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Preface

This volume represents the proceedings of the Fourth International Conference
on Typed Lambda Calculi and Applications, TLCA’99, held in L’Aquila, on 7-9
April 1999.

It contains 25 contributions. Fifty were submitted, their overall quality was
high, and selection was difficult. The Programme Committee is very grateful
to everyone who submitted a paper. It also contains two papers introducing the
”demos” of ”tlca software”, i.e. industrial products making use of typed lambda-
calculi.

The tutorials on

– Denotational semantics by Thomas Ehrhard and John Longley, and
– Intersection types by Mario Coppo and Mariangiola Dezani are not included

in this volume.

The editor wishes to thank the members of the Programme Committee and
the Organizing Committee listed, for their hard work and support, with a spe-
cial mention for Benedetto Intrigila. He also thanks Corrado Böhm for kindly
accepting the task of delivering a banquet speech.

The editor also expresses his gratitude to all the referees listed on the next
page, as well as to those who wish not to be listed for their essential assistance
and time generously given.

Marseille, January 1999 Jean-Yves Girard
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The Coordination Language Facility and

Applications

Jean-Marc Andreoli

Xerox Research Centre Europe, 38240 Grenoble, France,
Jean-Marc.Andreoli@xrce.xerox.com,

http://www.xrce.xerox.com

Abstract. This short paper gives a quick overview of CLF, a distributed
object coordination middleware, and two applications of that platform
to workflow. The driving concepts behind CLF derive from a reflection
on proof search in Linear Logic, and in particular, the systematic ex-
ploitation of its resource conscious nature.

1 CLF: A Coordination Middleware

CLF is born from a reflection on the application of Linear Logic to distributed
object coordination. It exploits the resource-conscious nature of Linear Logic in
the framework of the concurrent logic programming paradigm, where computa-
tions are identified with proof-search [And92]. Turning a theoretical model of
resource manipulation into a concrete distributed object coordination middle-
ware required two main steps:

– First, the notions of “resources” and “objects” had to be integrated. This
was achieved through a modification of the traditional object model of com-
putation, making plain the role of objects as resource managers.

– Second, the concurrent logic programming paradigm of proof search had
to be adapted to this new object model. This was realized by a scripting
language based on Linear Logic formulae to express coordination.

1.1 The CLF Object Model

The CLF object model enriches the traditional one by viewing objects as resource
managers, thus separating, inside the object state, the resources themselves from
their management state. Primitives are introduced to (i) inquire and negotiate
objects capabilities in terms of resource availability, (ii) perform basic transac-
tion operations over the resources of several objects (two-phase commit) and (iii)
request resource insertion. This enriched interaction model (Figure 1) is charac-
terized by a set of 8 interaction verbs (similar to KQML performatives) together
with a protocol describing correct sequences of invocations of these verbs, and
their intended meaning in terms of resource manipulations. Figure 2 gives an
overview of the verbs and the protocol. The interface of a CLF object distin-
guishes between “CLF services”, accessed through the CLF interaction protocol,
and regular methods, accessed through the traditional request/answer protocol.

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 1–5, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



2 Jean-Marc Andreoli

1.2 The CLF Coordination Scripting Facility

The CLF coordination scripting facility takes full advantage of the object model.
It allows high-level declarative specifications of coordinated invocations of CLF
object services. A coordination is viewed here as a complex block of inter-related
manipulations (removal, insertion, etc.) of the resources held by a set of objects
(called the participants of the coordination). CLF scripts describe, using Linear
Logic formulae, the expected global behavior of such blocks in terms of resulting
resource transformations, but abstracts away the detailed sequencing of invoca-
tions of the CLF interaction verbs required to achieve such a behavior. It is this
abstraction feature which considerably simplifies the design and verification of
coordination scripts and makes them highly platform independent and hence,
portable. The abstract operational semantics of CLF scripts is given in terms of
proof search. Currently, the fragment of Linear Logic used by the CLF script-
ing language is a small subset of LinLog [And92], which is itself a “complete”
fragment of Linear Logic in terms of proof search (complete in the sense that
proof search in full Linear Logic can be reduced without loss to proof search in
LinLog). Extensions of CLF to larger fragments of LinLog are possible, and may
lead to further refinements of the object model.

2 The Demonstration: Applications of the CLF

There are two ways to demonstrate a middleware tool such as CLF: (i) focus
on the middleware platform itself, but this is rather aimed at a somewhat spe-
cialized audience (developers of distributed object-based applications); (ii) show
applications (or rather prototype applications) which have been developed using
the platform.
We propose to demonstrate here two prototype applications developed us-

ing CLF. The first one, called XFolder, is a lightweight workflow management
system; the second one called XPect [AP98], is a generic electronic commerce
broker.

2.1 XFolder: a Lightweight Workflow Management System

XFolder uses the metaphor of the well-known circulation folder envelope to orga-
nize lightweight workflow within an organization or across several independent
organizations (with possible access restrictions between them). A circulation
folder consists of a set of documents, enclosed in an envelope, and a route, usu-
ally specified on the envelope, and describing the expected path of the envelope
through different services (or people) of the organization(s) and the tasks to be
performed at each stop. Whenever a user gets hold of the envelope, s/he can
perform the current task assigned to it (e.g. read, create, modify, annotate a
document, sign a sheet, insert a memo etc.), and, possibly, modify the route
(e.g. extend it or change some tasks), then forward it.
XFolder implements an electronic version of the traditional circulation folder,

with additional features allowed by this “virtualization”. The architecture of the
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system is described in Figure 3. The documents contained in the envelope are
held in electronic form in heterogeneous document repositories implemented as
CLF objects (the resources of which are the documents). The status of the indi-
vidual folders (route, current active task in the route, assignment of tasks etc.)
are held in a specific CLF object, the XFolder manager (the resources of which
are the virtual envelopes). CLF scripts handle the notification of available tasks
to each user, implement the task status transformation as tasks are performed,
and take care of migrating documents across different repositories when needed
(i.e. when a firewall or some access restriction prevents a document reference
from being directly shared between users).

2.2 XPect: an Electronic Commerce Broker

XPect realises the functionality of a broker for electronic commerce. It handles
the coordination of the different partners involved in an electronic commerce
transaction: customers, bankers, providers, delivery providers etc. Basically, the
customer submits a query to the broker, describing items of interest. The broker
browses through the catalogs of the different providers to extract offers matching
the query constraints (description of good, required options, price limits etc.).
The user may then select a set of different offers for purchase. This is differ-
ent from the “shopping basket” of traditional electronic commerce systems in
the sense that the selected items are considered as a whole: either all of them
are available at the condition of the offers, and the commercial transaction is
continued, or the whole transaction is cancelled (but the customer can always
resume the search phase). This atomic behavior is ensured even across indepen-
dent providers (e.g. with queries of the form “24x36mm camera from provider
A and a matching 50mm lens from provider B”, or “10 hardcopies of a book X
from bookshop A and a 24-hour delivery of the whole set from provider B”).
XPect is implemented as a CLF application. The architecture of the system

is described in Figure 4. The CLF objects involved are the providers, offering
virtual or hard goods classified in catalogs, the financial services (credit cards,
electronic cash etc.) and the customer management services. CLF scripts are
used to implement the different phases of the electronic commerce transaction.

References

And92. J-M. Andreoli: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3), 1992. 1, 2

AP98. J-M. Andreoli and F. Pacull: Distributed print on demand systems in the xpect
framework. Journal of Distributed and Parallel Databases, 1998. To appear. 2
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AnnoDomini in Practice: A Type-Theoretic

Approach to the Year 2000 Problem

Peter Harry Eidorff Fritz Henglein Christian Mossin
Henning Niss Morten Heine B. Sörensen Mads Tofte

Dept. of Computer Science, Univ. of Copenhagen (DIKU) and Hafnium ApS
{phei,henglein,mossin,hniss,rambo,tofte}@diku.dk
http://www.diku.dk, http://www.hafnium.com

Abstract. AnnoDomini is a commercially available source-to-source
conversion tool for finding and fixing Year 2000 problems in COBOL pro-
grams. AnnoDomini uses type-based specification, analysis, and trans-
formation to achieve its main design goals: flexibility, completeness, cor-
rectness, and a high degree of safe automation.

1 Introduction

The Year 2000 (Y2K) problem refers to the inability of software and hardware
systems to process dates in the 21st century correctly.1 The problem arises from
representing calendars years by their last two digits and thus restricting the range
of representable years to 1900-1999. Starting some 40 years ago, this convention
was established as one of numerous techniques for conserving precious memory
space.
The most widespread Year-2000-unsafe date representation consists of six

characters. It has two characters each for the day of the month, the month of
the year, and the calendar year, often in the order year-month-day (YYMMDD).
The string “981106”, for example, represents November 6th, 1998. The problem,
of course, is that no provision is made for representing years in the 21st century:
“00” represents 1900, not 2000.
Since the year 2000, mistakenly represented as “00”, comes before e.g. “99”,

comparison of two-digit years may produce unexpected results in the 21st cen-
tury, and this may incur problems in operating with e.g. expiry dates. Similarly,
arithmetical operations involving two-digit years may produce unexpected re-
sults, affecting e.g. interest calculations.
The Y2K problem affects countless systems at all levels: embedded systems,

operating systems, applications and data bases that process or contain dates.
Both its size and consequences are staggering. Cost estimates vary widely, but
according to Capers Jones, “the costs of fixing the year 2000 problem appear to
constitute the most expensive single problem in human history” [2, p. xxiii].
Updating application programs to become Year 2000 compliant usually in-

volves a combination of expansion and masking. Expansion refers to expanding

1 We adopt the convention of viewing the year 2000 as belonging to the 21st century.

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 6–13, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



AnnoDomini in Practice 7

unsafe two-digit years to four-digit years in applications, data bases, files, etc.
Expansion can be expensive, however: it requires that not only application pro-
grams be changed, but also data bases, files and all other programs communi-
cating dates. Masking denotes a variety of methods for extending two-byte year
representations into the 21st century; e.g. windowing, compression and encapsu-
lation. These techniques aim at extending the lifetime of existing data in data
bases and files as well as screen and print maps into the 21st century. In win-
dowing, for example, a pivot year determines whether a two-digit year belongs
to the 20th or the 21st century. For example, with pivot 70, 79 represents 1979,
and 41 represents 2041.
AnnoDomini2 is a tool (and accompanying method) for finding and fixing

Year 2000 problems in COBOL programs. It accommodates expansion as well as
masking by source-to-source transformation of COBOL programs. The converted
programs do not require special compiler support, but compile and execute in
their existing operating environment.
AnnoDomini consists of three components: an analysis and conversion engine

(60,000 lines of Standard ML), a graphical user interface (10,000 lines of Visual
Basic), and IBM’s Live Parsing Editor (a syntax-sensitive program editor). The
three components are tightly integrated, as will be explained in what follows.
AnnoDomini runs on Windows NT 4.0 and Windows 9X, and is commercially
available from Computer Generated Solutions, Inc. (an IBM business partner)—
see http://www.cgsinc.com and http://www.hafnium.com.
AnnoDomini uses type-based specification, analysis, and transformation to

achieve its main design goals: flexibility, completeness, correctness, and a high
degree of safe automation. The type-theoretic foundations of AnnoDomini have
been described elsewhere [1]. In the present brief account we aim to demonstrate
how AnnoDomini actually works in practice—emphasizing the role of types—
although we shall ignore many practical issues, e.g., key fields with years, align-
ment of key fields, aliasing, editing characters, padding/truncation, justification,
and usage.

2 The AnnoDomini Approach

In COBOL programs, dates are represented using the data types and opera-
tions of the source language: strings of characters and digits, and flat records.
Their intensional interpretation as representations of dates is not explicit. The
AnnoDomini approach is based on reverse engineering the programmer-intended
date interpretations as abstract types. This is done in three conceptual phases:
seeding, type checking, and conversion.

2.1 An Example COBOL Program Fragment

To illustrate the AnnoDomini approach, we consider the following fragment of
a COBOL program.

2 AnnoDomini is a registered trademark of Hafnium ApS.
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77 CUR-DATE PIC 999999.

77 LRD PIC 999999.

77 COLUMN PIC 99.

IF CUR-DATE > LRD PERFORM ISSUE-LAST-REMINDER.

IF COLUMN < 80 PERFORM DISPLAY-STATUS.

The first three lines are declarations of three variables: CUR-DATE (containing six-
digit data, signified by the six occurrences of 9), LRD (also containing six-digit
data), and COLUMN (containing two-digit data).
The first statement invokes procedure ISSUE-LAST-REMINDER if CUR-DATE

(“current date”) is greater than LRD (“last reminder date”).
The current date will most likely have form 000101 on January 1st, year

2000, so with a last reminder date of, say, December 31st, year 1999 (991231),
no last reminder will ever be issued as a result of running the application in the
year 2000 or later. This is not the desired behavior of the program.
The last statement invokes procedure DISPLAY-STATUS, provided the value

contained in COLUMN is less than 80. This comparison has nothing to do with
years and will continue to work in the 21st century.

2.2 Seeding

In the first phase of the AnnoDomini approach the user seeds the program with
year (and possibly non-year) information. This is done by annotating variable
declarations with Type System 2000 (TS2K) types that specify where years occur
in them, if at all.
TS2K types are concatenations of the following different base types:

1. YYYY: four-digit year;
2. WW: two-digit, windowed year relative to a fixed pivot, by default 00;3

3. N: single non-year character;
4. - . . .- (n occurrences of -): n characters of unknown type.

For example, from the declarations alone in our example program we might
guess that CUR-DATE is a six-digit date with a leading year, and that COLUMN is
a column position at the terminal screen and hence unrelated to years. What
LRD denotes, is not clear from the declaration alone. Thus, a seeded version of
the example program might read:

*TS2K WWNNNN

77 CUR-DATE PIC 999999.

*TS2K ------

77 LRD PIC 999999.

*TS2K NN

77 COLUMN PIC 99.

IF CUR-DATE > LRD PERFORM ISSUE-LAST-REMINDER.

IF COLUMN < 80 PERFORM DISPLAY-STATUS.

3 With pivot 00, two-digit windowed years are the two-digit years of the 20th century.
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Since COBOL comment lines start with * in column 7, the above TS2K type
declarations are treated as comments by the COBOL compiler. However, to
AnnoDomini they provide type information.
Seeding can be done automatically or manually. Automatic seeding works

by scanning variable names in a program, including all the libraries it imports,
and looking for matches according to both lexical and data description criteria.
Informally, for each program variable the user asks: “Could this variable contain
a calendar year, based on its name and its data description?” For example, a
variable named DEP-DAT and occupying 6 bytes, might represent a six-digit date
(“departure date”). Then again, it might not (“deposition data”). Automatic
seeding is specified by a combination of lexical inclusion and exclusion criteria
and a list of target date types. These specifications can be configured interac-
tively, and they can be stored in separate files for future use. Automatic seeding
is known to be quick, but also error-prone since it depends on nomenclature for
variable names. AnnoDomini presents a list of all matches along with annotation
suggestions, but does not automatically accept the results as bona-fide year an-
notations. Instead, it expects the user to explicitly accept or reject them, possibly
after inspecting the variable declarations through a point-and-click interface.
Manual seeding works by systematically checking the interfaces of a program;

e.g., data base, file, terminal and print map descriptions. In COBOL, these are
typically localized in shared libraries that are copied into programs by COPY
statements, COBOL’s macro expansion and source library access mechanism.
Manual seeding is less error-prone since it reduces guesswork. Since data base,
file, and map descriptions need to be annotated only once, but are typically used
by multiple programs, manual seeding need not be done for each program and
is thus often a quite efficient and safe seeding method.

2.3 Type checking

In the second phase AnnoDomini propagates the seeding information to other
data by type inference. In particular, types are propagated through comparisons
and assignments. For instance, since our example program contains the state-
ment

IF CUR-DATE > LRD PERFORM ISSUE-LAST-REMINDER.

the type of CUR-DATE is propagated to LRD, and AnnoDomini suggests that LRD
be given the same type. As with seeding suggestions, the user accepts and rejects
such suggestions through a point-and-click interface.
During propagation AnnoDomini also checks that the seeded and propagated

types are consistent with each other. For example, based on its cryptic name, we
might mistakenly have assumed that LRD is entirely composed of non-year data
and have assigned the type NNNNNN to it, in which case the types of CUR-DATE
and LRD would be inconsistent. In this case AnnoDomini signals a type error.
In general, type errors may stem from the following sources:

1. Seeding error. Seeding might be wrong; for instance, we might have assumed
the incorrect type NNNNNN for LRD.
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2. Not a Year 2000 problem. The type system does not allow both years and
and non-years to occupy the same storage at different times, such as when
printing both years and non-years through the same print buffer, as in the
following program fragment.4

*TS2K WW

77 CUR-YEAR PIC 99.

*TS2K NN

01 NON-YEAR PIC 99.

*TS2K NN

77 PRINT-BUF PIC 99.

MOVE CUR-YEAR TO PRINT-BUF.

MOVE NON-YEAR TO PRINT-BUF.

3. Year 2000 problem. The error might signal a Year 2000 problem or other
questionable computations on dates, e.g. a hardwired conversion between
four-digit years to two-digit years, as in the following program fragment in
which the two last digits of a four-digit year are moved into a two-digit vari-
able utilizing COBOL’s alignment and truncation rules. A similar coercion
in the other direction is adding 1900 to a two-digit year. Such hardwired
coercions do not generally work in the 21st century.

*TS2K WW

77 YEAR2 PIC 99.

*TS2K YYYY

77 YEAR4 PIC 9999.

MOVE YEAR4 TO YEAR2.

AnnoDomini does not attempt to guess what the cause of a type error is
and how to eliminate it. It suggests a number of plausible corrective actions,
however. These include changing the declarations of the variables involved in
the type incorrect statement—the relevant option in case of a seeding error.

Two other forms of suggestions are to insert ASSUME and COERCE annotations.
For instance, for the print buffer example, AnnoDomini suggests annotating the
MOVE statements with an ASSUME annotation; e.g.,

*TS2K WW

77 CUR-YEAR PIC 99.

*TS2K NN

77 NON-YEAR PIC 99.

*TS2K NN

77 PRINT-BUF PIC 99.

*TS2K ASSUME CUR-YEAR IS NN

MOVE CUR-YEAR TO PRINT-BUF.

MOVE NON-YEAR TO PRINT-BUF.

4 The MOVE statement is COBOL’s assignment statement.
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The ASSUME annotation tells the type checker that CUR-YEAR should be treated
as having type NN in this statement only. (This is dangerous, of course, and there-
fore requires an explicit annotation in the source code.)
The COERCE annotation is used to convert between different year formats.

For instance, AnnoDomini suggest annotating the type incorrect statement MOVE
YEAR4 TO YEAR2 with a COERCE statement, e.g.,

*TS2K COERCE YEAR4 TO WW BY D4TO2N0

MOVE YEAR4 TO YEAR2.

The coercion D4TO2N0 converts a four-digit year to a value with the same year
in windowed representation. The COERCE annotation is similar to the ASSUME
annotation: the former instructs in the above example AnnoDomini to regard
YEAR4 as having type WW. The difference is that, in the conversion phase COERCE
annotations are replaced by code performing the coercions, whereas ASSUME an-
notations have no run-time significance.
AnnoDomini also provides point-and-click access to the statements causing

type errors and to the declarations of the variables occurring in the type incorrect
statement for manual browsing and editing of the source code.
AnnoDomini issues warnings for all relational and arithmetic operations on

two-digit years as well as for all relational and arithmetic operations for which
there is insufficient type information to determine whether their operands con-
tain years or not. This is a case where seeding is incomplete, with potentially
dangerous consequences. The user is expected to check the warnings to deter-
mine whether they cover over any potential Year 2000 problems. They can also
be eliminated by strengthening the seeding to resolve the operand types.
Seeding and type checking are repeated, possibly interchangeably, until all

type errors are eliminated and the program is type correct.

2.4 Conversion

The third and final phase consists of virtual conversion and actual conversion.
During virtual conversion the user specifies Year 2000-safe types for each vari-
able. For example

*TS2K WWNNNN->YYYYNNNN

77 CUR-DATE PIC 999999.

*TS2K WWNNNN->YYYYNNNN

77 LRD PIC 999999.

*TS2K NN

77 COLUMN PIC 99.

IF CUR-DATE > LRD PERFORM ISSUE-LAST-REMINDER.

IF COLUMN < 80 PERFORM DISPLAY-STATUS.

is a virtual conversion which specifies that CUR-DATE and LRD should be expanded
from a six-digit to an eight-digit date representation. The actual conversion is
then fully automatic, yielding the following program fragment:
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*TS2K YYYYNNNN

77 CUR-DATE PIC 99999999.

*TS2K YYYYNNNN

77 DUE-DATE PIC 99999999.

*TS2K NN

77 COLUMN PIC 99.

IF CUR-DATE > DUE-DATE PERFORM ISSUE-LAST-REMINDER.

IF COLUMN < 80 PERFORM DISPLAY-STATUS.

Alternatively, a virtual conversion can be specified by changing the default
pivot for windowing from 00 to, say, 70 (this does not require any change to the
program). Actual conversion then yields, fully automatically:

*TS2K WWNNNN

77 CUR-DATE PIC 999999.

*TS2K WWNNNN

77 DUE-DATE PIC 999999.

*TS2K NN

77 COLUMN PIC 99.

MOVE CUR-DATE TO ARG-1 OF ARGUMENT OF LT70N4-PARAMS.

MOVE DUE-DATE TO ARG-2 OF ARGUMENT OF LT70N4-PARAMS.

CALL "LT70N4" USING LT70N4-PARAMS.

IF RESULT OF LT70N4-PARAMS = ’1’

PERFORM ISSUE-LAST-REMINDER.

IF COLUMN < 80 PERFORM DISPLAY-STATUS.

The first four program statements call the AnnoDomini library routine LT70N4
which compares dates with leading two-digit windowed years relative to pivot
70 (COBOL’s built-in operator > does not work since it does not take the pivot
into account). The year-unrelated comparison COLUMN < 80 is left as is.
Each variable can have its own year representation. AnnoDomini has built-in

support for four-digit years and windowed two-digit years, Apart from these, it
allows abstract, user-defined two-digit years. These are denoted AA(t), where t
is the name of a user-defined library, which must contain the required arithmetic
and relational operations. These can be type-checked on a par with the built-in
year types.
Actual conversion is fully automatic: at the push of a button, data declara-

tions are expanded as desired, calls to the specified coercions are inserted, and
arithmetic and relational operations involving two-digit years are replaced by
calls to AnnoDomini’s Year 2000-safe library routines.

3 Conclusion and Related Work

The decision to base AnnoDomini on types has had a number of advantages.
First, types are good for explicating the intention of data. For instance, types

are good for distinguishing between years and non-years, e.g. between 80 as
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a two-digit year and 80 as a column position. Similarly, types are good for
distinguishing between different types of years, e.g. 80 as the two-digit windowed
year 1980 and 80 as the year 80 A.D.
Second, types are good for discovering Year 2000 problems; for instance,

the comparison CUR-YEAR < 80 is problematic if CUR-YEAR is a two-digit year,
whereas COLUMN < 80 is unproblematic if COLUMN denotes non-year information.
Third, types are good for guiding transformations. In particular,

year-unrelated code can be left as is.
Fourth, many design choices are made simply and elegantly by casting our

analysis as a type inference. For instance, how to report inconsistent usage of
years in the program? This obviously becomes a type error.
Finally, we have been able to benefit greatly from the design and implementa-

tion of ML, and its underlying theory, in developing AnnoDomini. For instance,
some of the main results concerning type inference in [1] were adopted from
Hindley-Milner type inference, with some modifications.
There is a vast literature on type theory and type-based program analysis.

There are also numerous Year 2000 tools. Very few of those are semantics-based,
however, and of those only AnnoDomini appears to be type-based with integrated
automatic analysis and conversion.
The value of working with type notions in software understanding and reengi-

neering has been observed previously by O’Callahan and Jackson [3].
Van Deursen and Moonen [5] describe type inference rules for COBOL for clas-
sifying data into sets of data representations. Subtyping is interpreted as sub-
sumption of value sets. Their system specifies type equivalences, and it allows
subtyping steps at assignments. Intuitively, this specifies a flow-insensitive data
flow analysis, refined by data flow sensitivity at assignments.
Independently of us, Ramalingam,Field and Tip have developed basically the

same unification algorithm as used by AnnoDomini’s type inference algorithm [4].
They also demonstrate how their algorithm is applicable to Year 2000 program
analysis.
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1 Introduction

The question we want to investigate was expressed by Girard in [3]:

“Assume that I am given a program P [a proof-net Π ], and that I cut
it in two parts arbitrarily. I create two ... modules, linked together by
their border. Can I express that my two modules are complementary
[orthogonal ], in other terms that I can branch them by identification over
their common border? One would like to define the type of the modules
as their branching instructions; these branching instructions should be
such that they authorized the restoring of the original P [the proof-net
Π ].”

Girard in [3] gave the solution for the multiplicative fragment of linear logic
(MLL); another deep investigation of this question for MLL has been given by
Danos and Regnier in [2]. Here we present the first steps towards a solution of
this question for the multiplicative fragment of non-commutative logic (MNL),
which is a refinement of MLL and an extension of both MLL and the cyclic
multiplicative linear logic. MNL was introduced in [1].
The lines of Girard’s investigations [3] are the basis for our investigations,

since they can be improved and adapted also for MNL.
In the following:

1. we define what a module is in MNL, i.e. what we obtain from a proof-net in
MNL by splitting it arbitrarily, and we define what is a type of a module in
MNL;

2. we define when two modules in MNL are orthogonal, and we prove the the-
orem: if two modules Π1 and Π2 in MNL are orthogonal, then Π1 ◦Π2 (i.e
what we get by gluing their common border) is a proof-net in MNL.

In order to understand the paper, and the new questions posed to MNL with
respect to MLL, we give a short summary about proof nets in MNL (called MNL
proof-nets).
The formulas of MNL are built from atoms (p, q, . . .) and their orthogonal

(p⊥, q⊥, . . .) by using the following binary connectives:

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 14–24, 1999.
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– multiplicative connectives: ⊗, ℘
– non-commutative connectives: � (next), ∇ (sequential).

A MNL proof-structure is defined as usual by taking the following links:

– axiom-link (no premises; conclusions: A⊥ and A),
– cut-link (no conclusions; premises: A and A⊥),
– for each connective ♦ , the ♦-link (conclusion: A♦B; first premise: A; second
premise: B).

A set of switches is defined for each link:

– for the axiom-link, one switch (A⊥ ↑→ A ↓, A ↑→ A⊥ ↓),
– for the cut-link, one switch (A ↓→ A⊥ ↑, A⊥ ↓→ A ↑),
– for the ⊗-link, the usual two switches ⊗-L and ⊗-R,
– for the ℘-link the usual two-switches ℘-L and ℘-R,
– for the�a unique switch:�-R ((A�B) ↑→ A ↑, A ↓→ B ↑, B ↓→ (A�B) ↓),
– for the ∇-link three switches: ∇-L ((A∇B) ↑→ A ↑, B ↓→ B ↑, A ↓→
(A∇B) ↓), ∇-R ((A∇B) ↑→ B ↑, A ↓→ A ↑, B ↓→ (A∇B) ↓), ∇-3
((A∇B) ↑→ A ↑, B ↓→ (A∇B) ↓).

A switching for a MNL proof-structure Π is a function s such that, for every
link l in Π , s(l) is a switch for l.
Given a switching s for a MNL proof-structure Π , we can construct an ori-

ented graph s(Π). The set of the vertices of s(Π) is:

{Ax | A occurrence of formula in Π and x ∈ {↑, ↓}}

In s(Π) there is the oriented edge Ax → By if, for some link l, Ax → By is
given by s(l), and, moreover, there is an edge between C ↓ and C ↑ for every
conclusion C.
A trip in s(Π) is a maximal path in s(Π). The trips in s(Π) may be:

– either cyclic, i.e. of the from Ax . . .Ax, with x ∈ {↑, ↓}; a long trip is a cyclic
trip containing B ↑ and B ↓ for each occurrence of formula B in Π ;

– or non cyclic; in this case the trip has the form B ↑ . . . A ↓, where B is the
second premise of a ∇-link l such that s(l)∇-3 and A is the first premise of
a ∇-link l′ such that s(l′)∇-3.

Π is a MNL proof-net iff:Π is a MNL proof-structure such that, for any switching
s, there is exactly one cyclic trip T in s(Π) and T :

– is bilateral, i.e. T does not contain the pattern Bx . . .Cy . . .Bx̄ . . .C ȳ, where
x, y ∈ {↑, ↓} and ↑̄ ↓, ↓̄ ↑,

– contains all the conclusions of Π .
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So, when Π is a MNL proof-net and s is a switching for Π , non-cyclic trips do
not contain conclusions of Π .
Due to the possible presence of ∇-links, with switch ∇-3, the unique cycle

in s(Π), where Π is a MNL proof-net, is not necessarily a long trip. Due to the
unique switch �-R for �-links, we can not conclude that every trip is bilateral,
from the existence of a unique cycle T in s(Π) for every switching s.
The existence of non-cyclic trips in s(Π), and the requirement of the bilater-

ality of the unique cycle in s(Π) for every switching s, are the main difficulties
when we try to adapt the lines of Girard’s investigations in [3] to MNL. The
existence of non-cyclic trips leads to consider partial permutations (instead of
total permutations), induced by the switchings; the need that a cyclic trip must
contain all the conclusions leads to consider sets γs induced by each switching
s; the requirement of the bilaterality of cyclic trips leads to introduce a more
refined concept of orthogonality between permutations and to use relations δs
and χs induced by each switching s.

2 Bordered MNL proof-structures, switchings and trips

Definition 1. 〈Π ;Γ 〉 is a bordered MNL proof-structure iff:

– Π is a graph of occurrences of formulas of MNL, linked by occurrences of
links of MNL; | Π | is the set of all the occurrences of formulas of Π, and
LΠ is the set of all occurrences of links in Π,

– for every A ∈| Π | there is at most a link l ∈ LΠ , such that A is a premise
of l; Con(Π){A ∈| Π | |∀l ∈ LΠ .Aisnotpremiseofl};

– for every A ∈| Π | there is at most a link l ∈ LΠ, such that A is a conclusion
of l; Hyp(Π){A ∈| Π | |∀l ∈ LΠ .Aisnotconclusionofl};

– Γ (the border) is a finite sequence of occurrences of formulas of Π such that:
• for every A ∈ Hyp(Π), A is in Γ ,
• if A is in Γ , then A ∈ Hyp(Π) ∪ Con(Π);
PCon(〈Π ;Γ 〉){A ∈ Con(Π) | A 6∈ Γ }.

The elements of Hyp(Π) are called the hypothesis of Π . The elements of
Con(Π) are called the conclusions of Π and those of PCon(Π) are called the
proper conclusions of 〈Π ;Γ 〉. If Γ is empty, then 〈Π ; ∅〉 is exactly a MNL proof-
structure as defined in [1].

Definition 2. Two bordered MNL proof-structures 〈Π1;Γ1〉 and 〈Π2;Γ2〉 are
compatible iff:

– Γ1Γ2,
– for every A in Γ1, A ∈ Con(Π1) iff A ∈ Hyp(Π2) , and A ∈ Con(Π2) iff
A ∈ Hyp(Π1).

