but at most countably many sets in the
union are the empty set. So the union can be replaced with an equivalent finite or countably infinite
union, which justifies the usage of countable additivity. �

Example 2.3. Suppose X ∼ Uniform(−4, 4) (discrete). Then

pX(k) =

{
1
9 if k ∈ {−4,−3, . . . , 4}
0 otherwise.

Now consider the function g(x) = |x|. Then for Y = g(X), we have Range(Y ) = {0, 1, 2, 3, 4}
and for y = 0, we have pY (0) = pX(0) = 1/9, whereas for y ∈ {1, 2, 3, 4} we have pY (y) =
pX(−y) + pX(y) = 2/9. Thus

pY (k) =


2
9 if k ∈ {1, 2, 3, 4}
1
9 if k = 0

0 otherwise.

For continuous random variables, the most convenient route to take for derived distributions involves
a detour through the CDFs of the random variables in question. For this, we first recall how to
recover a PDF from a CDF:

Proposition 2.4. Suppose X is a continuous random variable with PDF fX and CDF FX . Then
for x ∈ R, if fX is continuous at x, then FX is differentiable at x and

fX(x) =
dFX
dx

(x) =
d

dx

∫ x

−∞
fX(t)dt.

12



Proof. This follows from the 2nd Fundamental Theorem of Calculus A.24. �

For us, fX will usually be piecewise continuous so the above technique will be an effective way to
recover a PDF. What about the points at which fX is not continuous or FX is not differentiable?
At those points, you can define the PDF fX to be any value you want (e.g., = 0). Since integrals
remain unchanged when you modify finitely many function values, there is no harm in making
arbitrary choices like this.

This now suggests a two-pronged approach to derived distributions. Given Y = g(X):

(1) First calculate the CDF FY of Y :

FY (y) = P(g(X) ≤ y) =

∫
{x:g(x)≤y}

fX(x)dx.

Hopefully the function g is nice enough so that the set {x : g(x) ≤ y} will be relatively
simple.

(2) Given the CDF FY of Y , recover the PDF fY :

fY (y) =
dFY
dy

(y)

Hopefully the CDF will be piecewise differentiable and its derivative will be piecewise con-
tinuous.

Of course the two-step process seems pretty easy, but as they say, the devil is in the details. If fX
or g is defined piecewise, then at every step in your work you have to be keeping track of various
cases, and what happens in different intervals, and where different formulas are valid, etc.

Example 2.5. Suppose X ∼ Uniform(0, 1) (continuous), and g(x) =
√
x. Define Y = g(X) =

√
X.

We first compute the CDF of Y : given y ∈ R,

FY (y) = P(Y ≤ y) = P(
√
X ≤ y) =


0 if y < 0

P(X ≤ y2) if y ∈ [0, 1]

1 if y > 1

=


0 if y < 0

y2 if y ∈ [0, 1]

1 if y > 1.

Then we differentiate to recover the PDF fY . Note that FY is differentiable at all y 6= 0, 1. So for
y 6= 0, 1 we have

fY (y) =
dFY
dy

(y) =

{
0 if y 6∈ [0, 1]

2y if y ∈ (0, 1)

What about the endpoints? It doesn’t matter, so for aesthetic reasons we can assign them as
fY (0) = 0 and fY (1) = 2 to get:

fY (y) =

{
0 if y 6∈ [0, 1]

2y if y ∈ [0, 1].

Next is an example closer to the spirit of derived distributions, where we don’t know the original
distribution, but we get our derived distribution in terms of our original distribution.

Example 2.6. Suppose X is a continuous random variable with PDF fX , and consider g(x) = x2,
and define Y = g(X) = X2. We compute first the CDF of Y :

FY (y) = P(Y ≤ y) =

{
0 if y < 0

P(X2 ≤ y) if y ≥ 0
=

{
0 if y < 0

P(−√y ≤ X ≤ √y) if y ≥ 0

=

{
0 if y < 0

FX(
√
y)− FX(−√y) if y ≥ 0

13



Differentiating yields:

fY (y) =
dFY
dy

(y) =

{
0 if y < 0

1
2
√
y

[
fX(
√
y) + fX(−√y)

]
if y > 0

Note: the above is valid for all y 6= 0 such that FX is differentiable at ±√y (in general, there will
be at most finitely many exceptions). For y = 0, we can set fY (0) to be anything we wish.

Monotone functions. We now consider derived distributions for a common type of function g.
In this subsection, we assume:

• g : I → R is a function, where I ⊆ R is an interval,
• X is a continuous random variable, with Range(X) ⊆ I (so g ◦X is defined),
• g is differentiable (hence also continuous).

Definition 2.7. We say that

(1) g is strictly increasing (on I) if for all x, x′ ∈ I, if x < x′ then g(x) < g(x′);
(2) g is strictly decreasing (on I) if for all x, x′ ∈ I, if x < x′ then g(x) > g(x′);
(3) g is strictly monotonic (on I) if either g is strictly increasing or g is strictly decreasing.

We make some more observations:

• If g is strictly increasing, then g′(x) ≥ 0 for all x ∈ I,
• If g is strictly decreasing, then g′(x) ≤ 0 for all x ∈ I,
• If g is strictly monotonic, then g has an inverse g−1 : g(I) → I. By Facts A.20 and A.21,

the function g−1 is also strictly monotonic (of the same type as g), continuous, and it is
differentiable at y0 = g(x0) unless g′(x0) = 0.

Monotonic Derived Distributions 2.8. Suppose g : I → R is strictly monotonic and g−1 :
g(I)→ I is differentiable everywhere (i.e., g′(x0) 6= 0 for all x0 ∈ I). Then

fY (y) =

{
fX
(
g−1(y)

) ∣∣∣dg−1

dy (y)
∣∣∣ if y ∈ g(I)

0 otherwise.

Proof. First assume g is strictly increasing. Then for y ∈ R we have

FY (y) = P
(
g(X) ≤ y

)
=


1 if y > g(I)

P
(
X ≤ g−1(y)

)
if y ∈ g(I) (because g is strictly increasing)

0 if y < g(I)

=


1 if y > g(I)

FX
(
g−1(y)

)
if y ∈ g(I)

0 if y < g(I)

Taking a derivative and applying the chain rule then yields

fY (y) =

{
0 if y 6∈ g(I)

fX
(
g−1(y)

)dg−1

dy (y) if y ∈ g(I)

Since g−1 is strictly increasing, we have |dg−1/dy| = dg−1/dy.
The case where g is strictly decreasing is similar. We instead use P(g(X) ≤ y) = P(X ≥

g−1(y)) = 1 − FX
(
g−1(y)

)
for y ∈ g(I), as well noticing that |dg−1/dy| = −dg−1/dy since g−1 is

strictly decreasing. �
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Example 2.9. Suppose X is continuous uniform on (0, 1] (virtually the same as continuous uniform
on [0, 1], except that 0 is no longer in the range), and consider g : (0, 1]→ R the function g(x) = x2.
Then g is strictly increasing, g−1(y) =

√
y for y ∈ (0, 1] = g

(
(0, 1]

)
. Furthermore, dg−1/dy =

1/2
√
y. Then for Y := X2 we have

fY (y) =

{
fX(
√
y)dg

−1

dy (y) if y ∈ (0, 1]

0 otherwise
=

{
1

2
√
y if y ∈ (0, 1]

0 otherwise.

We also record a special case of a strictly monotone function – a linear function:

Linear Derived Distributions 2.10. Suppose X is a continuous random variable with PDF fX
and let Y := aX + b, where a, b ∈ R with a 6= 0. Then

fY (y) =
1

|a|
fX

(
y − b
a

)
.

Proof. Apply Monotonic Derived Distributions 2.8 to the function g : R → R defined by g(x) =
ax+ b, for all x ∈ R (so I = R, g(I) = R and the second case in the formula there disappears). In
this case, g−1(y) = (y − b)/a, and |dg−1/dy| = 1/|a|. �

Fact 2.11. Suppose X ∼ Normal(µ, σ2), and Y := aX + b with a, b ∈ R and a 6= 0. Then
Y ∼ Normal(aµ+ b, a2σ2).

Proof. Recall that

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2
.

By Linear Derived Distributions 2.10 we have

fY (y) =
1

|a|
fX

(
y − b
a

)
=

1

|a|
1√
2πσ

exp

[
−
(
y − b
a
− µ

)2

/2σ2

]

=
1√

2π|a|σ
exp

[
−(y − b− aµ)2

2a2σ2

]
,

which is the PDF for a Normal(aµ+ b, σ2) random variable. �

Example 2.12 (Normal Expectation). Suppose X ∼ Normal(µ, σ2). Then for a := 1/σ and
b := −µ/σ we have aX + b ∼ Normal(0, 1), so E[aX + b] = 0. Thus E[X] = −b/a = µ.
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3. Review of Independence

Definition 3.1. We say that two events A,B ⊆ Ω are independent if

P(A ∩B) = P(A)P(B).

The definition of independence generalizes to more than two events as follows: We say that the
events A1, . . . , An ⊆ Ω are independent if for every k = 1, . . . , n, and all 1 ≤ i1 < i2 < · · · < ik ≤
n, we have

P(Ai1 ∩Ai2 ∩ · · · ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik).

We also have a notion of independence for random variables:

Definition 3.2. We say the random variables X1, X2, . . . , Xn are independent if any of the
following equivalent conditions hold:

(1) For all x1, . . . , xn ∈ R, we have

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn).

(2) For all S1, . . . , Sn ⊆ R we have

P(X1 ∈ S1, . . . , Xn ∈ Sn) = P(X1 ∈ S1) · · ·P(Xn ∈ Sn).

Note: (2) is stronger than (1), but it is a (very nontrivial) fact that (1) implies (2) also.

Finally, we say a (possibly infinite) family {Xi}i∈I of random variables is independent if every
finite subset of random variables is independent.

We also have additional characterizations of independence in the special cases of discrete or jointly
continuous random variables:

Fact 3.3. Suppose X1, . . . , Xn are random variables.

(1) If each Xi is discrete, then X1, . . . , Xn are independent iff

pX1,...,Xn(x1, . . . , xn) = pX1(x1) · · · pXn(xn)

for every x1, . . . , xn ∈ R.
(2) If X1, . . . , Xn are jointly continuous, then X1, . . . , Xn are independent iff

fX1,...,Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn)

for every x1, . . . , xn ∈ R.

The following two facts are useful:

Fact 3.4. Suppose X1, . . . , Xn are independent and f1, . . . , fn : R → R are functions. Then
f1(X1), . . . , fn(Xn) are independent.

Proof. We will verify condition (2) in the definition of independence. Let S1, . . . , Sn ⊆ R be
arbitrary. Then

P
(
f1(X1) ∈ S1, . . . , fn(Xn) ∈ Sn

)
= P

(
X1 ∈ f−1

1 (S1), . . . , Xn ∈ f−1
n (Sn)

)
= P

(
X1 ∈ f−1

1 (S1)
)
· · ·P

(
Xn ∈ f−1

n (Sn)
)

since X1, . . . , Xn are independent

= P
(
f1(X1) ∈ S1

)
· · ·P

(
fn(Xn) ∈ Sn

)
.

Note: above we use the standard notation for the inverse image, e.g. f−1
1 (S1) := {x ∈ R : f1(x) ∈

S1}. This makes sense for any function, regardless of whether that function is invertible. �
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Fact 3.5. Suppose X1, . . . , Xn are independent such that E[Xi] is finite for each i. Then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn].

The next fact generalizes Fact 3.4. It says that any “grouping” of independent random variables
remains independent, provided you don’t use the same random variable in more than one group.
For instance, if X1, X2, X3, . . . are independent, then X1 + X2, X3 + X4, X5 + X6, . . . are also
independent.

Fact 3.6 (Grouping). Suppose {Xi,j}1≤i<∞,1≤j≤ni is an independent family of random variables,
where ni ≥ 1 for each i. Furthermore, suppose we have function fi : Rni → R for each i. Then the
family

f1(X1,1, . . . , X1,n1), f2(X2,1, . . . , X2,n2), f3(X3,1, . . . , X3,n3), . . .

is also independent.

17



4. Multiple Random Variables and Convolutions

We can also use our two-step process for derived distributions of functions of multiple random
variables. Usually we are assuming the multiple random variables are independent, in order to
reduce a joint CDF to a product of single-variable CDFs.

Example 4.1. A group of n archers are shooting at a target. For each archer, the distance of the
shot from the center is uniformly distributed from 0 to 1. Let Z be the distance of the furthest
shot away (the worst shot). What is the PDF of Z?

Let X1, . . . , Xn ∼ Uniform(0, 1) be the shots of the n archers, so Z = max{X1, . . . , Xn}. We
assume that these random variables are independent. We first will compute the CDF FZ of Z.
Clearly FZ(z) = 0 if z < 0 and FZ(z) = 1 if z > 1. Otherwise, assume z ∈ [0, 1]. Then

P(Z ≤ z) = P
(

max{X1, . . . , Xn} ≤ z
)

= P(X1 ≤ z, · · · , Xn ≤ z)
= P(X1 ≤ z) · · ·P(Xn ≤ z) = zn,

using independence in the third step. Finally, we take a derivative to compute the PDF of Z:

fZ(z) =
dFZ
dz

(z) =

{
nzn−1 if z ∈ [0, 1]

0 otherwise.

This PDF suggests that the more archers there are, then it’s more likely that the worst shot will
be closer to distance 1 away from the center.

Example 4.2. Suppose X,Y ∼ Uniform(0, 1) (continuous) are independent and define Z := X/Y .
What is the PDF of Z?

We first compute the CDF of Z. Clearly if z < 0, then FZ(z) = P(X/Y ≤ z) = 0 since Z only
takes nonnegative values. Also, if z = 0, then P(Z = 0) = P(X = 0) = 0, so FZ(0) = 0 as well.

Next, we assume z > 0. Recall that by independence, the joint PDF of X,Y is

fX,Y (x, y) =

{
1 if x, y ∈ [0, 1]

0 otherwise.

Thus, we have

FZ(z) = P(X/Y ≤ z) = P
(

1

z
X ≤ Y

)
= P

(
(X,Y ) ∈

{
(x, y) :

1

z
x ≤ y

})
=

∫ ∫
{(x,y):x/z≤y}

fX,Y (x, y)dxdy =

∫ ∫
{(x,y):x/z≤y}∩[0,1]2

dxdy

This last integral is really just computing the area of the region of R2 being integrated over. By
plotting the region, we see that it takes a different shape depending on whether z ≤ 1 or z > 1. If
z < 1, then

FZ(z) =

∫ 1

0

∫ zy

0
dxdy =

∫ 1

0
zydy =

z

2
,

and if z > 1, then

FZ(z) =

∫ 1

0

∫ 1

x/z
dydx =

∫ 1

0

(
1− x

z

)
dx = x− x2

2z

∣∣∣∣1
0

= 1− 1

2z
.

(Note: an easier way to do this is to plot the regions and compute the area using formulas for the
area of triangles – this is what the book does.) We summarize this as

FZ(z) =


0 if z ≤ 0
z
2 if z ∈ (0, 1]

1− 1
2z if z > 1.
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Finally, we take a derivative (and arbitrarily assign values at the points z = 0, 1) to obtain the
PDF:

fZ(z) =


0 if z < 0
1
2 if z ∈ [0, 1]
1

2z2
if z > 1.

Convolutions. In this subsection we consider sums of independent random variables. We first
look at the case of two discrete random variables. For simplicity, we will assume that our discrete
random variables here are integer-valued, i.e., that Range(X) ⊆ Z.

Definition 4.3. Let p, q : Z → R be functions. We define the convolution of p and q to be the
function p ∗ q : Z→ R defined by

(p ∗ q)(k) :=
∑
`∈Z

p(`)q(k − `)

for all k ∈ Z.

Proposition 4.4. Suppose X,Y are independent integer-valued discrete random variables. Then
for Z := X + Y we have

pZ(k) = (pX ∗ pY )(k)

for all k ∈ Z.

Proof. Let k ∈ Z be arbitrary. Then

pZ(k) = P(X + Y = k)

=
∑

{(`,m):`+m=k}

P(X = `, Y = m)

=
∑
`∈Z

P(X = `, Y = k − `)

=
∑
`∈Z

P(X = `)P(Y = k − `) by independence

=
∑
`∈Z

pX(`)pY (k − `)

= (pX ∗ pY )(k). �

Definition 4.5. Let g, h : R → R be functions. We define the convolution of g and h to be the
function g ∗ h : R→ R defined by

(g ∗ h)(z) :=

∫ ∞
−∞

g(x)h(z − x)dx.

Assuming the functions involved are sufficiently nice (continuous, differentiable, etc.), then we have:

Proposition 4.6. Let X,Y be independent, jointly continuous random variables. Then for Z :=
X + Y we have

fZ(z) = (fX ∗ fY )(z)

for all z ∈ R.
19



Proof. For z ∈ R we have

P(X + Y ≤ z) =

∫
{(x,y):x+y≤z}

fX,Y (x, y)dxdy by definition of fX,Y

=

∫ ∞
−∞

∫ z−x

−∞
fX(x)fY (y)dydx by independence

=

∫ ∞
−∞

fX(x)

[∫ z−x

−∞
fY (y)dy

]
dx

Now to recover the PDF we take a derivative:

fZ(z) =
d

dz
P(X + Y ≤ z)

=
d

dz

∫ ∞
−∞

fX(x)

[∫ z−x

−∞
fY (y)dy

]
dx

=

∫ ∞
−∞

fX(x)

[
∂

∂z

∫ z−x

−∞
fY (y)dy

]
dx(†)

=

∫ ∞
−∞

fX(x)fY (z − x)dx by 2nd Fundamental Theorem of Calculus A.24

= (fX ∗ fY )(z).

Note: in step (†) we are differentiating under the integral sign. This requires the functions involved
to be sufficiently nice - hypotheses which we are omitting. �

Here is an application involving normal random variables:

Example 4.7. Suppose X ∼ Normal(µx, σ
2
x) and Y ∼ Normal(µy, σ

2
y) are independent and let

Z := X + Y . Then

fZ(z) =

∫ ∞
−∞

1√
2πσx

exp

(
−(x− µx)2

2σ2
x

)
1√

2πσy
exp

(
−(z − x− µy)2

2σ2
y

)
dx

=
1√

2π(σ2
x + σ2

y)
exp

(
−(z − µx − µy)2

2(σ2
x + σ2

y)

)
and so Z ∼ Normal(µx + µy, σ

2
x + σ2

y).
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5. Review of Variance and Moments

The variance of a random variable X is the second most important quantity associated to X (after
the expected value).

Definition 5.1. Suppose X is a random variable. We define the variance of X to be

Var(X) := E
[
(X − E[X])2

]
.

As Var(X) ≥ 0, we define the standard deviation of X to be

σX :=
√

Var(X).

We also define, for n ≥ 0, the nth moment of X to be the number E[Xn], if it exists (we always
have E[X0] = 1).

The variance and standard deviation are both measures of how spread out the values of X are from
E[X]. Note that σX has the same units as X, whereas the units of Var(X) are the square of the
units of X.

Variance Properties 5.2. Suppose X is a random variable, and a, b ∈ R. Then

(1) (Scaling) Var(aX) = a2 Var(X).
(2) (Shifting) Var(X + b) = Var(X).
(3) (Moment Formula) Var(X) = E[X2]− E[X]2.

Proof. (1) Note that

Var(aX) = E
[
(aX − E[aX])2

]
= E

[
(aX − aE[X])2

]
by Linearity 1.12(1)

= E
[
a2(X − E[X])2

]
= a2E

[
(X − E[X])2

]
by Linearity

= a2 Var(X).

(2) Note that

Var(X + b) = E
[
(X + b− E[X + b])2

]
= E

[
(X + b− (E[X] + E[b]))2

]
by Linearity

= E
[
(X + b− (E[X] + b))2

]
by Constant Expectation 1.12(4)

= E
[
(X − E[X])2

]
= Var(X).

(3) Note that

Var(X) = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E[X2]− 2E[X]E[X] + E[X]2 by Linearity

= E[X2]− E[X]2. �

Examples 5.3. (1) (Bernoulli) If X ∼ Bernoulli(p), then we compute the second moment:

E[X2] = 02 · (1− p) + 12 · p = p

which gives us the variance:

Var(X) = E[X2]− E[X]2 = p− p2 = p(1− p).
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(2) (Poisson) Suppose X ∼ Poisson(λ). To compute the second moment, we will instead
compute the more convenient

E
[
X(X − 1)

]
=

∞∑
k=0

k(k − 1)e−λ
λk

k!

= e−λ
∞∑
k=2

λk

(k − 2)!

= e−λλ2
∞∑
k=2

λk−2

(k − 2)!

= λ2e−λ
∞∑
`=0

λ`

`!
by reindexing

= λ2e−λeλ = λ2.

Now we find the second moment to be E[X2] = E
[
X(X − 1)

]
+ E[X] = λ2 + λ, and the

variance to be Var(X) = E[X2]− E[X]2 = λ2 + λ− λ2 = λ.
(3) (Discrete Uniform) Suppose X ∼ Uniform(a, b) (discrete version). Then we calculate the

second moment:

E[X2] =
b∑

k=a

k2

b− a+ 1

=
1

b− a+ 1

b−a∑
k=0

(k + a)2

=
1

b− a+ 1

[
b−a∑
k=0

k2 + 2a
b−a∑
k=0

k +
b−a∑
k=0

a2

]

=
1

b− a+ 1

[
(b− a)(b− a+ 1)(2(b− a) + 1)

6
+

2a(b− a)(b− a+ 1)

2
+ a2(b− a+ 1)

]
by Formulas A.2 and A.3

=
(b− a)(2b− 2a+ 1)

6
+

2a(b− a)

2
+ a2

=
2a2 + 2ab− a+ 2b2 + b

6

and so the variance is

Var(X) = E[X2]− E[X]2 =
(b− a)(b− a+ 2)

12
.

(4) (Continuous Uniform) Suppose X ∼ Uniform(a, b). Then we calculate the second moment:

E[X2] =

∫ b

a

x2dx

b− a
=

x3

3(b− a)

∣∣∣∣b
a

=
b3 − a3

3(b− a)
=

a2 + ab+ b2

3

and so the variance is:

Var(X) = E[X2]− E[X]2 =
a2 + ab+ b2

3
− (a+ b)2

4
=

(b− a)2

12
.
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(5) (Exponential) Suppose X ∼ Exponential(λ). Then we compute the second moment:

E[X2] =

∫ ∞
0

x2λe−λxdx

=
[
− x2e−λx

]∞
0

+

∫ ∞
0

2xe−λxdx

using u = x2, du = 2xdx, v = −e−λx, dv = λe−λxdx

= 0 +
2

λ

∫ ∞
0

xλe−λxdx

=
2

λ
E[X] =

2

λ2
.