Definition 3. If 〈Π1;A1 . . .An〉 and 〈Π2;A1 . . .An〉 are compatible bordered
MNL proof-structures, then Π1 ◦ Π2 is the graph obtained from Π1 and Π2 by
i dentifying of the occurrences Ai in Π1 with the occurrences Ai in Π2, for all
i ∈ {1 . . .n}.
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Remark that, if Π is commutative (i.e. without � and ∇), then the above
definitions are those given by Girard in [3].
If 〈Π1;Γ 〉 and 〈Π2;Γ 〉 are compatible bordered MNL proof-structures, then

Π1 ◦Π2 is an MNL proof-structure.

Definition 4. s is a switching for a bordered MNL proof-structure 〈Π ;Γ 〉 iff s
is a function such that, for every l ∈ LΠ, s(l) is a switch for l.
If s is a switching for a bordered MNL proof-structure 〈Π ;Γ 〉, then s(〈Π ;Γ 〉)

is the oriented graph such that:

– | s(〈Π ;Γ 〉) | {Ax | A ∈| Π | textandx ∈ {↑, ↓}}.
– In s(〈Π ;Γ 〉) there is the oriented edge Ax −→ By (where x, y ∈ {↑, ↓}) if:
• either, for some link l ∈ LΠ, Ax −→ By is given by s(l),
• or AB is a proper conclusion of 〈Π ;Γ 〉, and both x ↓, and y ↑.

Remark that in s(〈Π ;Γ 〉) there is no oriented edge

– from A ↓ , when A ∈ Con(Π) and A is in Γ , or when A is the first premise
of a ∇-link l ∈ LΠ such that s(l)∇-3,

– from A ↑, when A ∈ Hyp(Π),
– to A ↓, when A ∈ Hyp(Π),
– to A ↑ , when A ∈ Con(Π) and A is in Γ , or when A is the second premise
of a ∇-link l ∈ LΠ such that s(l)∇-3.

We shall use the following notations for A ∈ Γ : Ain(Π) is:
�
A ↑ ifA ∈ Con(Π)
A ↓ ifA ∈ Hyp(Π)

and Aout(Π) is: �
A ↓ ifA ∈ Con(Π)
A ↑ ifA ∈ Hyp(Π)

Ain(Π) is the position of A (A ↓ or A ↑) such that we can move in Π
through A.
Aout(Π) is the position of A (A ↓ or A ↑) such that we can exit from Π

through A.

Definition 5. Let s be a switching for a bordered MNL proof-structure 〈Π ;Γ 〉.
A trip in s(〈Π ;Γ 〉) is a maximal path in s(〈Π ;Γ 〉).

Let s be a switching for a bordered MNL proof-structure 〈Π ;Γ 〉. Each trip
in s(〈Π ;Γ 〉) belongs to exactly one of these classes:

– cyclic trips or cycles, i.e. trips of the form Ax . . .Ax, where A ∈| Π | and
x ∈ {↑, ↓},
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– Γ trips, i.e. the trips of the form Ain(Π) . . .Bout(Π), where A,B are formulas
in Γ ,

– critical trips, i.e. trips of the form C ↑ . . .Dx or Ay . . .B ↓, where C is the
second premise of a ∇-link l ∈ LΠ , such that s(l)∇-3 and B is the first
premise of a ∇-link l′ ∈ LΠ , such that s(l′)∇-3.

3 The type of a bordered MNL proof-structure

Definition 6. σ ∈ perm({1, . . . , n}) iff σ is a (total or partial) permutation of
{1, . . . , n}, i.e. is a (total or partial) injection from {1 . . . , n} to {1, . . . , n}.

Definition 7. Let 〈Π ;Γ 〉 be a bordered MNL proof-structure, where Γ is
A1 . . . An. Let s be a switching for 〈Π ;Γ 〉.

– ps is the (partial or total) permutation of {1, . . . , n}, defined by:
for every i ∈ {1, . . . , n}, ps(i)j iff there is a Γ -trip in s(〈Π ;Γ 〉) of the form

A
in(Π)
i . . . A

out(Π)
j .

Remark that, if i ∈ {1 . . . n} and there is a critical trip A
in(Π)
i . . . B ↓ in

s(〈Π ;Γ 〉), then ps(i) is not defined.

– βs ⊆ {1 . . .n}4 is defined by:
for every i, j, k,m ∈ {1, . . . , n}, βs(i, j, k,m) iff the Γ -trips

A
in(Π)
i . . . A

out(Π)
ps(i)

, A
in(Π)
j . . .A

out(Π)
ps(j)

, A
in(Π)
k . . .A

out(Π)
ps(k)

, A
in(Π)
m . . .A

out(Π)
ps(m)

exist in s(〈Π ;Γ 〉) and by linking these trips as follows

A
in(Π)
i . . .A

out(Π)
ps(i)

−→ A
in(Π)
j . . .A

out(Π)
ps(j)

−→

−→ Ain(Π)k . . . A
out(Π)
ps(k)

−→ Ain(Π)m . . . A
out(Π)
ps(m)

we get a bilateral trip (i.e. there is not a configuration Bx . . . Cy . . .Bx̄ . . .C ȳ,
where x, y ∈ {↑, ↓}, ↑̄ ↓ and ↓̄ ↑),

– γs is the subset of {1, . . . , n} defined by:

i ∈ γs iff the trip A
in(Π)
j . . .A

out(Π)
ps(j)

exists in s(〈Π ;Γ 〉) and in this trip there

is at least one proper conclusion of 〈Π ;Γ 〉,

– δs ⊆ {1, . . . , n}
2 is defined by:

for every i, j ∈ {1, . . . , n}, δs(i, j) iff ps(i) and ps(j) are defined and there is

B in Π such that Bx is in the Γ -trip from A
in(Π)
i and Bx̄ is in the Γ -trip

from A
in(Π)
j ,
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– χs ⊆ {1, . . . , n}3 is defined by:
for every i, j, k ∈ {1, . . . , n},χs(i, j, k) iff ps(i), ps(j) and ps(k) are defined
and by linking these trips as follows

A
in(Π)
i . . .A

out(Π)
ps(i)

−→ Ain(Π)j . . .A
out(Π)
ps(j)

−→ Ain(Π)k . . .A
out(Π)
ps(k)

we get a bilateral trip (i.e. there is not a configuration Bx . . . Cy . . .Bx̄ . . .C ȳ,
where x, y ∈ {↑, ↓}, ↑̄ ↓, and ↓̄ ↑).

Remark that βs, δs and χsare related as showed in the following lemma.

Lemma 1. Let s be a switching for 〈Π ;A1, . . . , An〉. Let S be a cycle made of
elements of {1 . . . , n}. Let us consider the following statements:

1. For every i, j, k,m ∈ {1, . . . , n}, if i . . . j . . . k . . .m occurs in this order in S,
then βs(i, j, k,m),

2. For every i, j, k,m ∈ {1, . . . , n},

– if i . . . j . . . k occurs in this order in S, then χs(i, j, k), and
– if i . . . j . . . k . . .m occurs in this order in S, then either δs(i, k) does not
hold, or δs(j,m) does not hold.

Then, the statement in point 2 implies the one in point 1.

Proof. Let the statement 2 hold. Let i be the Γ -trip from Ai, j from Aj , k from
Ak, and m from Am. Let i . . . j . . . k . . .m occur in this order in S. Then, by the
statement 2: χs(i, j, k), χs(i, k,m), χs(j, k,m) hold so that the possible pattern
Bx . . .Cy . . .Bx̄ . . . C ȳ in

i −→ j −→ k −→ m

may occur only when Bx is in i, Cy is in j, Bx̄ is in k, C ȳ is in m, i.e. when
δs(i, k) and δs(j,m) hold; but this is excluded by the statement 2.

Definition 8. Let σ1, σ2 ∈ perm({1 . . . n}). Let γ1, γ2 ⊂ {1 . . .n}. Let δ1, δ2 ⊂
{1 . . .n}2. Let χ1, χ2 ⊂ {1 . . . n}3.
〈σ1, γ1, δ1, χ1〉⊥〈σ2, γ2, δ2, χ2〉 iff:

– the composition σ1σ2 contains exactly one cycle T1; if T1 is the cycle

σ1σ2(i) . . . (σ1σ2)
k(i) ,

for some i ∈ {1 . . . n} and k ≤ n, then call T2 the following unique cycle of
σ2σ1:

σ2(i), σ2((σ1σ2)(i)), . . . , σ2((σ1σn)
k−1(i)) ,

and T the following cycle:

i, σ2(i), (σ1σ2)(i) . . . σ2((σ1σ2)
k−1(i)), (σ1σ2)

k(i) .
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– T is bilateral, i.e. T does not contain the configuration j . . . k . . . j . . . k,

– for every j ∈ {1 . . . n}, if j ∈ γ1 then j is in T1, and if j ∈ γ2 then j is
in T2,

– for every j, k,m, h ∈ {1 . . .n},

• if j . . . k . . .m . . . h is a portion of T1, then either δ1(j,m) does not hold,
or δ1(k, h) does not hold,

• if j . . . k . . .m . . . h is a portion of T2, then either δ2(j,m) does not hold,
or δ2(k, h) does not hold,

– for every j, k,m ∈ {1 . . . n},

• if j . . . k . . .m is a portion of T1 then χ1(j, k,m), and
• if j . . . k . . .m is a portion of T2 then χ2(j, k,m).

Remark that 〈σ1, γ1, δ1, χ1〉⊥〈σ2, γ2, δ2, χ2〉 iff 〈σ2, γ2, δ2, χ2〉⊥〈σ1, γ1, δ1, χ1〉.

Definition 9. – The set Dperm({1 . . . n}) is

{〈σ, γ, δ, χ〉 | σ ∈ perm({1 . . . n}), γ ⊆ {1 . . . n}, δ ⊆ {1 . . . n}2, χ ⊆ {1 . . . n}3}.

– If X, Y ⊆ Dperm({1 . . . n}) then

X⊥Y iff ∀x ∈ X, y ∈ Y.x⊥y .

Definition 10. Let 〈Π ;Γ 〉 be a bordered MNL proof-structure. type(〈Π ;Γ 〉)
{〈ps, βs, γs〉 | s switching of 〈Π ;Γ 〉}.

Remark that if we restrict us to total permutations and we delete γ, δ and
χ, the definition 9 is exactly the definition of orthogonality of permutations and
between sets of permutations given by Girard in [3].
If Π is commutative, then, for every s, ps is a total permutation.
The need for δs and χs comes from the condition that trips in MNL proof-

nets must be bilateral. The need for γs comes from the condition that the unique
cycle in MNL proof-nets, under a switching s, must contain all the conclusions.
So, when Π is commutative, we can disregard γs, δs, χs.

4 Orthogonal MNL modules

Definition 11. 〈Π ;Γ 〉 is a MNL proof-module iff:

– 〈Π ;Γ 〉 is a bordered MNL proof-structure and Γ is not empty,
– for every switching s for 〈Π ;Γ 〉:

• in s(〈Π ;Γ 〉) there is no cycle,
• for every critical trip T in s(〈Π ;Γ 〉)there is no proper conclusion in T .

Remark that the only condition added to the definitions given by Girard in
[3] is the last point in definition 11.
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Definition 12. 〈Π1;Γ 〉⊥〈Π2;Γ 〉 iff:

– 〈Π1;Γ 〉 and 〈Π2;Γ 〉 are compatible MNL modules,
– type(〈Π1;Γ 〉)⊥ type(〈Π2;Γ 〉).

Theorem 1. If 〈Π1;Γ 〉⊥〈Π2;Γ 〉, then 〈Π1;Γ 〉 ◦ 〈Π2;Γ 〉 is a proof net of MNL.

Proof. Let s be an arbitrary switching for Π1 ◦Π2; we show that:

1. there is a cycle T ∗ in s(Π1 ◦Π2),
2. T ∗ is bilateral,
3. T ∗ contains all the conclusions of Π1 ◦Π2,
4. T ∗ is the unique cycle in s(Π1 ◦Π2).‘

Observe that ss1 + s2, where s1 is a switching for Π1 and s2 is a switching
for Π2, and the conclusions of Π1 ◦ Π2 are the elements of PCon(〈Π1;Γ 〉) ∪
PCon(〈Π2;Γ 〉).
Let σps1 and τps2, γ1γs1 , γ2γs2 , δ1δs1 , δ2δs2 , χ1χs1 , χ2χs2 .

Proof of 1. Since type(〈Π1;Γ 〉)⊥ type(〈Π2;Γ 〉) we get that
〈σ, β1, γ1〉⊥〈τ, β2, γ2〉. Take the unique cycle T1 of στ :

στ (i), (στ )2(i), . . . , (στ )k(i)i

where i ∈ {1 . . . n} and k ≤ n, and consider the cycle T obtained by interpolating
in T1 the cycle T2 in τσ:

i, τ(i), στ (i), τ (στ (i)), (στ )2(i), . . . , τ((στ )k−1(i)), (στ )k(i)i

T ∗ is:

A
in(Π2)
i . . .A

out(Π2)
τ(i) . . . A

in(Π2)
στ(i) . . .A

out(Π2)
τ(στ(i)) . . .

A
in(Π2)
(στ)2(i) . . .A

out(Π2)
τ((στ)k−1 (i))

. . .A
in(Π2)
(στ)k(i)

Remark that out(Π1) in(Π2) and in(Π1) out(Π2).
T ∗ is a cyclic trip in s(Π1 ◦Π2) since, by definition of σ and τ ,

A
out(Π2)
τ(i) . . .A

in(Π2)
στ(i) , A

out(Π2)
τ(στ(i)) . . . A

in(Π2)
(στ)2(i), . . . , A

out(Π2)

τ((στ)k−1(i))
. . .A

in(Π2)

(στ)k (i)

are trips in s1(〈Π1;Γ 〉) and

A
in(Π2)
i . . .A

out(Π2)
τ(i) , A

in(Π2)
στ(i) . . . A

out(Π2)
τ(στ(i)), A

out(Π2)
(στ)k−1(i)

. . .A
in(Π2)
τ((στ)k−1 (i))

are trips in s2(〈Π2;Γ 〉).
Proof of 2. First remark that T is bilateral so that also the sequence of the

occurrence of Axi (with i ∈ {1 . . .n} and x ∈ {↑, ↓}) in T
∗ is bilateral; i.e. the

border is arranged inside T ∗ in a bilateral way.
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Suppose that in T ∗ there is a non bilateral pattern

Bx . . .Cy . . .Bx̄ . . .C ȳ

(x, y ∈ {↑, ↓}).
First case: B ∈| Π1 | and C ∈| Π1 |.

In this case, Bx, Cy, Bx̄, C ȳ are in some Γ -trips of σ1(〈Π1;Γ 〉). If these occur-
rences are distributed in at most three Γ -trips, then we find three Γ -trips:

A
in(Π1)
j . . . A

out(Π1)
σ(j) , A

in(Π1)
k . . .A

out(Π1)
σ(k) , Ain(Π1)m . . .A

out(Π1)
σ(m)

such that the order of the occurrences of j, k,m in T1 is j . . . k . . .m, and

A
in(Π1)
j . . .A

out(Π1)
σ(j) −→ A

in(Π1)
k . . .A

out(Π1)
σ(k) −→ Ain(Π1)m . . .A

out(Π1)
σ(m)

contains the patternBx , Cy, Bx̄, C ȳ; but then not χ1(j, k,m), in contradiction
with type(〈Π1;Γ 〉)⊥ type(〈Π2;Γ 〉).

Let Bx be in the Γ -trips from A
in(Π1)
j , Cy be in the Γ -trips from A

in(Π1)
k ,

Bx̄ be in the Γ -trips from A
in(Π1)
m , C ȳ be in the Γ -trips from A

in(Π1)
h . In T1 the

order of the occurrences j, k,m, h is just:

j . . . k . . .m . . . h

but δ1(j,m) and δ1(k, h) in contradiction with type(〈Π1;Γ 〉)⊥ type(〈Π2;Γ 〉).
Second case: B ∈| Π2 | and C ∈| Π2 |. Analogous to the first one.
Third case: B ∈| Π1 | and C ∈| Π2 |.
In this case Bx and Bx̄ are in some Γ -trips of s1(〈Π1;Γ 〉), say Bx is in the

Γ -trip from

A
in(Π1)
j

and Bx̄ is in the Γ -trip from

Ain(Π1)m ;

Cy and C ȳ are in some Γ -trips of s2(〈Π2;Γ 〉), say Cy is in the Γ -trip from

A
in(Π2)
h

and C ȳ is in the Γ -trip from

A
in(Π2)
k .

In T the order of the occurrences of j,m, k, h is:

j . . . k . . .m . . . h .

Consider the portion of T ∗:

A
in(Π1)
j . . .Bx . . . A

out(Π1)
σ(j) . . .A

in(Π2) out(Π1)
k
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and let r be such that A
out(Π1)
r is in this portion after Bx, whereas A

in(Π1)
r is

not in this portion (such an r exists by obvious considerations.) Now, consider
the portion:

A
in(Π1)
j . . .Bx . . .Aout(Π1)r . . . Ain(Π1) out(Π2)m . . .Bx̄ . . . A

out(Π1)
σ(m) .

rm, because, otherwise there would be the pattern:

Ain(Π1)r . . .Bx . . .Aout(Π1)r . . . Bx̄ ,

or the pattern:

Bx . . . Aout(Π1)r . . .Bx̄ . . .Ain(Π1)r

with only formulas belonging to Π1, and this is excluded by the first case.

Therefore the portion of T ∗ from A
in(Π1)
j to A

out(Π2)
τ(h) looks as follows:

A
in(Π1)
j . . .Bx . . . Aout(Π1)r . . .A

in(Π2)
k . . . Cy . . . A

out(Π2)
τ(k) . . .

. . . . . .Ain(Π1)r . . . Bx̄ . . . A
in(Π2)
h . . .C ȳ . . .A

out(Π2)
τ(h)

.

Restrict our attention to Γ -trips of s2(〈Π2;Γ 〉) which occur in the here above
portion of T ∗:

Ain(Π2)r . . .A
out(Π2)
τ(r) (1)

A
in(Π2)
k . . .Cy . . . A

out(Π2)
τ(k) (2)

A
in(Π2)
τ−1(r)

. . .Aout(Π2)r (3)

A
in(Π2)
h . . .C ȳ . . . A

out(Π2)
τ(h) (4)

but (1)−→(2)−→(3)−→(4) is not bilateral since it contains the pattern

Ain(Π2)r . . .Cy . . .Aout(Π2)r . . . C ȳ ;

with only formulas belonging to Π2, and this contradicts the second case.
Fourth case: B ∈| Π2 | and C ∈| Π1 |. Analogous to the third one.
Proof of 3. Let C be a proper conclusion of a 〈Π1;Γ 〉. Since 〈Π1;Γ 〉 is an

MNL module C is not in a critical trip of s1(〈Π1;Γ 〉), so that C is in a Γ -trip,
say in the Γ -trip

A
in(Π1)
j . . .A

out(Π1)
σ(j) .

So j ∈ γ1.
Since type(〈Π1;Γ 〉)⊥ type(〈Π2;Γ 〉),j is in T so that

A
in(Π1)
j . . .A

out(Π1)
σ(j)

is in T ∗ which contains C.
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If C is a proper conclusion of 〈Π2;Γ 〉 the proof is analogous.
Proof of 4. Let S be a cycle in s(〈Π1;Γ 〉 ◦ 〈Π2;Γ 〉). S can not be a cycle in

s1(〈Π1;Γ 〉) or a cycle in s2(〈Π2;Γ 〉) since 〈Π1;Γ 〉 are 〈Π2;Γ 〉 MNL modules.
So S must contain some formulas of the border Γ . If S contains Axj , where Aj
is in Γ , and Axj is in T

∗, then cycle S is equal to T ∗. Otherwise, as S is a
cycle, we can extract from S another cycle in στ . But this would contradict
type(〈Π1;Γ 〉)⊥ type(〈Π2;Γ 〉).
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Abstract. We introduce a geometry of interaction model given by an al-
gebra of clauses equipped with resolution (following [Gir95a]) into which
proofs of Elementary Linear Logic can be interpreted. In order to extend
geometry of interaction computation (Execution) to more programs of
the algebra than just those coming from proofs, we define a variant of
Execution (called Weak Execution). Its application to any program of
clauses is shown to terminate with a bound on the number of steps
which is elementary in the size of the program. We establish that Weak
Execution coincides with standard Execution on programs coming from
proofs.

Geometry of interaction (goi) was introduced by Girard ([Gir88a]) as
a semantics of computation which: on the one hand, contrary to denotational
semantics interprets explicitly the dynamics of computation and handles finite
objects; on the other hand expresses this dynamic by more mathematical means
than syntactical rewriting.
The execution operation is the mathematical tool inside the model used

to interpret the cut-elimination process. This operation is not always defined
and sufficient conditions have been given which ensure termination of the com-
putation : in the case of second-order Linear Logic ([Gir88a, Gir95a]) and of
untyped lambda-calculus [MR91]), operators coming from the syntax do sat-
isfy such conditions (a nilpotency condition for instance in the case of LL).
Various frameworks have been used to describe goi models: bounded operators
on Hilbert spaces ([Gir88a, DR95]), partial applications ([Dan90, Reg92]) and
clauses ([Gir95a]). This latter point of view is the one we adopt here.
Elementary Linear Logic (ELL), as Light Linear Logic (LLL), is a variant

of Linear Logic in which the rules introducing exponentials have been modified
(cf. [Gir95b]) in order to limit the size explosion of proofs during normalization.
It is obtained by removing the two principles : !A ` A and !A ` !!A; contraction
and weakening are kept unchanged. We consider here a version of ELL without
additive connectives and where introduction of the modality ! is handled through
a (multi-)functorial promotion rule (called t-promotion, see [Ped96]), which offers
the advantage of having simple proof-nets. A proof-net has two main parameters:
its size (say the number of edges) and its depth (maximal nesting of the boxes

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 25–39, 1999.
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it contains). The number of steps of its normalization is bounded by a function
of the size which is elementary: the expression of this function is an exponential
tower whose height only depends on the depth (see [Ped96]).
A drawback of ELL (as well as of LLL) is the lack of a specific semantics

of proofs, though a semantics of provability has been given by Kanovitch et al.
([KOS97]). We address this problem from the angle of a goi semantics.
Achievements and limits of the present work. We present here an

algebra of clauses along the lines of [Gir95a] with a kind of depth-preservation
property analogous to that of ELL (section 1). Execution is defined through
resolution and the operators are certain sets of clauses; a comparison of these
operators with Prolog programs can be found in [Gir95a], section 2.3. In addition
to usual execution we define a weak execution (section 2) which amounts to
giving up the computation of certain products of the execution (products
yielding a deadlock when one restrains the depth).
A size and a depth are defined for general operators respectively as the num-

ber of clauses and the arity of the predicates of the terms (all predicates have the
same arity). Our main result is then that weak execution always terminates
(there is no need for nilpotency sufficient condition for instance) and that the
depth being fixed, the number of steps of the computation is bounded by a func-
tion of the size of the program which is elementary (proved in section 2). Clearly
speaking, in this setting we can bound in advance the run-time of a program
provided we know its size and depth. Therefore the intrinsic elementary bound
obtained in ELL by logical means has been extended to a semantical ground.
Yet this weak execution presents a serious drawback as it is not in general

an associative operation ... Still at least one inclusion is obtained instead of the
expected equality (we call this property sub-associativity): the result of global
execution is included in the result of any modular execution (see section 3
for a precise statement).
In this abstract we only sketch the main proofs; complete proofs can be found

in [BP99].
Acknowledgments.Authors wish to thank Jean-Yves Girard for important

suggestions and for pointing out the crucial lemma 2.

1 Resolution Algebra

We need first to introduce clauses and resolution. We then recall the definition of
the algebra of clauses given in [Gir95a] before describing the particular algebra
we consider in this work : the layered algebra of clauses.
A term language T is built over variables and a set of symbols of functions;

its elements will be denoted t, u. Let {Pi}i∈I be a set of predicate symbols given
together with their arity; the language of atoms L built over T and this set of
predicates is the set of Pi(t1, . . . , tn), where n is the arity of Pi and the tj ’s
belong to T .
We say that two terms (or atoms) e and e′ are comparable when there is a

substitution θ defined over the variables in e and e′ such that eθ = e′θ.
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If e, e′ are comparable then there exists a most general unifier (m.g.u.) i.e. a
substitution θ0 such that for every unifier θ there is a θ

′ such that θ = θ0θ
′. If e

and e′ are not comparable, we say that they are orthogonal : e ⊥ e′.
A clause φ in the language L is a sequent

∀x0, . . . , xd. (Pi(t0, . . . , tm) ` Pj(u0, . . . , un)) ,

where Pi(t0, . . . , tm) and Pj(u0, . . . , un) are atoms of L with the same variables
x0, . . . , xd. We will omit to write the quantification.
The head of the clause φ is the atom head(φ) = Pi(t0, . . . , tm), its tail is the

atom tail(φ) = Pj(u0, . . . , un).
We introduce also a formal clause 0. Let C denote the set of clauses over L.
A substitution θ acts on a clause φ by : φθ = head(φ)θ ` tail(φ)θ.

Definition 1 (Resolution). Given two clauses φ and φ′ we can assume they
have disjoint variables (by choosing appropriate instantiations). If tail(φ) is
comparable with head(φ′) and θ is their m.g.u. we define the resolution of the
two clauses as the clause

φ · φ′ = head(φ)θ ` tail(φ′)θ

Otherwise, if tail(φ) and head(φ′) are not comparable: φ · φ′ = 0 .

We fix by convention that the resolution of the clause zero with any other
clause is zero; this implies that resolution is associative.
A clause φ is said to be a projection (resp. a null-square) if φ2 = φ (resp.

φ2 = 0), which is equivalent to head(φ) = tail(φ) (resp. head(φ) ⊥ tail(φ)).

Definition 2 (Resolution Algebra). Let λ?(L) be the set of all finite formal
linear combinations

∑
αiφi where the scalars αi belong to C and the clauses φi

to C. The set λ?(L) is equipped with

– a structure of complex vector space,
– a structure of complex algebra, the multiplication being extended by bilinearity
from resolution:

∑
αiφi

∑
βjφ

′
j =
∑
αiβj(φi · φ′j),

– a unit w.r.t. multiplication :
∑
i∈I Pi(x0, . . . , xn) ` Pi(x0, . . . , xn),

– an anti-involution defined by (
∑
αiφi)

? =
∑
αiφi

? where φ? := tail(φ) `
head(φ).

A norm can be introduced in order to get a C?-algebra, see [Gir95a].
Another way to write a combination of clauses is as

∑
α(φ)φ, where the sum

is taken over C and α is an application from the set of clauses C to C such that
α−1(C\{0}) is finite. We will use this notation when it is more convenient.
If U =

∑
αiφi and V =

∑
βiφi are two elements with coefficients in N, we

write U ⊆ V if for all i, αi ≤ βi.

Definition 3 (Execution Formula). A wiring is a finite sum of clauses
∑
φi

such that for i 6= j : head(φi) ⊥ head(φj) and tail(φi) ⊥ tail(φj).
A loop is a pair of wirings (U, σ) such that σ is hermitian (i.e. σ? = σ),
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A loop converges when σU is nilpotent, i.e. when (σU)n = 0 for some n. The
execution of the loop (U, σ) is then the element

Exσ(U) := U(1− σU)
−1 = U

n∑
k=0

(σU)k

and the result of the execution is given by

Resultσ(U) := (1− σ
2)Exσ(U)(1− σ

2).

Remark 1. Another way to write the execution is directly as a sum of clauses:

Exσ(U) =
∑
φ0∈U

φi∈σU,1≤i≤k
k≤n

φ0 · φ1 · · · · φk

Now we specify the particular language we are going to consider. The terms
of T are built over a set of unary symbols of function {p, q, r, s}; therefore such
terms have exactly one free variable, and t[x] will denote a term with free variable
x. The length |t| of t is the number of symbols of function appearing in it.

Remark 2. Notice that as T is defined over unary symbols of function, if two
terms t and u are unifiable then their m.g.u. θ leaves at least one of the two
terms unchanged (up to renaming of its variable). For any pair of terms (t, u),
only one of the following cases can occur: t ⊥ u or t ≤ u or t ≥ u, where t ≤ u
means that u is the unchanged term.

We will consider a family of symbols of predicate {Pi}i∈{1,...,m} of same arity
1

(d+ 1). Let T d ·m denote the set of atoms defined this way.
The set Cd is the set of clauses:

φ = ∀x0, . . . , xd. (Pi(t0[x0], . . . , td[xd]) ` Pj(u0[x0], . . . , ud[xd])) ,

where head(φ) and tail(φ) belong to T d ·m. Notice that tk and uk (0 ≤ k ≤ d)
are required to have the same free variable.
We call layered algebra the algebra of clauses defined over Cd and we denote

it by λ?(T d ·m). From now on this is the algebra we consider.

2 Weak Execution

A word of clauses w is a finite sequence of clauses w = (φ1, . . . , φn) with φi ∈ Cd,
and the product clause is φ1 ·φ2 · · ··φn. A sub-product of the word w is the product
clause of a word (φi, . . . , φj) for some i ≤ j ≤ n.
Given a clause φ = P (t0, . . . , td) ` P ′(u0, . . . , ud) its width is defined as

||φ|| := sup{|tk|, |uk| / 0 ≤ k ≤ d}. The width of a word w is simply given by
||w|| := sup1≤i≤n(||φi||). The cardinality of w is: N(w) := #{φi | 1 ≤ i ≤ n}.

1 The choice of d + 1 is done to keep the same notations when we interpret proof-
structures, see section 4.
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Example : Consider in C0 the clause φ = P (x) ` P (rx) and let wn be the word
(φ, . . . , φ) of length n. In that case we have ||wn|| = ||φ|| = 1, N(wn) = 1 and
the product of wn is the clause P (x) ` P (rnx).

Definition 4 (Acyclicity). A clause φ = P (t0, . . . , td) ` P ′(u0, . . . , ud) is an
acyclic clause if P 6= P ′, or (P = P ′ and there exists k ≤ d such that for every
i < k we have ui = ti and uk ⊥ tk).
An acyclic word (resp. strictly acyclic word) is a word (φ1, . . . , φn) such that

every sub-product ψ is either an acyclic clause or a projection (resp. an acyclic
clause).

Example : Consider in C1 the clauses φ1 = P (sx0, x1) ` P (rx0, x1), φ2 =
P (rx0, rrx1) ` P (rx0, sx1) and φ3 = P (x0, sx1) ` P (rx0, rsx1). Each of them
is an acyclic clause. The word w = (φ1, φ2, φ3) has a non-null product but is
not acyclic since its subproduct φ2 ·φ3 = P (rx0, rrx1) ` P (rrx0, rsx1) is not an
acyclic clause (though it is a null-square).
We now introduce a restricted form of execution over strictly acyclic words of

clauses. Contrarily to usual execution we define it not only for converging loops
but for any pair of combination (U, σ); theorem 1 will establish the fact that this
definition always makes sense (the sum is finite).

Definition 5 (Weak Execution). Given a pair of combinations (U, σ) denote
U =

∑
α(φ)φ and σU =

∑
γ(φ)φ. Its weak execution is defined as:

Ex†σ(U) =
∑

(φ0,φ1...,φn)∈A

α(φ0)(

n∏
i=1

γ(φi))φ0 · φ1 · · · · φn

where A :=

{
(φ0, φ1 . . . , φn)

∣∣∣∣α(φ0) 6= 0, γ(φi) 6= 0 when i 6= 0, andthe word (φ0, . . . , φn) is strictly acyclic

}
.