Now we get the variance Var(X) = E[X2]− E[X]2 = 2/λ2 − 1/λ2 = 1/λ2.
(6) (Normal) Suppose first that Y ∼ Normal(0, 1) is standard normal. We compute the variance

(which is the same as the second moment in this case):

Var(Y ) =
1√
2π

∫ ∞
−∞

x2e−x
2/2dx

=
1√
2π

[
− xe−x2/2

]∞
−∞ +

1√
2π

∫ ∞
−∞

e−x
2/2dx

using u = x, du = dx, v = −e−x2/2, dv = xe−x
2/2dx

=

∫ ∞
−∞

fY (x)dx

= 1 by normalization.

Next, suppose X ∼ Normal(µ, σ2). Then X = σY + µ for some Y ∼ Normal(0, 1) by Fact 2.11.
Thus

Var(X) = Var(σY + µ) = σ2 Var(Y ) = σ2.

Question 5.4. When the range of X is contained in the interval [a, b], what is the largest possible
value Var(X) can take?

Intuitively, we expect the variance to be maximized by a random variable which takes the value
a with probability 1/2 and takes the value b with probability 1/2. Suppose X is a Bernoulli 1/2
random variable. Then Y := (b− a)X + a is such a random variable, with variance:

Var(Y ) = (b− a)2 Var(X) =
(b− a)2

4
.

It turns out that this is the maximum possible variance for such a random variable.

Variance Bound 5.5. Suppose X is a random variable with Range(X) ⊆ [a, b]. Then

Var(X) ≤ (b− a)2

4
.

Proof. Let γ ∈ R be arbitrary and note that

E
[
(X − γ)2

]
= E[X2]− 2E[X]γ + γ2.

Calculus shows that the above expression is minimized when γ = E[X]. Thus

σ2 = E
[
(X − E[X])2

]
≤ E

[
(X − γ)2

]
,
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for every γ ∈ R. Setting γ := (a+ b)/2 yields

σ2 ≤ E

[(
X − a+ b

2

)2
]

= E
[
X2 − (a+ b)X +

a2

4
+
ab

2
+
b2

4

]
= E

[
X2 − aX − bX + ab+

(
a2

4
− ab

2
+
b2

4

)]
= E

[
(X − a)(X − b)

]
+

(b− a)2

4

≤ (b− a)2

4
because (X − a)(X − b) ≤ 0. �

Our intuition says that when Var(X) = 0, then all of the probability mass is concentrated on one
value that X can take. The next result says that after a possible translation we can detect this, in
fact, from any even moment (beyond the zeroth moment):

Proposition 5.6. Suppose E[X2n] = 0 for some n ≥ 1. Then P(X = 0) = 1.

Proof. Suppose not. Then P(X2n = 0) = P(X = 0) < 1, so P(X2n > 0) > 0 (here we use
{X2n 6= 0} = {X2n > 0}, since 2n is even). Next note that {X2n > 0} =

⋃∞
m=1{X2n ≥ 1/m}, and

this is an increasing union. Thus, by Continuity of Probability 1.2(5) we have

lim
m→∞

P
(
X2n ≥ 1

m

)
= P(X2n > 0) > 0.

Thus there is some m ≥ 1 such that P(X2n ≥ 1/m) > 0. Applying expectation to the inequality

1

m
I{X2n≥1/m} ≤ X2n

then yields:

E[X2n] ≥ E
[

1

m
I{X2n≥1/m}

]
by Monotonicity 1.12(2)

=
1

m
P
(
X2n ≥ 1

m

)
> 0,

a contradiction. �

The following tells us how to interpret a statement like “P(X = 0) = 1”:

Dogma 5.7. Suppose X,Y are two random variables that are almost equal in the sense that

P(X = Y ) = 1.

Then from the point of view of probability theory (computing probabilities, expectations, etc.), we
may assume that X = Y .
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6. Covariance and Correlation

This section considers the relationship between two random variables.

Definition 6.1. Suppose X,Y are random variables. We define the covariance of X and Y to be

Cov(X,Y ) := E
[
(X − E[X])(Y − E[Y ])

]
.

We say that X and Y are uncorrelated if Cov(X,Y ) = 0.

The interpretation of the covariance is that a positive (resp. negative) covariance means that the
random variables X − E[X] and Y − E[X] will tend to have the same (resp. the opposite) sign.

Covariance Properties 6.2. Suppose X,Y, Z are random variables and a, b ∈ R. Then

(1) Cov(X,Y ) = E[XY ]− E[X]E[Y ],
(2) Cov(X,X) = Var(X),
(3) Cov(X, aY + b) = aCov(X,Y ),
(4) Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z),
(5) (Symmetry) Cov(X,Y ) = Cov(Y,X).

Note: by (5), symmetric versions of (3) are (4) also hold.

Proof. (1) We have

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
= E

[
XY −XE[Y ]− Y E[X] + E[X]E[Y ]

]
= E[XY ]− 2E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ].

(2) Note that

Cov(X,X) = E
[
(X − E[X])(X − E[X])

]
= E

[
(X − E[X])2

]
= Var(X).

(3) Note that

Cov(X, aY + b) = E
[
(X − E[X])(aY + b− E[aY + b])

]
= E

[
(X − E[X])(aY + b− aE[Y ]− b)

]
= aE

[
(X − E[X])(Y − E[Y ])

]
= aCov(X,Y ).

(4) Note that

Cov(X,Y + Z) = E
[
(X − E[X])(Y + Z − E[Y + Z])

]
= E

[
(X − E[X])

(
(Y − E[Y ]) + (Z − E[Z])

)]
= E

[
(X − E[X])(Y − E[Y ]) + (X − E[X])(Z − E[Z])

]
= E

[
(X − E[X])(Y − E[Y ])

]
+ E

[
(X − E[X])(Z − E[Z])

]
= Cov(X,Y ) + Cov(X,Z).

(5) Symmetry is clear from the definition (because multiplication of real numbers is commuta-
tive):

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
= E

[
(Y − E[Y ])(X − E[X])

]
= Cov(Y,X). �

Note that (1) says that the covariance measures the failure of “E[XY ] = E[X]E[Y ]” to hold. In
particular, if X and Y are independent, then they are uncorrelated.
We also consider the following normalized version of covariance:
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Definition 6.3. Suppose X and Y have nonzero variances. Then we define the correlation
coefficient ρ(X,Y ) of X and Y to be

ρ(X,Y ) :=
Cov(X,Y )√

Var(X) Var(Y )

To help us say more about the correlation coefficient, we need the following important and funda-
mental inequality:

Cauchy-Schwarz Inequality 6.4. Suppose X and Y are random variables. Then

E[XY ]2 ≤ E[X2]E[Y 2].

Proof. We may assume that E[Y 2] > 0, for otherwise P(Y = 0) = 1 by Proposition 5.6, and so the
inequality becomes trivial by 1.12(5). Now note that

0 ≤ E

[(
X − E[XY ]

E[Y 2]
Y

)2
]

by Monotonicity 1.12(2)

= E[X2]− 2
E[XY ]

E[Y 2]
E[XY ] +

E[XY ]2

E[Y 2]2
E[Y 2] by Linearity 1.12(1)

= E[X2]− E[XY ]2

E[Y 2]
,

which we can rewrite as E[XY ]2 ≤ E[X2]E[Y 2]. �

To motivate the following result, recall from multivariable calculus that the dot product can be
used to determine to what extent two vectors are scalar multiples of each other (i.e., pointing in
the same direction), via the formula cos θ = a · b/‖a‖‖b‖. The correlation coefficient plays an
analogous role as “cos θ” and accomplishes the same thing for random variables (with probability
= 1, of course):

Proposition 6.5. Suppose X,Y are random variables with Var(X),Var(Y ) > 0. Then

(1)
∣∣ρ(X,Y )

∣∣ ≤ 1, and
(2) ρ(X,Y ) = 1 iff there is some c ∈ R with c > 0 such that

P
(
Y − E[Y ] = c(X − E[X])

)
= 1,

(3) ρ(X,Y ) = −1 iff there is some c ∈ R with c < 0 such that

P
(
Y − E[Y ] = c(X − E[X])

)
= 1.

Proof. (1) Define X̃ := X−E[X] and Ỹ := Y −E[Y ]. Then the Cauchy-Schwarz Inequality 6.4
yields (

ρ(X,Y )
)2

=
E[X̃Ỹ ]2

E[X̃2]E[Ỹ 2]
≤ 1,

and so
∣∣ρ(X,Y )

∣∣ ≤ 1.

(2) (⇐) First suppose there is c > 0 such that P(Ỹ = cX̃) = 1. Then, assuming (by Dogma 5.7)

that Ỹ = cX̃, computing the correlation coefficient then yields:

ρ(X,Y ) =
E[X̃cX̃]√

E[X̃2]E
[
(cX̃)2

] =
c√
c2

= 1.
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(⇒) Next, suppose ρ(X,Y ) = 1. Then the calculation in the proof of the Cauchy-Schwarz
Inequality 6.4 yields

E

(X̃ − E[X̃Ỹ ]

E[Ỹ 2]
Ỹ

)2
 = E[X̃2]

(
1− ρ(X,Y )2

)
= 0,

so by Proposition 5.6, we have

P

(
X̃ =

E[X̃Ỹ ]

E[Ỹ 2]
Ỹ

)
= 1,

so

c :=
E[X̃Ỹ ]

E[Ỹ 2]
=

√
E[X̃2]

E[Ỹ 2]
ρ(X,Y ) > 0

works.
(3) This is similar to (2), except with the appropriate sign changes. �

Variances and Sums 6.6. Suppose X1, X2, . . . , Xn are random variables such that Var(Xi) <∞
for each i. Then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) +
∑

1≤i,j≤n & i 6=j
Cov(Xi, Xj)

In particular, if X1, . . . , Xn are uncorrelated, then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

Proof. For each i = 1, . . . , n, define X̃i := Xi − E[Xi]. Then

Var

(
n∑
i=1

Xi

)
= Var

(
n∑
i=1

X̃i

)
by Shifting 5.2(2)

= E

( n∑
i=1

X̃i

)2
 because E

[∑n
i=1 X̃i

]
= 0

= E

 n∑
i=1

n∑
j=1

X̃iX̃j

 by distributing

=

n∑
i=1

n∑
j=1

E[X̃iX̃j ] by Linearity 1.12(1)

=

n∑
i=1

E[X̃2
i ] +

∑
1≤i,j≤n & i 6=j

E[X̃iX̃j ] by grouping

=

n∑
i=1

Var(Xi) +
∑

1≤i,j≤n & i 6=j
Cov(Xi, Xj)

by definition of variance and covariance. �
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Example 6.7 (The Hat Problem). Suppose n people throw their hats in a box and then each picks
one hat back up at random. What is expected value and variance of number X of people that
picked their own hat?

We introduce random variables X1, . . . , Xn ∼ Bernoulli(1/n), where Xi = 1 if the ith person
selects their own hat, and Xi = 0 otherwise. Thus X = X1 + · · ·+Xn. The random variables are
definitely not independent, for instance, if X1 = · · · = Xn−1 = 1, then necessarily Xn = 1 as well.
Computing the expectation doesn’t require independence, it just uses linearity:

E[X] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] = n · 1

n
= 1.

To compute Var(X) by Variance and Sums 6.6, we need to compute the covariances, for i 6= j:

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] by Covariance Property 6.2(1)

= P(Xi = 1, Xj = 1)− 1

n2

= P(Xi = 1)P(Xj = 1|Xi = 1)− 1

n2

=
1

n

1

n− 1
− 1

n2

=
1

n2(n− 1)
.

Thus

Var(X) =
n∑
i=1

Var(Xi) +
∑

{(i,j):i 6=j}

Cov(Xi, Xj)

= n · 1

n

(
1− 1

n

)
+ n(n− 1)

1

n2(n− 1)

= 1.
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7. Conditional Expectation and Variance

In this section we revisit conditioning. In 170A we often would only condition on events A such that
P(A) > 0. Here we give a method which allows us to sometimes make sense of conditioning on events
of probability zero. The point is that there is a magical random variable, called “E[X|Y ]” that
exists. Its true definition, nature, and properties are outside the scope of this course. However,
it will be useful for us when solving problems, so we will suspend our disbelief and use it as a
black-box.

Deus Ex Machina 7.1. Suppose X and Y are random variables. Then there is a random variable
denoted E[X|Y ], called the conditional expectation of X given Y , with the following properties:

(a) E[X|Y ] takes the value E[X|Y = y] whenever Y takes the value y.
(b) The random variable E[X|Y ] has expectation E[X]:

E
[
E[X|Y ]

]
= E[X].

Some remarks are in order:

(1) Recall that for a function g : R → R, we can define g(Y ) by saying: g(Y ) takes value g(y)
whenever Y takes the value y. In this sense, E[X|Y ] is a function of Y .

(2) The value “E[X|Y = y]” need not always make sense, but often it will, and often it will
be told to you as part of the problem. In some sense, part (a) should have the caveat
“whenever you can make sense of this.”

(3) Part (b) is called the Law of Iterated Expectations.
(4) Since E[X|Y ] is a function of Y , if Y is discrete or continuous, then its expectation can be

computed using the Formulas for Expectation 1.13 (1) and (2):

E[X] = E
[
E[X|Y ]

]
=


∑
y

E[X|Y = y]pY (y) if Y is discrete∫ ∞
−∞

E[X|Y = y]fY (y)dy if Y is continuous

Thus we recover the Total Expectation Theorem.

The following example illustrates the utility of the existence and properties of E[X|Y ]:

Example 7.2. We have a stick of length ` (picture it laid out horizontally from left to right). We
break it once at a random point, chosen uniformly. Then with the piece on the left, we break it
again at a random point chosen uniformly. What is the expected length of the final piece on the
left?

We let X be the length of the final piece, and we let Y be the length of the first left piece. Thus
Y ∼ Uniform(0, `) (continuous version). We want to compute E[X]. We know E[X] = E

[
E[X|Y ]

]
,

so it suffices to determine what the random variable E[X|Y ] is. Suppose Y = y. Then E[X|Y = y]
is the expected value of the final piece if we know the first partial piece has length y. Since the
second break is uniformly distributed, we have E[X|Y = y] = y/2. Thus E[X|Y ] = Y/2, and so

E[X] = E
[
Y

2

]
=

E[Y ]

2
=

`

4
.

Recall that in 170A this same problem requires some annoying integrals (see Problem 3.21 in [1]).

Here are some facts about conditional expectation:

Fact 7.3. Suppose X,Y, Z are random variables, and g : R→ R is a function. Then

(1) E
[
Xg(Y )|Y

]
= g(Y )E[X|Y ],

(2) E
[
E[X|Y ]|Y

]
= E[X|Y ],

(3) E[X + Y |Z] = E[X|Z] + E[Y |Z].
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Idea of proof. (1) We are looking at an equality of two random variables. To prove they are
equal, we need to show that for each y ∈ R, when Y = y they are equal. When Y = y, the
left hand side takes value

E[Xg(Y )|Y = y] = E[Xg(y)|Y = y] = g(y)E[X|Y = y].

Also, when Y = y, then g(Y ) takes value g(y) and E[X|Y ] takes value E[X|Y = y], so the
right hand side takes value g(y)E[X|Y = y], which equals the left hand side.

(2) Same idea here. Assume Y = y, for y ∈ R arbitrary. Then the left hand side takes value

E
[
E[X|Y ]|Y = y

]
= E

[
E[X|Y = y]|Y = y

]
= E[X|Y = y],

since E[X|Y = y] is a constant. This is the same value that E[X|Y ] takes when Y = y, so
the two random variables are equal.

(3) Here the idea is that for y ∈ Y , the conditional expectation E[∗|Y = y] is a regular expec-
tation with the probability law P(∗|Y = y), and in particular, Linearity holds. �

Conditional expectation as an Estimator. Sometimes, we view E[X|Y ] as an estimate of X
when we know the value that Y takes. When taking this point of view, we call

X̂ := E[X|Y ]

an estimator of X given Y . We also define the estimation error

X̃ := X̂ −X.

Warning: do not confuse the estimation error X̃ here with other uses of X̃ elsewhere in the notes
(in other sections, we sometimes define “X̃ := X − E[X]”, but this is a completely different usage

of the notation “X̃”).

Proposition 7.4. The estimator and estimation error have the following properties:

(1) E[X̃|Y ] = 0,

(2) E[X̃] = 0,

(3) Cov(X̂, X̃) = 0, i.e., X̂ and X̃ are uncorrelated,

(4) Var(X) = Var(X̃) + Var(X̂).

Proof. (1) Note that

E[X̃|Y ] = E[X̂ −X|Y ] by definition of X̃

= E
[
E[X|Y ]|Y

]
− E[X|Y ] by Fact 7.3(3)

= E[X|Y ]− E[X|Y ] by Fact 7.3(2)

= 0.

(2) Note that

E[X̃] = E
[
E[X|Y ]−X

]
by definition

= E
[
E[X|Y ]

]
− E[X]

= E[X]− E[X]

= 0.
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(3) Note that

Cov(X̂, X̃) = E[X̂X̃]− E[X̂]E[X̃]

= E
[
E[X̂X̃|Y ]

]
− E[X̂] · 0

= E
[
X̂E[X̃|Y ]

]
by Fact 7.3(1)

= E[X̂ · 0] by (2)

= E[0] = 0.

(4) Finally, since X̃ and X̂ are uncorrelated, we have

Var(X) = Var(X̃ − X̂) = Var(X̃) + Var(X̂)

by Variance and Sums 6.6. �

Conditional Variance. Using the “E[X|Y ]” blackbox twice, we can define a new random variable:

Var(X|Y ) := E
[
(X − E[X|Y ])2|Y

]
= E[X̃2|Y ]

called the conditional variance of X given Y . Intuitively, Var(X|Y ) is a measure of how much
uncertainty there is in X even after we know the value that Y takes.

Remark 7.5. The random variable Var(X|Y ) is also a function of Y . When Y = y, it takes the
value “Var(X|Y = y)”. Usually in practice you can just say what this is, perhaps because you
know exactly what X is under the assumption Y = y.

Law of Total Variance 7.6. Given X and Y , we have

Var(X) = E
[

Var(X|Y )
]

+ Var
(
E[X|Y ]

)
.

The law says that the total variance of X is equal to the average uncertainty in X once Y is
known (the quantity E

[
Var(X|Y )

]
) plus the uncertainty in X caused by the uncertainty in Y (the

quantity Var
(
E[X|Y ]

)
).

Proof. Since E[X̃] = 0, we have

Var(X̃) = E[X̃2] = E
[
E[X̃2|Y ]

]
= E

[
Var(X|Y )

]
.

Thus we have

Var(X) = Var(X̃) + Var(X̂) by Proposition 7.4(4)

= E
[

Var(X|Y )
]

+ Var
(
E[X|Y ]

)
. �

Example 7.7. Returning to the stick-breaking example, since X is uniformly distributed between
0 and Y , we have

Var(X|Y ) =
Y 2

12
.

Thus

E
[

Var(X|Y )
]

=
1

12

∫ `

0

1

`
y2dy =

`2

36

and since E[X|Y ] = Y/2 from before, we have

Var
(
E[X|Y ]

)
= Var(Y/2) =

1

4
Var(Y ) =

`2

48
.

The Law of Total Variance gives us

Var(X) = E
[

Var(X|Y )
]

+ Var
(
E[X|Y ]

)
=

7`2

144
.
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8. Transforms

Definition 8.1. Given a random variable X, the transform (or moment generating function
(MGF)) of X is a function MX : R→ [0,∞] defined by

MX(s) := E
[
esX
]

for all s ∈ R.

The following observations are immediate:

(1) We always have MX(0) = E[e0X ] = 1, regardless of what X is.
(2) Given s ∈ R, we have esX ≥ 0, so MX(s) = E[esX ] exists, although we might have MX(s) =
∞.

(3) If X is discrete with PMF pX(x), then

MX(s) =
∑
x

esxpX(x).

(4) If X is continuous with PDF fX(x), then

MX(s) =

∫ ∞
−∞

esxfX(x)dx.

Here are some examples which follow directly from the definition:

Examples 8.2. (1) (Bernoulli) Suppose X ∼ Bernoulli(p). Then

MX(s) = es0pX(0) + es1pX(1) = (1− p) + pes.

(2) (Poisson) Suppose X ∼ Poisson(λ). Then

MX(s) =
∞∑
k=0

esk
λke−λ

k!
= e−λ

∞∑
k=0

(esλ)k

k!
= e−λeλe

s
= eλ(es−1).

(3) (Discrete Uniform) Suppose X ∼ Uniform(a, b), the discrete version. Then

MX(s) =

b∑
k=a

esk

b− a+ 1

=
1

b− a+ 1

b−a∑
k=0

es(k+a) by reindexing

=
esa

b− a+ 1

b−a∑
k=0

(es)k

=
esa

b− a+ 1
· e

s(b−a+1) − 1

es − 1
by Geometric Sum A.4.

(4) (Continuous Uniform) Suppose X ∼ Uniform(a, b), the continuous version. Then

MX(s) =

∫ b

a

esx

b− a
dx =

esx

s(b− a)

∣∣∣∣b
a

=
esb − esa

s(b− a)
.

(5) (Exponential) Suppose X ∼ Exponential(λ). Then we have

MX(s) =

∫ ∞
0

esxλe−λxdx.
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First note that if s = λ, then the integrand simplifies to λ and so MX(λ) =∞. Now assume
that s 6= λ. Then

MX(s) = λ

∫ ∞
0

e(s−λ)xdx = λ
e(s−λ)x

s− λ

∣∣∣∣∞
0

=

{
∞ if s > λ
λ
λ−s if s < λ.

Fact 8.3. Suppose X is a random variable and a, b ∈ R. Then with Y := aX + b we have

MY (s) = esbMX(sa).

Proof. Note that

MY (s) = E[es(aX+b)] = esbE[esaX ] = esbMX(sa). �

Example 8.4 (Normal MGF). First, suppose X ∼ Normal(0, 1). We compute the MGF for X:

MX(s) =

∫ ∞
−∞

esx
1√
2π
e−x

2/2dx

=
1√
2π

∫ ∞
−∞

e−x
2/2+sxdx

=
es

2/2

√
2π

∫ ∞
−∞

e−x
2/2+sx−s2/2dx by completing the square

=
es

2/2

√
2π

∫ ∞
−∞

e−(x−s)2/2dx

= es
2/2 using (1/

√
2π)

∫ ∞
−∞

e−(x−s)2/2dx = 1

Next, suppose X ∼ Normal(µ, σ2). Then X = σY + µ for some Y ∼ Normal(0, 1). Then

MX(s) = esµMY (sσ) = eσ
2s2/2+µs.

Fact 8.5. Suppose X1, . . . , Xn are independent random variables and set Z := X1 + · · ·+Xn. Then

MZ(s) = MX1(s) · · ·MXn(s).

Proof. Note that

MZ(s) = E[esZ ] = E[es(X1+···+Xn)] = E[esX1 · · · esXn ]

= E[esX1 ] · · ·E[esXn ] = MX1(s) · · ·MXn(s)

using Facts 3.4 and 3.5 in the fourth step. �

The next result explains the meaning of moment generating function:

Proposition 8.6. Let X be a random variable such that MX(s) <∞ for |s| < s0, for some s0 > 0.
Then E[Xn] is finite for all n and for |s| < s0 we have

MX(s) =

∞∑
n=0

E[Xn]
sn

n!

In particular, then nth moment can be computed by taking the nth derivative of MX and evaluating
at s = 0:

E[Xn] =
dn

dsn
MX

∣∣∣∣
s=0
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Proof sketch. The idea of the proof is the following computation:

MX(s) = E[esX ] = E

[ ∞∑
k=0

(sX)k

k!

]
=(†)

∞∑
k=0

skE[Xk]

k!
.

All of the subtlety is in the step (†) where we exchange an infinite sum and an expectation. This
requires the famous Dominated Convergence Theorem from measure-theoretic analysis to fully
justify. �

Example 8.7 (Geometric). Suppose X ∼ Geometric(p). Then

MX(s) = E[esX ]

=
∞∑
k=1

eskp(1− p)k−1

= pes
∞∑
k=0

(
es(1− p)

)k
by reindexing

=
pes

1− (1− p)es
by Geometric Series A.18

the appeal to the geometric series formula is only valid when |es(1−p)| < 1. This is precisely when
s < − ln(1− p), otherwise the series diverges. To summarize:

MX(s) =

{
pes

1−(1−p)es if s < − ln(1− p)
∞ otherwise.

This also enables us to compute the expected value and variance for the Geometric random variable:

E[X] =
d

ds
MX

∣∣∣∣
s=0

=
pes(

(p− 1)es + 1
)2 ∣∣∣∣

s=0

=
1

p

E[X2] =
d2

ds2
MX

∣∣∣∣
s=0

= −
pes
(
(p− 1)es − 1

)(
(p− 1)es + 1

)3 ∣∣∣∣
s=0

=
2− p
p2

Var(X) = E[X2]− E[X]2

=
2− p
p2
− 1

p2

=
1− p
p2

.

To motivate the following result, consider the following easy example:
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Example 8.8. Consider a discrete random variable X with PMF

pX(k) =


1
2 if k = 2
1
4 if k = 5
1
4 if k = 6

0 otherwise.

Then the MGF is

MX(s) =
1

2
e2s +

1

4
e5s +

1

4
e6s.

Next, suppose someone came along and presented you with just the above MGF MX(s) and asked
you to guess what the distribution of X is. By observing that MX(s) is a linear combination
of e2s, e5s and e6s with coefficients 1/2, 1/4, 1/4, it would be pretty natural to guess that X is a
discrete random variable with the above pX as its PMF. In other words, there is a good chance we
can reverse-engineer the distribution of X from its MGF!

The next result says that in general this is the case, under some mild assumptions. I.e., that the
distribution of a random variable is recoverable from knowing its MGF. Of course, in general the
process of recovering the distribution from the MGF is very difficult (it involves complex analysis)
unless the random variable is discrete with finite range (like the example above). For our class, it
suffices to know that it can be done:

Inversion Property 8.9. Suppose X and Y are random variables with the same MGF, i.e.,
MX = MY . Furthermore, suppose there is some a > 0 such that |MX(s)| < ∞ for all s ∈ [−a, a].
Then FX = FY , i.e., X and Y have the same CDF.

The proof uses complex analysis and is definitely outside the scope of the course. The Inversion
Property gives us a sneaky way of determining the distribution of certain random variables:

Example 8.10. Suppose X ∼ Normal(µx, σ
2
x) and Y ∼ Normal(µy, σ

2
y) are independent and define

Z := X + Y . Then

MZ(s) = MX(s)MY (s) = exp

(
σ2
xs

2

2
+ µxs

)
exp

(
σ2
ys

2

2
+ µys

)

exp

(
(σ2
x + σ2

y)s
2

2
+ (µx + µy)s

)
.

By the Inversion Property 8.9, we conclude that Z ∼ Normal(µx + µy, σ
2
x + σ2

y).
How exactly is the Inversion Property being used here? Suppose you are unconvinced that

Z has the normal distribution that we claim it does. Take some known normal random variable
W ∼ Normal(µx+µy, σ

2
x+σ2

y) and compute its MGF. We would get MW = MZ , so by the Inversion
Property, FW = FZ , i.e., Z has the CDF of a normal random variable, so it must be a normal
random variable (with the stated parameters).
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9. Sum of Random Number of Independent Random Variables

This section considers the following setup:

(1) N is a nonnegative integer-valued random variable,
(2) X1, X2, X3, . . . is a sequence of identically-distributed random variables, i.e., they all have

the same CDF, let E[X], Var(X) and MX denote the common mean, variance and MGF of
the Xi’s,

(3) The infinite collection N,X1, X2, X3, . . . of random variables is independent,
(4) With these random variables, we define

Y := X1 + · · ·+XN =
∞∑
i=1

XiI{N≥i}

We will study the random variable Y , in terms of N and the Xi’s. One interpretation of Y is as
follows: suppose you go shopping on a particular day and decide to visit N stores. The random
variable Xi denotes how much you would spend at the ith store if you were to shop there. The
random variable Y is then the total amount you spend on shopping that day. Note that in general
Y might not be a discrete or continuous random variable, except in some special cases.

The expected value of Y is exactly what you might guess it is:

Wald’s Equation 9.1. E[Y ] = E[N ]E[X]

Proof. Let n ≥ 1. Note that

E[Y |N = n] = E[X1 + · · ·+XN |N = n]

= E[X1 + · · ·+Xn|N = n]

= E[X1 + · · ·+Xn]

because X1 + · · ·+Xn is independent from {N = n}
= nE[X].

The previous calculation shows that E[Y |N ] = NE[X]. Thus

E[Y ] = E
[
E[Y |N ]

]
= E[NE[X]] = E[N ]E[X]. �

Proposition 9.2. Var(Y ) = E[N ] Var(X) + E[X]2 Var(N).

Proof. For n ≥ 1 we have

Var(Y |N = n) = Var(X1 + · · ·+XN |N = n)

= Var(X1 + · · ·+Xn)

= nVar(X)

and so Var(Y |N) = N Var(X), as random variables. Now we use the Law of Total Variance 7.6:

Var(Y ) = E
[

Var(Y |N)
]

+ Var
(
E[Y |N ]

)
= E[N Var(X)] + Var(NE[X])

= E[N ] Var(X) + E[X]2 Var(N). �

Proposition 9.3. The MGF of Y is given by

MY (s) = MN

(
logMX(s)

)
.

Note: here log x = lnx denotes the so-called natural logarithm (base e).
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Proof. We will first describe the random variable E[esY |N ]. Let n ≥ 1. Then

E[esY |N = n] = E[esX1 · · · esXN |N = n]

= E[esX1 · · · esXn |N = n]

= E[esX1 · · · esXn ] since N is independent from X1, X2, X3, . . .

= E[esX1 ] · · ·E[esXn ] since X1, X2, X3, . . . are independent

= MX(s)n since all Xi’s have the same MGF.

Thus E[esY |N ] = MX(s)N . Now we compute

MY (s) = E[esY ]

= E
[
E[esY |N ]

]
by Law of Iterated Expectations

= E
[
MX(s)N

]
=

∞∑
n=0

MX(s)npN (n) by Formula 1.13(1)

=

∞∑
n=0

en logMX(s)pN (n) since xn = en log x

= MN (logMX(s)).

The last equality follows from observing that MN (s) =
∑∞

n=0 e
nspN (n), and substituting logMX(s)

in for s. �

Example 9.4 (Sum of geometric number of exponential random variables). SupposeN ∼ Geometric(p)
and each Xi ∼ Exponential(λ). Then by Wald’s Equation 9.1:

E[Y ] = E[N ]E[X] =
1

pλ

and by Proposition 9.2 the variance is:

Var(Y ) = E[N ] Var(X) + E[X]2 Var(N) =
1

pλ2
+

1− p
λ2p2

=
1

λ2p2
.

To compute the MGF, first recall that

MX(s) =
λ

λ− s
and MN (s) =

pes

1− (1− p)es
.

By Proposition 9.3 we have

MY (s) = MN

(
logMX(s)

)
=

pelogMX(s)

1− (1− p)elogMX(s)

=
pMX(s)

1− (1− p)MX(s)

=

pλ
λ−s

1− (1−p)λ
λ−s

=
pλ

pλ− s
.
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Note thatMY (s) is the MGF of an Exponential(pλ) random variable. By the Inversion Property 8.9,
it follows that Y ∼ Exponential(pλ). This also verifies our above calculations for E[Y ] and Var(Y ).

Example 9.5 (Sum of geometric number of geometric random variables). SupposeN ∼ Geometric(p)
and each Xi ∼ Geometric(q). To compute the MGF of Y , first recall that

MN (s) =
pes

1− (1− p)es
and MX(s) =

qes

1− (1− q)es
.

Next, by Proposition 9.3, we have

MY (s) = MN

(
logMX(s)

)
=

pMX(s)

1− (1− p)MX(s)

=
pqes

1− (1− pq)es
(many algebraic steps omitted)

so by the Inversion Property 8.9, we get that Y ∼ Geometric(pq).
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10. Markov’s and Chebyshev’s Inequalities

Markov’s inequality. The following inequality is basic, but important:

Markov’s Inequality 10.1. Suppose X is a nonnegative random variable and a > 0. Then

P(X ≥ a) ≤ E[X]

a
.

Proof. For the event {X ≥ a}, consider the indicator random variable I{X≥a} given by

I{X≥a}(ω) =

{
1 if X(ω) ≥ a
0 if X(ω) < a

for all ω ∈ Ω. By definition, this gives rise to the following inequality of random variables:

aI{X≥a} ≤ X

Now we compute

E[X] ≥ E[aI{X≥a}] by Monotonicity 1.12(2)

= aE[I{X≥a}] by Linearity 1.12(1)

= aP(X ≥ a) by Indicator Expectation 1.12(3).

We finish by dividing both sides by a > 0 to get

P(X ≥ a) ≤ E[X]

a
. �

Markov’s inequality is an upper tail estimate, it gives an upper bound for how small an upper tail
of a distribution can be. Note that it only applies to nonnegative random variables. Markov’s
inequality essentially asserts:

“X = O(E[X])” is true with high probability

Chebyshev’s inequality. In the next inequality, the random variable does not need to be non-
negative:

Chebyshev’s Inequality 10.2. Suppose X is a random variable and c > 0. Then

P
(∣∣X − E[X]

∣∣ ≥ c) ≤ Var(X)

c2
.

Proof. First note that the random variable
(
X −E[X]

)2
is nonnegative, so we can apply Markov’s

Inequality 10.1 with the constant a := c2 > 0 to get:

P
(
(X − E[X])2 ≥ c2) ≤

E
[
(X − E[X])2

]
c2

=
Var(X)

c2

Next, note that the following two events are the same:{
(X − E[X])2 ≥ c2

}
=
{
|X − E[X]| ≥ c

}
,

and so they have the same probability:

P
(
(X − E[X])2 ≥ c2) = P

(∣∣X − E[X]
∣∣ ≥ c).

Chebyshev’s inequality follows from combining these two observations. �

Chebyshev’s inequality is a two-sided tail estimate. It is a little stronger than Markov’s inequality
since it takes into account both the first and second moments. It essentially says:

“X = E[X] +O(Var(X)1/2)” is true with high probability.
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Example 10.3. Each week the number of cars produced by a factory is a random variable X with
mean 50.

(1) What can we say about P (X > 75)? By Markov’s inequality

P(X > 75) ≤ E[X]

75
=

50

75
=

2

3
.

(2) Suppose Var(X) = 25. What can we say about P(40 < X < 60)? Note that by Chebyshev’s
inequality we have

P(|X − 50| ≥ 10) ≤ Var(X)

102
=

1

4
and so

P(|X − 50| < 10) ≥ 1− 1

4
=

3

4
.

We also have a version of Chebyshev’s inequality we can use for bounded random variables when
we do not know the variance:

Corollary 10.4. Suppose X is a random variable with Range(X) ⊆ [a, b]. Then for c > 0,

P
(∣∣X − E[X]

∣∣ ≥ c) ≤ (b− a)2

4c2
.

Proof. This follows from Chebyshev’s inequality and the Variance Bound 5.5:

Var(X) ≤ (b− a)2/4. �
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11. Convergence in Probability

In calculus, we often consider convergence of sequences of real numbers limn→∞ an = a; see Def-
inition A.7. Since sequences of real numbers are relatively simple (much simpler than sequences
of random variables), there is only one notion of limit which makes sense for a sequence of real
numbers (which is the definition we use).

In probability, we wish to consider instead a sequence of random variables X1, X2, X3, . . .. As
random variables are more complicated than individual real numbers, we consider not one, but
three notions of convergence. The first is convergence in probability :

Definition 11.1. We say that a sequence X1, X2, X3, . . . converges in probability to a random

variable X (notation: Xn
p−→ X) if

for all ε > 0, lim
n→∞

P
(
|Xn −X| ≥ ε

)
= 0.

Special case: if X = a is a constant, then X1, X2, X3, . . . converges in probability to a if

for all ε > 0, lim
n→∞

P
(
|Xn − a| ≥ ε

)
= 0.

Remark 11.2. (1) We think of convergence in probability as follows: for every level of accu-
racy ε, eventually we have |Xn −X| < ε with higher and higher degrees of confidence.

(2) Convergence in probability is a weak form of convergence. For instance, if Xn
p−→ X, then

there is no guarantee that Xn(ω)→ X(ω) for any ω ∈ Ω (in fact, this could be false for all
ω ∈ Ω; e.g., see Example 14.6).

Example 11.3 (Sanity check). Suppose X is a random variable, and we define a sequence of
random variables X1, X2, X3, . . . such that Xn := X for each n (so all random variables are literally

the same random variable). Then we have Xn
p−→ X.

Indeed, suppose ε > 0 is arbitrary. Then |Xn−X| = 0 for all n, so P
(
|Xn−X| ≥ ε

)
= 0 for each

n. In particular, limn→∞ P
(
|Xn −X| ≥ ε

)
= 0. Thus Xn

p−→ X.

Example 11.4. Suppose X1, X2, X3, . . . are independent with Xi ∼ Uniform(0, 1) (continuous ver-
sion). Define Yn := min{X1, . . . , Xn}. Intuitively, we expect that in general, Yn will get arbitrarily
close to 0 with higher and higher degrees of certainty. This is because, by independence, we expect
that occasionally a new lowest value will emerge from an Xn, causing a drop in Yn, and we have
no reason to think this won’t continue all the way down to zero.

Formally, we will show that Yn
p−→ 0. Let ε > 0 be arbitrary. By possibly decreasing ε, we may

also assume that ε < 1. Then

P
(
|Yn − 0| ≥ ε

)
= P(X1 ≥ ε, . . . ,Xn ≥ ε)
= P(X1 ≥ ε) · · ·P(Xn ≥ ε) by independence

= (1− ε)n

and so

lim
n→∞

P
(
|Yn − 0| ≥ ε

)
= lim

n→∞
(1− ε)n = 0

by the Squeeze Lemma A.11 and Example A.12.

Example 11.5. Let Y ∼ Exponential(λ) and define Yn := Y/n for each n. We think of Y as the
time when a certain lightbulb with parameter λ might burn out. Given an outcome ω, Y (ω) will

be some fixed number, so Y (ω)/n→ 0 as n→∞, so might expect that in general Yn
p−→ 0.
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We will show that Yn
p−→ 0. Let ε > 0. Then

P
(
|Yn − 0| ≥ ε

)
= P(Yn ≥ ε)
= P(Y ≥ nε)

= e−λnε.

Thus
lim
n→∞

P
(
|Yn − 0| ≥ ε

)
= lim

n→∞
e−λnε = 0

and so Yn
p−→ 0.

The next reassuring proposition asserts that if a sequence of random variables converges in prob-
ability to some random variable, then this limit is unique (or rather, uniquely determined up to a
set of probability 0, which is as much as we can hope for in this setting).

Proposition 11.6. Suppose X1, X2, X3, . . . is a sequence of random variables and X,Y are random
variables such that

Xn
p−→ X and Xn

p−→ Y.

Then P(X = Y ) = 1.

Proof. By the Triangle Inequality A.1, for n ≥ 1 we have

|X − Y | =
∣∣(X −Xn) + (Xn − Y )

∣∣ ≤ |X −Xn|+ |Y −Xn|.
Thus for each n ≥ 1 and each ε,{

ω : |X(ω)− Y (ω)| ≥ ε
}
⊆
{
ω : |X(ω)−Xn(ω)| ≥ ε/2

}
∪
{
ω : |Y (ω)−Xn(ω)| ≥ ε/2

}
i.e., if |X − Y | ≥ ε, then one of |X −Xn| or |Y −Xn| must be ≥ ε/2. Taking probabilities (and a
mild appeal to Countable Subadditivity 1.2(4)) yields

P
(
|X − Y | ≥ ε

)
≤ P

(
|X −Xn| ≥ ε/2

)︸ ︷︷ ︸
→0

+P
(
|Y −Xn| ≥ ε/2

)︸ ︷︷ ︸
→0

However, since Xn
p−→ X and Xn

p−→ Y , the righthand side goes to 0, so P
(
|X − Y | ≥ ε

)
= 0.

Thus P
(
|X − Y | ≥ ε

)
= 0 for all ε > 0, or rather, P

(
|X − Y | < ε

)
= 1 for all ε > 0. Next, note

that {X = Y } =
⋂∞
n=1{|X − Y | < 1/n}, and this is a decreasing intersection. Thus, by Continuity

of Probability:
1 = lim

n→∞
P
(
|X − Y | < 1/n

)
= P

(
X = Y

)
. �

We also have the following counterexample which shows that Xn
p−→ X does not necessarily imply

E[Xn]→ E[X] (as a convergence of a sequence of real numbers):

Example 11.7. Define the sequence Y1, Y2, Y3, . . . of discrete random variables according to:

pYn(k) =


1− 1

n if k = 0,
1
n if k = n2,

0 otherwise.

Then for each ε > 0, we have

lim
n→∞

P
(
|Yn − 0| ≥ ε

)
= lim

n→∞

1

n
= 0

so Yn
p−→ 0, however, E[Yn] = n2/n = n, so E[Yn]→ +∞ 6= 0 as n→∞.

The above example illustrates, among other things, that convergence in probability is a subtle
concept and care must be taken when dealing with it.
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12. The Weak Law of Large Numbers

This section considers the following setup:

(1) X1, X2, X3, . . . is a sequence of independent identically distributed random variables with
common mean µ and variance σ2

(2) For each n ≥ 1 we define the sample mean (or partial average):

Mn :=
X1 + · · ·+Xn

n

The weak law of large numbers states that the sequence of sample meansMn converges in probability
to the common mean µ.

Weak Law of Large Numbers 12.1. Let X1, X2, X3, . . . be independent identically distributed
random variables with common mean µ. The law states:

For each ε > 0: lim
n→∞

P
(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε) = 0,

i.e., Mn
p−→ µ.

Proof (finite variance case). We will only give a proof under the following additional assumption8:

• Assume σ2 = Var(X1) is finite, i.e., 0 ≤ σ2 <∞ (as opposed to σ2 =∞).

Then we compute expected value:

E[Mn] = E
[
X1 + · · ·+Xn

n

]
=

E[X1] + · · ·+ E[Xn]

n
by Linearity 1.12(1)

=
nµ

n
because µ is the common mean

= µ,

and variance:

Var(Mn) = Var

(
X1 + · · ·+Xn

n

)
=

Var(X1 + · · ·+Xn)

n2
by scaling 5.2(1)

=
Var(X1) + · · ·+ Var(Xn)

n2
by independence and 6.6

=
nσ2

n2
because σ2 is common variance

=
σ2

n
.

Now let ε > 0. By Chebyshev’s inequality 10.2 we have

P
(
|Mn − µ| ≥ ε

)
≤ Var(Mn)

ε2
=

σ2

nε2
.

8For the “finite variance” version, the proof shows we can actually weaken the hypotheses to Suppose X1, X2, X3, . . .
are uncorrelated with common mean µ and there is a number v > 0 such that 0 ≤ Var(Xn) ≤ v < ∞ for each n.
However, most of the time the sequence of interest will be independent identically distributed so for simplicity we
will stick to the hypotheses which are required for the general version.
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Since σ2 and ε2 do not depend on n, we have

lim
n→∞

σ2

nε2
= 0

and so it follows from the Squeeze Lemma A.11 that

lim
n→∞

P
(
|Mn − µ| ≥ ε

)
= 0,

as desired. �

Here are some remarks on the interpretation of the Weak Law of Large Numbers:

Remark 12.2. (1) The weak law states that for large n, most of the distribution of Mn is
concentrated near µ.

(2) I.e., given an interval [µ− ε, µ+ ε], the larger n is, the more confident we are that Mn is in
this interval. Of course, the smaller ε is, the larger n must be in order to achieve the same
degree of confidence.

Example 12.3 (Monte Carlo). Suppose f : [0, 1]→ R is a continuous function. Let X1, X2, X3, . . .
be a sequence of independent and identically distributed Uniform(0, 1) (continuous) random vari-
ables. We claim that

1

n

n∑
i=1

f(Xi)
p−→
∫ 1

0
f(x)dx.