As a particular case, given a loop (U, σ) its weak execution is

Ex†σ(U) =
∑

(φ0,φ1...,φn)∈A′

φ0 · φ1 · · · · φn

where A′ :=

{
(φ0, φ1 . . . , φn)

∣∣∣∣φ0 ∈ U, φi ∈ σU when i 6= 0, andthe word (φ0, . . . , φn) is strictly acyclic

}
.

The result of the weak execution is in that case defined as

Result†σ(U) := (1− σ
2)Ex†σ(U)(1− σ

2).

Remark 3. Note that in cases where Exσ(U) makes sense ((U, σ) is a loop and
σU is nilpotent), we have that Ex†σ(U) ⊆ Exσ(U).
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Our first goal is to show that we can bound the width of the product clause
of an acyclic word (proposition 1). In the case of a strictly acyclic word this
implies that the length of the word cannot exceed a certain bound (depending
on the number and the width of the clauses) without yielding zero as result. This
bound will be expressed as an exponential tower of height d (proposition 2).

Proposition 1. Given an acyclic word w = (φ1, . . .φn) with non-null product,
we have the following inequality2: ||φ1 · · · · · φn|| ≤ L(||w||, N(w), d), where L is
defined by

L(a, b, d) := 2
2
..
.2
4ab(d+1)2

and the height of the exponential tower is d (for d=0 we get the exponent 8ab).

This proposition will be proved further. The result relies of course on the fact
that w is strictly acyclic. Otherwise given a fixed width (of word) and cardinality
one might exhibit non acyclic words whose products are of arbitrary big width:
see for instance the first example given where for any n, ||wn|| = 1, N(wn) = 1
and the product of wn is P (x) ` P (rnx) whose width is n.

Definition 6. Given three integers l, N ≥ 1 and s we define

B(l, N, s) := 2
2
..
. 2
9·lN(s+1)2

where the height of the exponential tower is s+ 1.

Proposition 2. Given a strictly acyclic word w with non-null product and such
that ||w|| ≥ 1, its length is bounded by B(||w||, N(w), d).

We give now the main result: weak execution always terminates and can be
computed in an elementary number of resolution steps. We state it first for a
loop and then give the result for an arbitrary pair of combinations:

Theorem 1. Let (U, σ) be a loop and let us fix the variables N = #σU and
k = 1 +max{||φ|| / φ∈ σU}. We have

Ex†σ(U) =
∑

(φ0,...,φn)∈A
′

n≤B(k,N,d)

φ0 · φ1 · · · · φn

where A′ is the set given in definition 5.
More generally, (U, σ) being simply a pair of combinations let us denote

U =
∑
α(φ)φ, σU =

∑
γ(φ)φ. We define then as before N = #{φ, γ(φ) 6= 0}

and k = 1 + max{||φ|| / γ(φ) 6= 0}. We have:

2 Note that ||φ1 · · · · · φn|| should not be confused with ||(φ1, . . . , φn)||, the former
being the width of a clause and the latter the width of the word.
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Ex†σ(U) =
∑

(φ0,...,φn)∈A
n≤B(k,N,d)

α(φ0)(

n∏
i=1

γ(φi)) φ0 · φ1 · · · · φn

where A is the set given in definition 5.

Proof (Proof of theorem 1). Let w = (φ0, . . . , φn) be a word in the set A with
n ≥ 1. Let us denote by w′ the word (φ1, . . . , φn) on σU . We have N(w′) ≤ N
and ||w′|| ≤ k. Now, if n > B(k,N, d) then n > B(||w′||, N(w′), d) and we know
by proposition 2 that w′ (and consequently w) has a null product.
Therefore the sum in Ex†σ(U) can be restricted to the words of A such that

n ≤ B(k,N, d). ut

Let us introduce a few more notations on clauses and words of clauses. To
each predicate symbol Pi of our set we associate d predicate symbols, one for
each arity k+1 in {1, . . . , d}; we will denote them all by Pi as anyway in atoms
the arity of the predicate will be made explicit by the number of terms. For
0 ≤ k ≤ d− 1 we denote by T k ·m the language built from T and the family of
predicates of arity k + 1 and Ck is defined as before from T k ·m.
Given a clause φ = P (t0, . . . , td) ` P

′(u0, . . . , ud) of C
d and 0 ≤ k ≤ d − 1,

its k-th layer is the clause of C0 [φ]k := P (tk) ` P ′(uk) and its k-th truncation
is the clause [φ](0,k) := P (t0, . . . , tk) ` P

′(u0, . . . , uk) of Ck.
The k-th layer of a word w = (φ1, . . . , φn) is [w]k = ([φ1]k, . . . , [φn]k); simi-

larly its k-th truncation is [w](0,k) = ([φ1](0,k), . . . , [φn](0,k)).
We define width of atoms by: |P (t0, . . . , tk)| = sup {|ti|/0 ≤ i ≤ k}.

Proof (Proposition 1). We prove the proposition by means of an intermediate
inequality, namely we will prove by induction on d the following one:

||φ1 · · · · · φn|| ≤ L
′(||w||, N(w), d) (1)

where L′(a, b, s) is defined inductively by:
{
L′(a, b, 0) = 2ab

L′(a, b, s+ 1) = 2ab24(s+1)L
′(a,b,s) (2)

Then the announced result will be obtained as a consequence. Next lemmas give
the result for d = 0. Until it is differently specified we consider clauses in C0.

Lemma 1. Given two clauses φ and ψ,

1. if tail(φ) ≥ head(ψ) then |head(φψ)| = |head(φ)|,
2. if tail(φ) ≤ head(ψ) then |head(φψ)| ≤ |head(ψ)|+ |head(φ)|.

Remark 4. Given a word w = (φ1, . . . , φn) with non-null product, let us denote
{j1, . . . , jm} = {j ≥ 2 | tail(φ1 · · · · · φj−1) < head(φj)}. By induction over the
integer m we deduce from the previous lemma the following inequality:
|head(φ1 · · · · · φn)| ≤ |head(φ1)| +

∑m
i=1 |head(φji)|; analogously for the

tail(φ1 · · · · · φn).
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Lemma 2. An acyclic word w = (φ1, . . . , φn) with non null product denoted by
ψ := φ1 · · · · · φn, satisfies

||ψ|| ≤ ||w||(N(w) + 1).

Proof. In order to get contradiction assume ||ψ|| > ||w||(N(w)+1). In that case
either |head(ψ)| > ||w||(N(w) + 1) or |tail(ψ)| > ||w||(N(w) + 1). Suppose
for instance that we are in the first situation (the second case is handled in a
completely symmetric way). By remark 4, using the same notations we have that
|head(φ1 · · · · · φn)| ≤ (m + 1)||w||; then we have m ≥ N(w) + 1, so there exist
i1 < i2 such that φ := φji1 = φji2 .
We claim that the sub-product φji1 · · · ··φji2−1 gives a cyclic clause, hence the

contradiction with the acyclicity of w. Indeed: let us denote Π ′ := φ1 · · · · ·φji1−1
and Π ′′ := φji1+1 · · · · · φji2−1; then we have tail(Π

′ · φ · Π ′′) < head(φ). So
as tail(φ ·Π ′′) ≤ tail(Π ′ · φ ·Π ′′), we get tail(φ ·Π ′′) < head(φ). Moreover,
from head(φ) ≤ head(φ · Π ′′), we deduce tail(φ ·Π ′′) < head(φ · Π ′′) and we
are done. ut

This lemma ends the base case of induction (d = 0) since

||w||(N(w)+ 1) ≤ 2||w||N(w) = L′(||w||, N(w), 0), as N(w) ≥ 1.

In order to get the step of induction, we need a few intermediary results about
products of clauses.

Lemma 3. Let us consider a word w = (φ1, . . . , φn) with non null product; the
product of w induces a unique substitution family (σ01, . . . , σ

0
n) such that σ

0
i is

defined on the variable of φi and

φ1 · · · · · φn = head(φ1)σ
0
1 ` tail(φn)σ

0
n,

and tail(φi)σ
0
i = head(φi+1)σ

0
i+1 when 1 ≤ i ≤ n− 1.

Moreover, every substitution family (σ1, . . . , σn) such that σi is defined on the
variable of φi and satisfying:

tail(φi)σi = head(φi+1)σi+1 when 1 ≤ i ≤ n − 1 (3)

can be obtained from (σ01, . . . , σ
0
n) by means of a substitution θ such that

(σ1, . . . , σn) = (σ
0
1θ, . . . , σ

0
nθ).

These properties are proved by induction over the length n of the word.

Remark 5. Note that for 2 ≤ i ≤ n − 1 we have tail(φiσ0i ) = head(φi+1σ
0
i+1)

and that this term is equal either to tail(φ1 · · · · · φi) if tail(φ1 · · · · · φi) ≥
head(φi+1 · · · · · φn), or to head(φi+1 · · · · · φn) otherwise.

Lemma 4. Let us consider a word w = (φ1, . . . , φn) with non null product; the
product of w induces a word w′ = (φ′1, . . . , φ

′
n) such that φ

′
i = φiσ

0
i (1 ≤ i ≤ n)

with σ0i as in lemma 3. Then for every i and h, we have that the subproduct
φi · · · · · φi+h is a projection if and only if the corresponding sub-product of w

′,
φ′i · · · · · φ

′
i+h is a projection.

If φi · · · · · φi+h is a null-square then φ′i · · · · · φ
′
i+h is a null-square.
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We establish now the induction step of inequality (1). Assume the inequality
is true for any acyclic word in Ck with k ≤ d, and take a word w = (φ1, . . . , φn)
over C(d+1). Consider for every layer [w]k the induced family of substitutions:
(σk1 , . . . , σ

k
n). Let w

′ be the word obtained by applying in w the substitution
family to every layer k ≤ d and by freezing variables by means of newly intro-
duced symbols of constants ak: i.e. [φ

′
i]k = [φi]kσ

k
i 〈ak/xk〉 for 0 ≤ k ≤ d and

[φ′i]d+1 = [φi]d+1.

Notice that in w′ variables remain only in the last layer d + 1, so we can
consider w′ built over clauses of C(0) with the first d layers constituting the
predicate (we enlarge our set of predicates).

Let us show that w′ is an acyclic word: we take a sub-word (φ′i, . . . , φ
′
i+h)

and its product φ′ := φ′i · · · · · φ
′
i+h; we denote the corresponding sub-product in

w by φ := φi · · · · ·φi+h. By lemma 4, if the layer [φ]k is a projection then [φ′]k is
a projection too and if [φ]k is a null-square then [φ

′]k is a null-square. Combined
with the fact that φ is an acyclic clause (definition 4), this implies that φ′ is an
acyclic clause.
So w′ is an acyclic word in C0 and by establishing N(w′) and ||w′|| we obtain

the following inequality:

||φ′1 · · · · · φ
′
n|| ≤ L

′(||w′||, N(w′), 0). (4)

As the width of a word doesn’t depend upon predicates appearing in its clauses
and terms in w′ are equal to terms in the last layer of w, we have ||w′|| ≤ ||w||.
By definition N(w′) is the number of distinct clauses in w′; in order to find it
we can calculate the number of all possible instances of terms in w′.

Remark 5 tells us that tail([φ′i]k) is equal to tail([φ1 · · · · · φi]k〈ak/xk〉 or
head([φi+1 · · · · · φn]k〈ak/xk〉 (similarly for head([φ

′
i]k)). Moreover we have

||[φ1 · · · · · φi]k|| ≤ ||[φ1 · · · · · φi](0,k)||.

Since by induction hypothesis: ||[φ1 · · · · ·φi](0,k)|| ≤ L
′(||[w](0,k)||, N([w](0,k)), k),

we can apply the inequalities N([w](0,k)) ≤ N(w) and ||[w](0,k)|| ≤ ||w||, and we
get

||[φ1 · · · · · φi](0,k)|| ≤ L
′(||w||, N(w), k).

Similarly ||[φi+1 · · · · · φn](0,k)|| ≤ L
′(||w||, N(w), k).

Finally, we obtain: ||[φ′i]k|| ≤ L′(||w||, N(w), k), and the number of all pos-
sible unary terms built in our language3 of length at most L′(||w||, N(w), k) is
bounded by 4L

′(||w||,N(w),k)+1.

We are now able to bound the number of clauses N(w′) in w′: the number of
possibilities for the choice of the head and tail predicates is bounded by N(w);

3 as the number of symbols of function in our language is 4, the number of terms of

length k is 4k, and the number of terms of length at most l is

lX

k=0

4k ≤ 4l+1.
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at the level k the number of possibilities for the head and tail terms is bounded
by 42(L

′(||w||,N(w),k)+1). Therefore we have:

N(w′) ≤ N(w)
d∏
k=0

42(L
′(||w||,N(w),k)+1) = N(w)

d∏
k=0

24(L
′(||w||,N(w),k)+1).

By substitution of quantities N(w′) and ||w′|| in (4) we have

||φ′1 · · · · · φ
′
n|| ≤ L

′(||w′||, N(w′), 0) = 2||w′||N(w′)

≤ 2||w||N(w)
d∏
k=0

24(L
′(||w||,N(w),k)+1)

≤ 2||w||N(w)24(d+1)L
′(||w||,N(w),d) = L′(||w||, N(w), d+ 1) (5)

We used the following inequality L′(a, b, k) + 2 ≤ L′(a, b, d) for k ≤ d− 1.
We therefore get ||[φ1 · · · · · φn]d+1|| ≤ L′(||w||, N(w), d + 1), and by in-

duction hypothesis we have: ||[φ1 · · · · · φn](0,d)|| ≤ L′(||w||, N(w), d). Since
L′(||w||, N(w), d)≤ L′(||w||, N(w), d+ 1), we get:

||φ1 · · · · · φn|| ≤ L
′(||w||, N(w), d+ 1).

This ends our proof for the induction step and the inequality (1) is established.
Using inequalities α ≤ 2α and x + y ≤ xy whenever x ≥ 2 and y ≥ 2 one

easily checks that: L′(a, b, d) ≤ L(a, b, d). This way we infer from inequality (1)
proposition 1. ut

The proof of proposition 2 uses proposition 1 and is in the same spirit (see
[BP99]).

3 Sub-Associativity of Weak Execution

Let ` Γ,∆,∆′ be a sequent such that in∆ and ∆′ formulas can be assembled du-
ally in pairs (B,B⊥). We consider the algebra λ?(∆,∆′, Γ ) built, as in section 1,
using the language T and the family of predicates of arity (d+1), {PA}A∈∆,∆′,Γ .
Let:

σ∆;∆′,Γ =
∑
B∈∆

PB(x0, . . . , xd) ` PB⊥(x0, . . . , xd)

We denote σ∆;∆′,Γ by σ and σ∆′;∆,Γ by τ , so that σ + τ = σ∆,∆′;Γ .

Proposition 3 (Sub-associativity of weak execution). Let U be a wiring
of λ?(∆,∆′, Γ ) and σ and τ defined as above; we have:

Result
†
σ+τ (U) ⊆ Result

†
τ (Result

†
σ(U)).

Remark 6. The equality is false in general, which contrasts with usual execution
and the expected modularity of a valuable computation process. Still, as far as
we are dealing with loops coming from proofs, associativity is valid since we will
prove in the sequel that weak execution and ordinary execution coincide on such
loops.
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4 Interpretation of ELL Proof-Structures

We consider elementary linear logic with t-promotion and without additives
and quantifiers. The sequent calculus is given in [Ped96]; the rules are as in
multiplicative exponential linear logic but for dereliction which is not included
and for promotion which is replaced by t-promotion: from ` A,∆ infer `!A, ?∆.
We now give the corresponding definition of ELL proof-structures. As usual there
is a translation of proofs into proof-structures, yielding ELL proof-nets.

4.1 ELL Proof-Structures

Definition 7. The ELL proof-structures are graphs with boxes whose edges are
labelled by (multiplicative exponential) LL formulas; they are defined inductively
together with their depth by:

– A proof-structure of depth 0 is a labeled graph R built over the nodes:
• Axiom and cut: an ax (axiom) node has no premise and two conclusions
labeled by dual formulas A and A⊥; a cut node has two premises labeled
by dual formulas ( cut formulas) and no conclusion; we consider axioms
labeled by atomic formulas to simplify the definition of the interpretation.

• Multiplicative nodes: a ⊗ node (resp. a

&

node) has two premises labeled
by A and B and one conclusion A⊗B (resp. A

&

B).
– if R1, . . . , Rn are proof-structures of maximal depth d then a graph R built
from R1, . . .Rn using the preceding nodes and the following exponential nodes
is a proof-structure of depth d: a ?c (contraction) node has two premises
labeled by ?A and one conclusion labeled by ?A; a ?w (weakening) node has
no premise and one conclusion labeled by a formula ?A;

– if R is a proof-structure of depth d, the box containing R and with conclusions
as on the figure is a proof-structure of depth d+ 1.

pal pax pax

B1 Bn

?B1 ?Bn

A

!A

R

. . .

The depth of an edge is the number of boxes it is contained in.

We consider in proof-structures oriented paths crossing multiplicative and
exponential nodes either from a premise to the conclusion or from the conclusion
to a premise, and axiom nodes (resp. cut nodes) from a conclusion (resp. premise)
to the other conclusion (resp. premise). A path is up (resp. down) if it only crosses
nodes from conclusion to premise (resp. premise to conclusion).
The length of a path is the number of edges it goes through. If γ1 is a path

ending upwards (resp. downwards) with an edge conclusion (resp. premise) of a
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node N and γ2 starts upwards (resp. downwards) with an edge premise (resp.
conclusion) of N , we denote by γ1; γ2 their concatenation.
An elementary path of R is a path going upwards from a conclusion or a cut

node to an axiom and then downwards to a conclusion or a cut node; we denote
their set by Pe(R). A constant-depth path of R is a path of R which doesn’t cross
any box node, axiom node or cut node and starting upwards with a premise of
box node or downwards with a conclusion of box node. The depth of such a path
is the number of boxes of R it is contained in.
A proof-structure R gives a multiset Γ of conclusion formulas and a multiset

∆ of cut formulas (associated dually in couples (B,B⊥) by cut nodes). The
language we consider is T d ·m where d is the depth of the proof-structure R and
m is the cardinality of Γ,∆. Predicates are indexed by formulas in Γ,∆. The
wiring part UR of the loop interpreting R will be obtained by interpreting each
elementary path of R by a clause.

4.2 Interpretation of a Proof-Structure

Representation of a constant-depth path by a term. As they don’t cross
axiom or cut nodes, constant-depth paths are up or down. We only consider
constant-depth paths which don’t visit any weakening node; this is enough to
give the interpretation of proof-structures.
We associate to such a path γ of depth i a term tγ [xi]; we define this interpre-

tation below in the case of a path oriented up by induction on the length of the
path. In the case of a down path the interpretation tγ is that of the reverted up
path (orientation will be taken into account when we introduce the clauses...).

– if γ is reduced to an edge premise of a box node, then tγ = xi,
– otherwise we can write γ = γ1; γ2 where γ2 is reduced to an edge premise of
a multiplicative or a contraction node:

• if γ2 is the left (resp. right) premise of a multiplicative node then
tγ = tγ1 [pxi/xi] (resp. tγ = tγ1 [qxi/xi]).

• if γ2 is the left (resp. right) premise of a contraction node then
tγ = tγ1 [rxi/xi] (resp. tγ = tγ1 [sxi/xi]).

Representation of an elementary path by a clause. If γ is an elementary
path of the proof-structure R of depth d, it can be decomposed as:

γ = γi; γi+1; . . . ; γj; γ
′
j; γ

′
j−1; . . . ; γ

′
k

where 0 ≤ i, j ≤ d and the path γl (resp. γ
′
l) for i ≤ l ≤ j (resp. k ≤ l ≤ j) is a

constant-depth up path (resp. down path) of depth l.
Let A (resp. A′) be the beginning (resp. ending) conclusion or cut formula.

Their respective depths (i.e. the depths of their edges) are i and k. The clause
W (γ) interpreting the path γ (the weight of the path) is given by:

PA(x0, .., xi−1, tγi , .., tγj, xj+1, .., xd) ` PA′(x0, .., xk−1, tγ′k , .., tγ′j , xj+1, .., xd)
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The ELL proof-structure R is interpreted by the loop (UR, σR) with:

UR =
∑

γ∈Pe(R)

W (γ)

σR =
∑
B∈∆

PB(x0, . . . , xd) ` PB⊥(x0, . . . , xd).

5 Weak Execution of Proof-Nets

In this section we prove that for every proof net R the associated loop (U, σ)
satisfies: Resultσ(U) ⊆ Result†σ(U). The equality Resultσ(U) = Result

†
σ(U)

follows then by remark 3.
First we will prove a proposition (4) and then we will derive this result as a

corollary (1). Let us give before a few definitions.
A balanced path of R is a path starting upwards in a conclusion of R or

downwards in a cut premise, ending downwards in a conclusion of R or in a cut
premise. An elementary balanced path γ of R is a balanced path crossing at most
one cut node, so that :

– if γ crosses no cut node it is an elementary path and its weight is given in
the previous section;

– if it crosses a cut node from the premise B to the premise B⊥ then it
can be decomposed in the path just crossing the cut with weight σ0 =
PB(x0, . . . , xd) ` PB⊥(x0, . . . , xd) and in an elementary path γ0 with weight
W (γ0), so its weight is W (γ) = σ0 ·W (γ0).

Any balanced path γ can be written as a concatenation of elementary bal-
anced paths: γ = γ0; . . . ; γn and its weight is given by the product

W (γ) =W (γ0) · · · · ·W (γn).

Definition 8. We say a clause φ = P (t0, . . . , td) ` P ′(u0, . . . , ud) is cyclic at
depth k ≤ d if: (1) P = P ′, (2) for all i < k, ti = ui, (3) tk 6= uk and tk and
uk are comparable.
We say the clause is cyclic at depth +∞ if it is a projection.

We need three intermediary lemmas:

Lemma 5. Let R be a proof-net and γ be a balanced path of R such that W (γ)
is non-null and cyclic at depth k. Then γ crosses at least one cut in R at depth
lower than k.

A special cut w.r.t. a path γ is an exponential cut σ such that γ crosses σ
but doesn’t cross any cut below the auxiliary ports of the box associated to
the !-premise of σ (special cuts have been introduced by Regnier and Danos in
[Reg92], [Dan90]). We use a variant of the “special cut lemma” stated in [Reg92]:
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Lemma 6. Let γ be a path of a proof-net R. If γ crosses only exponential cuts
at depth lower than k and at least one, then R has a special exponential cut w.r.t.
γ at depth lower than k.

Lemma 7. Let R be a proof-net and γ be a balanced path of R such that W (γ)
is cyclic at depth k. Assume σ is a cut of R at depth lower than k and crossed
by γ which is either a multiplicative or axiom cut or a special exponential cut
w.r.t. γ. Let R′ be the proof-net obtained from R by reducing σ. Then R′ has a
balanced path γ′ such that W (γ′) is non-null and cyclic at depth k.

Proposition 4. Given a proof net R and γ a balanced path of non-null weight,
the clause W (γ) associated to γ is acyclic.

Proof. In order to get contradiction assume the proof-net R has a balanced path
ϕ of non-null weight cyclic at depth k. By lemma 5 this implies that ϕ crosses at
least one cut in R at depth lower than k. The idea is then to reduce progressively
all the cuts at depth lower than k crossed by ϕ in such a way that at each step
we keep in the corresponding proof-net a path satisfying the hypothesis. Now in
order to do so we need to consider a particular strategy of reduction:

– if there is a multiplicative cut at depth lower than k crossed by the path,
then we reduce it,

– otherwise, if all cuts crossed by the path at depth lower than k are exponen-
tial then we choose a special cut w.r.t. the path and reduce it.

We build a sequence (Ri, δi) of pairs of a proof-net and a path in it satisfying
the property : W (δi) is non-null and cyclic at depth lower than k. Put R0 = R
and δ0 = ϕ. Now assume the sequence has been defined up to rank i ≥ 0. By
lemma 5, δi crosses at least one cut in Ri at depth lower than k. If it crosses a
multiplicative or axiom cut σ at depth lower than k take for Ri+1 the proof-net
obtained from R by reducing σ ; then by lemma 7 we know that Ri+1 has a path
satisfying the hypothesis which we take as δi+1 . Otherwise lemma 6 ensures that
δi has a special exponential cut σ at depth lower than k and this is the cut we
choose.
This way we build an infinite sequence (Ri, δi) of pairs of a proof-net and a

path in it with these properties. This sequence contradicts the strong normal-
ization property of ELL. ut

From this proposition, we derive the two following corollaries:

Corollary 1. Let (U, σ) be the loop associated to a proof-net R; we have:

Result†σ(U) = Resultσ(U).

Corollary 2. Let (U, σ + τ ) be the loop associated to a proof-net R, then:

Result†σ(Result
†
τ (U)) = Result

†
σ+τ (U) = Resultσ+τ (U).
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Conclusion and Perspectives: Broadly speaking, our aim is to define a set-
ting as large – and as simple – as possible for elementarily bounded computations.
Weak Execution satisfies the complexity requirement with respect to programs
of clauses of our algebra but (partially) fails to fulfill the modularity require-
ment. We are looking for a sufficient condition on programs which would ensure
this modularity/associativity property for a larger class of programs than those
coming from proof-nets. One direction under exploration (suggested in [Gir95b])
is that of an untyped calculus whose computations would be performed in the
algebra through Weak Execution.
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Abstract. In the coherence space semantics of linear logic, the webs
of the spaces interpreting the exponentials may be defined using multi-
cliques (multisets whose supports are cliques) instead of cliques. Inspired
by the quantitative semantics of Jean-Yves Girard, we give a character-
ization of the morphisms of the co-Kleisly category of the corresponding
comonad (this category is cartesian closed and, therefore, is a model of
intuitionistic logic). It turns out that these morphisms are the convex
and multiplicative functions mapping multicliques to multicliques. This
characterization is achieved via a normal form theorem, which associates
a trace to each such map.

Introduction

The notion of stable function has been introduced by Berry for the purpose of
modeling functional programming languages like PCF [1]. In the framework of
dilators (functors acting on ordinals), Girard discovered independently stability
as a condition allowing for a finitary representation of these functors. He applied
the same idea to the denotational semantics of system F (see [3]) and this led him
to the crucial observation that this semantics (which is an extension of Berry’s
semantics of PCF) can be described in the framework of qualitative domains, and
even in the one of coherence spaces, which are particular qualitative domains.
Berry actually developed his semantics in the framework of dI-domains (Scott
domains satisfying some further properties). Coherence spaces are very particular
dI-domains which define a sub-cartesian-closed category of the category of dI-
domains and stable functions.
A coherence space is a symmetric and reflexive unlabelled graph (its web is

the set of vertices; two vertices which are related are said to be coherent). The
cliques of this graph are the elements of the corresponding dI-domain (singletons
correspond to prime elements, finite cliques to compact elements).
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The space of stable functions from a coherence space X to a coherence space
Y can in turn be described as a coherence space Z through traces: if f is a stable
function from X to Y , the trace of f is the set of all couples (x0, b) where b is a
vertex of Y and x0 is a finite clique ofX minimal such that b ∈ f(x0). This leads
to the idea that the function space operation (which corresponds to implication
through the Curry-Howard isomorphism) is not atomic. It can be decomposed
in two operations: (set) exponential and linear functions space.

The exponential !
s
X of a coherence space X has as web the set of all finite

cliques of X, and the linear function space X′ ( Y of two coherence spaces X′
and Y has as web the cartesian product of the webs of X′ and Y . There is a
natural isomorphism between the space of stable functions from the cliques of
X to those of Y and the cliques of !

s
X ( Y .

These two operations have logical counterparts which are made explicit as
logical connectives in linear logic ([4,8,6] describe the coherence space semantics
of linear logic).

Van de Wiele observed that alternative definitions of the exponential op-
eration on coherence spaces are available. More specifically, from a categorical
viewpoint, the exponential is an endofunctor on the category of coherence spaces
and linear maps, and this functor has an additional structure of comonad satis-
fying some further requirements (the image of a coherence space by this functor
has a canonical structure of commutative comonoid, see [2]). These properties
do not characterize the exponential in a unique way. Van de Wiele proposed in
particular a version of this operation where the web of !

m
X, the multiset expo-

nential of X, is the set of all finite multisets of the web of X whose support is a
clique. From a categorical viewpoint, this exponential is extremely natural: the
image of a coherence space by this functor is the free commutative comonoid on
this coherence space.

This multiset exponential gives rise to a semantics of linear logic where the
cliques of !

m
X ( Y may also be viewed as functions acting on the cliques of

X. But these multiset morphisms are not characterized by their applicative
behavior on cliques, in sharp contrast with the set semantics. Hence, a very
natural question arises: can we, in an uniform way, associate to each coherence
space X some space X̄ in such a way that each clique of !

m
X ( Y may be seen

as a function preserving some structure from X̄ to Ȳ , and conversely?

This paper provides a positive and natural answer to this question, inspired
by a work of Girard who, before introducing qualitative domains, and already
guided by his dilators intuitions, considered in [5] a quantitative semantics of
λ-calculus where the interpretation of a term takes into account the number
of times a value is used in a computation. Actually, in that semantics, these
“numbers” are sets, and morphisms are functors acting on families of sets, pre-
serving directed limits, pullbacks and kernels. The nice feature of this semantics
is that, like dilators and stable functions, these morphisms admit a “normal form
theorem” (relying on a “formal series” representation).

Simplifying this approach, we replace each of the arbitrary sets of quantita-
tive semantics by a natural number (the simplification is thus twofold: first we
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restrict to finite sets, and second, we restrict to their cardinality). This leads to
associating to a coherence space X the set X̄ (that we shall denote byM(X))
of all the multicliques of X. We establish an isomorphism between the cliques of
!
m
X ( Y and the functions fromM(X) toM(Y ) which preserve finite products
of compatible multicliques, and satisfy a convexity criterion (these properties,
together, imply Scott continuity). If convexity has hardly a domain-theoretic
counterpart, the product preservation property clearly corresponds to the stan-
dard meets preservation property of stable functions. In particular, for multiset
supports, the two preservation properties trivially coincide (the meet of the sup-
ports is the support of the product).

1 Preliminaries on multisets

We denote by IN+ the set of non zero natural numbers.
Let S be a set. A multiset µ of S is a function mapping each element a

of S to a natural number, the multiplicity of a in µ. We denote by |µ| the
set {a / µ(a) 6= 0}, which we call support of µ. We denote a multiset by an
enumeration (delimited by square brackets) of the elements of its support, each
as many times as its multiplicity in the multiset. We denote by 0 the multiset
whose support is the empty set. A multiset whose support is a finite set is called
a finite multiset. Let a ∈ S, we also denote by a the multiset whose support is
{a} and in which the multiplicity of a is 1.
Observe that, since multisets are functions to natural numbers, the sum,

product and exponentiation of multisets are well-defined (in a pointwise manner),
and similarly, the standard order on natural numbers induces a (partial) order
on multisets that we shall denote by 6.
Let µ be a multiset of S. Observe that, if µ2 = µ then, for every a in S, µ(a)

is 0 or 1. We shall represent sets using these multisets. They enjoy the following
immediate property.

Lemma 1. Let S be a set. Let µ be a multiset of S such that µ2 = µ. For any
multisets ρ1 and ρ2 of S such that |ρ1|, |ρ2| 6 µ,

if ρ1ρ2 = 0 then (µ+ ρ1)(µ+ ρ2) = µ + ρ1 + ρ2 .