To see this, we apply the Weak Law of Large Numbers to the sequence f(X1), f(X2), f(X3), . . .,
which are independent and identically distributed. Note that the common mean is

µ = E
[
f(X1)

]
=

∫ 1

0
f(x)dx

and the sample mean is

Mn =
1

n

n∑
i=1

f(Xi).

Thus, the Weak Law of Large Numbers implies that Mn
p−→ µ, which is exactly what we want.

This gives a practical way of approximating the integral
∫ 1

0 f(x)dx. The idea is that using a
computer, you’ll have some method of simulating a sequence X1, X2, X3, . . . as above (for instance,
with some random number generator), so given a fixed accuracy ε > 0, then for very large n you

will be very confident that the value of Mn is within ε of the unknown value
∫ 1

0 f(x)dx.

Here is a fun non-probability application of the Weak Law of Large Numbers:

Example 12.4 (A high-dimensional cube is almost the boundary of a ball). Let X1, X2, X3, . . . be
a sequence of independent identically distributed Uniform(−1, 1) (continuous) random variables.

• The vector (X1, . . . , Xn) can be thought of as a typical point in the hypercube [−1, 1]n in
Rn.
• The quantity ‖(X1, . . . , Xn)‖ := (X2

1 + · · ·+X2
n)1/2 is the magnitude (distance from origin)

of that point
• E[X2

i ] = Var(Xi) = 1/3 for each i
• The Weak Law of Large Numbers applied to the sequence X2

1 , X
2
2 , X

2
3 , . . . implies that

X2
1 + · · ·+X2

n

n

p−→ 1

3
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Now, let ε > 0, and note that for ε very small, we have ε0 := (2ε − ε2)/3 > 0. Since we have a
convergence in probability, for ε0 we have

lim
n→∞

P
(∣∣∣∣X2

1 + · · ·+X2
n

n
− 1

3

∣∣∣∣ < ε0

)
= 1.

Now note that

P
(∣∣∣∣X2

1 + · · ·+X2
n

n
− 1

3

∣∣∣∣ < ε0

)
= P

(
−2ε+ ε2

3
<
X2

1 + · · ·+X2
n

n
− 1

3
<

2ε− ε2

3

)
≤ P

(
−2ε+ ε2

3
<
X2

1 + · · ·+X2
n

n
− 1

3
<

2ε+ ε2

3

)
by increasing the right bound slightly

= P
(

1− 2ε+ ε2

3
<
X2

1 + · · ·+X2
n

n
<

1 + 2ε+ ε2

3

)
= P

(
(1− ε)2n

3
< X2

1 + · · ·+X2
n < (1 + ε)2n

3

)
= P

(
(1− ε)

√
n

3
< ‖(X1, . . . , Xn)‖ < (1 + ε)

√
n

3

)
≤ 1.

By the Squeeze Lemma (squeezed against 1), we conclude

lim
n→∞

P
(

(1− ε)
√
n

3
< ‖(X1, . . . , Xn)‖ < (1 + ε)

√
n

3

)
= 1.

The interpretation is that for large n, most of the mass of the cube [−1, 1]n is located very close to

the boundary of a ball of radius
√
n/3.

The following example is more an application of Chebyshev’s Inequality than the Weak Law of
Large Numbers, although it involves the setup of the Weak Law of Large Numbers.

Example 12.5. • We are pollsters living in a very large population. Some percentage p
of the population supports the candidate. We want to estimate p with certain degree of
accuracy and confidence.
• We can model the population as an independent sequence X1, X2, X3, . . . of Bernoulli(p)

random variables. So each person’s vote for or against the candidate is an Xi.

• By Weak Law of Large Numbers, we know that Mn
p−→ p. So for a given accuracy ε, the

more people we poll, the more confident we will be that the result of the poll will be within
ε of the true value of p.
• As in the proof of 12.1, we have that Var(Mn) = σ2/n, where σ2 = Var(Xi). However,

since we do not know either p or σ2, the best we can say by Variance Bound 5.5 is that
σ2 = Var(Xi) ≤ 1/4 and thus Var(Mn) ≤ 1/4n. Thus, for a given ε > 0:

P
(
|Mn − p| ≥ ε

)
≤ 1

4nε2

• Suppose best-practices in polling suggests that we should have 95% confidence that the
result of our poll is within .01 of the true value of p. How many people should be poll?
• In this case, ε = .01, so

P
(
|Mn − p| ≥ .01

)
≤ 1

n(.01)2

We want the probability to be bounded by 5%, i.e., we need n such that

1

4n(.01)2
≤ .05
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which yields n ≥ 50000.
• The point here is that this number 50000 seems too high of a number in practice. Later, we

will see that the Central Limit Theorem will give us a much more manageable n to achieve
the same accuracy and confidence.
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13. The Borel-Cantelli Lemma

Before we investigate almost sure convergence and the Strong Law of Large Numbers in the next
section, we need to take a small theoretical detour back to the level of events, i.e., special subsets
of Ω. Note that given any countably infinite sequence of events E1, E2, E3, . . . ⊆ Ω, the countable
union

⋃∞
n=1En and the countable intersection

⋂∞
n=1En are also events. This gets used in the

following definition:

Definition 13.1. Let A1, A2, A3, . . . ⊆ Ω be a sequence of events. We define two new events:

(1) The event where infinitely many of the An’s occur:

{ω ∈ Ω : ω ∈ An for infinitely many n} = {An i.o.} :=
∞⋂
n=1

∞⋃
k=n

Ak

where i.o. stands for infinitely often.
(2) The event where all but finitely many of the An’s occur:

{ω ∈ Ω : ω ∈ An for all but finitely many n} = {An a.a.} :=

∞⋃
n=1

∞⋂
k=n

Ak

where a.a. stands for almost always.

Note that by De Morgan’s Laws, we have the following relations:

{An i.o.}c = {Acn a.a} and {An a.a.}c = {Acn i.o.}

In particular, {An i.o.} and {An a.a.} are not complements of each other. The following important
lemma is our main tool for computing P(An i.o.):

Borel-Cantelli Lemma 13.2. Suppose A1, A2, A3, . . . ⊆ Ω is a sequence of events. Then

(1) If
∑

n P(An) <∞, then P(An i.o.) = 0.
(2) If

∑
n P(An) =∞ and {An}n≥1 are independent, then P(An i.o.) = 1.

Proof. (1) Let m ≥ 1 be arbitrary. Note that

{An i.o.} =
∞⋂
n=1

∞⋃
k=n

Ak ⊆
∞⋃
k=m

Ak

and so

P(An i.o.) ≤ P

( ∞⋃
k=m

Ak

)
by Monotonicity 1.2(3)

≤
∞∑
k=m

P(Ak) by Countable Subadditivity 1.2(4)

However, by Lemma A.19 we know that

lim
m→∞

∞∑
k=m

P(Ak) = 0.

This forces P(An i.o.) = 0.
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(2) By De Morgan’s law, we have {An i.o.}c =
⋃∞
n=1

⋂∞
k=nA

c
k. By Countable Subadditiv-

ity 1.2(4) it is sufficient to show that P(
⋂∞
k=nA

c
k) = 0 for each n ∈ N. Let m ≥ n be

arbitrary. Note that

P

( ∞⋂
k=n

Ack

)
≤ P

(
m⋂
k=n

Ack

)
by Monotonicity 1.2(3)

=
m∏
k=n

(
1− P(Ak)

)
by independence

≤
m∏
k=n

e−P(Ak) since 1− x ≤ e−x for all x ∈ R, see Inequality A.23

= exp

(
−

m∑
k=n

P(Ak)

)
which goes to 0 as m→∞ since the sum is divergent. �

Example 13.3. Suppose we toss an infinite sequence of fair coins. Let H1, H2, H3, . . . be the
sequence of independent events where Hn corresponds to the event where the nth toss is heads.
Then P(Hn) = 1/2, so

∑
n P(An) = ∞. By Borel-Cantelli, we have P(Hn i.o.) = 1, i.e., it will

almost certainly be the case that we will toss heads infinitely often. Furthermore, P(Hn a.a) =
1− P(Hc

n i.o.) = 1− 1 = 0, so it is almost impossible that we will toss only finitely many tails.

The next example is more interesting. It concerns the probability that we will encounter infinitely
many runs of heads of slowly-growing length:

Example 13.4. • Let H1, H2, H3, . . . again be a sequence of independent coin flips.
• For each n, define the event

Rn := H2n+1 ∩H2n+2 ∩ · · · ∩H2n+blog2 nc

So the nth event Rn happens when there is a run of consecutive heads from the (2n + 1)th
coin to the (2n + blog2 nc)th coin9. For n = 1, we can interpret this as either R1 = H3 or
R1 = H2 ∩H3, it doesn’t affect the event {Rn i.o.}.
• We claim the events R1, R2, R3, . . . are independent. This is because they involve different

coin flips. Indeed, we have

blog2 nc ≤ log2 n ≤ n ≤ 2n < 2n + 1

and adding 2n to both sides yields

2n + blog2 nc < 2n+1 + 1,

so the last flip in Rn is before the first flip in Rn+1.
• We also compute

P(Rn) =

(
1

2

)blog2 nc
≥
(

1

2

)log2 n+1

=
1

2n

and so
∞∑
n=1

P(Rn) ≥
∞∑
n=1

1

2n
= +∞

is divergent.

9Recall that the floor bαc of a real number α is the unique integer k such that k ≤ α < k + 1

48



• By Borel-Cantelli, we conclude that

P(Rn i.o.) = 1,

i.e., these particular runs will almost certainly happen infinitely often.
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14. The Strong Law of Large Numbers

The strong law of large numbers is just like the weak law of large numbers except that the type of
convergence is stronger. We first investigate this stronger form of convergence.

Convergence almost surely. When Xn
p−→ X, there is no guarantee that that Xn(ω) → X(ω)

for any ω ∈ Ω. For the next type of convergence, this happens almost always:

Definition 14.1. We say that a sequence X1, X2, X3, . . . converges almost surely to X (or
converges with probability 1, or converges almost everywhere) if

P
(

lim
n→∞

Xn = X
)

= 1.

We denote this as Xn
a.s.−−→ X.

Special case: if X = c is a constant, then we say that X1, X2, X3, . . . converges almost surely to
c if

P
(

lim
n→∞

Xn = c
)

= 1.

Remark 14.2. (1) Another way to read Xn
a.s.−−→ X is that it says that the event{

ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)
}

has probability 1, i.e., for almost every outcome ω ∈ Ω, the sequenceX1(ω), X2(ω), X3(ω), . . .
of real numbers converges to the number X(ω).

(2) Almost sure convergence is a stronger form of convergence than convergence in probability.
For instance, it guarantees that Xn(ω)→ X(ω) for almost all ω ∈ Ω. See Proposition 14.4.

Example 14.3. We return to the situation of Example 11.4. Let X1, X2, X3, . . . be a sequence
of independent random variables such that Xn ∼ Uniform(0, 1) (continuous version) for each n.
Define

Yn := min{X1, X2, . . . , Xn}
for each n ≥ 1. We already know that Yn

p−→ 0. What about convergence almost surely?
One thing we can do, which might seem a little contrived, is note that for each ω ∈ Ω, the

sequence Y1(ω), Y2(ω), Y3(ω), . . . is decreasing, about bounded in the interval [0, 1]. Thus, by the
Monotone Convergence Theorem A.14, the sequence

(
Yn(ω)

)
n≥1

converges, for each ω ∈ Ω. Define

the random variable Y to be this limit: Y (ω) := limn→∞ Yn(ω). Then{
ω ∈ Ω : lim

n→∞
Yn(ω) = Y (ω)

}
= Ω,

and in particular, has probability 1. Thus Yn
a.s.−−→ Y . We would like to know more about Y . Note

that for ε > 0 and n ≥ 1,

P(Y ≥ ε) = P

⋂
n≥1

{Xn ≥ ε}


≤ P(X1 ≥ ε, . . . ,Xn ≥ ε) by Monotonicity

= (1− ε)n by independence.

Thus P(Y ≥ ε) = 0 since limn→∞(1 − ε)n = 0. Since ε > 0 was arbitrary, by Continuity of

Probability this gives P(Y > 0) = 0, and so P(Y = 0) = 1. Thus Yn
a.s.−−→ 0.

Proposition 14.4. Let X1, X2, X3, . . . be a sequence of random variables. Then for any random
variable X:

if Xn
a.s.−−→ X, then Xn

p−→ X.
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Proof. Suppose Xn
a.s.−−→ X and fix ε > 0. Define the event

An := {ω ∈ Ω : there is m ≥ n such that |Xm −X| ≥ ε}
(so ω ∈ An means that |Xm(ω)−X(ω)| ≥ ε at some mth step after the nth term in the sequence).
Observe that

•
{
|Xn −X| ≥ ε

}
⊆ An

• A1, A2, A3, . . . is a decreasing sequence of events, i.e., An ⊇ An+1 for all n, and
• if ω ∈

⋂
nAn, then Xn(ω) 6→ X(ω) as n→∞. This is because Xn(ω) will be distance ≥ ε

away from X(ω) infinitely often.

In particular, we have

P

(⋂
n

An

)
≤ P

({
ω ∈ Ω : Xn(ω) 6→ X(ω)

})
by Monotonicity

= 1− P
({
ω ∈ Ω : Xn(ω)→ X(ω)

})
= 1− 1 = 0, since Xn

a.s.−−→ X.

By Continuity of Probability,

P(An)→ P

(⋂
n

An

)
= 0

and so
P
(
|Xn −X| ≥ ε

)
≤ P(An)→ 0.

Since ε > 0 was arbitrary, we conclude that Xn
p−→ X. �

We now give two examples of sequences which converge in probability but do not converge almost
surely:

Example 14.5. Let Z1, Z2, Z3, . . . be an independent sequence of random variables such that

Zn ∼ Bernoulli(1/n). Then Zn
p−→ 0. However, since

∑∞
n=1 P(Zn = 1) =

∑∞
n=1 1/n = ∞, by the

Borel-Cantelli Lemma 13.2(2) it follows that P(Zn = 1 i.o.) = 1, and so Zn does not converge to 0
almost surely. In fact, by Propositions 14.4 and 11.6, it follows that Zn does not converge almost
surely to any number or random variable.

Example 14.6. In this example, let Ω = [0, 1], and define the probability law to be P(A) :=∫ 1
0 IA(x)dx, where IA is the indicator function for A ⊆ [0, 1] (so the probability of a set A is the

“length” or “area” of that set). Consider the sequence of random variables

Z1 := I[0,1/2), Z2 := I[1/2,1], Z3 := I[0,1/4), Z4 := I[1/4,1/2)], Z5 := I[1/2,3/4),

Z6 := I[3/4,1], Z7 := I[0,1/8), Z8 := I[1/8,1/4), . . .

Then Zn
p−→ 0, but there is no ω ∈ [0, 1] for which Zn(ω) → 0, since Zn(ω) = 1 infinitely often. In

particular, Zn does not converge almost surely to any number or random variable.

The following criterion will be the means by which we show a.s. convergence in the proof of the
Strong Law of Large Numbers 14.8 below:

A.S. Convergence Criterion 14.7. Let X1, X2, X3, . . . be a sequence of random variables and
let X be any random variable. Suppose for each ε > 0, we have

∞∑
n=1

P
(
|Xn −X| ≥ ε

)
< ∞.

Then Xn
a.s.−−→ X.
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Proof. First, by the Borel-Cantelli Lemma 13.2(1), we have:

(A) for each ε > 0 we have P
(
|Xn −X| ≥ ε i.o.

)
= 0.

Next, note that

P
(

lim
n→∞

Xn = X
)

= P
(
∀ε > 0, |Xn −X| < ε a.a.

)
by Lemma A.10

= 1− P
(
∃ε > 0, |Xn −X| ≥ ε i.o.

)︸ ︷︷ ︸
=:p

by taking complement

so we must show that p = 0. Now note that (with m ranging over natural numbers)

P
(
∃m ≥ 1 : |Xn −X| ≥

1

m
i.o.
)
≤

∞∑
m=1

P
(
|Xn −X| ≥

1

m
i.o.
)

by Countable Subadditivity

= 0 by (A).

Next, note that for any ε > 0, there is an m ≥ 1 such that 1/m < ε. For this m, we have{
|Xn −X| ≥ ε i.o.

}
⊆
{
|Xn −X| ≥

1

m
i.o.
}
.

Thus

p = P
(
∃ε > 0, |Xn −X| ≥ ε i.o.

)
≤ P

(
∃m ≥ 1, |Xn −X| ≥

1

m
i.o.
)

= 0,

which yields the result. �

The strong law of large numbers. The setup for the strong law of large numbers is the same
as for the weak law of large numbers:

(1) X1, X2, X3, . . . is a sequence of independent identically distributed random variables with
common mean µ and variance σ2.

(2) For each n ≥ 1 we define the sample mean:

Mn :=
X1 + · · ·+Xn

n

The strong law is the same as the weak law, except that the conclusion involves the stronger form

of convergence (
a.s.−−→ instead of

p−→):

Strong Law of Large Numbers 14.8. Let X1, X2, X3, . . . be independent identically distributed
random variables with common mean µ. The law states:

P
(

lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1,

i.e., Mn
a.s.−−→ µ.

Proof (finite fourth moment case). By replacing each Xi with Xi − µ, we may assume that µ = 0

and we need to prove Mn
a.s.−−→ 0. We will do this under the following additional assumption:

• E[X4
i ] <∞, i.e., the common fourth moment is finite.

Note that since x2 ≤ x4 +1 for all x ∈ R, by Monotonicity of Expectation it follows that Var(Xi) =
E[X2

i ] <∞ also. For each n ≥ 1 define:

Sn := X1 + · · ·+Xn.

We will now prove the following claim:

Claim. There is K ∈ R such that E[S4
n] ≤ Kn2.
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Proof of claim. The main idea is that we will expand out S4
n and the expectation of most of the

terms will disappear. The monomials which appear in an expansion of S4
n = (X1 + · · ·+Xn)4 have

one of

• XiXjXkX`, with i, j, k, ` distinct. These monomials have expected value 0 by independence
and because E[Xi] = 0 for all i.
• XiXjX

2
k , with i, j, k distinct. These also have expected value 0.

• XiX
3
j , with i, j distinct. These also have expected value 0.

• X4
i . There are n of these and they have expectation E[X4

i ] = E[X4], the common fourth
moment.
• X2

iX
2
j , with i, j distinct. There are

(
n
2

)(
4
2

)
= 3n(n−1) many of these, and by independence

they have expectation Var(X)2, where Var(X) is the common (finite) variance.

Thus
E[S4

n] = nE[X4] + 3n(n− 1) Var(X)2

≤ n2E[X4] + 3n2 Var(X)2 =
(
E[X4] + 3 Var(X)2

)︸ ︷︷ ︸
=:K

n2. �

With K as in the claim, let ε > 0 and note that

P
(
|Mn − 0| ≥ ε

)
= P (|Sn| ≥ nε)
= P

(
S4
n ≥ n4ε4

)
≤ E[S4

n]

n4ε4
by Markov’s Inequality

≤ Kn2

n4ε4
by Claim

=
K

ε4n2
.

Thus
∞∑
n=1

P
(
|Mn − 0| ≥ ε

)
≤ K

ε4

∞∑
n=1

1

n2
=

Kπ2

6ε4
< ∞

(we only need to know that the above series is convergent, which follows from the integral test).

By A.S. Convergence Criterion 14.7 we conclude that Mn
a.s.−−→ 0. �

Remark 14.9. (1) The convergence in the Weak Law Mn
p−→ µ allows for Mn to occasionally

deviate significantly from µ (perhaps infrequently, but infinitely often).

(2) The convergence in the Strong Law Mn
a.s.−−→ µ bounds these significant deviations: for each

ε > 0, with probability 1 it will be the case that |Mn − µ| ≥ ε only finitely many times.
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15. The Central Limit Theorem

Convergence in distribution. We now arrive at our weakest type of convergence: convergence
in distribution. This is the type of convergence which occurs in the Central Limit Theorem.

Definition 15.1. We say that a sequence Z1, Z2, Z3, . . . converges in distribution to Z if

for every z ∈ R, lim
n→∞

P(Zn ≤ z) = P(Z ≤ z).

We denote this by: Zn
d−→ Z. By definition of CDF, this is the same as:

for every z ∈ R, lim
n→∞

FZn(z) = FZ(z),

i.e., the sequence of CDFs FZ1 , FZ2 , FZ3 , . . . converges pointwise to the CDF FZ .

The idea behind convergence in distribution Zn
d−→ Z is that the Zn’s tend to behave, as a random

variable, more like the random variable Z (in terms of its distribution). Unlike convergence in
probability or convergence almost surely, convergence in distribution has nothing to do with the
tendency of the sequence on particular ω’s.

Example 15.2. Suppose X and X1, X2, X3, . . . are random variables all with the same distribution.

Then all of them have the same CDF’s (by definition of having the same distribution), so Xn
d−→ X.

This is true regardless of whether they are independent or dependent.
In general, convergence in distribution does not imply convergence in probability. For instance,

suppose X1, X2, X3, . . . is a sequence of independent Bernoulli(1/2) random variables. By the
discussion above, we know that Xn converges in distribution to any Bernoulli(1/2) random variable.
However, we claim that Xn does not converge in probability to any random variable. Indeed, let
X be arbitrary. Note that

1

2
≤ P

(
|Xn −Xn+1| ≥

2

3

)
by Independence

≤ P
(
|Xn −X|+ |Xn+1 −X| ≥

2

3

)
by Triangle Inequality

≤ P
(
|Xn −X| ≥

1

3
or |Xn+1 −X| ≥

1

3

)
by Monotonicity

≤ P
(
|Xn −X| ≥

1

3

)
+ P

(
|Xn+1 −X| ≥

1

3

)
by Countable Subadditivity

which shows that it cannot be the case that limn→∞ P
(
|Xn −X| ≥ 1/3

)
= 0.

Characteristic functions: a detour. In this subsection we will give a crash course in the theory
of characteristic functions, the complex version of the transforms/MGFs considered in Section 8.
Recall that we denote by C = {a + bi : a, b ∈ R} the set of all complex numbers, where i =

√
−1.

Much of the theory is analogous, however the notion of characteristic function seems to be a bit
more robust and will be more useful to us for proving the Central Limit Theorem below. We ask
that you take on faith many of the statements presented below, as their justifications lie outside
the scope of this course.

Definition 15.3. Given a random variable X, we define its characteristic function (or Fourier
transform) to be the function φX : R→ C given by

φX(t) := E[eitX ] = E
[

cos(tX)
]

+ iE
[

sin(tX)
]
,
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for all t ∈ R. Note: one consequence of the “it” in the exponent is that |φX(t)| ≤ 1 < ∞ for all
t ∈ R. This is more desirable than the situation for transforms where “MX(s) =∞” is possible for
some s ∈ R. We also have that φX(0) = 1, just as with transforms.

Just like with transforms, the characteristic functions encode the moments of the distribution:

Moment Generating Property 15.4. Suppose X is a random variable with E
[
|X|k

]
<∞. Then

for 0 ≤ j ≤ k, φX(t) has finite jth derivative, given by

dj

dtj
φX(t) = E

[
(iX)jeitX

]
.

In particular,

dj

dtj
φX(t)

∣∣∣∣
t=0

= ijE[Xj ].

By 15.4, it follows that the mean and the second moment show up as coefficients when we take a
second-order Taylor expansion of the characteristic function:

Taylor Representation 15.5. Suppose the random variable X has finite second moment E[X2] <
∞. Then we have

φX(t) = 1 + itE[X]− t2E[X2]

2
+R(t),

where R(t) is some remainder term with the property that limt→0R(t)/t2 = 0, i.e., R(t) is “o(t2)
as t→ 0”.

The following is the characteristic function version of the Inversion Property 8.9, except that it
holds unconditionally for all random variables:

Fourier Uniqueness Theorem 15.6. Suppose X and Y are random variables. Then φX(t) =
φY (t) for all t if and only if FX = FY , i.e., if X and Y have the same distribution.

The following will be the means by which we conclude convergence in distribution in the proof
of the Central Limit Theorem. It says that convergence in distribution is equivalent to pointwise
convergence of the corresponding characteristic functions.

Lévy Continuity Theorem 15.7. Let X,X1, X2, X3, . . . be random variables with corresponding

characteristic functions φX , φX1 , φX2 , φX3 , . . .. Then Xn
d−→ X if and only if limn→∞ φXn(t) = φX(t)

for all t ∈ R.

The only explicit characteristic function we will need for the proof of the Central Limit Theorem
is the one for the standard normal random variable:

Proposition 15.8. Suppose X ∼ Normal(0, 1). Then

φX(t) = e−t
2/2

for all t ∈ R.

“Proof”. For t ∈ R we have

φX(t) = MX(it) = e(it)2/2 = e−t
2/2.

Note: the expression “MX(it)” might appear illegitimate since it is not in the domain of MX , but
the theory of complex analysis (e.g. analytic continuation) allows us to make sense of this. �
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The central limit theorem. The setup for the central limit theorem is as follows:

(1) X1, X2, X3, . . . is a sequence of independent identically distributed random variables.
(2) µ and σ2 denote the common mean and variance of the Xi’s. We also assume µ and σ2 are

finite.

The idea behind the Central Limit Theorem is the following sentiment:

For large n, the sum X1 + · · ·+Xn behaves like a (standard) normal random variable.

Of course, the above statement, taken literally, is EXTREMELY FALSE. There are two issues
with the above statement:

(1) A standard normal random variable has mean 0, whereas E[X1 + · · · + Xn] = nµ, which
could diverge to ±∞ as n→∞.

(2) A standard normal random variable has variance 1, whereas Var(X1 + · · · + Xn) = nσ2,
which also could diverge as n→∞.

To account for this, we need to replace X1 + · · · + Xn with an adjusted version which has fixed
mean 0 and variance 1, independent of n. For each n ≥ 1, define:

Zn :=
X1 + · · ·+Xn − nµ

σ
√
n

.

It is easy to see that E[Zn] = 0 and Var(Zn) = 1, for every n ≥ 1. The Central Limit Theorem
now expresses the (accurate) sentiment:

For large n, the quantity Zn behaves like a (standard) normal random variable

in the sense that Zn converges in distribution to a standard normal random variable:

Central Limit Theorem 15.9. Let X1, X2, X3, . . . be a sequence of independent identically dis-
tributed random variables with finite mean µ and variance σ2. Then for any N ∼ Normal(0, 1) we
have

Zn
d−→ N,

i.e., for every z ∈ R we have

lim
n→∞

P(Zn ≤ z) = Φ(z)

where

Zn :=
X1 + · · ·+Xn − nµ

σ
√
n

and Φ(z) :=
1√
2π

∫ z

−∞
e−x

2/2dx.

Proof. By replacing each Xi by (Xi − µ)/σ, we may assume that µ = 0 and σ = 1. For each n, let

φn(t) := φZn(t) = E
[
eit(X1+···+Xn)/

√
n
]

be the characteristic function of Zn. By the Lévy Continuity Theorem 15.7 and Proposition 15.8
it suffices to show

lim
n→∞

φn(t) = e−t
2/2
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for each t ∈ R. To do this, first define φ(t) := φ1(t) = E[eitX1 ], the common characteristic
function of all of the Xi’s. Then for fixed t ∈ R such that t 6= 0 (it is clear for t = 0) we have

φn(t) = E
[
eit(X1+···+Xn)/

√
n
]

= E[ei(t/
√
n)X1 ] · · ·E[ei(t/

√
n)Xn ] by Independence

= φ

(
t√
n

)n
=

(
1 +

it√
n
E[X1]− t2E[X2

1 ]

2n
+R

(
t√
n

))n
by Taylor Representation 15.5

=

(
1− t2

2n
+R

(
t√
n

))n
because E[X1] = 0 and E[X2

1 ] = 1

=

1 +
1

n

(
− t

2

2
+ nR

(
t√
n

))
︸ ︷︷ ︸
→ −t2/2 as n→∞


n

by Lemma A.16

→ e−t
2/2 as n→∞ by Proposition A.15. �

The Central Limit Theorem has many useful applications. This is how you use it in practice:

Practical CLT 15.10. Suppose X1, X2, X3, . . . is a sequence of independent identically distributed
random variables with common finite mean µ and variance σ2. Then with Sn := X1 + · · ·+Xn and
c ∈ R, if n is large, then

P(Sn ≤ c) ≈ Φ(z)

where

z :=
c− nµ
σ
√
n

and Φ(z) :=
1√
2π

∫ z

−∞
e−x

2/2dx.

Note: in our class, we will not care too much what “large” or “≈” really mean.

Justification. We have

P
(
Sn ≤ c

)
= P

(
Sn − nµ
σ
√
n
≤ c− nµ

σ
√
n

)
= P

(
Zn ≤ z

)
which we know → Φ(z) as n→∞. Thus when n is “large”, we can use the approximation

P(Sn ≤ c) ≈ Φ(z). �

Example 15.11 (Packages). We put 100 packages on a plane whose weights are independently
uniformly distributed between 5 and 50 pounds. What is the probability that the total weight will
be more than 3000 pounds?

We want to approximate P(S100 > 3000), where S100 = X1 + · · · + X100 and each Xi ∼
Uniform(5, 50). We need to calculate

µ =
5 + 50

2
= 27.5, and σ2 =

(50− 5)2

12
= 168.75

and our value for z:

z =
3000− 100 · 27.5√

168.75 · 100
= 1.92.
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Thus

P(S100 ≤ 3000) ≈ Φ(1.92) = 0.9726

and so

P(S100 > 3000) = 1− P(S100 ≤ 3000) ≈ 1− 0.9726 = 0.0274.

The next application does not use the Practical CLT 15.10 per se, but it does heavily rely on the
spirit of the Central Limit Theorem which says that the sum X1 + · · ·+Xn for large n acts like a
normal random variable:

Example 15.12 (Polling). We return to the polling scenario of Example 12.5. Recall that

• X1, X2, X3, . . . are independent Bernoulli(p) random variables for some unknown but fixed
p.
• Mn := (X1 + · · ·+Xn)/n is the sample mean, with E[Mn] = p and Var(Mn) ≤ 1/4n.
• By the Central Limit Theorem, X1+· · ·+Xn is approximately normal (with a large variance

and mean), so Mn = (X1+· · ·+Xn)/n is also approximately normal (with a certain variance
and mean), so finally Mn − p is approximately normal with mean 0. Thus, for any ε > 0
we have

P
(
|Mn − p| ≥ ε

)
≈ 2P(Mn − p ≥ ε)

(by symmetry, the probability mass on two tails of a normal distribution is twice the prob-
ability mass on one tail).
• We wish to put an upper bound on P

(
Mn − p ≥ ε

)
. For this, we can assume that Mn − p

has the worst possible variance, namely σ2 = 1/4n, so σ = 1/2
√
n. Also µ = E[Mn−p] = 0.

Thus, since Mn−p is approximately normal with this mean and variance, we get our upper
bound by “standardizing” (like in 170a; see Section 3.3 in [1]):

P(Mn − p ≥ ε) = 1− P(Mn − p < ε) ≤ 1− Φ

(
ε− µ
σ

)
= 1− Φ(2ε

√
n)

(the inequality comes from the fact that we are using the worst-case possible variance for
Mn − p). Thus

P
(
|Mn − p| ≥ ε

)
≤ 2− 2Φ(2ε

√
n).

• Now, suppose we want our poll to be within 1% of p (so ε = .01) and we want to be 95%
confident in our result. How large should n be? In other words, we want to find a small n
such that

P
(
|Mn − p| ≥ .01

)
≤ .05,

so it suffices to find a small n such that

2− 2Φ(2 · .01 ·
√
n) ≤ .05,

or

Φ(.02 ·
√
n) ≥ .975.

The table tells us that Φ(1.96) = .975, and so we want to find n such that .02 ·
√
n ≥ 1.96

which leads to n ≥ 9604. This is much smaller than our answer of n = 50000 we arrived at
in Example 12.5.

58



The de Moivre-Laplace Theorem. One useful application of the Central Limit Theorem is
for approximating probabilities associated with a Binomial(n, p) random variable. Suppose Sn ∼
Binomial(n, p) and 0 ≤ k ≤ ` ≤ n. Then by the definition of the PMF of Sn, we have

P(k ≤ Sn ≤ `) =
∑̀
j=k

(
n

j

)
pj(1− p)n−j .

While it’s comforting to know that we have the above exact formula, in practice when n is very large,
computing the above sum might be quite computationally expensive. Furthermore, we usually only
care about approximating probabilities like the one above. In this case, the following application
of the Central Limit Theorem is very useful:

de Moivre-Laplace Theorem 15.13. Suppose Sn ∼ Binomial(n, p) and 0 ≤ k ≤ ` ≤ n are
integers. Then

P(k ≤ Sn ≤ `) ≈ Φ

(
`+ 1

2 − np√
np(1− p)

)
− Φ

(
k − 1

2 − np√
np(1− p)

)
.

Justification. First, we need to remark on the two “1/2” terms that occur in the formula. Since Sn
is a discrete random variable which takes integer values, the following three probabilities are the
same:

• P(k ≤ Sn ≤ `)
• P(k − 1

2 ≤ Sn ≤ `+ 1
2)

• P(k − 1 < Sn < `+ 1).

We want to approximate the first probability, but since we are getting a smooth approximation,
out a general sense of balance, fairness and symmetry, it is a little better to pretend like we are
approximating the second quantity instead. This is known as the histogram correction (see
Figure 5.3 in [1]).

Now let X1, . . . , Xn be independent Bernoulli(p) random variables such that

Sn = X1 + · · ·+Xn.

With this representation, we can apply the Practical CLT 15.10. Note that

P
(
k − 1

2
≤ Sn ≤ `+

1

2

)
= P

(
k − 1

2 − np√
np(1− p)

≤ Sn − np√
np(1− p)

≤
`+ 1

2 − np√
np(1− p)

)

= P

(
Sn − np√
np(1− p)

≤
`+ 1

2 − np√
np(1− p)

)
− P

(
Sn − np√
np(1− p)

<
k − 1

2 − np√
np(1− p)

)

≈ Φ

(
`+ 1

2 − np√
np(1− p)

)
− Φ

(
k − 1

2 − np√
np(1− p)

)
(note: since we are approximating with a continuous Normal(0, 1) distribution, we don’t need to
distinguish between < versus ≤). �

Remark 15.14. (1) You can use 15.13 to approximate P(Sn ≤ `), just replace the second term
with 0.

(2) Likewise, you can approximate P(k ≤ Sn) by replacing the first term with 1.
(3) A feature of the histogram correction is that it allows us to faithfully approximate the

probability of a single value. Suppose n = 36, p = 1/2. Then

P(S36 = 19) = P(k = 19 ≤ Sn ≤ ` = 19) ≈ Φ

(
19.5− 18

3

)
− Φ

(
18.5− 18

3

)
= 0.124
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which is pretty close to the exact value of
(

36
19

)
(0.5)36 = 0.1251.
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16. The Bernoulli Process

Definition 16.1. A Bernoulli process is a sequence X1, X2, X3, . . . of random variables such
that

(1) There is p ∈ (0, 1) such that each Xi ∼ Bernoulli(p), and
(2) The entire sequence X1, X2, X3, . . . is independent.

A Bernoulli process is used to model any discrete arrival process:

Example 16.2. (1) An infinite sequence of independent coin flips is a Bernoulli process.
(2) At a customer service center, during each hour either no customers arrive, or at least one

customer arrives. This can be modeled by a Bernoulli process.
(3) A particular computer server, during each unit of time, either receives a packet of informa-

tion or doesn’t. This can be modeled by a Bernoulli process.

Remark 16.3. We think of Examples 16.2(2) and (3) above as being a little more paradigmatic of
a typical Bernoulli process than Example 16.2(1), especially in connection with the Poisson process
in Section 17 below. For this reason, given a Bernoulli process X1, X2, X3, . . ., we will think of an
occurrence of Xn = 1 as an “arrival” instead of a “success” or a “heads”. Ultimately, it makes no
difference.

In some sense, the concept of a Bernoulli process is a new way for us to package concepts we have
been studying for a while. For instance, here are some familiar random variables associated with a
Bernoulli process:

Proposition 16.4. Suppose X1, X2, X3, . . . is a Bernoulli process. Then

(1) Given n ≥ 1, define Sn := X1 +X2 + · · ·+Xn. Then Sn ∼ Binomial(n, p).
(2) Define

T := min{n ≥ 1 : Xn = 1}
Then T ∼ Geometric(p).

Proof. (1) We have Range(Sn) = {1, 2, . . . , n}. Suppose k ∈ Range(Sn). Then

pSn(k) = P(X1 + · · ·+Xn = k)

= P

 ⋃
(ε1,...,εn)∈{0,1}n

#{i:εi=1}=k

{X1 = ε1, . . . , Xn = εn}

 (disjoint union)

=
∑

(ε1,...,εn)∈{0,1}n
#{i:εi=1}=k

P(X1 = ε1, . . . , Xn = εn) by finite additivity

=
∑

(ε1,...,εn)∈{0,1}n
#{i:εi=1}=k

pX1(ε1) · · · pXn(εn) by independence

=
∑

(ε1,...,εn)∈{0,1}n
#{i:εi=1}=k

p#{i:εi=1}(1− p)#{i:εi=0} because each X` ∼ Bernoulli(p)

=
∑

(ε1,...,εn)∈{0,1}n
#{i:εi=1}=k

pk(1− p)n−k

=

(
n

k

)
pk(1− p)n−k by counting.
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We conclude that Sn ∼ Binomial(n, p).
(2) It is clear that Range(T ) = {1, 2, 3, . . .}. Suppose k ∈ Range(T ). Then

pT (k) = P(T = k)

= P(X1 = 0, . . . , Xk−1 = 0, Xk = 1)

= P(X1 = 0) · · ·P(Xk−1 = 0)P(Xk = 1) by independence

= (1− p)k−1p.

Thus T ∼ Geometric(p). �

Note: in this context, T is referred to as the time of the first arrival/success since it is the amount
of time we have to wait until we first witness Xn = 1 (up to, and including time n).

The next lemma says that we are allowed to rearrange and forget terms from a Bernoulli process
and we will still have a Bernoulli process (one which is independent from all forgotten terms):

Lemma 16.5. Suppose A ⊆ N and n1, n2, n3, . . . is a sequence of distinct natural numbers disjoint
from A. If X1, X2, X3, . . . is a Bernoulli process, then

Xn1 , Xn2 , Xn3 , . . .

is also a Bernoulli process independent from {Xk : k ∈ A}.

Proof. This is obvious from Definition 3.2, the definition of an infinite sequence of random variables
being independent. �

As a special case, we have:

Fresh-Start Property 16.6. Suppose n ∈ N is a fixed natural number and X1, X2, X3, . . . is a
Bernoulli process. Then

Xn, Xn+1, Xn+2, . . .

is also a Bernoulli process, independent from X1, . . . , Xn−1.

Like the name suggests, the fresh-start property says that if you start a Bernoulli process at some
later point in the sequence Xn, Xn+1, Xn+2, . . ., this will be a brand new Bernoulli process which
has nothing to do with “the past”, i.e., X1, . . . , Xn−1.

Now consider the following scenario: We have a Bernoulli process X1, X2, X3, . . . and we have
been watching up until (and including) times n and there has yet to be an arrival. In terms of
Proposition 16.4, we have observed T > n. How much longer do we expect to wait? i.e., what
do we think about the random variable T − n given that the event {T > n} has occurred? By
the Fresh-Start Property 16.6, since Xn+1, Xn+2, . . . is a new Bernoulli process independent of
X1, . . . , Xn, we expect the waiting time to still be a Geometric(p) random variable, regardless
of the fact that we have already observed n failures. In other words, we are not overdue for an
arrival sooner because we have already waited for time n – the universe does not owe us an arrival
any sooner than if we just started watching our Bernoulli process from the beginning. This idea is
called the memorylessness property and we can express it formally:

Memorylessness Property 16.7. Suppose T ∼ Geometric(p) for some p ∈ (0, 1). Then for all
integers n, t ≥ 1,

P(T − n = t|T > n) = (1− p)t−1p = P(T = t),

i.e., pT−n|T>n(t) = pT (t) for all t.
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Proof. Note that

P(T − n = t|T > n) =
P(T − n = t, T > n)

P(T > n)
formula for conditional probability

=
P(T = t+ n)

P(T ≥ n+ 1)

=
(1− p)t+n−1p∑∞
k=n+1(1− p)k−1p

=
(1− p)t+n−1p

(1− p)n

= (1− p)t−1p

= P(T = t). �

As an application of the memorylessness property, we have an alternative method of computing
the expectation and variance for a geometric random variable:

Proposition 16.8 (Geometric expectation and variance). Suppose T ∼ Geometric(p). Then

E[T ] =
1

p
and Var(T ) =

1− p
p2

.

Proof. First observe that

E[T |T > 1] = 1 + E[T − 1|T > 1]

= 1 +
∞∑
k=1

kpT−1|T>1(k)

= 1 +
∞∑
k=1

kpT (k) by Memorylessness Property 16.7

= 1 + E[T ] by definition of E[T ].

Next, by Total Expectation Theorem we have

E[T ] = P(T = 1)E[T |T = 1] + P(T > 1)E[T |T > 1]

= p+ (1− p)
(
1 + E[T ]

)
,

from which we can solve for E[T ]:

E[T ] =
1

p

Now for variance, first note that

E[T 2|T > 1] = E
[
(T − 1)2 + 2T − 1|T > 1

]
= 2E[T |T > 1]− 1 + E

[
(T − 1)2|T > 1

]
= 2

(
1 + E[T ]

)
− 1 +

∞∑
k=1

k2pT−1|T>1(k)

= 1 + 2E[T ] +

∞∑
k=1

k2pT (k) by Memorylessness Property 16.7

= 1 + 2E[T ] + E[T 2] by definition of E[T 2]
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so by Total Expectation Theorem we have

E[T 2] = P(T = 1)E[T 2|T = 1] + P(T > 1)E[T 2|T > 1]

= p+ (1− p)
(
1 + 2E[T ] + E[T 2]

)
from which we can solve for E[T 2]:

E[T 2] =
1 + 2(1− p)E[T ]

p
=

2

p2
− 1

p
.

We now can compute the variance:

Var(T ) = E[T 2]− E[T ]2 =
2

p2
− 1

p
− 1

p2
=

1− p
p2

. �

We now present two ways of obtaining a new Bernoulli process from two independent Bernoulli
processes. The first is called splitting, for reasons we will explain:

Splitting 16.9. Suppose X1, X2, X3, . . . is a Bernoulli process with parameter p and Y1, Y2, Y3, . . .
is a Bernoulli process with parameter q and both processes are independent (so all random variables
are independent). Then the sequence of products

X1Y1, X2Y2, X3Y3, . . .

is a Bernoulli process with parameter pq.

Proof. By the “grouping” property of independence (Fact 3.6), it is clear that the sequence

X1Y1, X2Y2, X3Y3, . . .

is independent. Next, note that for each i, Range(XiYi) ⊆ {0, 1}, so XiYi is a Bernoulli random
variable (regardless of any independence assumption). As for its parameter, since Xi and Yi actually
are independent, we have

pXiYi(1) = P(XiYi = 1) = P(Xi = 1, Yi = 1) = P(Xi = 1)P(Yi = 1) = pq,

and so XiYi ∼ Bernoulli(pq). �

We will now explain the name “splitting”. The idea is as follows. We have a main Bernoulli process
(with parameter p):

X1, X2, X3, . . .

For each arrival Xn = 1, we make a decision whether to keep this arrival. For instance, we flip a
coin Yn with parameter q. If Yn = 1, then we keep this arrival. In other words, the arrival only
counts iff Xn = 1 and Yn = 1, iff XnYn = 1. In the case of a non-arrival Xn = 0, we are still free to
flip the coin Yn, it just will have no affect on whether an arrival is registered. In other words, from
our original sequence X1, X2, X3, . . ., we split off a subsequence of arrivals to ultimately keep, and
the other arrivals we disregard. See also Figure 6.3 on [1, pg. 305].

The second method of creating a new Bernoulli process is called merging :

Merging 16.10. Suppose X1, X2, X3, . . . is a Bernoulli process with parameter p and Y1, Y2, Y3, . . .
is a Bernoulli process with parameter q and both processes are independent (so all random variables
are independent). Then the sequence of maximums

max{X1, Y1},max{X2, Y2},max{X3Y3}, . . .

is a Bernoulli process with parameter p+ q − pq.
64



Proof. The proof is the same as the proof of 16.9, except for determining the parameter for
max{Xi, Yi}. By independence we have

pmax{Xi,Yi}(0) = P
(

max{Xi, Yi} = 0
)

= P(Xi = 0, Yi = 0)

= P(Xi = 0)P(Yi = 0) = (1− p)(1− q).
Thus max{Xi, Yi} is a Bernoulli random variable with parameter

1− (1− p)(1− q) = p+ q − pq. �

To explain the name “merging”, suppose we have two separate, independent Bernoulli processes:

X1, X2, X3, . . . and Y1, Y2, Y3, . . .