2 Coherence semantics

We shall give a brief review of coherence semantics. We begin with the definition
of a coherence space.

Definition 1. A coherence space X is a pair (|X|, _̂X ) where |X| is a count-
able set (the web of X, whose elements are called points of |X|) and _̂X is a
symmetric and reflexive binary relation on |X|. Two elements of |X| that are in
this relation are said to be coherent. Otherwise they are said to be incoherent.
A clique of X is a subset x of |X| such that, for any a1, a2 ∈ x, a1 _̂X a2.

A multiclique of X is a multiset µ of |X| such that |µ| is a clique of X.
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We denote by _X and call strict coherence relation of X the relation
obtained from _̂X by removing the diagonal. We denote by 1 the coherence
space whose web is the singleton {∗}. The set of cliques of X, that we denote
by C(X), is a qualitative domain ordered by the inclusion order. The set of
multicliques of X, which is ordered by 6, is denoted byM(X).

Definition 2. Let X and Y be coherence spaces. A linear map from X to Y is
a function f from C(X) to C(Y ) such that:

– for any x ∈ C(X), f(x) =
⋃
a∈x f({a});

– for any x1, x2 ∈ C(X), if x1 ∪ x2 ∈ C(X) then f(x1 ∩ x2) = f(x1) ∩ f(x2).

We denote by Coh the category whose objects are the coherence spaces and whose
morphisms are the linear maps.

Let X and Y be coherence spaces. The linear implication of X and Y is
defined by |X ( Y | = |X| × |Y | and

(a1, b1) _̂X(Y (a2, b2) if a1 _̂X a2 ⇒ b1 _̂Y b2

and a1 _X a2 ⇒ b1 _Y b2 .

There is a bijective correspondence between the linear maps from X to Y and
the cliques of X ( Y . To any linear map f from X to Y , we associate its trace
T (f) ∈ C(X ( Y ), defined by

T (f) = {(a, b) / b ∈ f({a})} .

Reciprocally, to any clique t of X ( Y , we associate the linear map F(t) from
X to Y , defined, for any clique x of X, by

F(t)(x) = {b / ∃a ∈ x (a, b) ∈ t} .

We shall indifferently use the same symbol to denote a linear map and its trace.
We recall now the definitions of the set exponentials and the multiset expo-

nentials. Let X be a coherence space.

– Set of course. The points of | !
s
X| are the finite cliques ofX. Two finite cliques

x1 and x2 are coherent in !sX if, for any a1 ∈ x1 and a2 ∈ x2, a1 _̂X a2.

– Multiset of course. The points of | !
m
X| are the finite multicliques of X. Two

finite multicliques µ1 and µ2 are coherent in !mX if |µ1| and |µ2| are coherent
in !

s
X.

We shall write ! to refer to both !
s
and !

m
. The operation ! is a functor from

Coh to itself which, furthermore, is endowed with a comonad structure. We
denote by coK(!) the co-Kleisli category of the comonad !, which is a cartesian
closed category (CCC) and, hence, is a model of intuitionistic logic (and also of
PCF). The objects of this category are the coherence spaces and, given X and
Y any coherence spaces, a morphism from X to Y is a clique in !X ( Y .
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Whenever a category has a terminal object, a point of an object in that
category is a morphism from the terminal object to the object in question. Then,
given any coherence space X, a point of X in coK(!) is a morphism from the
terminal object of coK(!) (the coherence space whose web is the empty set) to
X. This means that a point of X in coK(!) is a clique of X. Let X and Y be
coherence spaces. The evaluation map of the CCC yields a canonical notion of
application of a morphism from X to Y to a point of X in coK(!), thus getting
a point of Y in coK(!). In other terms, the cliques of !X ( Y send cliques of X
to cliques of Y in a canonical way. Let us focus on the set exponentials.

Definition 3. Let X and Y be coherence spaces. A stable map from X to Y is
a function f from C(X) to C(Y ), such that f is monotone, continuous (commu-
tation to directed unions) and, for any cliques x1 and x2 of X,

x1 ∪ x2 ∈ C(X) ⇒ f(x1 ∩ x2) = f(x1) ∩ f(x2) .

Stable maps enjoy the following normal form theorem: let X and Y be co-
herence spaces and f be a stable map from X to Y ; let x ∈ C(X) and b ∈ f(x);
then

– there is a x0 ⊆ x such that x0 is finite and b ∈ f(x0);
– if x0 is chosen minimal w.r.t. inclusion, then it is unique.

There is a bijective correspondence between the stable maps from X to Y
and the cliques of !

s
X ( Y . To every stable map f from X to Y we associate,

by use of the normal form theorem, its trace T (f) ∈ C( !
s
X ( Y ), defined by

T (f) = {(x0, b) / x0 ∈ C(X) ∧ b ∈ f(x0) ∧ ∀y ⊆ x0 (b ∈ f(y) ⇒ y = x0)} .

Reciprocally, to any clique t of !
s
X ( Y we associate, by use of the evaluation

map of coK( !
s
), the stable map F(t) from X to Y , defined, for any clique x of

X, by
F(t)(x) = {b / ∃x0 ∈ | !sX | (x0, b) ∈ t ∧ x0 ⊆ x} .

In fact, F is a functor from coK( !
s
) to the category whose objects are the

coherence spaces and whose morphisms are the stable maps; T is a functor going
in the opposite direction. And it holds that, for any stable map f from X to Y
and for any clique t of !

s
X ( Y ,

F(T (f)) = f and T (F(t)) = t .

We shall indifferently use the same symbol to denote a stable map and its trace.
Observe that all linear maps are stable. Furthermore, given any coherence

spaces X and Y , there is a bijective correspondence between the linear maps
from X to Y and the stable maps from X to Y such that

– f(∅) = ∅;
– if x1 ∪ x2 ∈ C(X) then f(x1 ∪ x2) = f(x1) ∪ f(x2).
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Stable maps are naturally ordered by the set inclusion of traces. This order,
denoted by 6B , is called stable order or Berry order and has the following
functional counterpart: let X and Y be coherence spaces; let f and g be stable
maps from X to Y ; then

f 6B g iff ∀x, y ∈ C(X) (x ∪ y ∈ C(X) ⇒ f(x ∩ y) = f(x) ∩ g(y) ) .

For more information on the coherence spaces denotational semantics of lin-
ear logic, we refer to [4,8,6].
Let us now go back to the multiset exponentials. Let X and Y be coherence

spaces. By use of the evaluation map of coK( !
m
), we associate to each clique t of

!
m
X ( Y a function from C(X) to C(Y ), sending a clique x of X to the following
clique of Y :

{b / ∃µ0 ∈ | !mX| (µ0, b) ∈ t ∧ |µ0| ⊆ x} .

But this kind of functions does not enjoy a normal form theorem allowing to
recover the underlying structure of clique. In fact, several cliques may correspond
to the same function. Indeed, if we take the two cliques {([∗], ∗)} and {([∗, ∗], ∗)}
of !

m
1( 1, one may easily check that, by use of the evaluation map of coK( !

m
),

they have the same functional behavior. This means that the category coK( !
m
)

does not have enough points to sort its morphisms (it is not well pointed).

3 Convex and multiplicative maps

We start by the definitions.

Definition 4. Let X, Y be coherence spaces. A convex map from X to Y is
a function f from M(X) to M(Y ) such that, for any µ, ν, ρ ∈ M(X) obeying
µ+ ρ, ν + ρ ∈M(X),

µ 6 ν ⇒ f(µ + ρ) + f(ν) 6 f(µ) + f(ν + ρ) .

Definition 5. Let X, Y be coherence spaces. A multiplicative map from X to
Y is a function f fromM(X) toM(Y ) such that, for any µ, ν ∈M(X),

µ+ ν ∈M(X) ⇒ f(µν) = f(µ)f(ν) .

In fact, our main purpose in this section will be to prove that convexity and
multiplicativity, together, imply continuity. We first observe the following.

Lemma 2. Let X, Y be coherence spaces and f a function from M(X) to
M(Y ). If f is convex and multiplicative, then f is monotone.

We shall now place us in the conditions of Lemma 2. Since the referred lemma
yields that f is monotone, then, for any µ, ν, ρ ∈M(X) such that µ+ρ ∈ M(X)
and ν + ρ ∈M(Y ), we have that

f(µ) 6 f(µ + ρ) and f(ν) 6 f(ν + ρ) .



46 Nuno Barreiro and Thomas Ehrhard

Therefore, f is convex and multiplicative if, and only if, f is monotone, multi-
plicative and obeys, for any µ, ν, ρ ∈M(X) such that µ + ρ, ν + ρ ∈M(X),

µ 6 ν ⇒ f(µ + ρ) − f(µ) 6 f(ν + ρ) − f(ν) .

This means that the increment of f grows with its argument, whence the term
convex.
Let X be a coherence space. Observe that M(1) = IN and, then, it makes

sense to speak of the multiplicativity and the convexity of the functions from
M(X) to IN. We shall now state some of their properties.

Lemma 3. Let X be a coherence space and f a function from M(X) to IN,
convex and multiplicative. Let µ be an infinite multiclique of X such that µ2 = µ
and f(µ) = 1. Given any ρ 6 µ, if f(µ + ρ) > 1, then there exists a ∈ ρ such
that f(µ + a) > 1.

Proof. Observe that, since ρ 6 µ, the multiset ρ is actually a set (that is ρ2 = ρ).
We shall first consider the case in which ρ is finite. Since ρ2 = ρ we can write

ρ = a1+ . . .+an with ai 6= aj , for any i, j ∈ {1, . . . , n} such that i 6= j. Iterating
Lemma 1 and using the fact that f is multiplicative, we get

f(µ + ρ) =

n∏
i=1

f(µ + ai) .

But, by hypothesis, f(µ + ρ) > 1 and thus, for some i ∈ {1, . . . , n}, we have
f(µ + ai) > 1, which proves the lemma for the finite case.
Let us now assume that ρ is an infinite set. Since |X| is countable, so is ρ.

Let (ai)i∈IN+ be an enumeration without repetitions of ρ. Let ν be the multiset
such that |ν | = ρ and ν(ai) = i for every i ∈ IN

+.
For every N ∈ IN+ we define the multiset νN by

νN(a) =

{
N if 1 6 ν(a) 6 N
ν(a) otherwise .

so that clearly |νN | = ρ. One may easily check that, for any N ∈ IN
+, νN > Nρ,

and then, since, by Lemma 2, f is monotone, it holds that f(µ+νN ) > f(µ+Nρ).
We shall now prove, by an induction on N ∈ IN+, that f(µ +Nρ) > N . For

N = 1, this property holds as we have assumed f(µ+ρ) > 1. Let us now assume,
as inductive hypothesis, that f(µ+Nρ) > N . Since µ 6 µ+ ρ, the convexity of
f yields that

f(µ +Nρ) + f(µ + ρ) 6 f(µ) + f((µ + ρ) +Nρ) .

By hypothesis f(µ) = 1 and f(µ + ρ) > 1, which entails that

f(µ +Nρ) + 2 6 1 + f(µ + (N + 1)ρ) .

We finally apply the inductive hypothesis to get that f(µ+ (N +1)ρ) > N + 1.
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We have shown that, for any N ∈ IN+, f(µ + νN) > f(µ +Nρ) and f(µ +
Nρ) > N . Hence, it holds that

for any N ∈ IN, f(µ + νN) > N .

Let us define, for every N ∈ IN+, the following multisets

ν̂N =
∑
16i6N

ai and ν̌N =
∑
i>N

ai

which are such that ν̂N ν̌N = 0 and ρ = ν̂N+ν̌N . Since ρ
2 = ρ and |ν |= |νN | = ρ,

one may easily check that νρ = ν and νNρ = νN , which entails

ν = νν̂N + νν̌N and νN = νN ν̂N + νN ν̌N .

Since we have that (νν̂N)(νν̌N) = 0 and (νN ν̂N)(νN ν̌N) = 0, we are in the
conditions of Lemma 1 and we get:

µ + ν = µ+ νν̂N + νν̌N = (µ+ νν̂N)(µ+ νν̌N) ;

µ + νN = µ + νN ν̂N + νN ν̌N = (µ + νN ν̂N)(µ + νN ν̌N) .

By inspecting the definition of νN one immediately deduces that, for every
N ∈ IN+, νν̌N = νN ν̌N , and then, trivially, f(µ + νν̌N) = f(µ + νN ν̌N). Let us
suppose that, for every N ∈ IN+, we have f(µ + νν̂N) = f(µ + νN ν̂N). Then,
since f is multiplicative, for every N ∈ IN+ it holds that f(µ+ ν) = f(µ + νN).
But we have shown that, for any N ∈ IN+, f(µ+νN ) > N , and this entails that,
for every N ∈ IN+, f(µ + ν) > N , which is in contradiction with the fact that
f(µ + ν) is finite.
Then there exists N0 ∈ IN

+ such that f(µ + νν̂N0) 6= f(µ + νN0 ν̂N0). But
νN0 ν̂N0 = N0ν̂N0 , hence νν̂N0 6 N0ν̂N0 , so, given that f is monotone with
f(µ) = 1, we have f(µ +N0ν̂N0) > 1. Let us define ρ0 = N0ν̂N0 , which is finite,
since ν̂N0 is finite. Furthermore, we know that |ν̂N0| 6 |νN0 | = ρ, which entails
|ρ0| 6 ρ. But, by hypothesis, ρ 6 µ and, therefore, |ρ0| 6 µ.
Since µ 6 µ+ ρ0, the convexity of f yields that

f(µ + (ρ0 + |ρ0|)) + f(µ + ρ0) 6 f(µ) + f((µ + ρ0) + (ρ0 + |ρ0|)) .

But f is monotone and, therefore, f(µ + (ρ0 + |ρ0|)) > f(µ + ρ0) which entails,
since f(µ + ρ0) > 1, that f(µ + (ρ0 + |ρ0|)) > 1. Then, the convexity inequality
above implies

1 + f(µ + ρ0) < f(µ) + f(µ + 2ρ0 + |ρ0|) ,

which amounts to f(µ + ρ0) < f(µ + 2ρ0 + |ρ0|). Observe that

(µ + ρ0)(µ + |ρ0|) = µ
2 + µ|ρ0|+ ρ0µ + ρ0|ρ0| = µ+ 2ρ0 + |ρ0| ,

hence
f(µ + ρ0) < f(µ + ρ0)f(µ + |ρ0|) ,

which amounts to f(µ+ |ρ0|) > 1. Since ρ0 is finite and |ρ0| 6 µ, we are back to
the finite case we have treated in the first place, and this ends the proof. ut
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The previous lemma is the key to continuity. Indeed, it shows that when the
output of f increases, it is possible to find at least one point in |X| which is
responsible for a non zero part of that increase. But, due to multiplicativity,
there can be only finitely many such points. And we have the following lemma.

Lemma 4. Let X be a coherence space and f a function from M(X) to IN,
convex and multiplicative. Let µ be an infinite multiclique of X such that µ2 = µ
and f(µ) = 1. Then, there exists µ0 6 µ such that µ0 is finite and f(µ0) = 1.

4 From cliques to functions

Let X be a coherence space and µ, µ0 be multicliques of X, such that µ0 is
finite. Then, given that, for any n ∈ IN, n0 = 1, the product

∏
a∈|X| µ

µ0 (a) is
well-defined and we have ∏

a∈|X|

µµ0(a) =
∏
a∈|µ0|

µµ0 (a) .

Furthermore, this product is equal to 0 if, and only if, there exists a ∈ |µ0| such
that µµ0 (a) = 0, or, in an equivalent way, µ(a) = 0 and µ0(a) 6= 0 (since 00 = 1),
which means that |µ0| 
 µ. And this shows that∏

a∈|X|

µµ0(a) 6= 0 iff |µ0| 6 µ .

Let Y be a coherence space and t ∈ C( !
m
X ( Y ). Let (µ0, b), (ν0, b) ∈ t such

that ∏
a∈|X|

µµ0 (a) 6= 0 and
∏
a∈|X|

µν0(a) 6= 0 .

Then, we have that |µ0| 6 µ and |ν0| 6 µ, and thus µ0 _̂ !
m
X
ν0. But

(µ0, b) _̂ !
m
X(Y (ν0, b), which entails that µ0 = ν0. Therefore, for any µ ∈ M(X)

and b ∈ |Y |, there is at most one multiclique µ0 of X such that

(µ0, b) ∈ t and
∏
a∈|X|

µµ0(a) 6= 0 .

This entails that, for any µ ∈M(X), the sum
∑

(µ0,b)∈t

(
∏
a∈|X|

µµ0(a)) b

is, trivially, well-defined.
We shall now prove that this sum is a multiclique of Y . Let b1, b2 ∈ |Y | such

that there are µ1, µ2 ∈M(X) obeying (µ1, b1), (µ2, b2) ∈ t and∏
a∈|X|

µµ1(a) 6= 0 and
∏
a∈|X|

µµ2(a) 6= 0 .
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Then, we have that |µ1|, |µ2| 6 µ, and thus µ1 _̂ !
m
X
µ2. Therefore, since

(µ1, b1) _̂ !
m
X(Y (µ2, b2), it holds that b1

_̂Y b2.

We are now in conditions of giving the following definition.

Definition 6. Let X and Y be coherence spaces and t ∈ C( !
m
X ( Y ). We define

F(t), a function fromM(X) toM(Y ), as follows:

F(t)(µ) =
∑

(µ0,b)∈t

(
∏
a∈|X|

µµ0(a)) b .

And we have the following proposition.

Proposition 1. F is a functor from coK( !
m
) to the category whose objects are

the coherence spaces and whose morphisms are the convex and multiplicative
maps.

5 The normal form theorem

We shall start this section by a simple exercise.

Lemma 5. Let f be a function from IN+ to IN+, monotone and multiplicative.
Then there is a natural number, k, such that, for any n ∈ IN+, f(n) = nk.

Proof. Let n ∈ IN+ such that n > 1. For any p ∈ IN we define qp ∈ IN in the
following way

qp =

⌊
p
logn

log 2

⌋
, which obeys 2qp 6 np < 2qp+1 .

Using the fact that f is monotone and multiplicative we get that

f(2)qp 6 f(n)p 6 f(2)qp+1 .

We apply the logarithm function to the inequalities above and we get

qp log 2 6 p logn 6 (qp + 1) log 2 ,

qp log f(2) 6 p log f(n) 6 (qp + 1) log f(2) .
Since n 6= 1, we then have that

qp log f(2)

(qp + 1) log 2
6 log f(n)
logn

6 (qp + 1) log f(2)
qp log 2

which is valid for any p ∈ IN+. Therefore, we can take the limit of the inequality
when p goes to the infinity and we obtain, since qp goes to the infinity with p,

log f(n)

logn
= k where k =

log f(2)

log 2
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and then we clearly have that, for any n ∈ IN+ such that n > 1, f(n) = nk.
But f is multiplicative which means, in particular, that f(1)2 = f(1) and,

since f(1) ∈ IN+, f(1) = 1. Then, for any n ∈ IN+,

f(n) = nk .

For any n ∈ IN+, we must have nk ∈ IN+, which implies that k ∈ IN (this is
a known result of number theory). ut

And, with this lemma, we are able to prove the normal form theorem.

Theorem 1. Let X and Y be coherence spaces. Let f be a convex and multi-
plicative map from X to Y . Let ν ∈ M(X) and b ∈ |f(ν)|. Then, there is an
unique µ0 ∈ M(X) such that |µ0| 6 ν, µ0 is finite and, for any µ ∈M(X),

µ+ µ0 ∈M(X) ⇒ f(µ)(b) =
∏
a∈|X|

µµ0(a) .

Proof. Let fb be the function fromM(X) to IN defined, for any µ ∈ M(X), by
fb(µ) = f(µ)(b). Observe that, since f is convex and multiplicative, so is fb.
It is easy to prove that that fb(|ν |) = |fb(ν)| and, given that, by hypothesis,

b ∈ |f(ν)|, we have that fb(|ν |) = 1. Then, by Lemma 4, there is a ν0 6 |ν | such
that ν0 is finite and fb(ν0) = 1. Observe that ν

2
0 = ν0.

If ν0 is minimal, it is unique (by multiplicativity of f); we suppose it is the
case.
For every a ∈ ν0, let fab be the function from IN

+ to IN+ defined, for any
n ∈ IN+, by

fab (n) = fb(ν0 + (n− 1)a) .

Since fb is convex and multiplicative, then, for every a ∈ ν0, fab is convex and
multiplicative, and therefore, by Lemma 2, fab is also monotone. Lemma 5, then,
yields that, for every a ∈ ν0, there is a ka ∈ IN such that, for any n ∈ IN

+,

fab (n) = n
ka .

Moreover, the minimality of ν0 and the convexity of f entail that, for all
a ∈ ν0, the natural number ka is different from 0.
Let µ ∈M(X) such that ν0 6 µ. By multiplicativity of f ,

fb(ν0µ) = fb(ν0)fb(µ) = fb(µ) .

As ν0 6 µ,
ν0µ = ν0 +

∑
a∈ν0

(µ(a) − 1) a .

Then, iterating Lemma 1, we get that

ν0 +
∑
a∈ν0

(µ(a)− 1) a =
∏
a∈ν0

( ν0 + (µ(a) − 1)a )
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and by multiplicativity of fb again, we have

fb(ν0µ) =
∏
a∈ν0

fb( ν0 + (µ(a) − 1)a )

and, equivalently,

fb(µ) =
∏
a∈ν0

fab (µ(a)) ,

which finally yields that

fb(µ) =
∏
a∈ν0

µ(a)ka .

Let µ0 ∈M(X) be defined by µ0(a) = ka if a ∈ ν0 and µ0(a) = 0 otherwise,
so that |µ0| = ν0. By construction we have that |µ0| 6 ν , µ0 is finite and, for
every µ ∈M(X),

|µ0| 6 µ⇒ f(µ)(b) =
∏
a∈|X|

µµ0(a) .

Now we need to check that, for every µ ∈ M(X) such that µ + µ0 ∈ M(X)
and |µ0| 66 µ, it holds that f(µ)(b) = 0.
Let µ be such a multiclique and let us assume that f(µ)(b) 6= 0. Then, we

have shown that there is a finite multiclique µ′0 ∈ M(X) such that |µ
′
0| 6 µ,

and, for every ρ ∈M(X),

|µ′0| 6 ρ⇒ f(ρ)(b) =
∏
a∈|X|

ρµ
0
0 (a) .

Clearly, µ0+µ
′
0 ∈M(X). Let (ai)i=1,...,n be an enumeration without repetitions

of the clique |µ0 + µ′0| and let ξ ∈ M(X) be given by |ξ| = |µ0 + µ
′
0|, and

ξ(ai) = pi, the i-th prime number.
Since |µ0| 6 ξ and |µ′0| 6 ξ, we have

∏
a∈|X|

ξµ0 (a) =
∏
a∈|X|

ξµ
0
0(a) ,

that is
n∏
i=1

p
µ0(ai)
i =

n∏
i=1

p
µ00(ai)
i .

Hence µ0 = µ
′
0, and we have a contradiction.

The same argument shows that the multiclique µ0 whose existence is stipu-
lated by the theorem is unique.

ut

Once we have the normal form theorem, we may define the trace of a convex
and multiplicative map.
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Definition 7. Let X and Y be coherence spaces and f a convex and multiplica-
tive map from X to Y . The trace of f, T (f), is the following clique of !

m
X ( Y :

T (f) = {(µ0, b) / µ0 ∈M(X) ∧ µ0 is finite ∧ b ∈ |f(µ0)| ∧

∀µ ∈ M(X) (µ + µ0 ∈ M(X) ⇒ f(µ)(b) =
∏
a∈|X|

µµ0(a) )} .

Finally, one may easily prove the following proposition, which expresses in a
categorical way the bijective correspondence between the morphisms of coK( !

m
)

and the convex and multiplicative maps.

Proposition 2. T is a functor going in the opposite direction of F . And it holds
that, for any multiplicative and convex map f from X to Y and for any clique t
of !

m
X ( Y ,

F(T (f)) = f and T (F(t)) = t .

6 Some remarks

We have seen that linear maps are particular stable maps. There is a similar
result for convex and multiplicative maps.

Proposition 3. Let X and Y be coherence spaces. Let f be a convex and multi-
plicative map from X to Y . Then, f is a linear map iff, for every µ, ν ∈M(X),

µ+ ν ∈M(X) ⇒ f(µ + ν) = f(µ) + f(ν) .

The Berry order for convex and multiplicative functions is, obviously, defined
as follows.

Definition 8. Let X and Y be coherence spaces. The Berry order on the convex
and multiplicative functions fromM(X) to M(Y ), which we denote by 6B , is
defined, for any such functions f and g, by:

f 6B g iff T (f) ⊆ T (g) .

And, as for the set exponentials, the Berry order has a functional counterpart.

Proposition 4. Let X and Y be coherence spaces. Let f and g be convex and
multiplicative functions fromM(X) toM(Y ). Then

f 6B g iff ∀µ, ν ∈M(X)(µ + ν ∈M(X) ⇒ f(µν) = f(µ)g(ν) ) .

Our approach presents a discrepancy which may have puzzled the reader. The
traces of our morphisms are cliques, but as functions, these morphisms act on
multicliques. A natural generalization would be to allow arbitrary multicliques
as traces of morphisms. Furthermore, such an approach would also be closer
to Girard’s quantitative semantics, since the monomials of his “formal series”
(which correspond to the elements of our traces) have coefficients.
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Given a multiclique τ of !
m
X ( Y and a multiclique µ of X, how could we

generalize Definition 6 to define F(τ )(µ) as a multiclique of Y ? The answer is,
obviously,

F(τ )(µ) =
∑

(µ0,b)∈| !
m
X(Y |

τ (µ0, b)(
∏
a∈|X|

µµ0(a)) b .

Indeed, in the particular case where τ is a clique, this formula coincides with
the formula of Definition 6. These functions are convex but fail to be multi-
plicative, and we have to introduce a notion of weak multiplicativity in order to
characterize them.
In the complete version of the paper we consider the category Coh(IN+),

whose objects are the coherence spaces. In that category, a morphism from a
coherence space X to a coherence space Y is a multiclique τ of !

m
X ( Y such

that |τ | is a linear map. This corresponds to the parameterization of Coh by the
monoid (IN+, 1,×), in the same way it is done in [7].
We finally prove that the co-Kleisly category of the comonad !

m
in Coh(IN+)

is isomorphic to the category whose objects are the coherent spaces and the
morphisms are the convex and weakly multiplicative functions. Observe that,
in that co-Kleisly category, a point is a multiclique and, therefore, since the
morphisms act on multicliques, the category is well pointed.
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Corso Svizzera 185, 10149 Torino, Italy
{stefano,deligu}@di.unito.it

Abstract. In existing game models, total functionals have no simple
characterization neither in term of game strategies, nor in term of the
total set-theoretical functionals they define. We show that the situation
changes if we extend the usual notion of game by allowing infinite plays.
Total functionals are, now, exactly those having a tree-strategy in which
all branches end in a last move, winning for the strategy. Total functionals
now define (via an extensional collapse) all set-theoretical functionals.
Our model is concrete: we used infinite computations only to have a nice
characterization of totality. A computation may be infinite only when
the input is a discontinous functional; in practice, never.

1 Introduction

Games and strategies have emerged as useful tools to model interaction, with
applications both to logic and to the theory of higher type functionals.
We address the problem of characterizing total functionals in game theoretic

models. A natural conjecture is that a functional is total if and only if it is
the extensional counterpart of some winning well-founded strategy. This would
mean that a total functional can always be described via strategies whose plays
eventually end, after finitely many steps, in some move by the Player, which
Opponent cannot reply to.
We prove, however, that this is the case only (and exactly) for Tait-definable

functionals, and that some interesting computable total functionals have infinite
branches in any strategy defining them. This calls for a generalization of the
notion of play to ordinal sequences of moves (possibly of transfinite length),
and for a proper notion of winning strategy. Later, we will remark that infinite
plays arise only in the application of a functional to some discontinous functional.
Hence transfinite plays are relevant to have a nice characterization of total maps,
but they cannot arise in practice.
In the literature game theoretic concepts have been proposed to construct

models of lambda calculi, by extensionally collapsing certain sets of strate-
gies. There have been two proposals: the first one is based on the idea of
history-free strategies [3]; according to the second one players move depending
on “views”of the play: these are called dialog games and innocent strategies, as
defined in [10,11].

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 54–68, 1999.
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In [7] an apparently different notion of game, originally introduced by
Novikoff, is used to give an intuitionistic explanation of the classical notion
of truth. As it will be explained in sections 2 and 3 of the present paper, dia-
log games and Novikoff-Coquand games are closely related: the former can be
obtained from the latter by distinguishing between question and answer moves,
and by imposing Gandy’s “no dangling question” condition (no computation
may end before all its sub-computations ended).

In all cases quoted above strategies produce either finite plays, or non-
terminated plays of length ω. This is not necessary, at least in the case of
strategies depending on views (called “innocent strategies” in [10]), since a gen-
eralization of dialog games to plays of transfinite length has been achieved in [5].
As we pointed out in the abstract, in this way all total set-theoretical functionals
become naturally definable via strategies in which all branches end (maybe after
infinitely many steps) in a last move, winning for the strategy.
We do not loose concreteness of the game interpretation: transfinite plays

may arise only as the effect of the application to discontinuous arguments. Yet,
transfinite branches are necessary even to represent some computable function-
als.
To substantiate this claim, we provide two type 3 examples of functionals,

taken from Kreisel Realization model of the Analysis. They require strategies
with transfinite branches; but, if their arguments are hereditarily continuous
functionals, the resulting play is always finite, and it is recursive if the arguments
are.
The plan of the paper is as follows. In section 2 we introduce the basic de-

finitions of transfinite dialog games. Then, in section 3, we specialize games to
functional games. In section 4 we characterize total functionals, as promised.
In the same section, we characterize total functionals definable via well-founded
strategies as the Tait-continuous functionals. Finally, in section 5, we prove that
this class does not contain even all “computable” total functionals: in partic-
ular certain type 3 realizers for Classical Second Order Arithmetic cannot be
described via well-founded strategies.
Because of lack of space, almost all proofs have been omitted.

2 Games with transfinite plays

In this section we introduce Coquand’s notion of game, as generalized in [5].

We want games able to model computation consisting of questions/answers
(or dialogues) between two process. The first question is the input value, its an-
swer is the output value, and it ends the dialogue. During the dialogue, processes
alternate: each process answers to some previous question of the other process.
The answer may be another question (concerning the value of a subcomputa-
tion); or it may be the final value of a (sub)computation.
We fix a trivial example we will use through the paper. Let F : (N → N)→

N , and f : N → N . Assume f(0) = a, f(1) = b, f(2) = c. We will describe
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the computation of F (f) = f(0) + f(1) + f(2) as a dialogue between a process
F and a process f . First, f asks ”F (f) =?” (asks F for the value of F (f)). F
answers by asking ”f(x) =?” (by asking f for the value of f(x) in x = 0; f , in
turn, answers ”x =?” (asks F for the input value x). F answers by ”x = 0!”
(by sending an input value 0 to f); now f answers F ’s original question, by
”f(x) = a!” (by returning the output value a of f(x) in x = 0).
The same questions and answers are used to compute f(1) and f(2). Even-

tually, F may answers f ’s first question: ”F (f) =?”, by returning (a + b + c).
This ends the dialogue.
We will model processes by players, whose goal is always to provide an answer

to other player’s questions. The first player unable to answer looses. Game rules
fix a possible set of answers to each question. Computations are represented by
plays which follow the rules of the game. A winning strategy will model a total
functional, while a strategy which may loose will model a partial functional. We
will define strategies at the end of this next section. Before we will formally
define Coquand’s games and plays.

Definition 1. A game is a 5-ple G = 〈A,B,M,R,m0〉 such that:

1. A,B are the names of the first and the second player;
2. M is a set, whose elements are the moves of G;
3. R ⊆M ×M is the set of rules of G: 〈m,m′〉 ∈ R, also written mRm′, reads
as “m′ is a legal reply to move m”;

4. m0 ∈M is the starting move.

We assume the relation R having finite depth: there exists k < ω such that,
if m0Rm1 · · ·mn−1Rmn, then n ≤ k.

In our example, A and B are the processes f and F . M is the set of possible
questions and answers between any two F : (N → N) → N , and f : N → N ,
that is: F (f) =?, F (f) = i!, f(x) =?, f(x) = j!, f(x) = k!. We list now a coding
for the elements of M .
1. m0 =?ε is F (f) =?, the first question of the game, of f about the value

of F (f). 2. The possible answers of F to ?ε are: the answer !i, or F (f) = i!”
consisting of the output value i ∈ N for F , and another question, ?1, or f(x) =?,
of F to f , about the value of f(x). 3. The possible answers of f to ?1 are: the
answer !1.j, or f(x) = j!, consisting of the output value j ∈ N of f(x), and the
question ?1.1, or x =?, of f to F , about the value of its input x. 4. The only
possible answers of F to ?1.1 are ?1.1.k, or x = k!, consisting of a value k ∈ N
for x. (In the next section, we will describe more in general a coding for the
elements of M).
The relation R(m,m′) on M , or ”game rule”, describes the set of all m′

which are a correct answer to m: in our case, according to what said, we have
R(?ε, !i), R(?ε, ?1), R(?1, !1.j), R(?1, ?1.1), R(?1.1, !1.1.k). The height of R is fi-
nite (equal to 3).
The next step will be to introduce first ”generic” plays, and then specialize

them to the particular notion of play we will use: ”Novikoff plays”.
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Definition 2. A generic play of the game U above is a triple p = 〈I, r,m(.)〉
such that:

1. I, called the carrier set, is a non-empty well-order (total and well-founded),
with minimum 0I . Its elements are the indexes of the moves of the play p.

2. r : I − {0I} → I is a map, such that r(i) < i for all i ∈ I. r is called the
replay map; r(i) denotes (the index of) the move to which the move with
index i answers to. Thus, r(0) is undefined.

3. m(.) : I →M is a map, associating to each index i ∈ I a move mi ∈ M of the
play, having such index. We ask moreover that R(mi, mr(i)) (that whenever
a move answers to another one, then it is a correct answer to it)

In our example, the whole play has 14 moves, and index set I = {0 . . .13}.
The moves are: m0 =?ε (or F (f) =?), m1 =?1 (or f(x) =?), m2 =?1.1 (or
x =?), m3 =!1.1.0 (or x = 0!), m4 =!1.a (or f(x) = a!), . . . The last move is
m13 =!(a+ b+ c), or F (f) = (a+ b+ c)!. The reply map r keeps track to which
move answers each move: we may check that its values are: r(1) = 0, r(2) =
1, r(3) = 2, r(4) = 1, . . . (the move 4 provides the value of f(x) in x = 0, hence
it answers to the move 1). Remark that r(13) = 0 (the last move provides the
value of the whole computation, hence it answers to the move 0).
We will now define a map turn : I → {A,B}, telling which player is on turn

at a given step. Since r(i) < i for i > 0, we have rn(i) = 0 for a unique n ∈ N .
The player on turn on 0 is A by the rules of the game, and the player on turn
on r(i) is the opponent of the player on turn on i. Thus, we may define turn as
follows: turn(i) = A if the first n such that rn(i) = 0 is even, and turn(i) = B if
such an n is odd.
The last step is to restrict the set of plays we allow by introducing the

notion of visibility. Visibility models the memory of the computation (which
past moves may be used by a player to decide the next move, or which moves
may be answered). We follows Novikoff and Coquand, and we decide to assume
that each move between a question in j = r(i) and its answer in i are invisible
for the player who got the answer. The reason is that we think of the moves in
]j, i[ as a subcomputation, with input the question in j, and output the answer
in i. And we want to model any computation by a ”black box”, with only visible
points the input and the output, as real computations are. Thus, the player
who sent the input in j and received the output in i should see nothing else in
between.
Let U = turn(k). We may express Novikoff-Coquand by requiring: 1. each

segment [0, i[ of the play is split into a partition made of segments [r(k), k]
(r(k) = question of U , k = answer of his opponent); 2. the only visible moves,
by U from i, are the endpoints {r(k), k} of such segments; 3. r(i) = k for the
last point k of one of such segments. This latter requirement means that U , in
i, replies to some visible answer of his opponent. We will now formalize the idea
above into definition of Novikoff play.

Definition 3. – We associate to any i ∈ I a segment by S(i) = [0, 0] if i = 0,
S(i) = [r(i), i] if i > 0. We call S(i) an R-segment: it is the segment
of moves between the move i answers to (if any), and i itself.



58 Stefano Berardi and Ugo de’Liguoro

– We say that {S(k)|k ∈ V } is a ”black box structure” over I if it is a partition
of I. We call the set V above, consisting of the last points of the segments
S(k), a visibility set over I.

– We say that p = 〈I, r,m(.)〉 is a Novikoff play if there is a map V (.) : I →
℘(I) such that, for all i ∈ I, V (i) is a visibility set over [0, i[ and r(i) ∈ V (i).

Starting from the sets V (i), we may formalize the visibility predicate
Vis(U, ξ, ζ) (to be read “ζ is visible by player U at ξ”), by Vis(turn(ξ), ξ, ζ) ⇔
ζ ∈ V (ξ) ∨ ζr(V (ξ) − {0}) and, if U = turn(r(ξ)) 6= turn(ξ), Vis(turn(ξ), ξ, ζ)⇔
ζ = r(ξ)∨Vis(U, r(ξ), ζ). The first definition expresses that V (ξ)∪ r(V (ξ)−{0})
is the set of endpoints of the ”black box structure” associated to ξ and to the
player on turn on ξ. The second definition expresses the fact that no move in
]r(ξ), ξ[ is visible by the the player U on turn on r(ξ). This is because the seg-
ment [r(ξ), ξ] starts by a question by U , and ends by the answer of the other
player. Thus, according to our assumptions, its interior is invisible by U .
The view of U on p at ξ is the set

view(U, p, ξ) = {ζ | Vis(U, ξ, ζ)}.

The main result about Novikoff plays is the following (proved in [5]):

Theorem 1.
Let p be any Novikoff play. Then all one-step extensions of p have, in their last
move, the same visibility set and the same player on turn.

Because of 1, if a play p of length α can be extended, it makes sense to speak
of the player on turn at α-th step: abusing notation we simply write turnp(α).
The theorem 1 is easy to prove when I has a successor length, but difficult

when I has a limit length. Herbelin [8] remarked that the case length(I) = ω
is elementary equivalent to Tait’s normalization result for ω-logic. As an easy
corollary, the visibility assignment V (.) : I → ℘(I) such that r(i) ∈ V (i) for all
i > 0, if it exists, it is unique; and V (i), turn(i) are uniquely determined by r
restricted to [0, i[. Thus, in principle, we could just say that a play is Novikoff,
without quoting the map V (.) : I → ℘(I), since this map is unique.
Our example of play is a Novikoff play. We will now write down, for each

move, a row with all visibility informations for the player on turn. Moves visible
by the player on turn will be marked ”v”, or ”v ” for the moves of his opponent,
forming the visibility set. Invisible moves will be marked ”i”. We call the process
F ”P” (for ”Player”), and process f ”O” (for ”Opponent”).

turn Move Coding of the move r 0 1 2 3 4 . . . . . . 13

0 O F (f) =? ?ε - i i i i i .. .. i
1 P f(x) =? ?1 0 v i i i i .. .. i
2 O x =? ?1.1 1 v v i i i .. .. i
3 P x = 0! !1.1.0 2 v v v i i .. .. i
4 O f(x) = a! !1.a 1 v v v v i .. .. i
. . . . . . . . . . . . .. .. .. .. .. .. .. .. i
. . . . . . . . . . . . .. .. .. .. .. .. .. .. i
13 P F (f) = a+ b+ c! !(a+ b+ c) 0 v v i i v .. .. i
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Remark that move 13 cannot see, for instance, the moves 2, 3. The reason
is that such moves are in the interior of the R-segment [1, 4], that is, of the
subcomputation with question f(x) =? and answer f(x) = a!. Thus, moves 2, 3
are, for the player on turn on move 13, inside a ”black box”, hence invisible.

In the case of finite pre-plays, we may prove that the set view is the visibil-
ity set of view-strategies (called “innocent” in [10]), having a simple inductive
definition:

view(U, p, i) =

{
{i− 1} ∪ view(U, p, i− 1) if turn(i) = U
{r(i)} ∪ view(U, p, r(i)) if turn(i) 6= U .

This is the standard notion of visibility in dialog games: it is defined in this
way both in [10,11] and in [7]. the case of plays of possibly transfinite length has
been considered for the first time in [5], from which we borrow the axiomatic
definition of Vis. Definition above does not tell, explicitly, who is the player on
turn at a limit point λ ∈ I, nor his views. The main theorem 1, however, states
that r restricted to [0, λ[ uniquely determine the turn and the view at point λ.

This ends the introduction of Novikoff plays. In the remaining of this section,
we will introduce strategies. In the next section, we will use them to model
functionals.

To define strategies, concepts and terminology about certain parts of plays
are in order. First, if ξ ∈ I then pdξ (a prefix play of p) is the (pre) play whose
carrier set is [0, ξ[, whose r,m(.) are the restrictions to [0, ξ[ of those of p. More
in general if J ⊆ I then pdJ is the structure 〈J, r′, m′(.)〉 where r

′, m′(.) come from
r,m(.), by restricting them to J .

Given a play p we can choose J such that pdJ is closed under the reply
function and has the structure of a play, but it is not such for trivial reasons:
e.g. because its first move is not m0, or it is played by P . To define the notion of
subplay without being too restrictive we introduce the notion of play morphism
(see also [10]).

Definition 4. If p and q are (pre) plays, with carrier sets I, J , then ϕ : p → q
is a play morphism if it consists of a pair of maps 〈ϕ0, ϕ1〉 such that ϕ0 : I → J
is strictly increasing and ϕ1 : {O, P } → {O, P } is identity or exchange, and for
all ξ < α:

turnq(ϕ0(ξ)) = ϕ1(turnp(ξ)), rq(ϕ0(ξ)) = ϕ0(rp(ξ)).

The image ϕ[p] in q is a subplay of q.

The subplay ϕ[p] of q has the same structure of p, and its reply and turn
functions are rqdϕ0[α] and turnqdϕ0 [I] (where ϕ0[I] is the image of I in J
via ϕ0).
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Proposition 1. If ϕ[p] is a subplay of q, then I = ϕ0[length(p)] is such that:

1. if ξ, ζ ∈ I are such that ξ < ζ and there exists no η ∈ I such that ξ < η < ζ,
then turn(ξ) 6= turn(ζ);

2. I 6= ∅ and r[I \ {min(I)}] ⊆ I;
3. for any ξ ∈ I, if I′ = {ζ ∈ I | ζ < ξ} then I′ ∩ view(turn(ξ), q, ξ) is cofinal
in I′.

Vice versa, if I ⊆ length(q) satisfies the above conditions, then qdI is a subplay
of q.

A pre-play is U -cut free, for U ∈ {O, P } if

ξ > 0 ∧ turn(ξ) 6= U ⇒ ξ = r(ξ) + 1,

namely if the opponent of U is forced to reply to the last move of U .
U -cut free (pre) plays is the terminology of [7]. If a pre-play has finite length

then the previous definition is a generalization of [11], definition 3.1.3. Observe
that in a U -cut free pre-play, U is the unique player allowed to play at limit
points.
Any view determines a subplay (but not vice versa), i.e. any non empty

I = view(U, q, ξ) satisfies the conditions of 1. Such a qdI is a U -cut free play
which, with overloaded terminology, we call the U -view of q at ξ. Also I ∪ {ξ}
determines a subplay qd(I ∪ {ξ}), which we call ”large U -view”.
We say that player U is deterministic on a play p if for all ξ, ζ < length(p),

if turn(ξ) = turn(ζ) = U and pdview(U, p, ξ) isomorphic to pdview(U, p, ζ) (i.e.,
that they are the same up to renaming of the elements of the carrier sets) then
the lare U -views of ξ, ζ are isomorphic, too. A play p is a deterministic play if
both players are deterministic on p.

Definition 5. A strategy s for player U over a game U (shortly an U -strategy)
is a tree (i.e. a prefix closed set) of U -cut free plays of U such that, for all p ∈ s
with α = length(p):

1. if turn(α) = U then there is at most one q ∈ s of length α+ 1 such that p is
a prefix of q;

2. if turn(α) 6= U (hence α is a successor) then for any m ∈M which is a legal
reply to pα−1, i.e. such that pα−1Rm, there exists q ∈ s of length α+1 such
that p is a prefix of q, qα =m and rq(α) = α− 1.

Player U follows the strategy s in the play q if for all ξ < length(q) the large
U -view p of q at ξ belongs to s, up to renaming of the carrier set. Clearly U
follows some strategy in q if and only if U is deterministic on q.
The main consequence of Theorem 1 w.r.t. strategies is the cut-elimination

theorem:

Theorem 2 (Cut-elimination [5]). Let s be a P -strategy and t an O-strategy
such that the heights of s and t are bounded above by some infinite regular ordinal
κ. Then there exists a unique play p of maximal length such that P and O follow
the strategies s and s′ respectively, and length(p) = α+ 1 < κ.
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This play has successor length, hence it has a last move; the player who did
the last move won. Therefore any two strategies s and t, for Player and Opponent
respectively, determine a winning player.

3 Sequential functionals of finite type

The present section specializes dialog games to games and strategies represent-
ing functionals. In this case the role of Player is to show that a functional Fs,
associated to the strategy s, is defined against the arguments Ft1, . . . , Ftk: if s
wins against t1, . . . , tk then either some ti misses a move or the resulting play
has a last move !v such that Fs(Ft1 , . . . , Ftk) = v. Therefore winning strategies
(i.e. strategies such that the player who follows them is always able to play a
move, when on turn) naturally induce total functionals.

We base our treatment on [11]. Admittedly formalizations based on the cate-
gorical semantics of linear logic, as it is the case of [6,2,3,1,9], have the advantage
of being compositional with respect to the type structure, which is not the case
of the present one. However the actual description of strategies seems more direct
in a formulation which does not make use of the decomposition of the function
space bifunctor into linear implication and the comonad “!”. Perhaps the best
thing would be a compromise between the two, which is still on demand.

Let Γ = {γ0, γ1, . . .} be a set of ground types, and T(Γ ) be the set of simple
types over Γ . We fix an interpretation of types in Γ as a set of values V =⋃
{Vγ | γ ∈ Γ }.
Any type has the form τ = τ1 → (· · · → (τk → γ)) ∈ T(Γ ), and is abbreviated

by (τ1, . . . , τk → γ). The set of occurrences of τ , Occ(τ ) is defined inductively:
ε ∈ Occ(τ ) and τε = γ; if 1 ≤ i ≤ k and a ∈ Occ(τi) then i.a ∈ Occ(τ ) and
τi.a = (τi)a.

To each type τ it is associated a game Gτ as follows.

Definition 6. For τ ∈ T(Γ ), Gτ is the game 〈Mτ , Rτ , ?ε〉 where:

1. Mτ = {?a, !a.v | a ∈ Occ(τ, v ∈ Vγ , for γ last atom in τa};
2. Rτ is the least binary relation over Mτ such that:

(R1) a.i ∈ Occ(τ )⇒?aRτ?a.i,
(R2) a ∈ Occ(τ ) ∧ τa = γ ∧ v ∈ Vγ ⇒?aRτ !a.v.

InMτ moves of the form ?a are queries for the output value of a functional of
type τa, applied to all its arguments; moves of the form !a.v are the corresponding
answers.

Definition 7. A functional play (henceforth simply a play) over the game Gτ
is a deterministic play p over it such that

(F ) pξ =!v ∧ r(ξ) < ζ < ξ ∧ pζ =?a⇒ ∃ζ′, v′. ζ′ < ξ ∧ pζ0 =!v′ ∧ r(ζ′) = ζ.
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(F ) imposes that an answer replies to the last unanswered question (the “no
dangling condition” of [10]). By (R1)-(R2) only queries can be replied to.
Let 〈p, rp〉 be a play and 〈p′, rp0〉 a subplay (of any other play). By p ∗ p′

we indicate the partially defined operation of concatenating p with p′: p ∗ p′

is defined and equal to 〈q, rq〉 if length(q) = length(p) + length(p′), qξ = pξ if
ξ < length(p), p′ζ if ξ = length(p) + ζ, and finally

rq(ξ) =




rp(ξ) if ξ < length(p)
length(p) + rp0(ζ) if ξ = length(p) + ζ > length(p)
length(p) − 1 if ξ = length(p) is a successor, and

plength(p)−1Rqξ

If some of the above conditions cannot be satisfied, p ∗ p′ is undefined. If it is
defined we set turnq as the function determined by rq.
Let p be a play of type τi, for 1 ≤ i ≤ k, and τ = (τ1, . . . , τk → γ). Then

we may construct a play p(i) = 〈?ε〉 ∗ p′ of type τ by adding a first move ?ε
and by transforming each move over τi into the corresponding move over τ : so
p′ is the (sub) play obtained from p by changing any question of the form ?a
into a question of the form ?i.a. Because of the definition of concatenation, the
first move of p′ replies to ?ε, which implies that players on p′ are interchanged

with respect to p (indeed, for all ξ < length(p), pξ corresponds to p
(i)
1+ξ, so that

rnp (ξ) = 0 if and only if r
n+1
p(i)
(1+ ξ) = 0: in particular, if ξ is limit, then 1+ ξ = ξ

so that players are exchanged also at limit points); therefore, if p is a P -view
of a play of type τi, then p

(i) is an O-view of a play of type τ . Finally, if s is a
strategy of type τi then we set s

(i) = {p(i) | p ∈ s}.

Proposition 2. Let τ = (τ1, . . . , τk → γ) and s1, . . . , sk be P -strategies of type
τ1, . . . , τk. Then

(s1, . . . , sk)
O =

k⋃
i=1

s
(i)
i

is an O-strategy of type τ , and any such a strategy arises in this way.

Because of this proposition there is no theoretical loss in concentrating on
P -strategies, henceforth called simply strategies. An immediate consequence of
this and of 2 is that given some P -strategy s of type (τ1, . . . , τk → γ) and the
P -strategies s1, . . . , sk of type τ1, . . . , τk it is uniquely determined the play p =
s • (s1 , . . . , sk)O of maximal length in which P and O follow s and (s1, . . . , sk)O

respectively.
A functional play is terminated if it has a move answering to the first move

?ε. This move is necessarily the last one, by (F 1). If such s • (s1 , . . . , sk)O is
terminated by the move !v then write

s[s1, . . . , sk] = v.

s[s1, . . . , sk] is undefined otherwise. By s[s1, . . . , sk] ' t[t1, . . . , th] we mean they
are either both defined and equal, or both undefined.
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The functional interpretation of strategies depends on the following fact. For
each type τ define the binary relation ∼τ among strategies of type τ inductively
as follows:

– s ∼γ s
′ ⇔ s = s′;

– s ∼(τ1,...,τk→γ) s
′ ⇔

∀s1, s′1, . . . , sk, s
′
k.
∧k
i=1 si ∼τi s

′
i ⇒ s[s1 , . . . , sk] ' s

′[s′1, . . . , s
′
k].

Then, if si ∼τi s
′
i for 1 ≤ i ≤ k and s is a strategy of type (τ1, . . . , τk → γ),

s[s1, . . . , sk] ' s[s
′
1, . . . , s

′
k].

The type structure of the Hereditarily Sequential Functionals1, HSF, is de-
fined as follows. To each type τ it is associated a set HSFτ of functionals,
and to each strategy s of type τ a functional Fs ∈ HSF

τ . Set F〈?ε〉 = ⊥ and
Fṽ = v, where ṽ = 〈?ε, !v〉. If s is a strategy of type τ = (τ1, . . . , τk → γ) then
Fs : HSF

τ1v · · ·HSFτk → HSFγ is the functional

Fs(Fs1 , . . . , Fsk) = s[s1, . . . , sk] if defined.

Finally HSFτ = {Fs | s is a strategy of type τ}, in particular HSF
γ = (Vγ)⊥.

The structure HSF is a type frame. To see this we need a definition of appli-
cation between strategies of higher type, namely an operation App(s, t) = s[t]
where, if s is some strategy of type σ → τ and t of type σ, s[t] is a strategy of
type τ .
Let p be a play of type (τ1, . . . , τk → γ): q is the subplay of p on the i-th

component if it is the maximal subplay of p such that any question of q but the
first one has the shape ?i.a.
If p is a play of type τ = (τ1, . . . , τk → γ), then we may construct a play

p|σ of type σ = (τ2, . . . , τk → γ), by restricting p to the moves not in the first
component. Take I = {ζ < length(p) | ∀a, b. pζ 6=?1.a∧ pr(ζ) 6=?1.b}: then pdI is
a subplay of p and there exists a play q of type σ and a play morphism ϕ such
that ϕ[q] = pdI, qζ =?(j − 1).a whenever pϕ0(ζ) =?j.a, qζ = pϕ0(ζ) else, and ϕ1
is the identity. rq is fully determined by ϕ and rp.

Proposition 3. Let s be a strategy of type τ = (τ1, . . . , τk → γ). Consider
σ = (τ2, . . . , τk → γ) and some strategy t of type τ1. Define s[t] as the set of all
P -cut free plays p′ such that for some play p of type τ :

1. p′ is a P -view of p|σ;
2. P follows s on p;
3. if q is the subplay of p on the first component then O follows t(1) on q.

Then s[t] is a strategy of type σ = (τ2, . . . , τk → γ), such that, for all strategies
t2, . . . , tk of type τ2, . . . , τk

s[t][t2, . . . , tk] ' s[t, t2, . . . , tk].

By this the functional application is simply defined by: Fs(Ft) = Fs[t].

1 We give to this structure the same name as in [11], but they are different since our
HSF properly includes the structure considered by Nickau.
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4 Well-founded total functionals

In this section and in the next one we restrict our attention to type structures
over T(N) = T({N}), namely to simple types with ground type N . We also fix
VN = ω.
A P -strategy s is winning if P always wins against any O-strategy, by fol-

lowing s. It is strongly winning if any p ∈ s has some extension q ∈ s won by
P . A strongly winning strategy is winning, but not vice versa: indeed a winning
strategy may include plays lost by P which simply cannot be a P - view of any
play against some O-strategy. Strongly winning strategies are complete: by The-
orem 1 any play of limit length can be extended; on the other hand in a P -cut
free play just P may play at limit points; therefore if s is a winning strategy and
p is a P -cut free play of limit length λ, then p ∈ s if and only if pdξ ∈ s for all
ξ < λ.
Winning strategies are related to total functionals: Fs ∈ HSF

(τ1,...,τk→γ) is
total if for all total Fs1 , . . . , Fsk there exists n ∈ VN such that

Fs(Fs1 , . . . , Fsk) ' n.

Theorem 3. Fs is total if and only if s is strongly winning.

The proof of the last theorem depends on the fact that any strategy s is
included in some strongly winning strategy (possibly of transfinite height). This
implies that any partial object in HSF has a total extension within HSF: this
should be contrasted with the Scott continuous functionals, where e.g. Plotkin
continuous existential quantifier is maximal (w.r.t. the pointwise ordering) but
not total (see [12]). The same remark applies to the PCF definable functionals:
indeed (our) HSF is a larger model than the extensional collapse of innocent
strategies.

Because of the existence of transfinite plays and of strategies of transfinite
height, any functional in the type frame HTF of the Hereditarily Total Function-
als (the full type hierarchy over VN = ω) is an object of HSF

2.

Theorem 4. For all type τ and F ∈ HTF there exists a winning strategy s of
the same type such that F = Fs.

If κ is an infinite regular ordinal and s is a strategy of height ≤ κ (recall that
the height of a tree T is the first ordinal α such that for all sequence x ∈ T ,
length(x) < α), we say that it is a κ-strategy: an ω-strategy is then a well-founded
tree. A functional Fs ∈ HSF

τ is well-founded if there exists an ω-strategy s such
that F = Fs. The following Corollary is an immediate consequence of the Cut-
Elimination Theorem 2 and of the definition of totality.

2 Strictly speaking any object of HTF turns out to be the restriction to total functionals
of some object of HSF, as the latter may have partial functionals in its domain. In the
sequel we shall not enter into such details, and we will consider HTF as a subframe
of HSF
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Corollary 1. Total well-founded functionals from HSF are closed under appli-
cation.

Let TWF be the type frame of Total Well-founded Functionals.

Theorem 5. TWF is a model of simply typed λ-calculus.

Well-founded functionals embody the idea of functionals determined by finite
amounts of information about their arguments: the same idea at the basis of
Kleene-Kreisel countable functionals and of Scott continuous functionals. In the
final part of this section we characterize the well-founded total functionals using
a generalization to all types, due to Tait, of Brouwer’s notion of continuity for
type 2 functionals.

Definition 8. The Tait Continuous Functionals, TCF, is the least type frame
over T(N) such that:

1. TCFN is the set of natural numbers;
2. TCF contains the combinators S,K, I at all (suitable) types;
3. if {Fn | n ∈ ω} ⊆ TCF

τ then the functional F (n) = Fn (also denoted by

λn. Fn) is in TCF
(N→τ) (the ω-rule).

Recursive Tait-continuous functionals, which are obtained from Definition 8
by asking in the third clause that the set {Fn | n ∈ ω} is recursive, are total
functionals (this is a consequence of Tait cut-elimination theorem for the ω-
logic). That TCF is a subframe of HTF will be a consequence of the proof that
TCF and TWF actually coincide.
It is not difficult to show that TCF ⊆ TWF, since by Theorem 5 it suffices to

prove the closure of TWF under the ω-rule. Suppose that Fn = Fsn for all n and
take s as the prefix closure of the set of all P -cut free plays p of type (N → τ )
such that p = 〈?ε, ?1, !n〉∗q, and q is obtained from some q′ ∈ sn by substituting
each move of the form ?i.a by ?(i+ 1).a. Then s is a strategy of type (N → τ ),
and Fs = λn. Fn.
To prove that TCF ⊇ TWF the following lemma is needed (compare with [11]

Theorem 3.3.6). If T is a tree then T〈x〉 = {y | 〈x〉 ∗ y ∈ T} is an immediate
subtree of T ; a proper subtree of T is either an immediate subtree or a proper
subtree of some immediate subtree of T . Recall that well-founded trees admit an
inductive definition: T is well-founded if all immediate subtrees of T are such.

Lemma 1. Let s be an ω-strategy of type (τ1, . . . , τk → N) such that s 6= ñ
for any n. Then there exist 1 ≤ i ≤ k and the ω-strategies s1, . . . , sni (where
τi = (σ1, . . . , σni → N)) and a family of ω-strategies {s

′
m}m∈ω such that, for all

strategies t1, . . . , tk of type τ1, . . . , τk, if ti[s1[t1, . . . , tk], . . . , sni[t1, . . . , tk]] ' m
then s[t1, . . . , tk] ' s′m[t1, . . . , tk]. Moreover s1 , . . . , sni and each s

′
m are isomor-

phic to proper subtrees of s.

Theorem 6. The well-founded functionals are exactly the Tait-continuous
functionals, namely TWF = TCF.
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Proof. Let F = Fs be a well-founded functional of type (τ1, . . . , τk → N).
If s = ñ then Fs = λx1 · · ·xk.n and it is trivially Tait-continuous. Other-
wise, by induction over the well founded tree s and by Lemma 1, there exist
G1 = Fs1, . . . , Gni = Fsni and G

′
m = Fs0m for each m ∈ ω which are Tait-

continuous and such that, if Fi(G1(F1, . . . , Fk), . . . , Gni(F1, . . . , Fk)) = m then
F (F1, . . . , Fk) = G

′
m(F1, . . . , Fk). Therefore

F (F1, . . . , Fk) = (λm.G
′
m(F1, . . . , Fk))(Fi(G1(F1, . . . , Fk), . . . , Gni(F1, . . . , Fk)))

is Tait-continuous as it is obtained applying the ω-rule to a combination of
F1, . . . , Fk and of constants for Tait-continuous functionals.

2

5 Computable non well-founded functionals

Given any F ∈ HTF((N→N)→N), there exists f, g ∈ HTF(N→N) such that

f(F (f)) 6= g(F (g)) (1)

F (f) = F (g) (2)

Indeed for any ordinal ξ let hξ be the characteristic function of Xξ = {F (hζ) |
ζ < ξ}. By a cardinality reasoning there exists a minimal α < ω1 such that
Xα+1 = Xα; therefore hα(F (hα)) = hα+1(F (hα)) = 1. Since F (hα) ∈ Xα+1 =
Xα there exists a (unique) β < α such that F (hα) = F (hβ). If hβ(F (hβ)) = 1
then Xβ = Xβ+1 = Xα contradicting the minimality of α, so that hβ(F (hβ)) 6=
hα(F (hα)): now set f = hα and g = hβ .
The construction of f, g is uniform in F , so that there exist two total func-

tionals Φ, Ψ of type (((N → N) → N), N → N) such that f = Φ(F ) and
g = Ψ(F ) satisfy (1), (2). If F is continuous (w.r.t. the product topology over

HTF(N→N) = ωω) then α < ω. In this case it is easily proved that Φ(F )(n) = m
and Ψ(F )(n) = m are predicates recursive in F . In this sense Φ and Ψ are
“computable” type 3 functionals.
By Theorem 4 Φ, Ψ are objects of HSF. More explicitly a strategy for Φ is

the least prefix closed set of P -cut free plays of type (((N → N)→ N), N → N)
including plays of the following two forms (using the symbolic notation):

〈Φ(F, x) =?, F (f) =?, F (f) = n0, . . . , F (f) =?, F (f) = nη, (for all η < ξ)
F (f) =?, f(y) =?, y =?, y = m, f(y) = hξ(m)〉

which accounts for the computation of F (hξ), and

〈Φ(F, x) =?, F (f) =?, F (f) = n0, . . . , F (f) =?, F (f) = nα,
x =?, x = n, Φ(F, x) = hα(n)〉.

which yields the value of Φ(F, x). In the second line, as in the informal definition
of Φ, α is the minimum ordinal such that nα = nβ for a (unique) β < α. The
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definition of a strategy for Ψ is similar, but the last move in the second case is
Ψ(F, x) = hβ(n).
These strategies are both ω1-strategies, where ω1 is the first uncountable

ordinal. Next we prove that Φ, Ψ have no ω-strategy.

Theorem 7. Φ and Ψ are not well-founded functionals.

The proof uses two Lemmas. By F ⊆ G it is meant graph inclusion.

Lemma 2. Let F ∈ HSF((N→N)→N) be partial injective, X be the range of F ,
x 6∈ X and f ∈ HTF(N→N) ⊆ HSF(N→N): then there exists G ∈ HSF((N→N)→N)

partial injective such that Rng(G) ⊆ X ∪ {x}, F ⊆ G and f ∈ Dom(G).