We want to merge the two processes in the sense that for each n, if we have an arrival in either
process, Xn = 1 or Yn = 1, then we count this as an arrival. Otherwise, if we have no arrival in
either process, Xn = 0 and Yn = 0, then we do not register any arrival. Mathematically, we have
an arrival iff max{Xn, Yn} = 1. See also Figure 6.4 on [1, pg. 306].

The geography of a Bernoulli process. We now look at the global picture of a Bernoulli
process. First, we define some additional random variables associated with a Bernoulli process:

Definition 16.11. Suppose X1, X2, X3, . . . is a Bernoulli process.

(1) Define Y1 := min{n ≥ 1 : Xn = 1} and recursively define for k ≥ 2,

Yk := min{n > Yk−1 : Xn = 1}.
The random variable Yk is called the kth arrival time.

(2) Define T1 := Y1 and for k ≥ 2 define Tk := Yk − Yk−1. The random variable Tk is called the
kth interarrival time.

Note that we also have Yk = T1 + · · ·+ Tk for each k ≥ 1.

We already know from Proposition 16.4 that T1 ∼ Geometric(p). Our intuition for Bernoulli
processes so far might suggest that Tk ∼ Geometric(p) for all k. For instance, after the kth arrival
has occurred, we begin witnessing a fresh Bernoulli sequence and so the expected time until the
next arrival should be Geometric(p). Furthermore, we have no reason to think that the interarrival
times have anything to do with each other, thus we should suspect that they are all independent.
In fact, all of these things are true:

Proposition 16.12. Suppose X1, X2, X3, . . . is a Bernoulli process with parameter p. Then the
sequence

T1, T2, T3, . . .

is an independent sequence of Geometric(p) random variables.

Proof. First, it is clear from the definition that Range(Tk) ⊆ {1, 2, 3, . . .} for each k. We will first
prove the following claim about the joint PMF of T1, . . . , Tk:

Claim. For k ≥ 1, suppose t1, . . . , tk ∈ {1, 2, 3, . . .}. Then

pT1,...,Tk(t1, . . . , tk) =

k∏
i=1

(1− p)ti−1p = (1− p)t1+···+tk−kpk.

Proof of claim. We wish to compute the probability of the event {T1 = t1, . . . , Tk = tk}. The only
way for the first k interarrival times to be these values is if the Bernoulli process begins with the
initial segment:

0 · · · 01︸ ︷︷ ︸
t1

0 · · · 01︸ ︷︷ ︸
t2

· · · 0 · · · 01︸ ︷︷ ︸
tk
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The probability of our Bernoulli process starting out exactly this way is

k∏
i=1

(1− p)ti−1p = (1− p)t1+···+tk−kpk. �

Next, we will prove the following10 about the marginal PMF for Tk:

Claim. For each k ≥ 1 and tk ∈ {1, 2, 3, . . .}∑
(t1,...,tk−1)∈Nk−1

pT1,...,Tk(t1, . . . , tk) =
∑

(t1,...,tk−1)∈Nk−1

(1− p)t1+···+tk−kpk = (1− p)tk−1p

and in particular, pTk(t) = (1− p)t−1p for all t ∈ {1, 2, 3, . . .}. Thus Tk ∼ Geometric(p).

Proof of claim. We only need to prove the second equality, which we prove by induction on k ≥ 1.
For the base case k = 1, this is a degenerate case which reads as (1− p)t1−1p = (1− p)t1−1p, which
is automatically true.

Next, assume we know the claim is true for a certain k ≥ 1 and suppose tk+1 ∈ {1, 2, 3, . . .}.
Note that ∑

(t1,...,tk)∈Nk

(1− p)t1+···+tk+tk+1−(k+1)pk+1

= (1− p)tk+1−1p

∞∑
tk=1

 ∑
(t1,...,tk−1)∈Nk−1

(1− p)t1+···+tk−kpk


= (1− p)tk+1−1p

∞∑
tk=1

(1− p)tk−1p by inductive hypothesis

= (1− p)tk+1−1p by Geometric Series Formula. �

Finally, we need to show that the sequence T1, T2, T3, . . . are independent. By definition of
independence, it suffices to show that T1, . . . , Tk is independent for each k ≥ 1. This is true
because our claims show that

pT1,...,Tk(t1, . . . , tk) = pT1(t1) · · · pTk(tk) for all t1, . . . , tk ∈ {1, 2, 3, . . .},
which characterizes independence for discrete random variables. �

We now wish to look at the arrival times Yk themselves. But first, a definition:

Definition 16.13. Given k ≥ 1 and p ∈ (0, 1), we say a random variable Y is Pascal of order k
and parameter p (notation: Y ∼ Pascal(k, p)) if Range(Y ) = {k, k + 1, k + 2, . . .} and for each
t ∈ Range(Y ),

pY (t) =

(
t− 1

k − 1

)
pk(1− p)t−k.

Note that Pascal(1, p) = Geometric(p).

The arrival times Yk are Pascal(k, p) random variables. Intuitively this is clear if we think in terms
of a Bernoulli process. Indeed, if Yk is the kth arrival time, then to compute the probability pYk(t)
for some t ≥ k, we first see that to have the kth arrival at time t means the initial sequence of
length t needs to consist of k 1’s and t−k 0’s (and end with a 1). Any specific sequence like this has
probability pk(1− p)t−k of happening. Then we need to count how many such sequences there are
like this. Since such a sequence automatically ends with a 1, we need to count how many sequences

10In this proof, we use N = {1, 2, 3, . . .}.
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of length t − 1 there are with exactly k − 1 1’s in it. There are
(
t−1
k−1

)
of these. Thus we expect

pYk(t) =
(
t−1
k−1

)
pk(1− p)t−k, so Yk ∼ Pascal(k, p). We give a formal proof now:

Proposition 16.14. Suppose T1, . . . , Tk are independent Geometric(p) random variables. Then
for

Yk := T1 + · · ·+ Tk

we have Yk ∼ Pascal(k, p).

Proof. We will prove this by induction on k ≥ 1. For k = 1 this is clear. Suppose we know the
proposition is true for some k ≥ 1, and consider Yk+1 = T1 + · · · + Tk+1, where T1, . . . , Tk+1 are
independent Geometric(p) random variables. By the inductive assumption, Yk = T1 + · · · + Tk ∼
Pascal(k, p). Also, Yk and Tk+1 are independent. Next, since Range(Yk) = {k, k + 1, k + 2, . . .}
and Range(Tk+1) = {1, 2, 3, . . .}, we have Range(Yk+1) ⊆ {k + 1, k + 2, k + 3, . . .}. Suppose t ∈
{k + 1, k + 2, k + 3, . . .}, and note that

pYk+1
(t) = (pYk ∗ pTk+1

)(t) by Proposition 4.4

=
∑
`∈Z

pYk(`)pTk+1
(t− `) definition of convolution

=
t−1∑
`=k

pYk(`)pTk+1
(t− `) by considering Range(Yk) and Range(Tk+1)

=
t−1∑
`=k

(
`− 1

k − 1

)
pk(1− p)`−k(1− p)(t−`)−1p

= pk+1(1− p)t−(k+1)
t−1∑
`=k

(
`− 1

k − 1

)
=

(
t− 1

(k + 1)− 1

)
pk+1(1− p)t−(k+1) by the Hockey-Stick Identity A.5. �

This gives us an easy way of determining the expectation and variance for Pascal random variables:

Proposition 16.15. Suppose Y ∼ Pascal(k, p). Then

E[Y ] =
k

p
and Var(Y ) =

k(1− p)
p2

.

Proof. Let T1, . . . , Tk be independent Geometric(p) random variables. Define Y := T1 + · · · + Tk.
By Proposition 16.14, we have Y ∼ Pascal(k, p), so it suffices to compute expectation and variance
for this Y . By linearity of expectation we have

E[Y ] = E[T1 + · · ·+ Tk] = E[T1] + · · ·+ E[Tk] =
1

p
+ · · ·+ 1

p︸ ︷︷ ︸
k times

=
k

p
.

For variance, by independence we use Variance and Sums 6.6 to compute

Var(Y ) = Var(T1 + · · ·+ Tk) = Var(T1) + · · ·+ Var(Tk) =
k(1− p)

p2
. �

Alternative definition of Bernoulli process. As it turns out, by declaring interarrival times
to be independent geometric random variables, we have an alternative way to define a Bernoulli
process:
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Proposition 16.16. Suppose p ∈ (0, 1) and T1, T2, T3, . . . is a sequence of independent Geometric(p)
random variables. Define a sequence of random variables X1, X2, X3, . . . by setting

Xn =

{
1, if n ∈ {T1, T1 + T2, T1 + T2 + T3, . . .}
0, otherwise.

Then X1, X2, X3, . . . is a Bernoulli process with parameter p.

Proof. By definition, it is clear that X1, X2, X3, . . . are all Bernoulli random variables – we just
need to determine they have common parameter p and are independent.

First, observe that X1 = 1 iff T1 = 1, so pX1(1) = pT1(1) = p. Thus X1 ∼ Bernoulli(p). Next,
we prove the following claim about the conditional PMF of Xk+1 given X1, . . . , Xk:

Claim. For k ≥ 1 and ε1, . . . , εk ∈ {0, 1}, we have

pXk+1|X1,...,Xk
(1|ε1, . . . , εk) = P(Xk+1 = 1|X1 = ε1, . . . , Xk = εk) = p.

Proof of claim. We have that ε1, . . . , εk is a sequence of 0’s and 1’s. Let 1 ≤ i1 < · · · < im ≤ k be
the indices such that εi1 = · · · = εim = 1. So εj = 0 iff j 6∈ {i1, . . . , im}. Then the interarrival times
are precisely the differences of these indices, so the following two events are the same

{X1 = ε1, . . . , Xk = εk} = {T1 = i1, T2 = i2 − i1, . . . , Tm = im − im−1, Tm+1 > k − im}

since they uniquely specify the same initial segment of length k. Thus

P(Xk+1 = 1|X1 = ε1, . . . , Xk = εk)

= P(Xk+1 = 1|T1 = i1, T2 = i2 − i2, . . . , Tm = im − im−1, Tm+1 > k − im)

= P(Tm+1 = k − im + 1|T1 = i1, T2 = i2 − i2, . . . , Tm = im − im−1, Tm+1 > k − im)

= P
(
Tm+1 − (k − im) = 1|Tm+1 > k − im

)
because Tm+1 is independent from T1, . . . , Tm

= P(Tm+1 = 1) by Memorylessness Property 16.7

= p. �

Now by the Total Probability Theorem we see that for k ≥ 1,

pXk+1
(1) =

∑
(ε1,...,εk)∈{0,1}k

pX1,...,Xk
(ε1, . . . , εk)pXk+1|X1,...,Xk

(1|ε1, . . . , εk)

= p
∑

(ε1,...,εk)∈{0,1}k
pX1,...,Xk

(ε1, . . . , εk) by Claim

= p.

Thus Xk+1 ∼ Bernoulli(p). Independence of the Xi’s now follows from the following claim:

Claim. For each k ≥ 1, we have:

pX1,...,Xk
= pX1 · · · pXk

Proof. We prove this by induction on k. The claim is automatically true for k = 1. Now suppose
we know the claim is true for some k ≥ 1. Let ε1, . . . , εk+1 ∈ {0, 1} be arbitrary. Note that

pX1,...,Xk,Xk+1
(ε1, . . . , εk, εk+1) = pX1,...,Xk

(ε1, . . . , εk)pXk+1|X1,...,Xk
(εk+1|ε1, . . . , εk)

= pX1,...,Xk
(ε1, . . . , εk)pXk+1

(εk+1) by first claim

= pX1(ε1) · · · pXk
(εk)pXk+1

(εk+1) by inductive hypothesis. �

This concludes the proof of the proposition. �
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Fresh-start at random time. Here we generalize the Fresh-Start Property 16.6 to allow for
starting at a random time N in the sequence. Of course, not all random times are allowed. Infor-
mally, we only want to allow random times which are determined by past history of the sequence,
not future history of the sequence. For instance, the following is intuitively clear (we’ll give a proof
below) for a Bernoulli sequence X1, X2, X3, . . .:

Let N denote the first time that XN−1 = XN , i.e., the first time we see a repeat. Then
XN+1, XN+1, XN+2, . . . is also a Bernoulli sequence.

The following should also be clear:

Let N denote the first time that XN = XN+1 = XN+2. Then XN+1, XN+2, XN+3, . . . is not a
Bernoulli sequence (do you see why?).

To help us specify which N ’s we wish to allow, we make the following definition:

Definition 16.17. We say a positive integer-valued11 random variable N is a stopping time for
a Bernoulli process X1, X2, X3, . . . if for each n ≥ 1 there is a set of n-tuples An ⊆ {0, 1}n such
that N = n iff (X1, . . . , Xn) ∈ An.

Example 16.18. Suppose X1, X2, X3, . . . is a Bernoulli process. Let N be defined by

N := min{n > 1 : Xn−1 = Xn}.

We claim that N is a stopping time. To prove this, we need to define the sequence of tuples
A1, A2, A3, . . . where for each n ≥ 1 we have An ⊆ {0, 1}n. Basically, An is the set of all patterns
of 0’s and 1’s which specify that we should stop at time n. So

A1 = ∅, A2 = {00, 11}, A3 = {011, 100}, A4 = {0100, 1011}, A5 = {01011, 10100} . . .

Clearly, these An’s have the property that N = n iff (X1, . . . , Xn) ∈ An. By Borel-Cantelli, we
have P(Xn−1 = Xn i.o.) = 1, so for almost every ω ∈ Ω there will be a unique minimal n > 1 such
that Xn−1 = Xn. Thus N is a stopping time for X1, X2, X3, . . ..

As expected, if we start a Bernoulli process after a stopping time, it will be a fresh Bernoulli
process:

Proposition 16.19. Suppose N is a stopping time for a Bernoulli process X1, X2, X3, . . .. Then

XN+1, XN+2, XN+3, . . .

is also a Bernoulli process.

Proof. Define for each i ≥ 1, Yi := XN+i, and let pX be the PMF of an arbitrary Bernoulli(p)
random variable. Then for any k, n ≥ 1, and ε1, . . . , εk ∈ {0, 1}, we compute the conditional joint
PMFs:

pY1,...,Yk|N (ε1, . . . , εk|n) = P (Y1 = ε1, . . . , Yk = εk | N = n)

= P (Xn+1 = ε1, . . . , Xn+k = εk | (X1, . . . , Xn) ∈ An)

= P (Xn+1 = ε1, . . . , Xn+k = εk) by independence

= pX(ε1) · · · pX(εk).

11Technically, we allow N to take the value ∞, on a set of probability 0. This happens naturally in our example.
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Next, by the law of total probability, this gives us the joint PMFs:

pY1,...,Yk(ε1, . . . , εk) =

∞∑
n=1

pY1,...,Yk|N (ε1, . . . , εk|n)pN (n)

= pX(ε1) · · · pX(εk)
n∑
k=1

pN (n)

= pX(ε1) · · · pX(εk).

From this it follows easily that pYi = pX for each i ≥ 1 and the Yi’s are independent, hence a
Bernoulli process. �

Random subsequence of a Bernoulli process. Here we give a generalization of Lemma 16.5.

Example 16.20. Consider the following situation, we have two independent Bernoulli processes:

X1, X2, X3, . . . and Z1, Z2, Z3, . . .

Suppose the second Bernoulli process has arrivals at times i1 < i2 < i3 < · · · . At those arrivals,
we want to see what’s going on with the first Bernoulli process:

Xi1 , Xi2 , Xi3 , . . .

Our intuition tells us that this must definitely be a Bernoulli process, right? The arrivals of the
second process have nothing to do with the first process, so by independence, this new sequence
should still be an independent sequence of Bernoulli random variables of the same parameter.

The next result tells us this is the case. In fact, it tells us that basically any random subsequence
of distinct terms, chosen independently from the original Bernoulli process is again a Bernoulli
process:

Proposition 16.21. Let X1, X2, . . . be a Bernoulli process with parameter p, and let N1, N2, . . . be
a sequence of positive integer-valued random variables such that

(1) The Xi’s are independent from all of the N ’s.
(2) P(Ni = Nj) = 0 for all i 6= j.

For each i ≥ 1 define Yi := XNi. Then Y1, Y2, . . . is a Bernoulli process with parameter p.

Proof. First let pX be the PMF of an arbitrary Bernoulli(p) random variable. We will first look at
a typical joint conditional PMF. For k ≥ 1 and ε1, . . . , εk ∈ {0, 1} and n1, . . . , nk distinct, we have

pY1,...,Yk|N1,...,Nk
(ε1, . . . , εk|n1, . . . , nk) = P(Xn1 = ε1, . . . , Xnk

= εk | N1 = n1, . . . , Nk = nk)

= P(Xn1 = ε1, . . . , Xnk
= εk) by independence assumption

= pX(ε1) · · · pX(εk).

By the law of total probability, we get the joint PMFs:

pY1,...,Yk(ε1, . . . , εk) =
∑

n1,...,nk∈N
pY1,...,Yk|N1,...,Nk

(ε1, . . . , εk|n1, . . . , nk)pN1,...,Nk
(n1, . . . , nk)

=
∑

n1,...,nk distinct

pY1,...,Yk|N1,...,Nk
(ε1, . . . , εk|n1, . . . , nk)pN1,...,Nk

(n1, . . . , nk)

= pX(ε1) · · · pX(εk)
∑

n1,...,nk distinct

pN1,...,Nk
(n1, . . . , nk)

= pX(ε1) · · · pX(εk).
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since the terms pN1,...,Nk
(n1, . . . , nk) with n1, . . . , nk not distinct are zero. Thus the joint distribution

of Y1, . . . , Yk is the same as the joint PMF of k independent Bernoulli(p) random variables, so it
follows easily that the Yi’s are independent Bernoulli(p), i.e., a Bernoulli process. �

Example 16.22. To apply Proposition 16.21 to our Example 16.20, we let N1, N2, N3, . . . be the
arrival times of the sequence Z1, Z2, Z3, . . .. Then the Xi’s will be independent from all of the
Nj ’s and {Ni = Nj} = ∅ for all i 6= j, so in particular P(Ni = Nj) = 0 for all i 6= j. Thus
XN1 , XN2 , XN3 , . . . is also a Bernoulli process of parameter p.
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17. The Poisson Process

We now turn our attention to the continuous-time analog of Bernoulli processes, the Poisson process.
This is for arrivals that can happen at any time, not just during discrete time intervals. For instance:

• occurrences of traffic accidents throughout the day,
• customers arriving at a store,
• lightbulbs burning out and being immediately replaced,
• photons hitting a detector.

Informally, to keep track of a continuous arrival process (with no assumptions yet on any properties
of the process), for each moment in time t ≥ 0, we have a separate random variable Nt which
measures:

Nt = # of arrivals during (0, t]

Formally, this uses the notion of a continuous arrival process:

Definition 17.1. A continuous arrival process is a family (Nt)t≥0 of nonnegative integer-valued
random variables Nt indexed by time t ∈ [0,∞) such that

(1) N0 = 0,
(2) if s ≤ t, then Ns ≤ Nt, and
(3) lims→t+ Ns = Nt.

Note: (1) means there are no arrivals already at time t = 0. (2) means that the number of arrivals
we’ve counted can only increase as time increases, and (3) means that we want Nt to count the
number of arrivals during (0, t] instead of during (0, t).

Example 17.2. Suppose we work at a store and at the bottom of every hour (i.e., when the time is
of the form **:30) exactly one customer always arrives. Then this arrival process can be modeled
by a continuous arrival process (Nt)t≥0 given by

Nt :=

⌊
t+

1

2

⌋
where t ≥ 0, t given in hours.

Note that this example of a continuous arrival process is completely deterministic and definitely
will not be a Poisson process.

At this level of generality, there isn’t much we can say about continuous arrival processes. The
following is obvious though, both intuitively and mathematically:

Lemma 17.3. Suppose (Nt)t≥0 is a continuous arrival process and T is a nonnegative random
variable. Then the family

(Nt+T −NT )t≥0

is also a continuous arrival process.

In Lemma 17.3 we placed no restrictions on the nonnegative random variable T . In particular, it
could be constant, be independent of (Nt)t≥0, or it could depend on (Nt)t≥0 in some way. We’ll
use 17.3 in all three ways below.

As with our discrete arrival processes, we can also define the arrival times and the interarrival
times:

Definition 17.4. Suppose (Nt)t≥0 is a continuous arrival process.

(1) For k ≥ 0, define the kth arrival time to be

Yk := min{t : Nt ≥ k}
72



(2) For k ≥ 1, define the kth interarrival time to be

Tk := Yk − Yk−1.

Thus Y0 = 0, Y1 = T1, and for each k ≥ 1, Yk = T1 + · · ·+ Tk.

The following relation between our arrival times and process values is fundamental and helps with
relating discrete and continuous expressions:

Arrival Relation 17.5. Given t ∈ [0,∞) and k ≥ 0, we have

{Yk ≤ t} = {Nt ≥ k}.

The point of this section is to study a special kind of continuous arrival process: the Poisson
process. We will give three different ways of defining a Poisson process and prove that they are all
equivalent. We will also freely use whichever definition is most convenient to prove new statements.

First definition: small intervals. Our intuition for the Poisson process is that it is in some
sense a limiting case of a Bernoulli process, if we were to make the discrete time intervals in
a Bernoulli process infinitesimal, and also make p very small as well. We will not pursue this
intuition mathematically (we could, but we won’t), but instead keep it in mind as we make our
first definition:

First Definition 17.6. We say a continuous arrival process (Nt)t≥0 is a Poisson process of rate
λ if it has the following properties:

(1) Time homogeneity: given h ∈ [0,∞) and k ≥ 0, the probability

P(Nt+h −Nt = k) = P
(
exactly k arrivals in (t, t+ h]

)
is the same for every t ≥ 0.