Lemma 3. Let {sn | n ∈ ω} be a family of winning ω-strategies of type (((N →
N) → N) → N), and X ⊆ ω an infinite set. Then there exists

F ∈ HSF((N→N)→N) partial injective with range X s.t. Fsn(F ) is defined for
all n.

Proof of Theorem 7. Toward a contradiction suppose that Φ = Fs and Ψ = Ft,
for some (winning) ω-strategies s, t. Then there exist winning ω-strategies sn and
tm associated to Φn = λF. Φ(F, n) and Ψm = λF. Φ(F,m) respectively. Let us

abbreviate by θ〈n,m〉 a strategy for the functional Θ〈n,m〉 ∈ HSF
(((N→N)→N)→N

such that
Θ〈n,m〉(G) = 〈Φ(G)(n), Ψ(G)(m)〉,

where 〈 , 〉 is a surjective pairing function over the natural numbers. Of course
θ〈n,m〉 can be constructed from sn and tm in such a way that it is an ω-strategy.
Being Θ〈n,m〉 a total functional, θ〈n,m〉 is winning by 3.
By Lemma 3, given any infinite X ⊆ ω and 〈i, j〉 6∈ X we can find F ∈

HSF((N→N)→N) partial injective with range ⊆ X such that Θ〈n,m〉(F ) is defined
for all n,m, which implies that f = Φ(F ) and g = Ψ(F ) are total functions,
since 〈f(n), g(m)〉 ' Θ〈n,m〉(F ) for all n,m.
Applying Lemma 2 twice we find U partial injective such that F ⊆ G, X ∪

{i, j} is the range of U and f, g ∈ Dom(G). Let H be any total extension of U :
then Φ(F ) ⊆ Φ(G) ⊆ Φ(H), and, as f = Φ(F ) is total, Φ(H) = f . Similarly
Ψ(H) = g.
By the absurd hypothesis f(H(f)) 6= g(H(g)) and H(f) = H(g). ¿From

H(f) = G(f) and H(g) = G(g) it follows G(f) = G(g), hence f = g since U is
injective: a contradiction.

2

6 Concluding remarks

Although well-founded functionals are a natural structure, they do not capture
the idea of (relative) computable functionals at type 3 and higher. This may
be of minor interest as soon as one is concerned with λ-calculus models, but
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becomes relevant when dealing with the constructive analysis of classical proofs,
and with program extraction. Indeed the functionals Φ, Ψ can be shown to be
natural realizers of the no-counterexample of the comprehension axiom scheme
for classical second order arithmetic, and have been found following methods
introduced in [4].
The fact that they are not well-founded may appear not surprising as they

are set theoretic functionals, defined also on discontinuous type 2 arguments (i.e.
non continuous w.r.t. the product topology on type 1 objects), as it is needed
if they have to build “no-counterexamples” against any possible candidate as a
counterexample. However they have the robust property, as argued in the previ-
ous section, to yield finite plays on continuous (namely well-founded) arguments,
which are effectively computable if the arguments are recursive. Actually Φ, Ψ
are examples of a large class of functionals enjoying this property, which, we
think, deserves further investigation.
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Counting a Type’s Principal Inhabitants

(Extended Abstract)

Sabine Broda and Lúıs Damas

DCC & LIACC, Universidade do Porto

Abstract. We present a Counting Algorithm that computes the number
of λ-terms in β-normal form that have a given type τ as a principal type
and produces a list of these terms. The design of the algorithm follows
the lines of Ben-Yelles’ algorithm for counting normal (not necessarily
principal) inhabitants of a type τ .

1 Introduction

In [2], Ben-Yelles presented a Counting Algorithm, also described in [3], which
given a type τ computes the number of λ-terms in β-normal form that can
receive type τ in TAλ. For each type τ the algorithm decides in a finite number
of steps whether the number of closed β-normal forms with type τ is finite or
infinite, computes this number in the finite case, and lists all relevant terms in
both cases. Related to this is the problem of counting the number of β-normal
forms that have a given type τ as a principal type. As pointed out in ([3], p. 127),
this problem is still open and in this paper we present a Counting Algorithm
which solves this case. Analogous to Ben-Yelles’ algorithm, our algorithm for
counting (and listing) principal normal inhabitants of a type τ is based on the
following facts. First, it is sufficient to look for a special kind of principal normal
inhabitants of τ , called long terms. Second, there are integers 0 < dp(τ ) < Dp(τ )
such that the cardinality of the set of principal normal inhabitants of τ depends
directly on the number of long principal normal inhabitants of τ with depth in
[0;dp(τ )[ and on the number of those with depth in [dp(τ );Dp(τ )[, where depth
is a measure on the structure of a λ-term in β-normal form. Finally, Ben-Yelles
defined in [2] a Search Algorithm (others are in [6], [7] and [5]), that given a
type τ and any integer d ≥ 0 can be used to compute all (a finite number)
long normal inhabitants of a type τ with depth ≤ d. Thus, using any principal-
type checking algorithm (for example in [3]) it is possible to compute the long
principal normal inhabitants of τ with depth ≤ d. Thus the problem of counting
principal normal inhabitants of a type τ is essentially solved by computing the
long principal normal inhabitants of τ with depth <Dp(τ ).
In section 2 we describe the Counting Algorithm for normal principal inhab-

itants based on the existence of dp(τ ) and Dp(τ ) and on Ben-Yelles’ Search
Algorithm. In section 3 we obtain a characterization of long normal principal
inhabitants, that will give us a better insight on principal deductions for long
terms in β-normal form and will thereby enable us in section 4 to establish and
prove the correctness of the limits dp(τ ) and Dp(τ ).

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 69–82, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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2 The Counting Algorithm

We use standard notation from [1] and [3]. Type-variables (atoms) are denoted
by “a,b,c,. . .”and arbitrary types are denoted by lower-case Greek letters. It has
been pointed out in [3] that it is equivalent to count typed or untyped inhabitants
of a type τ . In sake of simplicity, we restrict this paper to the untyped case.
A term M has a bound-variable clash iff M contains an abstractor λx and a
(free, bound or binding) occurrence of x that is not in its scope. Note that for
any λ-term M exists a λ-term N without bound-variable clashes and such that
M =α N . In this paper we will only consider λ-terms without bound-variable
clashes.

Definition 1. A type-assignment is an expression of the form M : τ , where M
is a λ-term and τ is a type. The type τ is the predicate andM is the subject of the
type-assignment. A type-context or basis Γ is any finite, perhaps empty, set of
type-assignments with distinct variables as subjects. If Γ = {x1, ρ1, . . . , xm : ρm}
define Subjects(Γ ) = {x1, . . . , xm}. A TA-formula is any expression of the form
Γ −M : τ , where M is a term, Γ a type-context and τ a type.

In the following we describe a system to assign types to λ-terms in β-nf.

Definition 2. Given a λ-termM in β-nf, a type τ and a context Γ , we say that
M : τ is derivable from Γ , and write Γ − M : τ if the formula Γ − M : τ can
be produced by the following rules.

(axiom)
Γ − x : α

(if x : α ∈ Γ )

(app)
Γ −M1 : α1 . . . Γ −Mn : αn
Γ − xM1 . . .Mn : β

(if x : α1 → . . .→ αn → β ∈ Γ , n ≥ 1)

(abs)
Γ, x : α −M : β
Γ − λx.M : α → β

A TA-deduction ∆ of Γ − M : τ (where M denotes a β-nf) is a tree of TA-
formulae, those at the tops of branches being axioms and those below being de-
duced from those immediately above them by a rule ((app) or (abs)) and with
bottom formula Γ −M : τ .

Proposition 3. Given a β-nf M , a basis Γ and type τ such that

Γ −M : τ , there is exactly one deduction ∆ of Γ −M : τ .

Proof Straightforward. •
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Definition 4. Let M be a β-nf and (Γ, τ ) a pair such that Γ − M : τ . We
say that M is long with respect to (Γ, τ ) iff for every formula of the form Γ ′ −
xM1 . . .Mn : α, n ≥ 0, in the unique deduction of Γ −M : τ , α is an atom. We
call M a normal inhabitant of a type τ iff M is in β-nf and −M : τ and denote
the set of normal inhabitants of a type τ by Nhabs(τ ). The set of principal normal
inhabitants of a type τ is called Nprinc(τ ). The set of normal inhabitants of τ
which are long with respect to (∅, τ ) is called Long(τ ). The set of long principal
normal inhabitants is called Lprinc(τ ).

Thus,

Lprinc(τ ) = Long(τ ) ∩ Nprinc(τ ) ⊆ Long(τ ) ⊆ Nhabs(τ ).

The (finite) set of all terms obtained by η-reducing a λ-term M is called the
η-family of M and denoted by {M}η. It has been shown (cf. [3]) that the
η-families of the long normal inhabitants of τ partition Nhabs(τ ) into non-
overlapping finite subsets, each η-family containing just one long member. From
this and from the two following results (in [3]) we conclude, that counting
Nprinc(τ ) corresponds essentially to counting Lprinc(τ ).

Lemma 5 (Completeness of Long(τ ); Ben-Yelles 1979). Every normal
inhabitant of τ can be η-expanded to a long normal inhabitant of τ . And this
long inhabitant is unique (modulo =α); i.e.

{M,N ∈ Long(τ ) and M =η N} =⇒ M =α N.

Lemma 6 (in Hindley’97). LetM+ be the unique member of Long(τ ) to which
M η-expands. Then,

M ∈ Nprinc(τ ) =⇒ M+ ∈ Nprinc(τ ).

Hence, ifM ∈ Nprinc(τ ), thenM+ ∈ Lprinc(τ ).We conclude that Nprinc(τ ) =
∅ iff Lprinc(τ ) = ∅ and that Nprinc(τ ) is infinite iff Lprinc(τ ) is. Furthermore,

Nprinc(τ ) ⊆
[

M∈Lprinc(τ)

{M}η.

Hence, our algorithm will focus on long normal principal inhabitants and, fol-
lowing Ben-Yelles’ algorithm, the searching will be done in order of increasing
depth of terms.

Definition 7. The depth of a λ-termM in β-nf is defined as follows and denoted
by Depth(M).

i. Depth(y) = Depth(λx1 . . . xm.y) = 0;
ii. Depth(λx1 . . . xm.yM1 . . .Mn) = 1 +max1≤j≤nDepth(Mj), if n > 0.
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In [2] Ben-Yelles defined an algorithm, called Search Algorithm, that given a
composite type τ , i.e. non-atomic (note that atomic types have no inhabitants at
all), produces a sequence A(τ, 0),A(τ, 1),A(τ, 2), . . . of finite sets of expressions,
called nf-schemes, such that each member of A(τ, d+ 1), which is a λ-term, is a
closed β-nf with depth d. More precisely, one has the following, where Long(τ, d)
denotes the set of long normal inhabitants of τ with depth ≤ d.

Theorem 8 (Search Theorem for Long(τ ), Ben-Yelles’79).
The Search Algorithm accepts as input any composite type τ and outputs a finite
or infinite sequence of sets A(τ, d) (d = 0, 1, 2, . . .) such that for all d ≥ 0,

i. each member of A(τ, d) is a closed nf-scheme with type τ and long with
respect to (∅, τ ), and is either
(a) a proper nf-scheme with depth d, or
(b) a λ-term with depth d− 1;

ii. A(τ, d) is finite;
iii. Long(τ, d) ⊆ A(τ, 0) ∪ . . .∪ A(τ, d+ 1);
iv. if we call the set of all λ-terms in A(τ, d) “Aterms(τ, d)”, then

Long(τ ) =
[
d≥0

Aterms(τ, d).

Now, and analogous to the Counting Algorithm for Long(τ ), the Counting
Algorithm for Nprinc(τ ) is based on the fact that Lprinc(τ ) is infinite iff it has
some member whose depth lies between two integers dp(τ ) and Dp(τ ), that can
be computed from τ . Furthermore, if Lprinc(τ ) has no member with depth in
[dp(τ );Dp(τ )[, then Lprinc(τ ) is finite or empty according as the number of long
principal inhabitants of τ with depth < dp(τ ) is finite or zero.

Definition 9. The total number of occurrences of type-variables in a type τ will
be denoted by |τ | and is defined as follows

|a| = 1, |ρ→ σ| = |ρ|+ |σ|.

The number of distinct type-variables occurring in τ will be denoted by ||τ ||.
Furthermore, if τ is a type let

dp(τ ) = |τ | and Dp(τ ) = |τ |
4.

In section 4 we will prove the following.

Theorem 10. For any type τ , there is

i. Lprinc(τ ) = ∅ iff Lprinc(τ ) has no member with depth < Dp(τ );
ii. Lprinc(τ ) is infinite iff it has a member M with
dp(τ ) ≤ depth(M) < Dp(τ );

iii. Lprinc(τ ) is finite iff all its members with depth < Dp(τ ) have depth < dp(τ ).

Thus, we have the following algorithm to count Nprinc(τ ).
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Counting Algorithm for Nprinc(τ ) 11 If τ is an atom, Nprinc(τ ) is empty.
If τ is composite, apply the Search Algorithm to τ and compute Aterms(τ, d) for
d = 0, . . . ,Dp(τ ). Determine the set Ap of all λ-terms in Aterms(τ, 0) ∪ . . . ∪
Aterms(τ,Dp(τ )) that are principal inhabitants of τ (using any algorithm for
checking principal types).

Case I If Ap = ∅, then Nprinc(τ ) = ∅.

Case II If Ap has a member with depth ≥ dp(τ ), then Nprinc(τ ) is infinite. Apply
the Search Algorithm to enumerate Aterms(τ, d) for d = 0, 1, 2, . . ., outputting for
each of these sets its members which are principal inhabitants of τ as well as the
members of their η-families that are principal inhabitants.

Case III If all members in Ap have depth < dp(τ ), then Nprinc(τ ) is finite.
Output all members of Ap as well as the members of their η-families that are
principal inhabitants.

3 Principal type inference for long normal �-terms

In this section we introduce the typing system TApln which will give us a better
insight on deductions of principal types for long normal inhabitants, and will
thus enable us to prove the Shrinking and Stretching Lemmas for Lprinc(τ ),
which have Theorem 10 as a consequence.

Definition 12. The system TApln has an infinite set of axioms and three de-
duction rules as follows.

(axiom)
Γ −pln x : a ‖ ∅

(if x : a ∈ Γ )

(app)
Γ −pln M1 : α1 ‖ φ1 . . . Γ −pln Mn : αn ‖ φn
Γ −pln xM1 . . .Mn : b ‖ ∅

(if x : α1 → . . .→ αn → b ∈ Γ and n ≥ 1)

(abs)
Γ, x : α −pln M : β ‖ φ
Γ −pln λx.M : α→ β ‖ ∅

(U)
Γ −pln M : a ‖ ∅
Γ −pln M : b ‖ (a, b)

A TApln-deduction ∆ is a tree of TApln-formulae, those at the tops of branches
being axioms and those below being deduced from those immediately above them
by a rule. The bottom formula in ∆ is called its conclusion; if it is Γ −pln M :
τ ‖ φ, we call ∆ a deduction of Γ −pln M : τ .
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In the following we are going to define a transformation-algorithm that given
the unique TA-deduction ∆ of a formula Γ −M : τ , where M is a β-nf which is
long with respect to (Γ, τ ), and a pair (Γ ′, τ ′), obtained from (Γ, τ ) by renaming
occurrences of variables (note that different occurrences of variables may have
been substituted by different variables), constructs a TApln-deduction ∆

′ of
Γ ′ −pln M : τ ′, such that several arrows occurring in ∆′ are possibly marked
with a ?. In the first step an unmarked version of ∆′ will be constructed bottom-
up from ∆ as follows.

– if Γ −M : τ is an axiom, i.e. x : a ∈ Γ , M = x and τ = a, then x : ak ∈ Γ ′

and τ ′ = al. Take Γ
′ −pln x : al ‖ (ak, al) as the bottom formula of ∆′

(U-rule) and precede it by Γ ′ −pln x : ak ‖ ∅ (axiom).
– if Γ − M : τ was obtained by the (app)-rule from Γ − M1 : α1, . . . , Γ −
Mn : αn, thus M = xM1 . . .Mn and τ = b, then there is a type-assignment
x : α′1 → . . . → α

′
n → bk in Γ

′ and τ ′ = bl. Take Γ
′ −pln xM1 . . .Mn :

bl ‖ (bk, bl) as the bottom formula of ∆′ (U-rule), precede it by Γ ′ −pln

xM1 . . .Mn : bk ‖ ∅ (app) and precede this formula by the deductions
∆′1, . . . , ∆

′
n constructed from the TA-deductions ∆1, . . . , ∆n of Γ − M1 :

α1, . . . , Γ −Mn : αn and pairs (Γ ′, α′1), . . . , (Γ
′, α′n).

– if Γ −M : τ was obtained by the (abs)-rule, i.e. M = λx.N and τ = α→ β,
from Γ, x : α − N : β, then take Γ ′ −pln λx.N : α′ → β′ ‖ ∅ as the bottom-
rule in ∆′ (abs) and precede it by the deduction ∆′1 constructed from the
deduction ∆1 of Γ, x : α − N : β and pair (Γ ′ ∪ {x : α′}, β′).

In the second step we mark arrows, starting top-down from axioms as follows.

– No arrows are marked for axioms.
– If Γ −pln xM1 . . .Mn : b ‖ ∅ results from Γ − M1 : α1 ‖ φ1, . . . , Γ − Mn :
αn ‖ φn by the (app)-rule, then we mark x : α1 → . . . → αn → b in Γ as
follows: x : α1 →? . . .→? αn →? b (no arrows are marked in α1, . . . , αn).

– If Γ −pln λx.M : α → β ‖ ∅ was obtained from Γ, x : α −pln M : β ‖ φ by
the (abs)-rule, then we mark the following arrow: Γ −pln λx.M : α→? β ‖ ∅.

– Finally, no arrows are marked in formulae obtained by the U-rule.

Definition 13. The indexed counterpart (Γi, τi) of a pair (Γ, τ ) is obtained by
successively indexing all occurrences of type variables and arrows in (Γ, τ ).

Note 1. If (Γi, τi) is the indexed counterpart of (Γ, τ ), then ||τ || ≤ |τ | = |τi| =
||τi||.

Example 14. The pair

({z : ((a1 →1 b1)→2 c1 →3 c2)→4 d1}, d2)

is the indexed counterpart of ({z : ((a → b) → c → c) → d}, d). The TA-
deduction of

z : ((a→ b)→ c→ c)→ d − z(λxy.y) : d
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is

z : ((a→ b)→ c→ c)→ d, x : a→ b, y : c − y : c
z : ((a→ b)→ c→ c)→ d, x : a→ b − λy.y : c→ c
z : ((a→ b)→ c→ c)→ d − λxy.y : (a→ b)→ c→ c
z : ((a→ b)→ c→ c)→ d − z(λxy.y) : d

and the corresponding TApln-deduction of z : ((a1 →1 b1) →2 c1 →3 c2) →4
d1 − z(λxy.y) : d2

is

z : ((a1 →1 b1)→2 c1 →3 c2)→4 d1, x : a1 →1 b1, y : c1 − y : c1 ‖ ∅
z : ((a1 →1 b1)→2 c1 →3 c2)→4 d1, x : a1 →1 b1, y : c1 − y : c2 ‖ (c1, c2)
z : ((a1 →1 b1)→2 c1 →3 c2)→4 d1, x : a1 →1 b1 − λy.y : c1 →

?
3 c2 ‖ ∅

z : ((a1 →1 b1)→2 c1 →3 c2)→4 d1 − λxy.y : (a1 →1 b1)→
?
2 c1 →3 c2 ‖ ∅

z : ((a1 →1 b1)→2 c1 →3 c2)→
?
4 d1 − z(λxy.y) : d1 ‖ ∅

z : ((a1 →1 b1)→2 c1 →3 c2)→4 d1 − z(λxy.y) : d2 ‖ (d1, d2)

Definition 15. Given a type τ and a binary relation Φ defined over the set
of type-variables in τ , let CΦ be the set of equivalence classes of the reflexive,
symmetric and transitive closure of Φ.

Lemma 16. Consider any finite non-empty set A and n binary relations
over A

Φ1 ⊆ . . . ⊆ Φn

such that CΦi 6= CΦj for 1 ≤ i 6= j ≤ n. Then n ≤ #A.

Proof Straightforward •

The following result is a consequence of observing that the algorithm for
computing the principal pair of a λ-term only introduces arrows required by
the typing rules and only unifies two variables if this is absolutely required by
the term structure. Note that the binary relation Φ corresponds directly to the
connection relation for TA-figures in [4].

Proposition 17. Let M be a λ-term in normal form, Γ a type-context and τ a
type such that, Subjects(Γ ) = FV (M), Γ − M : τ and M is long with respect
to (Γ, τ ). Consider the indexed counterpart (Γi, τi) of (Γ, τ ). Let ∆(Γi,τi) be the

TApln-deduction of Γi −pln M : τi constructed from the unique TA-deduction
of Γ −M : τ and let Φ be the set of all binary pairs in ∆(Γi,τi). Then,

(Γ, τ ) is a principal pair for M
iff

for each type-variable a in (Γ, τ ) there is one equivalence class
in CΦ containing exactly all indexed occurrences of a in (Γi, τi)
and all indexed arrows have a marked occurrence in ∆(Γi,τi).
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Proof It is straightforward to show that whenever (a, b) ∈ Φ, then a and b
are indexed versions of the same type-variable. Now, suppose that (Γ, τ ) is no
principal pair for M , i.e. there exists a (more general) pair (Γ0, τ0) such that
Γ0 −M : τ0, Γ ?0 = Γ and τ

?
0 = τ for some substitution ?, but (Γ, τ ) is no variant

of (Γ0, τ0). If (Γ0, τ0) has the same structure as (Γ, τ ), but at least two type-
variables in (Γ0, τ0) are given the same name, say a, in (Γ, τ ), then, considering
the observation made at the beginning of the proof, it is easy to see that there
are at least two equivalence classes in CΦ containing indexed occurrences of a in
(Γi, τi). If, on the other hand, one variable in (Γ0, τ0) has a composite type α→ β
in (Γ, τ ), then the corresponding occurrences of the arrow will never be marked
in ∆(Γi,τi). This follows from the fact that the TA-deduction of Γ − M : τ
is a copy of the TA-deduction of Γ0 − M : τ0 where all type-variables a are
substituted by ?(a). Analysing the transformation algorithm, one sees that the
same holds for the corresponding TApln-deductions.

Conversely, suppose that M is a β-nf, Γ a type-context and τ a type such
that Γ − M : τ , M is long with respect to (Γ, τ ) and FV (M) ⊆ Subjects(Γ ).
Furthermore, consider (Γi, τi), ∆(Γi,τi) and Φ as before. Let Φ

′ ⊇ Φ be any bi-
nary relation over the variables in (Γi, τi) such that there is some type-variable,
say d, such that there are at least two different equivalence classes {di1, . . . , dim}
and {dj1, . . . , djn} in CΦ0 containing indexed occurrences of d. We prove by in-
duction on the structure of M that, if we substitute in ∆(Γi,τi) the occurrences
dj1, . . . , djn by cj1 , . . . , cjn, for some new type-variable c, then we obtain a new
TApln-deduction ∆

′
c that corresponds to the TA-deduction ∆c of Γc −M : τc,

where (Γc, τc) is obtained from (Γ, τ ) by substitution of the occurrences of d
corresponding to dj1 , . . . , djn by c. Then (Γc, τc) is a more general pair such that
Γc −M : τc and consequently (Γ, τ ) is no principal pair for M .

If M = x, then (Γ, τ ) = ({x : a}, a) and the result holds vacuously, since
CΦ = {{a1, a2}}.

If M = xM1 . . .Mn, then τ = b, x : α1 → . . .αn → b ∈ Γ and Γ −
xM1 . . .Mn : b results from Γ − M1 : α1, . . . , Γ − Mn : αn by the (→ E)-rule.
From the induction hypothesis we conclude that Γc −M1 : αc1, . . . , Γc −Mn : α

c
n.

If ∆′c,1, . . . , ∆
′
c,n are the corresponding TApln-deductions, then ∆

′
c has the form

∆′c,1 . . .∆
′
c,n

Γc −pln xM1 . . .Mn : bck ‖ ∅
Γc −

pln xM1 . . .Mn : b
c
l ‖ (b

c
k, b
c
l ).

Thus (bk, bl) ∈ Φ ⊆ Φ′ belong to the same class in CΦ and the corresponding
occurrences in (Γ c, τ c) are occurrences of the same type-variable. Hence, Γ c −
xM1 . . .Mn : b

c can be inferred from Γc − M1 : α
c
1, . . . , Γc − Mn : α

c
n by the

(app)-rule and ∆′c corresponds to the TA-deduction ∆c of Γc − xM1 . . .Mn : b
c.

The result is straightforward for M = λx.N .

Thus we showed, that whenever (Γ, τ ) is a principal pair forM then for each
type-variable a in (Γ, τ ) there is one equivalence class in CΦ containing exactly
all indexed occurrences of a in (Γi, τi). It remains to show that all (indexed)
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arrows have a marked occurrence in ∆(Γi,τi). We proceed by induction on the
structure of M .
If M = x, then the result holds vacuously.
For M = xM1 . . .Mn let (Γ, b) be a principal pair of xM1 . . .Mn obtained

from Γ − M1 : α1, . . . , Γ − Mn : αn by the (app)-rule and x : α1 → . . . →
αn → b ∈ Γ . Then there are (Γ1, α01), . . . , (Γn, α

0
n) respectively principal pairs

of M1, . . . ,Mn, such that Γ = Γ
?
1 ∪ . . . ∪ Γ

?
n ∪ {x : v1 → . . . → vn → v}

?,
where ? is the substitution resulting from the unification of the types assigned
to variables in Γ1, . . . , Γn as well as in {x : v1 → . . .→ vn → v} (v1, . . . , vn, v are
new type-variables) and such that α1 = ?(v1) = ?(α

0
1), . . . , αn = ?(vn) = ?(α

0
n)

and b = ?(v). Now, by the induction hypothesis, all occurrences of arrows in
Γ1, . . . , Γn, α

0
1, . . . , α

0
n are marked in the TApln-deductions corresponding to the

TA-deductions of Γ1 − M1 : α1, . . . , Γn − Mn : αn. Thus, the arrows resulting
from the unification and corresponding to arrows in Γ1, . . . , Γn, α

0
1, . . . , α

0
n will

also be marked in the TApln-deduction that corresponds to the TA-deduction of
Γ − xM1 . . .Mn : b. Finally, note that the n main arrows in α1 → . . .→ αn → b
will be marked too.
The case M = λx.N is trivial, since if Γ − λx.N : α → β results from

Γ, x : α − N : β by the (abs)-rule and (Γ, α → β) is a principal pair for λx.N ,
then (Γ ∪ {x : α}, β) is a principal pair for N and the result follows almost
directly from the induction hypothesis. •

Example 18. Although CΦ = {{a1}, {b1}, {c1, c2, }, {d1, d2}} we conclude that
({z : ((a → b) → c → c) → d}, d) is no principal pair for z(λxy.y), since →1
has no marked occurrence in the TApln–deduction of z : ((a1 →1 b1)→2 c1 →3
c2)→4 d1 − z(λxy.y) : d2.

4 Correctness

We begin this section with several definitions and results (mostly from [3]) on
the structure of types and terms, that we will need later on in order to prove
Theorem 10. Note that every type τ can be written uniquely in the form

τ1 → . . .→ τm → e,

where e is an atom and m ≥ 0. Iff m ≥ 1 we call τ a composite type.

Definition 19. The significant subtypes or s-subtypes of a type τ = τ1 → . . .→
τm → e, where e is an atom and m ≥ 0, are defined recursively as follows.

– τ is an s-subtype of τ ;
– every s-subtype of one of τ1, . . . , τm, e is an s-subtype of τ .

A proper s-subtype of τ is an s-subtype 6= τ . Particular occurrences of s-subtypes
of τ are also called s-components of τ and are distinguished by underlining their
names. An s-component of a type τ is defined to be positive or negative as follows.
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– τ is a positive s-component of τ ;
– if τ = τ1 → . . . → τm → e, then τ1, . . . , τm are negative s-components of τ
and e is a positive s-component of τ ;

– if τ = τ1 → . . .→ τm → e and if ρ is an s-component of one of τ1, . . . , τm,
then ρ is a positive or negative s-component of τ according as it is a negative
or positive s-component of τ1, τ2, . . . or τm.

Definition 20. If ρ is a composite s-component of a type τ and ρ = ρ1 → . . .→
ρn → a (n ≥ 1), the s-components ρ1, . . . , ρn are called the premises of ρ and a
is called the conclusion or tail-component of ρ.
An s-component of τ is called a subpremise or subtail of τ according as it is

a premise or tail of another s-component of τ .

Definition 21. If τ is composite, NSS(τ ) is the set of all finite sequences
< σ1, . . . , σn > (n ≥ 1) such that τ contains a positive composite s-component
with form σ1 → . . . → σn → a for some atom a. Each member of NSS(τ ) is
called a negative subpremise-sequence.

Every non-atomic λ-term X can be expressed uniquely in the form

X = λx1 . . . xm.vY1 . . . Yn, (m+ n ≥ 1).

The head and arguments of X are respectively v and Y 1, . . . , Y n.

Definition 22. A subargument of a λ-term X is a component that is an argu-
ment of X or an argument of a proper component of X. If Z is a subargument of a
λ-termX, the argument-branch fromX to Z is the sequence < Z0, Z1, . . . , Zk >,
(k ≥ 1), such that Z0 = X and Zi is an argument of Zi−1 for i = 1, . . . , k, and
Zk = Z. It is called unextendable iff Z is an atom or abstracted atom. Its length
is k (not k + 1).

Definition 23. Let ∆ be a TApln-deduction of Γ −pln M : τ , let Z be a subar-
gument of M ; say

Z = λx1 . . . xm.yZ1 . . .Zn (m, n ≥ 0)

and let ΓZ −pln Z : α1 → . . .αm → a ‖ ∅ be the node in ∆ which corresponds to
Z. The Initial Abstractors’ Types sequence IAT(Z) is defined to be

IAT(Z) =< α1, . . . , αm >

and has length m. The Initial Abstractors sequence IA(Z) is the (possibly empty)
sequence

IA(Z) =< x1, . . . , xm > .
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Lemma 24. Let ∆ be a deduction of − M : τ , where M is a long β-nf with
respect to (∅, τ ) and let ∆′ be the corresponding TApln-deduction of −pln M : τi.
Let Z be a subargument of M , and let ΓZ −pln Z : σ ‖ ∅, with σ = σ1 → . . .→
σk → s, be the node in ∆′ which corresponds to Z. Then

i. if σ is an atom, IAT(Z) = ∅;
ii. if σ is composite, IAT(Z) ∈ NSS(τi).