(2) Independent increments: for all n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn,

Nt1 −Nt0 , Nt2 −Nt1 , . . . , Ntn −Ntn−1

are independent random variables. In other words, the numbers of arrivals during the
disjoint time intervals

(t0, t1], (t1, t2], . . . , (tn−1, tn]

are independent.
(3) Small interval properties: the probabilities of 1 arrival and at least 2 arrivals in a tiny

interval are described by:
(a) P(Nh = 1) = λh+ o(h) as h→ 0,
(b) P(Nh ≥ 2) = o(h) as h→ 0,

where each o(h) represents some function with the property limh→0+ o(h)/h = 0.

Note: (1) and (3)(a) suggest that in a very tiny interval of length h, whether or not there is an
arrival is basically a Bernoulli(λh) random variable, since we can count the o(h) terms as negligible
(essentially 0). It also follows from the Small interval properties that

P(Nh = 0) = 1− P(Nh = 1)− P(Nh ≥ 2) = 1− λh+ o(h) as h→ 0.

One striking feature of the First Definition is that the Small interval properties seems a bit am-
biguous. We don’t specify exactly what functions the o(t)’s can be, and there certainly isn’t any
mention of the Poisson or Exponential distributions anywhere in the definition. As we will see,
these things will arise from this definition, seemingly out of nowhere.

First we will derive some consequences of the First Definition. The first says that if we restart our
Poisson process at a fixed time, this is also a Poisson process. This is analogous to the Fresh-Start
Property 16.6 for Bernoulli processes:

73



Proposition 17.7. Suppose (Nt)t≥0 is a Poisson process of rate λ and t0 ∈ [0,∞) is a fixed time.
Then

(Nt+t0 −Nt0)t≥0

is also a Poisson process of rate λ.

Proof. For each t ≥ 0 define N ′t := Nt+t0 − Nt0 . By Lemma 17.3, (N ′t)t≥0 is also a continuous
arrival process. To show that (N ′t)t≥0 is a Poisson process, we need to show three things.

(Time homogeneity) Let h ∈ [0,∞), k ≥ 0 and consider an arbitrary time t ∈ [0,∞). Note that

P(N ′t+h −N ′t = k) = P
(
(Nt+h+t0 −Nt0)− (Nt+t0 −Nt0) = k

)
= P(Nt+h+t0 −Nt+t0 = k)

= P(Nt+h+t0−(t+t0) −N0 = k) by Time homogeneity for (Nt)t≥0

= P(Nh = k)

which shows that this probability does not depend on the time t.
(Independent increments) Suppose n ≥ 1 and 0 ≤ t′0 ≤ t′1 ≤ · · · ≤ t′n are arbitrary. Note that

the random variables

N ′t′1
−N ′t′0 , . . . , N

′
t′n
−N ′t′n−1

are the same as

Nt′1+t0 −Nt′0+t0 , . . . , Nt′n+t0 −Nt′n−1+t0

which are independent because (Nt)t≥0 satisfies Independent increments and 0 ≤ t′0 + t0 ≤ t′1 + t0 ≤
· · · ≤ t′n + t0.

(Small interval properties) Note that for h > 0 we have

P(N ′h = 1) = P(Nh+t0 −Nt0 = 1)

= P(Nh −N0 = 1) by Time homogeneity for (Nt)t≥0

= P(Nh = 1)

= λh+ o(h) as h→ 0,

since (Nt)t≥0 satisfies the Small interval properties. The argument as to why P(N ′h ≥ 2) = o(h) as
h→ 0 is similar. �

Our next consequence of the First Definition says that restarting a Poisson process at a random
independent time is also a Poisson process:

Proposition 17.8. Suppose (Nt)t≥0 is a Poisson process of rate λ and T is a nonnegative random
variable which is independent from (Nt)t≥0. Then

(Nt+T −NT )t≥0

is also a Poisson process of rate λ.

Note: We will assume here that T is a continuous random variable with PDF fT . The case
where T is discrete is similar. The argument for arbitrary T requires a careful measure-theoretic
development of probability theory, but otherwise is analogous to these proofs.

Proof. Set N ′t := Nt+T −NT for each t ∈ [0,∞). As before, (N ′t)t≥0 is a continuous arrival process
by Lemma 17.3, and to show that it actually is a Poisson process means we have three things to
show:
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(Time homogeneity) Let h ∈ [0,∞), k ≥ 0 and consider an arbitrary time t ∈ [0,∞). Note that

P(N ′t+h −N ′t = k) =

∫ ∞
0

P(N ′t+h −N ′t = k|T = u)fT (u)du by Total Probability Law

=

∫ ∞
0

P(Nt+h+u −Nt+u = k|T = u)fT (u)du

=

∫ ∞
0

P(Nt+h+u −Nt+u = k)fT (u)du since (Nt)t≥0 is independent from T

=

∫ ∞
0

P(Nh = k)fT (u)du by Time homogeneity for (Nt)t≥0

which we see does not depend on the time t.
(Independent increments) Let 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn and let k1, . . . , kn ≥ 0 be arbitrary.

Note that

P(N ′t1 −N
′
t0 = k1, . . . , N

′
tn −N

′
tn−1

= kn)

=

∫ ∞
0

P(N ′t1 −N
′
t0 = k1, . . . , N

′
tn −N

′
tn−1

= kn|T = u)fT (u)du

=

∫ ∞
0

P(Nt1+u −Nt0+u = k1, . . . , Ntn+u −Ntn−1+u = kn)fT (u)du by independence

=

∫ ∞
0

P(Nt1 −Nt0 = k1, . . . , Ntn −Ntn−1 = kn)fT (u)du by Time homogeneity of (Nt)t≥0

= P(Nt1 −Nt0 = k1, . . . , Ntn −Ntn−1 = kn).

A similar calculation shows for each j = 1, . . . , n we have

P(N ′tj −N
′
tj−1

= kj) = P(Ntj −Ntj−1 = kj).

Thus, by Independent increments for (Nt)t≥0, we know that

P(Nt1 −Nt0 = k1, . . . , Ntn −Ntn−1 = kn) = P(Nt1 −Nt0 = k1) · · ·P(Ntn −Ntn−1 = kn),

it follows that

P(N ′t1 −N
′
t0 = k1, . . . , N

′
tn −N

′
tn−1

= kn) = P(N ′t1 −N
′
t0 = k1) · · ·P(N ′tn −N

′
tn−1

= kn),

which shows the desired independence.
(Small interval properties) Note that for h > 0,

P(N ′h = 1) =

∫ ∞
0

P(N ′h = 1|T = u)fT (u)du by Total Probability Law

=

∫ ∞
0

P(Nh+u −Nu = 1|T = u)fT (u)du

=

∫ ∞
0

P(Nh+u −Nu = 1)fT (u)du since (Nt)t≥0 is independent from T

=

∫ ∞
0

P(Nh = 1)fT (u)du by Time homogeneity of (Nt)t≥0

= P(Nh = 1)

∫ ∞
0

fT (u)du

= P(Nh = 1)

= λh+ o(h) as h→ 0.

The argument for showing P(Nh ≥ 2) = o(h) as h→ 0 is similar. �
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The main result of this subsection is the following. It says that as a consequence of the First
Definition, the probability of seeing a given number of arrivals in a particular time interval follows
a Poisson distribution:

Poisson Process Theorem 17.9. Suppose (Nt)t≥0 is a Poisson process of rate λ. Then for each
t ∈ (0,∞) we have

Nt ∼ Poisson(λt).

Proof of 17.9. To set the stage for the proof, for each n ≥ 0 and t ∈ (0,∞), define

Pn(t) := P(Nt = n).

Our ultimate goal is to show that Pn(t) = e−λt(λt)n/n!. At the moment this might seem out of
reach, but remarkably the First Definition is strong enough to give us the following infinite system
of differential equations:

Lemma 17.10. For each t > 0 we have

(1) for12 0 < |h| � t,

P0(t+ h)− P0(t)

h
= −λP0(t) +

o(h)

h
as h→ 0

(2) for n ≥ 1 and 0 < |h| � t,

Pn(t+ h)− Pn(t)

h
=

(
−λ+

o(h)

h

)
Pn(t) +

(
λ+

o(h)

h

)
Pn−1(t) +

o(h)

h

as h→ 0.

Furthermore, by the Small interval properties, (1) and (2) are true for t = 0 and h > 0. In
particular, by taking limits we get that for each n ≥ 0, Pn is differentiable at all t ∈ [0,∞) and

(3) P ′0(t) = −λP0(t), and
(4) for n ≥ 1, P ′n(t) = −λPn(t) + λPn−1(t).

Proof of 17.10. First assume t > 0 and 0 < h� t. Then we have

P0(t+ h) = P(Nt = 0, Nt+h −Nt = 0)

= P0(t)P(Nt+h −Nt = 0) by Independent increments for (Nt)t≥0

= P0(t)P(Nh = 0) by Time homogeneity for (Nt)t≥0

= P0(t)(1− λh+ o(h)), as h→ 0.

Dividing by h gives the desired expression in (1). A similar argument works for the case where
h < 0 and |h| � t.

12The notation |h| � t means “|h| is sufficiently smaller than t”. Since we are taking a limit here as h → 0, we
can assume that h is so small compared to t that no issues will arise.
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Next, suppose n ≥ 1. Then

Pn(t+ h) = P

(
n⋃
k=0

{Nt = k,Nt+h = n}

)
disjoint union

=
n∑
k=0

P(Nt = k,Nt+h = n)

=
n∑
k=0

P(Nt = k,Nt+h −Nt = n− k)

=
n∑
k=0

Pk(t)P(Nh = n− k)

by Independent increments and Time homogeneity

= Pn(t)P(Nh = 0) + Pn−1(t)P(Nh = 1) +
n−2∑
k=0

Pk(t)P(Nh = n− k︸ ︷︷ ︸
≥2

)

= Pn(t)(1− λh+ o(h)) + Pn−1(t)(λh+ o(h)) + o(h)

by the Small interval properties. Dividing by h yields the desired expression. �

Finally, to finish our proof of 17.9, it suffices to solve the following system of differential equations:

(1) P ′0(t) = −λP0(t), and
(2) for n ≥ 1, P ′n(t) = −λPn(t) + λPn−1(t).

subject to the initial conditions:

P0(0) = 1, and for n ≥ 1 Pn(0) = 0.

This can be done easily using integrating factors and induction, resulting in the desired solutions:

Pn(t) = e−λt
(λt)n

n!
.

This concludes our proof of the Poisson Process Theorem 17.9. �

A nice consequence of the Poisson Process Theorem 17.9 and the Arrival Relation 17.5 is that we
can also determine precisely the distribution of the first (inter)arrival time:

Corollary 17.11. Suppose (Nt)t≥0 is a Poisson process of rate λ. Then the first (inter)arrival
time has an Exponential(λ) distribution:

Y1 = T1 ∼ Exponential(λ).

Proof. For t > 0, note that

FT1(t) = FY1(t)

= 1− P(Y1 > t)

= 1− P(Nt = 0) by Arrival Relation 17.5

= 1− e−λt by Poisson Process Theorem 17.9.

Thus Y1 and T1 have the CDF of an Exponential(λ) random variable. �
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Second definition: Poisson-distributed increments. Our second definition of a Poisson pro-
cess seems to be more precise than the first definition. It is the same as the first definition except
that we replace the small interval properties with the more specific conclusion of the Poisson Pro-
cess Theorem 17.9, which specifies that the number of arrivals in a given interval follows an actual
Poisson distribution. Of course, by Corollary 17.14 below it will follow that the first and second
definitions are the same (but you should pretend like you don’t know that yet!).

Second Definition 17.12. We say a continuous arrival process (Nt)t≥0 is a Poisson process of
rate λ if it has the following properties:

(1) Time homogeneity as in First Definition 17.6.
(2) Independent increments as in First Definition 17.6.
(3) Poisson-distributed increments: for each t ∈ (0,∞),

Nt ∼ Poisson(λt).

Since the second definition seems more specific than the first definition, the next lemma should not
come as a surprise:

Lemma 17.13. Suppose (Nt)t≥0 is a Poisson process of rate λ in the sense of Second Defini-
tion 17.12. Then the Small interval properties hold:

(a) P(Nh = 1) = λh+ o(h) as h→ 0,
(b) P(Nh ≥ 2) = o(h) as h→ 0,

Proof. First, note that by Inequality A.23 we have

0 < 1− e−x < x, for all x > 0.

Thus, for h > 0

P(Nh = 1) = e−λhλh

= λh− λh(1− e−λh)

= λh+ o(h), as h→ 0.

For the second small interval property, first note that for 0 < x < 1/2, we have

∞∑
k=2

xk

k!
≤ 1

2

∞∑
k=2

xk ≤ 1

2

x2

1− x
≤ x2.

Thus, for h > 0 very small we have

P(Nh ≥ 2) =

∞∑
k=2

e−λh
(λh)k

k!

≤ (λh)2

= o(h) as h→ 0. �

It now follows from the Poisson Process Theorem 17.9 and Lemma 17.13 that the first and second
definitions are equivalent:

Corollary 17.14. Suppose (Nt)t≥0 is a continuous arrival process. The following are equivalent:

(1) (Nt)t≥0 is a Poisson process of rate λ in the sense of First Definition 17.6,
(2) (Nt)t≥0 is a Poisson process of rate λ in the sense of Second Definition 17.12
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Now that we have established that the first two definitions are equivalent, the next order of business
is to investigate the interarrival times. In analogy with Proposition 16.12 which says that the
interarrival times of a Bernoulli sequence are independent Geometric random variables, we shouldn’t
be surprised that the interarrival times in a Poisson process form an independent sequence of
Exponential random variables:

Exponential Interarrival Theorem 17.15. Suppose (Nt)t≥0 is a Poisson process of rate λ.
Then the interarrival times

T1, T2, T3, . . .

forms an independent sequence of Exponential(λ) random variables.

Proof. Ideally we would like to show that for each k ≥ 1, T1, . . . , Tk are independent Exponential(λ)
random variables. We already know this is true for k = 1 by Corollary 17.11. We will give the
argument for k = 2:

Claim. For 0 ≤ s ≤ t, fY1,Y2(s, t) = λ2e−λt.

Proof of claim. Suppose 0 ≤ s ≤ t. Note that

FY1,Y2(s, t) = P(Y1 ≤ s, Y2 ≤ t)
= P(Y1 ≤ s)− P(Y1 ≤ s, Y2 > t)

= 1− e−λs − P(Ns ≥ 1, Nt < 2) Corollary 17.11 and Arrival Relation 17.5

= 1− e−λs − P(Ns = 1, Nt −Ns = 0)

= 1− e−λs − P(Ns = 1)P(Nt −Ns = 0) by Independent incrementes

= 1− e−λs − λse−λse−λ(t−s)

= 1− e−λs − λse−λt.

Finally, to obtain the PDF, we differentiate:

fY1,Y2(s, t) =
∂2

∂s∂t
FY1,Y2(s, t) = λ2e−λt. �

Finally, to obtain the PDF for the first two interarrival times fT1,T2 , we perform a change of
variables13 T1 = Y1 and T2 = Y2 − Y1 to obtain

fT1,T2(t1, t2) = λe−λt1λe−λt2 for t1, t2 > 0.

It follows from this that T1, T2 are independent Exponential(λ) random variables.
The (hefty) inductive argument for general k ≥ 2 follows along these lines, but is much more

complicated. We omit the details. �

We can also give a characterization of the arrival times in a Poisson process. For this we need first
a definition:

Definition 17.16. Given λ > 0 and k ≥ 0, we say a continuous random variable Y is Erlang of
order k and parameter λ (notation: Y ∼ Erlang(k, λ)) if it has PDF

fY (y) =
λkyk−1e−λy

(k − 1)!
, for y ≥ 0.

The following shows that the kth arrival time in a Poisson process is Erlang of order k:

13This requires an argument which we are omitting.
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Corollary 17.17. Suppose T1, T2, T3, . . . is an independent sequence of Exponential(λ) random
variables. For each k ≥ 1, define

Yk := T1 + · · ·+ Tk.

Then Yk ∼ Erlang(k, λ). In particular, if Y ∼ Erlang(k, λ), then

E[Y ] =
k

λ
and Var(Y ) =

k

λ2
.

Proof. Suppose (Nt)t≥0 is a Poisson process of rate λ, with interarrival times T ′1, T
′
2, T

′
3, . . .. By the

Exponential Interarrival Theorem 17.15, it follows that T ′1, T
′
2, T

′
3, . . . is a sequence of independent

Exponential(λ) random variables. Furthermore, by considering the Inversion Property 8.9 of trans-
forms and Fact 8.5, we have that T1 + · · ·+ Tk ∼ T ′1 + · · ·+ T ′k for each k. Thus, since all we want
to know is the distribution of Yk, we might as well assume that T1 = T ′1, T2 = T ′2, . . . and so Yk is
the kth arrival time for the Poisson process (Nt)t≥0. Next, note that for t ≥ 0 we have

1− FYk(t) = P(Yk > t)

= P(Nt < k) by Arrival Relation

=

k−1∑
j=0

e−λt
(λt)j

j!
.

Differentiating yields

−fYk(t) =

k−1∑
j=1

e−λt
λjtj−1

(j − 1)!
−
k−1∑
j=0

λe−λt
(λt)j

j!

= λe−λt

k−2∑
j=0

(λt)j

j!
−
k−1∑
j=0

(λt)j

j!


= −λe−λt (λt)k−1

(k − 1)!
,

and so

fYk(t) =

{
−λe−λt (λt)k−1

(k−1)! , if t ≥ 0

0 otherwise.

which shows Yk ∼ Erlang(k, λ). The claims about E[Y ] and Var(Y ) follow now from indepen-
dence and formulas for expectation and variance of the Ti’s. �

Third definition: exponential interarrival times. The Exponential Interarrival Theorem 17.15
suggests a possible third definition for a Poisson process. What do we get if we declare a Poisson
process to be a continuous arrival process with independent Exponential interarrival times? Do we
get the same thing as the First and Second Definiton? Let’s find out!

Third Definition 17.18. We say a continuous arrival process (Nt)t≥0 is a Poisson process of
rate λ if the interarrival times

T1, T2, T3, . . .

form an independent sequence of Exponential(λ) random variables.

Our goal now is to show that the Third Definition is the same as the first two.

Proposition 17.19. Suppose (Nt)t≥0 is a Poisson process of rate λ in the sense of Third Defini-
tion 17.18. Then Nt ∼ Poisson(λt).
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Proof. First note that for k = 0 we have

P(Nt = 0) = P(Y1 > t) by Arrival Relation 17.5

=

∫ ∞
t

λe−λxdx

= e−λt.

Next, suppose k ≥ 1, and note that

P(Nt = k) = P(Nt ≥ k)− P(Nt ≥ k + 1)

= P(Yk ≤ t)− P(Yk+1 ≤ t) by Arrival Relation 17.5

= P(Yk+1 > t)− P(Yk > t)

=

∫ ∞
t

λk+1xke−λx

k!
dx−

∫ ∞
t

λkxk−1e−λx

(k − 1)!
dx by Corollary 17.17

=

[
−λ

kxke−λx

k!

]∞
t

+

∫ ∞
t

λkxk−1e−λx

(k − 1)!
dx−

∫ ∞
t

λkxk−1e−λx

(k − 1)!
dx

by integration by parts: u = xk, du = kxk−1dx, v = −λke−λx/k!, dv = λk+1e−λx/k! dx

= e−λt
(λt)k

k!
.

Thus Nt ∼ Poisson(λt). �

We still need to know that the Third Definition implies Time homogeneity and Independent incre-
ments. This is true, but it takes some work. For the sake of time, we’ll just take it for granted:

Fact 17.20. Suppose (Nt)t≥0 is a Poisson process of rate λ in the sense of Third Definition 17.18.
Then (Nt)t≥0 satisfies Time homogeneity and Independent increments in the sense of Defini-
tion 17.6.

It now follows from Corollary 17.14, the Exponential Interarrival Theorem 17.15, Proposition 17.19
and Fact 17.20 that all three definitions are equivalent:

Corollary 17.21. Suppose (Nt)t≥0 is a continuous arrival process. The following are equivalent:

(1) (Nt)t≥0 is a Poisson process of rate λ in the sense of First Definition 17.6,
(2) (Nt)t≥0 is a Poisson process of rate λ in the sense of Second Definition 17.12,
(3) (Nt)t≥0 is a Poisson process of rate λ in the sense of Third Definition 17.18.

From this point forward, anytime we refer to a Poisson process of rate λ, we can use any one of
the three equivalent definitions. Here is a nice consequence of the Third Definition:

Proposition 17.22. Suppose (Nt)t≥0 is a Poisson process of rate λ and Yk is the kth arrival time
for some k ≥ 1. Then

(Nt+Yk −NYk)t≥0

is also a Poisson process of rate λ.

Proof. The interarrival times of the new process are precisely

Tk+1, Tk+2, Tk+3, . . .

i.e., the interarrival times of the original process starting at the (k + 1)th interarrival time. By
the assumption that (Nt)t≥0 is a Poisson process of rate λ, these are independent Exponential(λ)
random variables, so it follows that (Nt+Yk −NYk)t≥0 is also a Poisson process of rate λ. �
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Merging Poisson processes. We now discuss a natural application of Poisson processes: the
merging of Poisson processes. First, suppose we are in a situation where we have m different
continuous arrival processes:

(N1,t)t≥0, (N2,t)t≥0, . . . , (Nm,t)t≥0

This could be the situation if:

• We are measuring the radioactive decay of m different types of particles,
• We are at a customer service center and customers arrive with one of m different types of

problems.
• We have m lightbulb sockets which hold lightbulbs which burn out and are immediately

replaced.

Suppose we want to “merge” the m arrival processes into one overall arrival process. This can be
done by taking a sum. Indeed,

(N1,t + · · ·+Nm,t)t≥0

is also a continuous arrival process. Furthermore, if the processes are independent Poisson process,
then the merged process is also a Poisson process:

Proposition 17.23. Suppose

(1) (N1,t)t≥0, (N2,t)t≥0, . . . , (Nm,t)t≥0 are independent continuous arrival processes, and
(2) for each i = 1, . . . ,m, (Ni,t)t≥0 is a Poisson process of rate λi.

Then the merged process (N1,t + · · ·+Nm,t)t≥0 is a Poisson process of rate λ1 + · · ·+ λm.

Proof. Define N ′t := N1,t + · · · + Nm,t for each t ≥ 0. We will verify the conditions of Second
Definition 17.12.