Proof Part i. is trivial. For part ii., we show by induction on the depth of
Z in M , i.e. the length of the argument-branch from M to Z, that whenever
x : α ∈ ΓZ, then α occurs as a negative s-component in τi and σ (composite)
occurs as a positive s-component of τ . In fact, suppose that Z has depth 1 in
M , i.e. M = λx1 . . . xm.vY1 . . . Yn with m, n ≥ 1 and Z = Yi for some 1 ≤ i ≤ n.
Then τi = α1 → . . . → αm → a and the node in ∆′ that corresponds to Z is
x1 : α1, . . . , xm : αm −pln Z : σ ‖ ∅ (note that σ is composite, so this node results
from the (abs)-rule). By definition, α1, . . . , αm are negative s-components of τi.
On the other hand, there is v = xj for some 1 ≤ j ≤ m and αj is of the form
β1 → . . .→ βn → b with βi = σ. Thus, σ occurs as a negative s-component of a
negative s-component of τi and occurs consequently as a positive s-component
of τi.
The induction step is mostly a repetition of the previous argument.
Thus, if σ is composite, then σ occurs as a positive s-component of τi and

by the definition of NSS(τi) follows IAT(Z) =< σ1, . . . , σk >∈ NSS(τi). •

It has been shown in [3] that whenever τ is a composite type, then
#(NSS(τ )) ≤ |τ |−1. Thus, if (∅, τi) is the indexed counterpart of (∅, τ ), one has
#(NSS(τi)) ≤ |τi| − 1 = |τ | − 1.

Lemma 25. If τ is composite and (∅, τi) is the indexed counterpart of (∅, τ ),
then

#(NSS(τi)) ≤ |τ | − 1. •

The proofs of the following two lemmas follow closely the schemes of Ben-
Yelles’ proofs of corresponding results for Long(τ ), from which they differ essen-
tially in the justification of the encountered limits dp(τ ) and Dp(τ ). As in the
original case (Long(τ )), the construction of a term with smaller depth (or greater
in the case of the Stretching Lemma) is done by substitution of a subterm by
another subterm with smaller (greater) depth. But in the case of principal in-
habitants one has to be more careful choosing these subterms, leading thus to
greater limits, in order to guarantee the preservation of principality.

Lemma 26 (Shrinking Lemma). If Lprinc(τ ) has a member M with depth ≥
Dp(τ ), then

i. there exists M? ∈ Lprinc(τ ) with Depth(M) − |τ |3 ≤ Depth(M?) <
Depth(M);

ii. there exists N ∈ Lprinc(τ ) with Dp(τ ) − |τ |3 ≤ Depth(N) < Dp(τ ).
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Proof For part i. consider a λ-term M ∈ Lprinc(τ ) with depth d ≥ Dp(τ )
and without bound-variable clashes. Let ∆(∅,τi) be the TApln-deduction of −

pln

M : τi constructed from the unique TA-deduction of − M : τ and let Φ be the
set of all binary pairs in ∆(∅,τi). It follows from Proposition 17 that for each
type-variable a in τ there is one equivalence class in CΦ containing exactly all
indexed occurrences of a in τi and that all (indexed) arrows in τi are marked in
∆(∅,τi). In the following we are going to construct a term of depth < Depth(M)
which has (∅, τ ) as a principal pair. It has been shown in [3] that d = Depth(M)
is the maximum of the lengths of all the argument-branches in X. Thus M has
at least one argument-branch with length d and in order to reduce the depth of
M it is necessary to shrink all these branches. Let < N0, . . . , Nd > be any such
branch, with

Ni = λxi,1 . . . xi,mi .yiPi,1 . . .Pi,ni (mi, ni ≥ 0).

Let

Γi −
pln Ni : ρi,1 → . . .→ ρi,mi → ai ‖ ∅

be the node in ∆(∅,τi) that corresponds to N i, for i = 0, . . . , d. Thus, IAT(N i)
=< ρi,1, . . . , ρi,mi >. For i = 0, . . . , d let Bi be the body of N i, i.e. Bi =
yiPi,1 . . . Pi,ni and let ΓBi −

pln Bi : abi ‖ ∅ be the node in ∆(∅,τi) that corre-
sponds to Bi. Furthermore, let Φi and Ii be respectively the set of binary pairs
and of indexes of marked arrows in the subtree of ∆(∅,τi) with bottom formula

ΓBi −
pln Bi : abi ‖ ∅. Then, Ii ⊆ Ii−1 and Φi ⊆ Φi−1 for i = 1, . . . , d.

As in [3] we define a sequence of integers d0, d1, . . . , dn as follows: d0 = 0 and
dj+1 is the least i > dj such that IAT(N i) differs from all
IAT(Nd0), IAT(Nd1), . . . , IAT(Ndj ). Obviously, one has n ≤ d as well as 0 = d0 <
d1 < . . . < dn ≤ d. Furthermore, for 0 ≤ i ≤ d, IAT(N i) is identical to one of
the n+ 1

IAT(Nd0 ), . . . , IAT(Ndn),

which are all distinct and by 24 are either empty or members of NSS(τi). Hence,
by lemma 25

n+ 1 ≤ 1 +#NSS(τi) ≤ 1 + |τ | − 1 = |τ |.

For i = 0, . . . , n define the following non-empty sets, called IAT-intervals, as
follows:

Ij = {dj, dj + 1, . . . , dj+1− 1} 0 ≤ j ≤ n − 1
In = {dn, dn + 1, . . . , d}.

If Ij contains two numbers p, p + r such that r ≥ 1 and Bp and Bp+r have
the same type (i.e. abp = abp+r ), CΦp = CΦp+r and Ip = Ip+r , we shall call
< p, p+ r > a tail-repetition. It will be called minimal iff there is no other tail-
repetition < p′, q′ > with p ≤ p′ < q′ ≤ p + r. It follows that each IAT-interval
Ij without a tail-repetition must have ≤ |τ |3 members as well as r ≤ |τ |3. In
fact, there are |τ | distinct atoms in τi, there are at most |τ | distinct equivalence
classes corresponding to Φ0 ⊇ Φ1 ⊇ . . . ⊇ Φd (cf. Lemma 16), as well as at most
|τ | distinct sets of indexes among I0 ⊇ . . . ⊇ Id (note that there are exactly |τ |



Counting a Type’s Principal Inhabitants 81

arrows in τi). Thus, if none of the n+1 IAT-intervals contained a tail-repetition,
then the branch would have ≤ |τ |4 members. But the branch has d+1 members
and

d+ 1 = Depth(M) + 1 ≥ Dp(τ ) + 1 > |τ |
4.

Hence at least one IAT-interval contains a tail-repetition.
Now let Ij be the last interval containing a minimal tail-repetition, say

< p, p + r >. Suppose that v is a variable that occurs free in Bp+r with type-
assignment v : α ∈ ΓBp+r . Since M is closed we conclude that v ∈ IA(N0) ∪
. . . ∪ IA(Np+r). Furthermore, by the definition of IAT-intervals, α ∈ IAT(Ndq )
for some q ≤ j ≤ p < p + r. Hence, there is some type-assignment v′ : α ∈ ΓBp .
Now let B′p+r be a term obtained from Bp+r by substituting all free variables

v in Bp+r by some variable v
′ as above (possibly itself if v : α ∈ ΓBp). Finally let

M ′ be obtained from M by replacing Bp by B
′
p+r . Note that ΓBp ⊆ ΓBp+r , i.e.

ΓBp+r = ΓBp ∪ Γr for some Γr with ΓBp ∩ Γr = ∅ and such that no variable in
Subjects(Γr) occurs in B

′
p+r . Consider the subtree ∆p+r of ∆(∅,τi) with bottom

formula ΓBp+r −
pln Bp+r : abp+r ‖ ∅. Let ∆

′
p+r be obtained from ∆p+r by

substituting every term variable v by the corresponding v′ ∈ Subjects(ΓBp )
and erasing in the bases of the formulae all type-assignments for variables in
Subjects(Γr). Then ∆

′
p+r has bottom formula ΓBp −

pln B′p+r : abp+r ‖ ∅. Now
consider the tree obtained from ∆(∅,τi) by substituting its subtree with bottom

formula ΓBp −
pln Bp : abp ‖ ∅ by ∆

′
p+r and by substituting Bp in all nodes

below by B′p+r . Then, it is straightforward to prove, that the resulting tree ∆
′

is a TApln-deduction of −pln M ′ : τi which corresponds to a TA-deduction of
− M ′ : τ and such that for the set Φ′ of binary pairs in ∆′ one has CΦ0 = CΦ
and all arrows marked in ∆(∅,τi) are also marked in ∆

′. Thus, we conclude that
M ′ is a principal long inhabitant of τ . On the other hand, in a branch in M
r ≤ |τ |3 arguments have been removed. Thus d − |τ |3 ≤ Depth(M ′) ≤ d. If
Depth(M ′) < d let M? = M ′. Otherwise, repeat shortening branches of length
d until there are none left and define M? to be the first term produced by this
procedure whose depth is less than d. Then d− |τ |3 ≤ Depth(M?) ≤ d. For part
ii. it is sufficient to repeat i. and take the first output with depth < Dp(τ ). •

Lemma 27 (Stretching Lemma). If Lprinc(τ ) has a member M with depth
dp(τ ), then

i. there exists M? ∈ Lprinc(τ ) with Depth(M?) ≥ Depth(M) + 1;
ii. Lprinc(τ ) is infinite.

Proof Part ii. follows from i. by repetition. The construction of M? in i. is
identical to the one in [3] for the Stretching Lemma for Long(τ ) (not Lprinc(τ )).
Choose any argument branch < N0, . . . , Nd > of length d = Depth(M) ≥ |τ |
and, as in the proof of the Shrinking Lemma, let Bi be the body of N i for
i = 0, . . . , d. Let ΓBi − Bi : abi ‖ ∅ be the corresponding node in ∆(∅,τi). Since
d + 1 > |τ | = ||τi||, there are 0 ≤ p < p + r ≤ d such that Bp and Bp+r
have the same type a = abp = abp+r . Define M

? to be the result of replacing
Bp+r in M by a copy of Bp, after (to avoid clashes) changing the names of
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the variables x1, . . . , xm in this copy to x
′
1, . . . , x

′
m, where {x1 : α1, . . . , xm :

αm} = Subjects(ΓBp \ ΓBp+r ). Then M
? has an argument branch with length

d + r > d. In order to see that τ is a principal type of M?, consider the tree
∆′p+r obtained from the subtree of ∆(∅,τi) with bottom formula ΓBp − Bp : a ‖ ∅
by first replacing in each node all occurrences of x1, . . . , xm respectively by
x′1, . . . , x

′
m and then adding {x1 : α1, . . . , xm : αm} to the bases in all nodes.

Note that ∆′p+r has bottom formula ΓBp+r − B
′
p+r : a ‖ ∅. Finally, let ∆

′

be the tree obtained from ∆(∅,τi) by replacing its subtree with bottom formula
ΓBp+r − Bp+r : a ‖ ∅ by ∆

′
p+r . It is straightforward to see that ∆

′ is the
TApln-deduction corresponding to the TA-deduction of − M? : τ and that all
binary pairs and marked arrows in ∆(∅,τi) occur in ∆

′. Thus we conclude that
M? ∈ Lprinc(τ ). •

Whenever τ is a composite type, there is |τ | ≥ 2, thus

dp(τ ) = |τ | < |τ |
4 − |τ |3 =Dp(τ )− |τ |

3 < Dp(τ ).

Hence, Theorem 10 follows as a Corollary.
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Abstract. We present a non-standard type assignment system and sim-
plifications mappings for detecting and removing useless-code in simply
typed functional programs with algebraic datatypes and recursive func-
tions. We characterize two classes of useless-code: the dead-code, that
is code that is never executed under the lazy-call-by-name evaluation,
and the minimum-information-code, that is code that contributes to the
computation only with a minimum amount of constant information.

1 Introduction

Useless-code analysis for functional programming languages has been mainly
studied in the context of logical frameworks, like Coq [9], to remove useless-code
from functional programs extracted from formal proofs (see [12] for an intro-
duction to the subject). In fact, programs extracted from proofs usually contain
large parts that are useless for the computation of the final result and some
sort of simplification is mandatory. To this aim various simplification techniques
have been proposed in the last ten years (e.g. [16,1,5,2,6,8,3]). More in general
useless-code elimination is worthwhile during compilation (see, for instance, [4]).
Let us look at a couple of examples of useless-code detection and elimination.

Example 1. Let M = (λxint.3)P where P is a term of type int. Since x is never
used in the body of the λ-abstraction F = λxint.3, we have that the value of M
can be computed without using P , which is therefore useless-code. In fact, in a
lazy-call-by-name language (like Miranda, Haskell and Clean), M behaves like
the term M ′ = (λxint.3)d, where d is a place-holder for the useless-code removed.
Note that it is indeed possible to simplify the useless-code in a more substantial
way, i.e. by removing the useless pair 〈formal parameter x, actual parameter d〉
and replacing M with the body of the λ-abstraction (the constant 3).

In the following we will call dead-code the useless-code that, like P above, is
never executed under the lazy-call-by-name evaluation strategy. The next (more
complex) example introduces another class of useless-code, called minimum-
information-code, that has been characterized by Berardi and Boerio in [3].

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 83–97, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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Example 2. Let intList = dataX.Nil [] Cons(int, X) be the datatype of the list of
integers, and bool = dataX.True [] False be the datatype of booleans.
Consider the term N = λxint.GPA, where G : int→ intList→ int =
λyint.λzintList.case z of { Nil to Q1 [] Cons(h, t) to Q2 } and A : intList =
caseB of { True to Cons(E1, L1) [] False to Cons(E2, L2) }, for some terms
P , Q1, Q2, B, E1, L1, E2 and L2. It is easy to see that Q1 is useless-code

1 ,
in particular dead-code, so it could be replaced by a place-holder d. Let z, h
and t not occur in Q2, then we have that E1, L1, E2, L2 are dead-code, and can
therefore replaced by place-holders d′1, d

′′
1 , d

′
2, d

′′
2 . Suppose also that the variable

y does not occur in Q2, but only in Q1 (that has been removed), then also P is
dead-code and it can be replaced by a place-holder d3.

We have removed a lot of dead-code but, also after the above simplifications,
in the term N there is other useless-code, since the subexpression A is an ex-
ample of minimum-information-code: it contributes to the computation only by
providing the Cons data-constructor of intList. Quoting from Berardi and Boe-
rio [3] we say that the subexpression A is minimum-information-code since “we
use only the first symbol of its output, and this first symbol is always the same”.
Minimum-information-code can be simplified by exploiting the (minimum) in-
formation that it provides. For the program N above this amounts to replacing
the minimum-information-codeA by the term A′ = Cons(d1, d2), which provides
the same (minimum) information, and replacing the term G (which uses the
minimum-information-code A) by the term G′ = λyint .λzintList.Q2, obtaining the
simplified term N ′ = λxint.G′d3A

′.

Note that replacing A by A′ may have changed the termination behav-
iour of N (even w.r.t. the lazy-call-by-name evaluation strategy2): minimum-
information-code is useless-code, but is not dead-code, and simplifying it may
change the termination property of the program (i.e. it may happen that the
simplified program converges while the original one diverges).

Moreover after turning G to G′ we have that A′ is dead-code3 and it can
be replaced by a place-holder d4. Note that A is not dead-code in N , but: by
simplifying the minimum-information-code A in N (i.e. by turning G to G′ and
A to A′) we have obtained a term N ′ containing new dead-code. By this second
simplification step we obtain the term: N ′′ = λxint.G′d3d4, that does not contain
useless-code (supposing that Q2 does not).

Also in this case (as in Example 1) it is possible to simplify the term in a
clever way by eliminating the place-holders for the dead-code removed. I.e. the
application G′d3d4 can be replaced by the body, Q2 of the function G

′. After
this last “cosmetic” simplification we obtain the term: N ′′′ = λxint.Q2, which is
significantly simpler than the original one. We remark that the transformation

1 Since A (the actual value of the formal parameter z) either diverges or converges to
a term of the form Cons(E,L) (for some E,L), so Q1, which is the first branch of
the case examining A, is never executed.

2 Suppose that, for some values of the parameter x, the term B is divergent.
3 Remember that the variable z does not occur in Q2.
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ρ ::= int (integers)
| ρ→ ρ (functions)
| µ (datatypes)

µ ::= dataX.dc1[] · · · []dcm (datatype, m ≥ 0, Con(dci) = Con(dcj)
iff i = j, X bound in each dci)

dc ::= C(♦1, . . . ,♦a) (data-clause, a ≥ 0, each ♦i
is either a type or the variable X)

Fig. 1. PCFD types

of N in N ′′′ cannot be performed by (partially) evaluating the program N , since
the value of the subexpression B may depend on the formal parameter x.

In Section 2 of this paper we introduce the programming language we are
dealing with and its operational semantics. Section 3 briefly shows how pro-
gram properties can be represented by partial equivalence relations on a term
model of the programming language. In Section 4 we describe the language of
non-standard types (that we call evaluation types) and its semantics. Section 5
presents an evaluation type assignment system and a program simplification
based on the information provided by the evaluation types assigned to a pro-
gram and to its subexpressions. Related work is considered in Section 6.

2 The language PCFD

In this section we introduce a simple functional programming language and
its operational semantics. The acronym PCFD stands for “Programming Com-
putable Functions with lazy algebraic Datatypes”, since this language is a di-
alect of the language PCF [14] obtained by adding algebraic datatypes. For more
details see, for instance, Pitts [13] and Gordon [10]. The set of PCFD types is
defined assuming as ground type the set of integers, int. Types are ranged over by
ρ, σ, τ (with superscripts and subscript when necessary), and algebraic datatypes
(datatypes in the following) are ranged over by µ.

Definition 1 (PCFD types). The language of types ( T) is defined by the
grammar in Fig. 1 where, in a datatype µ = dataX.dc1[] · · · []dcm, the type vari-
able X is bound by the data-binder and, for each clause dci = Ci(♦i,1, . . . ,♦i,ai),
each ♦i,j is either a type ρ ∈ T or the type variable X representing the datatype
being defined. The function Con(dc) is defined as: Con(C(♦1, . . . ,♦a)) = C.

Sometimes we will use, as meta-notation, parametrized definitions like list(X1) =
dataX.Nil [] Cons(X1, X), and pair(X1, X2) = dataX.Pair(X1, X2). For every
type ρ, ρ1, ρ2 ∈ T, list(ρ) ∈ T and pair(ρ1, ρ2) ∈ T are the types “list of ρ
elements” and “pair having a ρ1 as first element and a ρ2 as second element”,
respectively. We remark that in our language it is not possible to define polymor-
phic type constructors like list(X1) above: type parameters are only a convenient
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(Var) ` xρ : ρ (Con) ` kρ : ρ (Fix)
` M : ρ

` fixx ρ.M : ρ

(→ I) `M : σ
` λx ρ.M : ρ→ σ

(→ E)
`M : ρ→ σ ` N : ρ

`MN : σ

(Data1≤i≤m)
` P1 : σ1 · · · ` Pai : σai
` Cµi (P1, . . . , Pai) : µ

where µ = dataX.C1(♦1,1, . . . ,♦1,a1 ) [] · · · [] Cm(♦m,1, . . . ,♦m,am )

∀j ∈ {1, . . . , ai}.σj =

{
µ, if ♦i,j = X

♦i,j , if ♦i,j ∈ T

(Case)
` P : µ ` Q1 : τ · · · ` Qm : τ

` caseP of {C1(x1,1, . . . , x1,a1 ) to Q1 [] · · · [] Cm(xm,1, . . . , xm,am ) to Qm} : τ
where m ≥ 1, ∀i ∈ {1, . . . ,m} the variables xi,1, . . . , xi,ai are distinct,

µ = dataX.C1(♦1,1, . . . ,♦1,a1) [] · · · [] Cm(♦m,1, . . . ,♦m,am ), and
∀i ∈ {1, . . . ,m}, the program variables xi,1, · · · , xi,ai
• have the types specified by the data-clause Ci(♦i,1, . . . ,♦i,im )
• may occur free in Qi
• are bound by the left-hand-side of the case-clause Ci(xi,1, . . . , xi,ai ) to Qi

Fig. 2. Rules for PCFD term formation (system `T)

notation, and we need a separate definition for each particular instance of the
parameter.

PCFD terms are defined from a set of typed term constants (K = {0 int,
1 int, . . ., − pair(int,int)→int, + pair(int,int)→int, . . ., = pair(int,int)→bool, < pair(int,int)→bool,
. . ., not bool→bool, and pair(bool,bool)→bool, or pair(bool,bool)→bool}, ranged over by k),
including the usual operations involving the datatype of booleans,
bool = dataX.True [] False, and a set V of typed term variables (ranged over
by xρ, yσ , . . .). PCFD terms, ranged over by M , N , . . ., are defined as follows.

Definition 2 (PCFD terms). We write `T M : ρ, and say that M is a term
of type ρ, if `M : ρ is derivable by the rules in Fig. 2.

Let ΛT be the set of PCFD terms, i.e. ΛT = {M | `T M : ρ for some type ρ},
and ΛcT be the set of the closed terms, i.e. Λ

c
T = {M |M ∈ ΛT and FV(M) = ∅}.

The process of evaluating a program is specified in a standard way by giving
a structural operational semantics (see [15,11]) in the form of an inductively
defined evaluation relation,M ⇓ K, where M is a closed term and K is a closed
term in weak head normal form (w.h.n.f.), i.e. an element of the set of values
VT = K ∪ {λxρ.N | λxρ.N ∈ ΛcT} ∪ {C

µ(P1, . . . , Pa)
ρ | Cµ(P1, . . . , Pa)ρ ∈ ΛcT}.

We assume that any functional constant has a type of the shape either ρ1 →
ρ2 or pair(ρ1, ρ2) → ρ3, for some ρ1, ρ2, ρ3 ∈ {int, bool}. So the meaning of a
functional constant k can be given by a set mean(k) of pairs, i.e. if (K1, K2) ∈
mean(k) then kK1 evaluates to K2. For example (True, False) ∈mean(not) and
(Pair(1, 3), 4) ∈mean(+).
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(CAN) K ∈ VT
K ⇓ K (FIX)

M [x := fixx.M ] ⇓ K
fixx.M ⇓ K (APP)

M ⇓ λx.P P [x := N ] ⇓ K
MN ⇓ K

(KAPP1)
M ⇓ k N ⇓ K1

MN ⇓ K2
(K1,K2) ∈mean(k)

(KAPP2)
M ⇓ k N ⇓ 〈N1, N2〉 N1 ⇓ K1 N2 ⇓ K2

MN ⇓ K3
(Pair(K1, K2),K3) ∈mean(k)

(CASE1≤i≤m) P ⇓ Ci(P1, . . . , Pai) Qi[xi,1 := P1, . . . , xi,ai := Pai ] ⇓ K
caseP of {C1(x1,1, . . . , x1,a1 ) to Q1 [] · · · [] Cm(xm,1, . . . , xm,am ) to Qm} ⇓ K

Fig. 3. “Natural semantics” evaluation rules

Definition 3 (Evaluation relation). Let M ∈ ΛcT. We write M ⇓ K, and
say that M evaluates to K, if this statement is derivable by the rules in Fig. 3.

Let M ⇓, to be read “M is convergent”, mean that, for some K, M ⇓ K,
and let M ⇑, to be read “M is divergent”, mean that, for no K, M ⇓ K. For
every type ρ ∈ T, let ⊥ρ = fixxρ.x. It is easy to check that ⊥ρ ⇑, i.e. ⊥ρ is the
“typical” divergent computation of type ρ.
Following [13] we introduce the ground contextual equivalence on PCFD

terms, which is the congruence on terms induced by the contextual preorder
that compares the termination behaviour of programs just at the ground type
int. This amounts to assuming that complete PCFD programs are closed terms
of type int, and that the only observable behaviour of a complete program P
is its divergence or convergence to some integer number. Let (C[ ]ρ)σ denote a
typed context of type σ with a hole of type ρ in it.

Definition 4 (Ground contextual equivalence). Let M and N be terms of

type ρ. Define M �gndobs N whenever, for all closed contexts (C[ ]
ρ)int, if C[M ]

and C[N ] are closed terms, then C[M ] ⇓ implies C[N ] ⇓. The relation �gndobs is

the ground contextual preorder and the equivalence induced by �gndobs , denoted by

'gndobs , is the ground observational equivalence.

The closed term model Mgnd of PCFD is defined by interpreting each type
ρ as the set of the equivalence classes of the relation 'gndobs on the closed terms
of type ρ in ΛcT. Let I(ρ) denote the interpretation of type ρ in this model, and
let [M ] denote the equivalence class of the closed term M . An environment is
a mapping e : V →

⋃
ρ∈T I(ρ) which respects types, i.e. a mapping such that,

for all xρ, e(xρ) ∈ I(ρ). The interpretation of a term M in an environment e
is defined in a standard way by: [[M ]]e = [M [x1 := N1, . . . , xn := Nn]], where
{x1, . . . , xn} = FV(M) and [Ni] = e(xi) (1 ≤ i ≤ n).

3 Partial equivalence relations as program properties

The language of program properties L (introduced in Section 4 as a language
of non-standard types over T) which is at the basis of the program analysis
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and transformation techniques proposed in this paper, will be interpreted as a
subset of the partial equivalence relations4 over the interpretation, I(ρ), of the
types ρ ∈ T in the closed term model Mgnd. Let “p.e.r. over a type ρ” mean
“p.e.r. over I(ρ)”. The following definition formally explains what is meant by
“a term P of type ρ satisfies the property (p.e.r.) R over ρ”.

Definition 5 (P satisfies R). Let R,R1, . . . ,Rn (n ≥ 0) be p.e.r. over types
ρ, ρ1, . . . , ρn, respectively. We say that a term P of type ρ with free variables
xρ11 . . . , xρnn satisfies the property R under the assumptions Ri for x

ρi
i (1 ≤ i ≤

n) if, for all the environments e and e′ such that (e(xρii ), e
′(xρii )) ∈ Ri, we have

that ([[M ]]e, [[M ]]e0) ∈ R.

For every type ρ ∈ T, the diagonal p.e.r. over I(ρ), ∆int = {([M ], [M ]) | [M ] ∈
I(int)}, which equates each element of I(ρ) with only itself, can be seen as the
property satisfied by any term P of type ρ whose value (under some assump-
tion on the free variables of the term) matters (it can be used). Note that any
closed term M of type ρ satisfies this property. The trivial p.e.r. over I(ρ),
Ωρ = {([M ], [N ]) | [M ], [N ] ∈ I(ρ)}, which equates all the elements of I(ρ),
can be seen as the “true” property (satisfied by every term of type ρ) giving no
information about the use of the term.
Given a p.e.r. R1 over ρ1 and a p.e.r. R2 over ρ2, let R1→→R2 be the p.e.r.
over ρ1 → ρ2 defined as: R1→→R2 = {([F ], [G]) | ∀([M ], [N ]) ∈
R1.([FM ], [GN ]) ∈ R2}. The intuition behind this definition is that R1→→R2
is the property of the programs F such that, for every program M having the
property R1, the program FM has the property R2. For instance Ωint → ∆int is
the property (satisfied by all the closed terms of type int→ int which represent,
necessarily constant, functions which do not use their argument) which says that
the application of the function can be used without using the argument.
The set-theoretic inclusion between p.e.r.s over a type ρ represents a logi-

cal implication between properties, i.e., if R1 ⊆ R2 and a program P has the
property R1, then P has also the property R2.

4 Evaluation types

In this section we introduce a language of non-standard types over T, the lan-
guage of the evaluation types (e-types for short), which is the basis for the pro-
gram analyses and transformations technique proposed in this paper.

Let φ range over e-types and φρ range over e-types with underlying type ρ
(i.e. expressing properties of terms of type ρ). In the following we will often
omit the superscript ρ when it is either not relevant or clear from the context.
There are two e-types denoting properties for terms of type int: δint, which is
the property of the terms of type int such that their value can be used, and ωint,
which is the “true” property, satisfied by every term of type int.

4 A partial equivalence relation (p.e.r. for short) over a set A is a symmetric and
transitive binary relation over A.
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ψ0 = ω
list(int) ψ1 = dataX.Nil

∂ [] Cons∂ (int,X)
ψ2 = dataX.Nil

∂ [] Cons`(δint, X) ψ3 = dataX.Nil
∂ [] Cons`(ωint,X)

ψ4 = dataX.Nil
∂ [] Cons`(δint, ωlist(int)) ψ5 = dataX.Nil

∂ [] Cons`(ωint, ωlist(int))

plus the 5 e-types (say ψ′1, . . . , ψ
′
5) obtained from ψ1, . . . , ψ5 by replacing Nil

∂ with Nil`

Fig. 4. The 11 e-types for terms of type list(int)

Others e-types are built following the standard type construction. Given
two e-types φ1 and φ2 the e-type φ1 → φ2 says that the application of the
function to every argument of e-type φ1 has e-type φ2. Given a datatype µ =
dataX.C1(♦1,1, . . . ,♦1,a1) [] · · · [] Cm(♦m,1 , . . . ,♦m,am) the e-type ω

µ is the
“true” property, satisfied by every term of type µ. There also e-types that provide
information about which constructors of the datatype may be used: two construc-
tor annotations, ∂ and ` (ranged over by u, v), are introduced to represent the
fact that a datatype constructor is ∂ead (i.e. it is not used) or is `ive (i.e. itmay be
used), respectively. In particular the syntax of the e-types φµ different from ωµ is
as follows: φµ = dataX.C1

u1(♠1,1, . . . ,♠1,a1) [] · · · [] Cm
um(♠m,1, . . . ,♠m,am),

where for all i ∈ {1, . . . , m} and for all j ∈ {1, . . . , ai}

♠i,j =



either X or ωµ, if ui = ` and ♦i,j = X
an e-type φ♦i,j , if ui = ` and ♦i,j ∈ T
♦i,j, if ui = ∂ .

If a term Q of type µ has the e-type φµ above, then the constructors having an-
notation ∂ are not used while those having annotation ` may be used (with argu-
ments having the specified e-types). For instance there are 11
e-types (listed in Fig. 4) for the type list(int). The “typical” terms having
e-types ψ1, ψ

′
1, and ψ5 are fixx

list(int).x, Nil, and Cons(N,M) (for any N : int
and M : list(int)), respectively. Cons(N,M) is also the “typical” term of e-type
ψ4. Moreover fixx

list(int).x has every e-type of list(int), while Nil has none of
the e-types ψ1,. . .,ψ5, and Cons(N,M) has neither e-type ψ1 nor ψ

′
1. Both the

e-types ψ2 and ψ3 specify that the constructor Nil is not used while the sec-
ond component of the constructor Cons (which may be used) has (recursively)
the same e-type, so the “typical” terms having such e-types are of the form
Cons(N1,Cons(N2, · · ·Cons(Np, fixxlist(int).x) · · ·)), for some N1,. . .,Np (p ≥ 0).
We remark that the e-type syntax (see Definition 6 below) has been designed

in such a way that (syntactically) different e-types denote (w.r.t. the semantics in
Definition 7) different p.e.r.s. This observation justifies some choices that might
appear quite arbitrary, e.g. not having e-types of the form δρ where ρ 6= int, and
of the form φ→ ωσ (for any e-type φ and type σ). Each e-type φρ is interpreted
as a p.e.r., [[ρ]], over I(ρ) (see Section 3).

Definition 6 (Evaluation types). The language of the e-types, L, is defined
by: L = ∪ρ∈TL(ρ), where the sets L(ρ) are defined by the rules in Fig. 5.