(Time homogeneity) Let h, t ∈ [0,∞) and k ≥ 0. We need to show that P(N ′t+h −N ′t = k) does
not depend on t. Note that (using N = {0, 1, 2, . . .})

P(N ′t+h −N ′t = k) = P

 ⋃
(k1,...,km)∈Nm

k1+···+km=k

{N1,t+h −N1,t = k1, · · · , Nm,t+h −Nm,t = km}


=

∑
(k1,...,km)∈Nm

k1+···+km=k

P(N1,t+h −N1,t = k1) · · ·P(Nm,t+h −Nm,t = km)

by Finite Additivity and Independence Assumption

=
∑

(k1,...,km)∈Nm

k1+···+km=k

P(N1,h = k1) · · ·P(Nm,h = km)

by Time Homogeneity for each Ni process separately. We see that this last expression does not
depend on t, as desired.

(Independent increments) Suppose n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn. By the indepen-
dence assumption and Independent Increments for each process separately, the following matrix14

of random variables has independent entries: N1,t1 −N1,t0 . . . , N1,tn −N1,tn−1

...
...

Nm,t1 −Nm,t0 . . . , Nm,tn −Nm,tn−1


14We’re using a matrix notation for displaying convenience, it has nothing to do with linear algebra
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Thus, the column sums are also independent:

N ′t1 −N
′
t0 , . . . , N

′
tn −N

′
tn−1

,

which is what we want to show.
(Poisson-distributed increments) Finally, suppose t ∈ (0,∞). We know that Ni,t ∼ Poisson(λit)

for for each i = 1, . . . ,m and that N1,t, . . . , Nm,t are independent. We want to show that N ′t ∼
Poisson

(
(λ1 + · · ·+ λm)t

)
. This follows from Lemma 17.24 below. �

Lemma 17.24. Suppose N1, . . . , Nm are independent random variables such that Ni ∼ Poisson(λi)
for each i = 1, . . . ,m. Then

N1 + · · ·+Nm ∼ Poisson(λ1 + · · ·+ λm).

Proof. This follows from considering the transform:

MN1+···+Nm(s) = MN1(s) · · ·MNm(s) by Independence

= eλ1(es−1) · · · eλm(es−1)

= e(λ1+···+λm)(es−1).

We see that this is the transform of a Poisson(λ1 + · · · + λm) random variable. By the Inversion
Property 8.9 we conclude that N1 + · · ·+Nm ∼ Poisson(λ1 + · · ·+ λm). �

The following proposition tells us many useful things about merging Poisson processes:

Proposition 17.25. Suppose (N1,t)t≥0, . . . , (Nm,t)t≥0 are Poisson processes with rate λ1, . . . , λm.
Furthermore, define pk := λk/(λ1 + · · ·+ λm), for k = 1, . . . ,m. Then in the context of the merged
process, for every k = 1, . . . ,m we have:

(1) The probability that the first arrival is from by the Nk-process is pk.
(2) The probability that the first n arrivals are from the Nk-process is pnk , for n ≥ 1.
(3) The number of Nk-arrivals preceding an arrival of any other kind has PMF:

p(`) = (1− pk)p`k, for ` = 0, 1, 2, . . .

(4) The number of non-Nk-arrivals preceding an Nk-arrival has PMF:

p(`) = pk(1− pk)`, for ` = 0, 1, 2, . . .

(5) For a fixed n ≥ 1, the number of non-Nk-arrivals between the nth and (n+ 1)th Nk-arrivals
has PMF:

p(`) = pk(1− pk)`, for ` = 0, 1, 2, . . .

Proof. Fix k ∈ {1, . . . ,m}, and define Ñt :=
∑

j 6=kNj,t for t ≥ 0. Then (Ñt)t≥0 is the merged process

of all Poisson processes other than Nk, and it has rate λ̃ :=
∑

j 6=k λj . Furthermore, (Nk,t)t≥0 and

(Ñt)t≥0 are independent Poisson processes. The arguments below will use these two processes.

(1) Let Yk,1 and Ỹ1 be the first arrival times of our processes. These are independent Exponential

random variables of parameters λk and λ̃, respectively. Thus fYk,1,Ỹ1 = fYk,1fỸ1 . Now we
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compute:

P(Yk,1 < Ỹ1) = P
(
(Yk,1, Ỹ1) ∈ {(x, y) ∈ R2 : x < y}

)
=

∫ ∞
−∞

∫ ∞
x

fYk,1fỸ1dydx

=

∫ ∞
0

(∫ ∞
x

λke
−λkxλ̃e−λ̃ydy

)
dx

=
λk

λk + λ̃
= pk.

(2)-(5) Part (1) essentially says that whether or not the first arrival comes from the Nk-process
is a Bernoulli(pk) random variable. Since restarting at an arrival time is again a Poisson
process of the same rate, and independent of the past, we may regard each arrival in the
merged process as a Bernoulli(pk) random variable as it pertains to whether that arrival
came from the Nk-process or not. From this point of view, items (2)-(5) are obvious. �
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Appendix A. Results from Real Analysis, Calculus, Etc.

Basic formulas.

Triangle Inequality A.1. For all a, b ∈ R,

|a+ b| ≤ |a|+ |b|.

Proof. See [2, 3.7]. �

Formula A.2. The equality
n∑
k=1

k =
n(n+ 1)

2

holds for all n ∈ {1, 2, 3, . . .}.

Proof. Let P (n) be the assertion:

P (n) : “
∑n

k=1 k = 1
2n(n+ 1) is true.”

We will show that P (n) holds for all n ∈ {1, 2, 3, . . .} by induction on n.
First, we show that P (1) holds outright. This is easy because P (1) says “1 = 1

2 · 1 · 2”, which is
obviously true.

Next, we will show that P (n) implies P (n+ 1). Suppose P (n) holds, i.e.,

n∑
k=1

k =
1

2
n(n+ 1).

We must now show that P (n + 1) also holds. To see this, add n + 1 to both sides of the above
equality:

n+1∑
k=1

k =
n∑
k=1

k + (n+ 1) =
1

2
n(n+ 1) + (n+ 1) =

1

2
(n+ 1)

(
(n+ 1) + 1

)
.

Thus P (n+ 1) holds as well. �

Sum of Squares Formula A.3. The equality

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

holds for all n ∈ {1, 2, 3, . . .}.

Proof. The statement that we will prove by induction is:

P (n) : “12 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6”

Base Case: We will prove P (1). The lefthand side is 12 = 1. The righthand side is

1 · (1 + 1) · (2 · 1 + 1)

6
= 1.

Since 1 = 1, we conclude that the statement P (1) is true.
Inductive step: We assume as our inductive hypothesis that P (n) is true for some n ∈

{1, 2, 3, . . .}. We will use this to prove P (n+ 1) is true. We proceed with our calculation, starting
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with the lefthand side of P (n+ 1):

12 + 22 + · · ·+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 (we use P (n) here)

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)

[
n(2n+ 1) + 6(n+ 1)

]
6

=
(n+ 1)

[
2n2 + 7n+ 6

]
6

=
(n+ 1)

(
(n+ 1) + 1

)(
2(n+ 1) + 1

)
6

,

which is the righthand side of P (n + 1). Thus, we have shown P (n + 1) holds, assuming P (n) is
true. �

Geometric Sum A.4. Given r ∈ R such that r 6= 1, and n ≥ 0, we have

n∑
k=0

rk =
1− rn+1

1− r
.

Proof. Let P (n) be the assertion:

P (n) : “
∑n

k=0 r
k = (1− rn+1)/(1− r) is true.”

We will show by induction that P (n) holds for all n ∈ {0, 1, 2, . . .}. First note that P (1) is true
because this says “1 = (1− r)/(1− r)”. Next, we will show that P (n) implies P (n+ 1). Suppose
P (n) holds, i.e.,

n∑
k=0

rk =
1− rn+1

1− r
.

We will use this to show that P (n+ 1) also holds. Note that

n+1∑
k=0

rk =

n∑
k=0

rk + rn+1 =
1− rn+1

1− r
+ rn+1 =

1− rn+1 + (1− r)rn+1

1− r
=

1− rn+2

1− r
,

using the inductive hypothesis in the second step. �

Pascal’s Rule A.5. For 1 ≤ k, n we have

(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
.
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Proof. If n < k, then all three binomial coefficients are 0 so the identity is true. If n = k, then(
n−1
k−1

)
= 1 =

(
n
k

)
, which is also true. Now assume that n > k. Then(

n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k!(n− 1− k)!
+

(n− 1)!

(k − 1)!(n− k)!

= (n− 1)!

[
n− k

k!(n− k)!
+

k

k!(n− k)!

]
= (n− 1)!

n

k!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)
. �

Hockey-Stick Identity A.6. For 0 ≤ r ≤ n we have
n∑
i=r

(
i

r

)
=

(
n+ 1

r + 1

)
.

Proof. We will prove this by induction on the size of the difference n − r ≥ 0. If n = r, then we
have

n∑
i=r

(
i

r

)
=

r∑
i=r

(
i

r

)
=

(
r

r

)
= 1 =

(
r + 1

r + 1

)
=

(
n+ 1

r + 1

)
.

Next, suppose we know for some k ≥ r that

k∑
i=r

(
i

r

)
=

(
k + 1

r + 1

)
.

Then we have
k+1∑
i=r

(
i

r

)
=

(
k∑
i=r

(
i

r

))
+

(
k + 1

r

)
=

(
k + 1

r + 1

)
+

(
k + 1

r

)
=

(
k + 2

r + 1

)
by Pascal’s Rule A.5. �

Sequences. In this subsection we recall the important notion of convergence of sequences – a
foundational concept in analysis.

Definition A.7. Let a1, a2, a3, . . . be a sequence in R, and a ∈ R. We say that an converges to
a (notation: limn→∞ an = a or an → a), if for every ε > 0, there is a natural number n0 such that
for all natural numbers n ≥ n0 we have |an − a| ≤ ε.

Example A.8. For the sequence (1/n)n≥1, we have limn→∞ 1/n = 0.

Proof. Let ε > 0 be given. Let n0 be a natural number such that n0 ≥ 1/ε (such a natural number
always exists). Then for every n ≥ n0 we have 1/ε ≤ n. Multiplying both sides by ε and 1/n
then yields 1/n ≤ ε. In other words, for every n ≥ n0 we have |an − 0| ≤ ε. We conclude that
limn→∞ 1/n = 0. �

Here are some basic properties of limits that help with computations:
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Limit Laws A.9. Let (an)n≥1 and (bn)n≥1 be sequences in R and a, b ∈ R be such that limn→∞ an =
a and limn→∞ bn = b. Then

(1) limn→∞(an + bn) = a+ b,
(2) limn→∞ an · bn = a · b,
(3) If bn 6= 0 for all n and b 6= 0, then limn→∞ an/bn = a/b.

Proof. See [2, 9.3, 9.4, 9.6]. �

The following is a reformulation of the definition of a limit:

Lemma A.10. Suppose (an)n≥1 is a sequence in R and a ∈ R. Then limn→∞ an = a if and only
if for each ε > 0, the set {n ∈ N : |xn − x| ≥ ε} is finite.

Proof. Suppose that limn→∞ an = a. Let ε > 0 be arbitrary. Then there is N such that for all
n ≥ N , |an − a| ≤ ε/2 < ε. Then the set {n ∈ N : |xn − x| ≥ ε} has size at most N − 1.

Conversely, for ε > 0 be arbitrary. Then {n ∈ N : |xn − x| ≥ ε} has a largest element, say K.
Then for N := K + 1 we have that |xn − x| < ε for all n ≥ N . Since ε > 0 was arbitrary, we
conclude that limn→∞ an = a. �

Squeeze Lemma A.11. Suppose (an)n≥1 and (bn)n≥1 are sequences of real numbers such that

(1) 0 ≤ an ≤ bn for all n ≥ 1, and
(2) limn→∞ bn = 0.

Then limn→∞ an = 0.

Proof. Let ε > 0. By the definition of “limn→∞ bn = 0”, there is a natural number n0 such that for
every n ≥ n0 we have |bn − 0| ≤ ε. Then for every n ≥ n0 we also have |an − 0| ≤ ε by assumption
(1). Thus limn→∞ an = 0. �

Example A.12. If |a| < 1, then limn→∞ a
n = 0.

Proof. We may assume a 6= 0, and so |a| = 1/(1 + x) for some x > 0. Then we have

(1 + x)n ≥(∗) 1 + nx > nx

(the inequality (∗) is called Bernoulli’s Inequality, it follows easily by induction or as a consequence
of the Binomial Theorem) which implies

|a|n =
1

(1 + x)n
<

1

nx

By Example A.8 we know 1/nx → 0 as n → ∞, so by the Squeeze Lemma A.11 it follows that
|an| = |a|n → 0, and thus an → 0 as well. �

Definition A.13. Let (an)n≥1 be a sequence in R. Then

(1) (an)n≥1 is increasing if an ≤ an+1 for all n,
(2) (an)n≥1 is decreasing if an ≥ an+1 for all n,
(3) (an)n≥1 is monotone if it is either increasing or decreasing,
(4) (an)n≥1 is bounded if there is M > 0 such that |an| ≤M for all n.

Monotone Convergence Theorem A.14. All monotone bounded sequences converge.

Proof. See [2, 10.2]. �

In the next proposition, we deal with with sequences of complex numbers. If you are not comfortable
with complex numbers, then pretend everything is in R.

Proposition A.15. Given a sequence c1, c2, c3, . . . in C and c ∈ C, if cn → c, then (1+cn/n)n → ec.
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Proof. We will first prove two claims:

Claim. Suppose z1, . . . , zn and w1, . . . , wn are complex numbers of magnitude ≤ θ for some θ ≥ 0
in R. Then ∣∣∣∣∣

n∏
m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤ θn−1
n∑

m=1

|zm − wm|.

Proof of claim. We will prove this by induction. When n = 1 this is clear. Now suppose that we
know this is true for some n ≥ 1, and we want to prove it for n+ 1. Note that∣∣∣∣∣
n+1∏
m=1

zm −
n+1∏
m=1

wm

∣∣∣∣∣ ≤
∣∣∣∣∣z1

n+1∏
m=2

zm − z1

n+1∏
m=2

wm

∣∣∣∣∣+

∣∣∣∣∣z1

n+1∏
m=2

wm − w1

n+1∏
m=2

wm

∣∣∣∣∣ by Triangle Inequality

≤ θ

∣∣∣∣∣
n+1∏
m=2

zm −
n+1∏
m=2

wm

∣∣∣∣∣+ θn|z1 − w1|

= θn
n+1∑
m=2

|zm − wm|+ θn|z1 − w1| by Induction Hypothesis

= θn
n+1∑
m=1

|zm − wm|. �

Claim. Suppose b ∈ C is such that |b| ≤ 1. Then∣∣eb − (1 + b)
∣∣ ≤ |b|2.

Proof of claim. Since

eb − (1 + b) =
∞∑
k=2

bk

k!

and |b| ≤ 1, it follows that ∣∣eb − (1 + b)
∣∣ ≤ |b|2

2

∞∑
k=2

1

2k−2
= |b|2. �

We now proceed with the proof of the proposition. Define for each m ≥ 1, zm := (1 + cn/n),
wm := exp(cm/m), and let γ > |c|. Since cn → c, then for large n, |cn| < γ. Since 1 + γ/n ≤
exp(γ/n), it follows from our claims that∣∣(1 + cn/n)n − ecn

∣∣ ≤ (
eγ/n

)n−1
n
∣∣∣cn
n

∣∣∣2 ≤ eγ
γ2

n
→ 0

as n→∞. �

Here is a technical lemma used in the proof of the Central Limit Theorem:

Lemma A.16. Suppose R : R→ R is a function such that lims→0R(s)/s2 = 0. Then for t 6= 0 we
have

lim
n→∞

nR

(
t√
n

)
= 0.

Proof. The assumption on R implies that

lim
n→∞

R
(

t√
n

)
(

t√
n

)2 = 0.
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Multiplying by t2 6= 0 then gives

0 = lim
n→∞

R
(

t√
n

)
(

t√
n

)2 t
2 = lim

n→∞
nR

(
t√
n

)
. �

Series. Series or infinite sums are a special case of limit of a sequence:

Definition A.17. Suppose a1, a2, a3, . . . is a sequence in R. For each N ≥ 1, define the Nth
partial sum:

sN :=

N∑
n=1

an = a1 + a2 + · · ·+ aN .

We define the infinite sum of the sequence (an)n≥1 to be the limit of the partial sums (if it exists):

∞∑
n=1

an := lim
N→∞

sN = lim
N→∞

N∑
n=1

an.

Such an infinite sum is also called a series. If the limit exists, then we say the series converges.
Otherwise, we say that the series diverges. If limN→∞ sN = +∞, then we say that the series
diverges to +∞ and we write

∞∑
n=1

an = +∞.

Note that if an ≥ 0 for each n ≥ 1, then
∑∞

n=1 an will either converge or diverge to +∞, by the
Monotone Convergence Theorem [2, 10.2].

Geometric Series A.18. Given r ∈ R such that |r| < 1, then
∞∑
n=0

rn =
1

1− r

Proof. Note that

∞∑
n=0

rn = lim
N→∞

N∑
n=0

rn

= lim
N→∞

1− rN+1

1− r
by Geometric Sum A.4

=
1

1− r
since |r| < 1 implies limN→∞ r

N = 0. �

The next lemma says that if a series converges, then the “tail” of the series must get arbitrarily
small.

Lemma A.19. Suppose
∑∞

n=1 an converges. Then

lim
N→∞

∞∑
n=N

an = 0.

Proof. Suppose
∑∞

n=1 an = a. Then limN→∞(a− sN−1) = 0, and so

a− sN−1 =

∞∑
n=1

an −
N−1∑
n=1

an =
∞∑
n=N

an → 0. �
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Continuity.

Fact A.20. Suppose g : I → R is a continuous strictly increasing function on an interval I. Then
J := g(I) is an interval and g−1 : J → I ⊆ R is a continuous strictly increasing function.

Proof. See [2, 18.4]. �

Derivatives.

Fact A.21. Suppose g : I → R is a one-to-one continuous function on an open interval I, and let
J = g(I). If g is differentiable at x0 ∈ I and if g′(x0) 6= 0, then g−1 is differentiable at y0 = g(x0)
and

(g−1)′(y0) =
1

g′(x0)
.

Proof. See [2, 29.9]. �

Mean Value Theorem A.22. Suppose f : [a, b] → R is continuous and differentiable on (a, b).
Then there exists an x ∈ (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.

Proof. See [2, 29.3]. �

Inequality A.23. For every x ∈ R,
1− x ≤ e−x.

Proof. Define the function f : R→ R by f(x) := e−x − (1− x) for every x ∈ R. We need to show
that f(x) ≥ 0 for all x ∈ R. Note that f(0) = 0. Assume towards a contradiction there is some
b > 0 such that f(b) < 0. Then, by the Mean Value Theorem A.22 applied to f , a := 0 and b,
there is some x ∈ (0, b) such that f ′(x) = f(b)/b < 0. However, f ′(x) = 1− e−x > 0 since x > 0, a
contradiction. We similarly get a contradiction for b < 0. Thus the inequality holds. �

Integrals.

2nd Fundamental Theorem of Calculus A.24. Let f be an integrable function on [a, b]. For
x on [a, b], define

F (x) :=

∫ x

a
f(t)dt.

Then F is continuous on [a, b]. If f is continuous at x0 in (a, b), then F is differentiable at x0, and

dF

dx
(x0) = f(x0).

Proof. See [2, 34.3]. �
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Appendix B. Summary of Famous Random Variables

In this appendix we include a summary of important features of our famous random variables, both
discrete and continuous. Some notes:

(1) You are responsible for knowing all of these features, including the derivations.
(2) Discrete random variables also have CDFs, although they are less useful than they are for

continuous random variables so you don’t need to memorize them.
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Definining
Parameters

Range PMF pX(k) E[X] Var(X) MGF MX(s) = E[esX ]

Bernoulli p ∈ [0, 1] {0,1}


p, if k = 1

1− p, if k = 0

0, otherwise

p p(1− p) 1− p+ pes

Binomial p ∈ [0, 1],
n ∈ {0, 1, 2, . . .}

{0, 1, . . . , n}

{(
n
k

)
pk(1− p)n−k, if k = 0, 1, . . . , n

0, otherwise
np np(1− p) (1− p+ pes)n

Geometric p ∈ [0, 1] {1, 2, 3, . . .}

{
(1− p)k−1p, if k = 1, 2, 3, . . .

0, otherwise

1

p

1− p
p2

{
pes

1−(1−p)es if s < − ln(1− p)
∞ otherwise

Poisson λ ∈ R, λ > 0 {0, 1, 2, . . .}

{
e−λ λ

k

k! , if k = 0, 1, 2, . . .

0, otherwise
λ λ eλ(es−1)

Discrete
Uniform

Interval [a, b],
a, b ∈ Z, a < b

{a, a+ 1, . . . , b}

{
1

b−a+1 , if k = a, a+ 1, . . . , b

0, otherwise

a+ b

2

(b− a)(b− a+ 2)

12

eas − e(b+1)s

(b− a+ 1)(1− es)

Indicator Event A ⊆ Ω {0,1}


P(A), if k = 1

1− P(A), if k = 0

0, otherwise

P(A) P(A)(1− P(A)) 1− P(A) + P(A)es

Table 1. Famous Discrete Random Variables

Definining
Parameters

Range PDF fX(x) CDF FX(x) E[X] Var(X) MGF MX(s) = E[esX ]

Continuous
Uniform

a, b ∈ R, a < b [a, b]

{
1
b−a if x ∈ [a, b]

0 if x 6∈ [a, b]


1 if x > b
x−a
b−a if x ∈ [a, b]

0 if x < a

a+ b

2

(b− a)2

12

esb − esa

s(b− a)

Exponential λ ∈ R, λ > 0 [0,∞)

{
λe−λx if x ≥ 0

0 if x < 0

{
1− e−λx if x ≥ 0

0 if x < 0

1

λ

1

λ2

{
λ
λ−s if s < λ

∞ if s ≥ λ

Normal µ, σ ∈ R,
σ > 0

R
1√
2πσ

e−(x−µ)2/2σ2 1√
2πσ

∫ x

−∞
e−(t−µ)2/2σ2

dt µ σ2 e(σ2s2/2)+µs

Table 2. Famous Continuous Random Variables

9
3
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