Definition 7 (Semantics of e-types). The semantic function [[·]] which maps
e-types φρ to p.e.r.s over I(ρ) is defined by the clauses in Fig. 6.
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(δ) δint ∈ L(int) (ω) ωρ ∈ L(ρ) (→)
φ ∈ L(ρ) ψ ∈ L(σ)
φ→ ψ ∈ L(ρ→ σ)

ψ 6= ωσ

(data)

∀i ∈ {1, . . . ,m}.∀j ∈ {1, . . . , ai}.♠i,j ∈

{
{X,ωµ}, if ui = ` and ♦i,j = X

L(♦i,j), if ui = ` and ♦i,j ∈ T
{♦i,j}, if ui = ∂

dataX.C1
u1(♠1,1, . . . ,♠1,a1) [] · · · [] Cm

um (♠m,1, . . . ,♠m,am ),∈ L(µ)
where µ = dataX.C1(♦1,1, . . . ,♦1,a1 ) [] · · · [] Cm(♦m,1, . . . ,♦m,am )

Fig. 5. Evaluation types

[[δint]] = ∆int,

[[ωρ]] = Ωρ

[[φ→ ψ]] = [[φ]]→→[[ψ]], where ψ is not an ω-e-type
[[φµ]] =

⋃
p≥0
[[φµ]]p, where

φµ = dataX.C1
u1(♠1,1, . . . ,♠1,a1 ) [] · · · [] Cm

um (♠m,1, . . . ,♠m,am )

[[φµ]]0 = {([fixxµ.x], [fixxµ.x])}
[[φµ]]p+1 = [[φµ]]p ∪

⋃
i∈{1≤i≤m and ui=`}

{([Ci(Pi,1, . . . , Pi,ai)], [Ci(Qi,1, . . . , Qi,ai )]) |

∀j ∈ {1, . . . , ai}.([Pi,j ], [Qi,j ]) ∈

{
[[φµ]]p, if ♠i,j = X
[[♠i,j ]], if ♠i,j ∈ L

}

Fig. 6. Evaluation types semantics

According to the e-type semantics (Definition 7) an e-type ωρ denotes the trivial
p.e.r. Ωρ. Others “special” e-types are the δ-e-types: a δ-e-type φρ ∈ L denotes
the diagonal p.e.r. ∆ρ.

Definition 8 (ω-e-types and δ-e-types). Let the ω-e-types be the e-types in
the set Lω = {ωρ | ρ ∈ T}. The set of the δ-e-types (Lδ) is the subset of the
e-types which do not contain subexpressions of the form ωρ (for some ρ) and do
not contain the annotation ∂. For every type ρ ∈ T, let δ(ρ) be the corresponding
unique δ-e-type5.

Two other subclasses of e-types which are useful for program simplification
are the ∂-e-datatypes that characterize datatypes in which no constructor is
used (and which are therefore, according to Definition 76, ground observational
equivalent to a divergent computation), and the `1-e-datatypes that characterize

5 It is immediate to see that for every type ρ ∈ T there is exactly one δ-e-type φρ. For
instance δ(list(int)) is the e-type ψ′2 in Fig. 4.

6 Since an ∂-e-datatype φµ denotes the singleton p.e.r. [[φµ]] = {([⊥µ], [⊥µ])}.
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(Ref) φ ≤ φ (ω) φρ ≤ ωρ (→) φ1 ≤ φ2 ψ1 ≤ ψ2
φ2 → ψ1 ≤ φ1 → ψ2

ψ2 6∈ Lω

(data)
∀i ∈ {h | 1 ≤ h ≤ m and uh = `}.∀j ∈ {1, . . . , ai}.♠i,j � ♣i,j

φµ ≤ ψµ

where φµ = dataX.C1
u1 (♠1,1, . . . ,♠1,a1) [] · · · [] Cm

um (♠m,1, . . . ,♠m,am )
ψµ = dataX.C1

v1(♣1,1, . . . ,♣1,a1 ) [] · · · [] Cm
vm (♣m,1, . . . ,♣m,am )

∀i ∈ {1, . . . ,m}.(ui = ∂ or vi = `)

♠ � ♣ is short for:

{
♣ ∈ {X,ωµ}, if ♠ = X
♣ ∈ L and ♠ ≤ ♣, if ♠ ∈ L

Fig. 7. Entailment rules for e-types (system ≤)

datatypes in which only one constructor is used and its arguments are not used
(i.e. they characterize the minimum-information-code7).

Definition 9 (∂-e-datatypes and `1-e-datatypes). The set of the ∂-e-data-
types, L∂ , is the set of the e-types of the form:
dataX.C1

∂(♠1,1, . . . ,♠1,a1) [] · · · [] Cm
∂(♠m,1, . . . ,♠m,am), where m ≥ 0. For

every datatype µ, let ∂(µ) be the corresponding unique ∂-e-datatype8.
The set of the `1-e-datatypes, L`1, is the set of the e-types of the form:

dataX.C1
u1 (♠1,1, . . . ,♠1,a1) [] · · · [] Cm

um(♠m,1 , . . . ,♠m,am), where m ≥ 1 and
there exists i ∈ {1, . . . , m} such that ui = `, ♠i,1, . . . ,♠i,ai ∈ Lω, and j 6= i
implies uj = ∂. For every datatype µ with m ≥ 1 data-constructors, let `1C(µ)
be the corresponding unique `1-e-datatype in which the data-constructor C is the
`ive one9.

We conclude this section by introducing an entailment relation between e-
types, ≤. This relation models the set-theoretic inclusion between the interpre-
tation of e-types, and so it represents the logical implication between properties.

Definition 10 (Entailment relation ≤). Let φ, ψ ∈ L. We write φ ≤ ψ
to mean that φ ≤ ψ is derivable by the rules in Fig. 7. By ∼= we denote the
equivalence relation induced by ≤.

Note that ≤ is reflexive and transitive. Moreover, for any type ρ ∈ T, (L(ρ),≤) is
a complete lattice with top ωρ and bottom bρ (inductively defined by: bint = δint,
bσ→τ = ωσ → bτ , and bµ = ∂(µ)). For instance the lattice (L(list(int)),≤) (whose
elements are the 11 e-types listed in Fig. 4) is showed in Fig. 8.

Theorem 1 (Soundness ≤). φ ≤ ψ implies [[φ]]⊆ [[ψ]].

7 Since an `1-e-datatype φµ denotes the p.e.r. (with exactly two classes):
[[φµ]] = {([⊥µ], [⊥µ])} ∪ {([C(M1, . . . ,Ma)], [C(N1, . . . , Na)]) | C(M1, . . . ,Ma),
C(N1, . . . , Na) ∈ I(µ)}, where C is the unique `ive constructor of µ.

8 For instance ∂(list(int)) is the e-type ψ1 in Fig. 4.
9 For instance `1Nil(list(int)) and `1Cons(list(int)) are the e-types ψ

′
1 and ψ5 in Fig. 4.
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ψ

ψ

0

/

5

5

ψ 3ψ / ψ4
/

ψ ψ43

ψ2

ψ2
/

ψ /
1

ψ1

Fig. 8. The lattice (L(list(int)),≤)

5 Detecting and removing useless-code

In this section we first introduce an e-type assignment system for detecting
dead-code and minimum-information-code in PCFD programs, then we present
simplification mappings for removing from a program the useless-code that can
be detected with the e-type assignment system.

5.1 An e-type assignment system for detecting useless-code

If xρ is a term variable of type ρ, an assumption for xρ is an expression of the
shape xρ : φρ, or x : φρ for short. A basis is a set Σ of e-types assumptions for
term variables. E-types are assigned to PCFD terms by a set of inference rules
for judgments of the form Σ `L Mφ where Mφ is a decorated term, i.e., it has
written in it (some of) the e-types assigned to its subterms. Such a decorated
term can then be processed by a transformation procedure (like those described
in Section 5.2) that simplifies programs according to the information supplied
by the e-types. For any e-type φ ∈ L(ρ) let ε(φ) denote the underlying type, ρ,
of φ, and for any decorated term Mφ, define ε(Mφ) as the term obtained from
Mφ by erasing all the e-type decorations. For each constant k a finite non-empty
subset of e-types, L(k), is specified: for all integers n, L(n) = {δint}; for any
binary operator �pair(int,int)→int, L(�) = {δ(pair(int, int) → δint}; the constants
involving the boolean datatype have more than one (non ω-) e-type, see Fig. 9.
For instance the 4 e-types associated to not say that: if the result can be used
then also the argument can be used, if in the argument the constructor True is
`ive and the constructor False is ∂ead then in the result False is `ive and True is
∂ead (and vice versa), and if the argument diverges then also the result diverges.

Definition 11 (E-type assignment system `L). A `L-typing statement is
an expression Σ `L Mφ where Σ is a basis containing an assumption for each
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Let tbool = dataX.True`[]False∂ , fbool = dataX.True∂ []False` and, for any φ, ψ ∈ L,
pair(φ,ψ) = data X.Pair`(φ, ψ). Then (for any binary operator �pair(int,int)→bool):
L(�) = {δ(pair(int, int))→ δ(bool), ∂(pair(int, int))→ ∂(bool)}.
L(not) = {δ(bool)→ δ(bool), tbool → fbool, fbool → tbool, ∂(bool)→ ∂(bool)}
L(and) = {pair(tbool, tbool)→ tbool, pair(φ1, f

bool)→ fbool, pair(fbool, φ2)→ f
bool,

∂(pair(bool, bool))→ ∂(bool), pair(∂(bool), ψ)→ ∂(bool), pair(ψ, ∂(bool))→ ∂(bool),
pair(φ1, φ2)→ δ(bool) | φ1, φ2 ∈ {t

bool, fbool} and ψ ∈ L(bool)}
L(or) = {pair(fbool, fbool)→ fbool, pair(φ1, t

bool)→ tbool, pair(tbool, φ2)→ t
bool,

∂(pair(bool, bool))→ ∂(bool), pair(∂(bool), ψ)→ ∂(bool), pair(ψ, ∂(bool))→ ∂(bool),
pair(φ1, φ2)→ δ(bool) | φ1, φ2 ∈ {t

bool, fbool} and ψ ∈ L(bool)}

Fig. 9. E-types of the PCFD constants

free variable of M , and Mφ is a decorated version of M . Σ, x : ψ denotes the
basis Σ ∪ {x : ψ} where it is assumed that x does not appear in Σ. By Σ `L Mφ

we mean that Σ `Mφ can be derived by the rules in Fig. 10.

To state the soundness of the e-type assignment system `L w.r.t. Definitions 7
and 5 we introduce the following definition.

Definition 12. Two environments e1, e2 are Σ-related if, for all x
ψ ∈ Σ,

(e1(x), e2(x)) ∈ [[ψ]]. Let Σ `L Mφ and Σ `L Nφ. We write ε(Mφ) ∼Σφ ε(Nφ) to

mean that for all e1, e2, if e1, e2 are Σ-related, then ([[ε(M
φ)]]e1 , [[ε(N

φ)]]e2) ∈
[[φ]].

Theorem 2 (Soundness of `L). Let Σ `L Mφ. Then ε(Mφ) ∼Σφ ε(Mφ).

5.2 Useless-code elimination

In this section we first introduce a dead-code elimination mapping O that takes
a `L-decorated term Mφ and returns a simplified version of it in which the dead-
code shown by the e-type decorations has been replaced by “dummy variables”.
Then we show how the simplification mapping O can be extended to a mapping
O′ which removes also the minumum-information-code.
For each type ρ, let dρ, dρ1 , d

ρ
2 , . . ., be dummy variables of type ρ. We re-

mark that dummy variables are not present in the original programs: they are
introduced by the dead-code elimination mapping O as place-holders for the
dead-code removed. So in the following we assume that all the occurrences of
dummy variables in a program are free (i.e. there are no bound dummy vari-
ables) and distinct (i.e. each dummy variable occurs at most once in a program).
For every term M , let DV(M) be the set of the dummy variables inM . Let Λ`L

T

be the set of `L-decorated PCFD terms, i.e., Λ
`L

T = {M
φ | Σ `L Mφ for some

e-type φ and basis Σ}.

Definition 13 (Simplification mapping O). The function O : Λ`L

T → Λ`L

T

is defined by the clauses in Fig. 11, where the occurrences of “d” in the second
and in the last row denote fresh dummy variables of the proper type. If Σ is a
basis then define O(Σ) = {x : χ | x : χ ∈ Σ and χ 6∈ Lω}.
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(ω)
Σ ⊇ FV(M) `T M : ρ

Σ `Mωρ
(Fix)

Σ, x : φ `Mψ

Σ ` (fixxφ.M)
ψ ψ 6∈ Lω and φ ∈ {ψ, ωε(ψ)}

(Var)
φ ≤ ψ

Σ, x : φ ` xψ
ψ 6∈ Lω (Con) Σ ` kφ , φ ∈ L(k)

(→ I)
Σ, x : φ `Mψ

Σ ` (λx.M)φ→ψ
ψ 6∈ Lω (→ E)

Σ ` Mφ→ψ Σ ` Nφ

Σ ` (MNφ)
ψ ψ 6∈ Lω

(Data1≤i≤m)
Σ ` P1

ψ1 · · · Σ ` Pai
ψai

Σ ` (Ci(P1, . . . , Pai))
φµ

where φµ = dataX.C1
u1(♠1,1, . . . ,♠1,a1 ) [] · · · [] Cm

um(♠m,1, . . . ,♠m,am ), ui = `,

and ∀j ∈ {1, . . . , ai}, ψj =

{
φµ, if ♠i,j = X

♠i,j , if ♠i,j ∈ L

(Case)

Σ ` Pφ
µ

∀i ∈ {1, . . . ,m}. `T Qi : τ
∀i ∈ {h | 1 ≤ h ≤ m and ui = `}.Σ ∪ {xi,1 : ψi,1, . . . , xi,ai : ψi,ai} ` Qi

χτ

Σ ` (casePφ
µ

of {cc1 [] · · · [] ccm})
χτ

where χτ 6∈ Lω, m ≥ 1,
φµ = dataX.C1

u1 (♠1,1, . . . ,♠1,a1) [] · · · [] Cm
um (♠m,1, . . . ,♠m,am ),

∀i ∈ {h | 1 ≤ h ≤ m and ui = `}.∀j ∈ {1, . . . , ai}.ψi,j =

{
φµ, if ♠i,j = X

♠i,j , if ♠i,j ∈ L
,

and ∀i ∈ {1, . . . ,m}.cci =

{
Ci(xi,1, . . . , xi,ai) to Qi, if ui = `

Ci(xi,1, . . . , xi,ai) to ε(Q
χτ

i ), if ui = ∂

Fig. 10. Rules for e-type assignment (system `L)

We have immediately that if Σ `L Mφ then O(Σ) ⊆ Σ and Σ′ `L O(Mφ),
where Σ′ = O(Σ) ∪ {dσ : ωσ | dσ ∈ DV(ε(O(Mφ))}. Moreover we have that the
simplification mapping is correct w.r.t. the e-type semantics, i.e., if Σ `L Mφ

then ε(Mφ) ∼Σ
0

φ ε(O(Mφ)) (where Σ′ = Σ ∪ {dσ : ωσ | dσ ∈ DV(ε(O(Mφ)))}).
In order to use the simplification mappingO to simplify terms while preserv-

ing their meaning (w.r.t.Mgnd) we identify a subset of `L-typings (that we call

faithful) for which the ∼Σφ relation implies the '
gnd
obs relation

10.

Definition 14 (Faithful `L-typing). Σ `L Mφ is a faithful `L-type assign-
ment statement if φ ∈ Lδ, and for all x : ψ ∈ Σ, ψ ∈ Lδ ∪ Lω.

The proof that the simplifications performed by the mapping O on faithfully
decorated terms preserve 'gndobs relies on the fact that, for all faithful `L-typings

Σ `L Mφ and Σ `L Nφ, ε(Mφ) ∼Σφ ε(Nφ) implies ε(Mφ) 'gndobs ε(N
φ).

10 A faithful `L-typing simply says that the term can be used (it has e-type ∈ Lδ) and
that any of its free variables is either used (it has e-type ∈ Lδ) or not used at all (it
has e-type ∈ Lω).
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O(Mψ) = (o(M,ψ))ψ, where

1. o(M,ψ) = d, if ψ ∈ Lω
2. o(M,ψ) = fixxψ.x, if ψ ∈ L∂
3. Otherwise:

o(k, ψ) = k o(x,ψ) = x o(MNφ, ψ) = o(M,φ→ ψ)(o(N,φ))φ

o(λx.M,ψ1 → ψ2) = λx.o(M,ψ2) o(fixxφ.M,ψ) =

{
o(M,ψ) if φ ∈ Lω
fixxψ.o(M,ψ) if φ = ψ

o(Ci(P1, . . . , Pai), φ
µ) = Ci(o(P1, ψ1), . . . ,o(Pai , ψai))

where φµ = dataX.dcu11 [] · · · [] dc
um
m , dcuii = C

`
i(♠i,1, . . . ,♠i,ai ),

and ∀j ∈ {1, . . . , ai}.ψj =

{
φµ if ♠i,j = X
♠i,j if ♠i,j ∈ L

o(casePφ
µ

of {cc1 [] · · · [] ccm}, χ) = fixx
χ.x if φµ ∈ L∂

o(casePφ
µ

of {cc1 [] · · · [] ccm}, χ) = case o(P,φµ)
φµ of {cc′1 [] · · · [] cc

′
m}

where φµ = dataX.dcu11 [] · · · [] dc
um
m 6∈ L∂

∀i ∈ {1, . . . ,m}.dcuii = C
`
i(♠i,1, . . . ,♠i,ai)

cci = Ci(xi,1, . . . , xi,ai) to Qi

cc′i =

{
Ci(xi,1, . . . , xi,ai) to o(Qi, χ) if ui = `
Ci(xi,1, . . . , xi,ai) to d if ui = ∂

Fig. 11. Dead-code simplification mapping O

Theorem 3 (O on faithful `L-typings preserves '
gnd
obs ). Let Σ `L M

φ be

a faithful `L-typing. Then ε(Mφ) 'gndobs ε(O(M
φ)).

We now introduce the improved mapping, O′, which performs more simpli-
fications than O. In general O′ does not preserve the meaning (w.r.t. Mgnd)
of terms since it may give simplified terms which are strictly observationally
greater than the original ones (see Example 2).

Definition 15 (Simplification mapping O′). The function O′ : Λ`L

T → Λ`L

T

is defined exactly as the function O (see Definition 13) with the exception that
we add to the last clause for the mapping o(·, ·) in Fig. 11 the condition φµ 6∈
L`1, and we add also the following two clauses for simplifying the minimum-
information-code.
Between the clauses 2 and 3:
2′. o(M,ψ) = Ci(d

ρ1 , . . . , dρai ),
if ψ is the `1Ci-datatype dataX.dc

∂
1 [] · · · [] C

`
i(ω

ρ1 , . . . , ωρai ) [] · · · [] dc∂m .
As last clause:
o(caseP φ

µ

of {cc1 [] · · · [] ccm}, χ) = o(Qi, χ) ,
where φµ is the `1Ci-datatype dataX.dc

∂
1 [] · · · [] C

`
i(ω

ρ1 , . . . , ωρai ) [] · · · [] dc∂m
and cci = Ci(xi,1, . . . , xi,ai) toQi.
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Theorem 4 (O′ on faithful `L-typings). Let Σ `L Mφ be a faithful `L-

typing. Then ε(Mφ) �gndobs ε(O
′(Mφ)).

Note that when dealing with terminating programs (like programs extracted
from proofs) or with programs that are trusted to terminate (as well written
pure functional programs should be) we have that the simplified programs are
(or are trusted to be) ground observationally equivalent to the original ones.
Using the same technique of [6] (see also [7] Chapter 7) we can prove that for

every PCFD term M there is a faithful `L-typing (see Definition 14) showing
all the useless-code that can be proved by system `L. In this way we can also
provide a complete (w.r.t. the system `L) useless-code detection algorithm. Note
that, since useless-code eliminationmay “rise” new useless-code (see Example 2),
we have to apply the detection algorithm and the simplification mapping O′

repeatedly, until no new useless-code is discovered.

6 Related work

The class of useless-code characterized in this paper strictly includes the useless-
code characterized by the technique presented by Berardi an Boerio in [3].
The extra power is due to the use of subtyping (not used in [3]). For a dis-
cussion about the power gained by adding the e-type entailment relation we
refer to [2] and [5] Chapter 4 (where a dead-code analysis with type entail-
ment for a simply typed λ-calculus is presented), see also [6] and [7] Chap-
ter 7 (where a constraint-based inference algorithm for the analysis of [2] is
presented). We remark that in presence of datatypes the advantage of hav-
ing the e-type entailment relation is even greater. Take for instance the term
P = (λzµ. · · · (caseB of { True to z | False to Ci(· · ·) }) · · ·)Q, where the
case-expression is not useless-code. Suppose that we can assign to Q an e-type
in which the constructor Ci is ∂ead. If we try to assign an e-type to P without
using entailment, we are forced to assign to every (non-dead) occurrence of z in
P (and also to Q) an e-type φµ1 in which Ci is `ive

11. By using entailment, in-
stead, we can assign such an e-type φµ1 to the occurrence of z in the True branch
of the case-expression, but we can assign e-types φµ, φµ2 , φ

µ
3 , . . . in which Ci is

∂ead to Q and to the other occurrences of z in P , respectively (provided that
φµ ≤ φµ1 , φ

µ ≤ φµ2 , . . .).
Besides the use of the e-type entailment relation, the main differences be-

tween our approach and that of [3] are in the programming language considered
and in the algorithm that finds the useless-code in a given term. The language
considered in [3] is strongly normalizing and it can be seen as the language ob-
tained from PCFD by removing the constructor fix and adding, for every type
τ ∈ T, an operator itτ for primitive recursion over datatypes and from datatypes
to every type.
The algorithm described in [3] is a kind of “data flow” algorithm that analyzes

a term by implicitly building a directed graph which represents the input-output

11 Since `ive branches of a case-expression must have the same (non-ω) e-type.
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relation between the subterms of a given term. The principal advantage of our
constraint-based algorithm (not presented here, for lack of space) is that (as
shown in [6] and [7] Chapter 7) it is compositional while that of [3] is not.
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Every Unsolvable � Term has a Decoration
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Abstract. I give a proof of the conjecture stated in [2] by R.Kerth :
Every unsolvable λ term has a decoration.

1 Introduction

In this paper I give a proof of the conjecture stated in [2] by R. Kerth : Every
unsolvable λ term has a decoration.
Let t be unsolvable. Denote by tk the term obtained from t after k many

steps of head reduction and by (d −→u ) the term d applied to the sequence −→u
of arguments. If t reduces to t′, say that a subterm d′ of t′ is a descendent (cf.
definition 9) of a subterm d of t if it is a ”copy” of d.
A sequence (dk)k∈N of λ terms is a decoration for (the computation of) t if

there is a strictly increasing function f from N to N such that for every k :

1. tf(k) =
−→
λ (dk −→uk) for some finite (non empty) sequence −→uk of λ terms.

2. dk is solvable and dk+1 is a descendent of some element of −→uk.

Comments, notations and examples

1. The definition of a decoration given above is exactly the one of [2] but, in
fact, the hypothesis ”dk is solvable” is useless since it is a consequence of the
other hypothesis (cf the corollary 2 )

2. Let δ = λx (x x), I = λx x, B = λb λf (f (b b f)) and Y = (B B). Y is the
Turing fixed point operator.

3. Let t = (δ δ). Then the constant sequence (δ) is a decoration for t since t
reduces by head reduction to t′ = (δ δ) and the first δ in t′ is a descendent
of the second δ in t.

4. Let t = (B B I). Then the constant sequence (B) is a decoration for t since
t reduces to itself (in 3 steps) and the first occurrence of B in this reduct is
a descendent of the second occurence of B in t.

5. Let w1 = λxyz (z x y), w2 = λxyz (y (x (z x))), R = (w1 I w2) and
w3 = (w2 R). Then,

– t = (w2 R I w2)� (R w3) (in 4 steps)
– (R w3) � (w3 I w2) = t′ (in 3 steps)
– (w3 I w2)� (w2 R I w2) = t (in 7 steps)

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 98–113, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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It is easy to check that w2, w3 and R are solvable and that the descendent
condition is satisfied. Thus the sequence [w2, R, w3, w2, R, w3, w2, ...] is a
decoration for t. Note that t′ is equal to t but t is written as w2 applied to 3
arguments whereas t′ is written as w3 applied to 2 arguments and thus the
R in t′ is not seen as an argument of the head term.

6. Other examples can be found in [1].

The motivation (see [2]) of this conjecture is the following : A model of λ
calculus is said to be sensible if all the unsolvable terms are equal in this model.
It is not easy, in general, to check whether a given model of λ calculus is sensible
or not. In [1] , [3] R Kerth built an uncountable number of graph models with
different equational theories but he was unable to prove they were sensible,
because the usual argument of reducibility did not work in his models. He was
able to show that his models had no critical sequences (a semantical notion he
introduced) and he showed that a graph model without critical sequences is
sensible ... if his conjecture is true.
Thus, the constructions in [1] , [3] and the present paper show that there

are uncountably many sensible distinct equational theories of continuous models
(and similarly for the stable and strongly stable semantics).
Acknowledgements Rainer Kerth has read very carefully the first versions

of this paper and suggested many improvements. Thanks, Rainer.

2 The idea of the proof

R. Kerth defines a decoration only for the head reduction of unsolvable terms, i.e.
terms whose Böhm tree is ⊥. I define below a decoration for the computation (by
left reduction) of any branch of a term t. A branch in t is either an infinite branch
of its Böhm tree or a finite one finishing with ⊥, i.e. a branch in t corresponds
to an infinite computation. I prove a more general result (The computation of
any branch in any λ term admits a decoration. cf. Theorem 1) but this general
notion of decoration is necessary for the proof of even the restricted case. The
idea of the proof is the following.
1) Let a be a branch of t and b be a branch of a subterm u of t. I say that b is

(t, a) useful if, intuitively (see the definition 10) the computation of the branch
a of t ”uses” all the nodes of addresses b � i (i < lg(b)) of the Böhm tree of u. I
first show that (cf the proposition 5) if a branch b of u is (t, a) useful and there is
a decoration for (u, b), then there is a decoration for (t, a). This is the reason for
which it is necessary to extend the notion of decoration to solvable terms. The
decoration of an unsolvable term t may ”come from” a decoration of a solvable
subterm u of t.
2) Let t = (u r1 ... rn) and a be a branch in t. Say that a is created by the

application of u to r1 ... rn if neither in u nor in any ri there is a branch that is
(t, a) useful. I also show (this is the key point of the proof, see the proposition
6) that if the branch a in t = (u r1 ... rn) is created by the application of u to

r1 ... rn, then t reduces to some t
′ =
−→
λ (ri s1 ... sm) for some s1 ... sm and
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- the occurrence of ri in t
′ is a descendent of the one in t.

- the branch a in t′ still is created by the application of ri to s1 ... sm.
Actually the proposition 6 is a bit more complicated because we have to deal

with possible substitutions of the free variables.
3) The theorem 1 is then proved by induction on the complexity of t. If t is in

head normal form the result follows immediately from the induction hypothesis.
Otherwise t =

−→
λ (u r1 ... rp) for some p ≥ 1. If the branch a is not created by

the application of u to r1 ... rn, i.e. either in u or in some ri there is a branch
that is (t, a) useful, the result follows from the induction hypothesis and the
first point above. Otherwise, we get a decoration by using repeatedly the second
point above.

3 Definitions

Definition 1. 1. Let A be the set of finite or infinite lists of elements of N∗ =
N − {0}. A finite list is called an address.

2. Let a, a’ be in A. a ≤ a’ means that a is an initial segment of a’. For i
<lg(a), a � i denotes the restriction of a to its first i elements.

3. The list a with i added at the beginning (resp at the end) will be denoted by
[i :: a] (resp [a :: i]). The empty list is denoted by nil.

To be able to prove results on substitutions I need some extension of Λ. This
is closely related (and a bit more general) to the directed λ calculus introduced
in [4].

Definition 2. 1. Λ denotes the set of λ terms.
2. The set Λ′ of terms is defined by the following grammar :

Λ′ = V | ⊥ | c(a, σ) | λx Λ′ | (Λ′ Λ′)
where

(a) V is the set of variables
(b) a substitution is a function from V to Λ′ that is the identity except for a
finite set (called its domain) of variables.

(c) for every address a and every substitution, c(a, σ) is a constant.

3. A Böhm function is a partial function f : A; {⊥} ∪ {(E, x, p) / E ⊂ V, E
finite, x ∈ V, p ∈ N} which satisfies :
(a) f(nil) is defined.
(b) f([a :: i]) is defined iff f(a) = (E, x, p) and i ≤ p.

(c) If f(a) = (E, x, p), f(a’) = (E’, x’, p’) and a 6= a’ then E ∩ E’ = ∅.

Notations, conventions and comments

– I adopt the Barendregt convention that variables are always named in such
a way that there is no undesired capture and no confusion between different
names.

–
−→
λ denotes a sequence (possibly empty) of abstractions and (t −→r ) represents
the term t applied to a sequence (possibly empty) of arguments.
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– c(a, σ) represents the subterm (at the address a, in the environment given
by σ) of the Böhm tree of some term u that will be substituted later on.

– A Böhm function codes a Böhm tree in the following way : f(a) = ({x1, ...,
xk}, x, p) (resp ⊥) means that the node at the address a in the Böhm tree
coded by f is λx1...λxk (x t1...tp) for some terms t1, ..., tp (resp ⊥ ).

Definition 3. Let σ, σ′ be substitutions and t be in Λ′.

1. The free variables of t are defined by the usual rules and

– ⊥ has no free variables
– x is a free variable of c(a, σ) iff x is a free variable of σ(y) for some y
in the domain of σ.

2. The substitution σ(t) is defined by the usual rules and

– σ(c(a, τ )) = c(a, σ ◦ τ ) for every τ and a.
– σ(⊥) = ⊥.

Lemma 1. Every term in Λ′ can be uniquely written as
−→
λ (R −→r ) where R is

either a variable or ⊥ or (λx u v) or c(a, σ).

Proof. By induction on the term.

Definition 4. 1. Let t =
−→
λ (R r1 ... rq) be in Λ

′ and f be a Böhm function.
One step of f-reduction of t is defined as follows :

– If R = x then t is in f-head normal form and t has no f-reduct.
– If R = ⊥
• If t = ⊥ then t is in f-head normal form and t has no f-reduct.
• otherwise, the f-reduct of t is ⊥.

– If R = (λx u v) then the f-reduct of t is
−→
λ (σ(u) r1 ... rq) where σ(x) =

v.
– If R = c(a, σ)

• If f(a) = ({x1, ..., xk}, x, p) then the f-reduct of t is
−→
λ λxj+1 ... λxk (σ

′(x) c([a :: 1], σ′) ... c([a :: p], σ′) rj+1 ... rq)
where j =Min(k, q), σ′ = τ ◦ σ and τ is defined by τ (xi) = ri for 1
≤ i ≤ j.
• If f(a) = ⊥, then the f-reduct of t is ⊥.
• If f(a) is not defined the f-reduct of t is not defined.

2. t →f t′ (resp t �f t′) means that t’ is the f-reduct of t (resp t’ is obtained
from t by some, possibly zero, steps of f-reductions).

Comments and conventions

– An example of f-reduction is given after the definition 10.
– If t is in Λ the f-reduction is the ordinary head reduction (f is never used
and thus can be anything).

– If t is in Λ′ and f ”represents” the term u (see the definition 8) the f-
reduction ”corresponds” to the (ordinary) head reduction of t′ where
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• t′ is the term t where the constants c(a, σ) have been replaced by the
subterm of the Böhm tree of u at the address a in the environment σ.

• ”corresponds” means that the reduction is the same except that the part
of the computation of t′ that ”comes from” the computation of the node
at the address a in the Böhm tree of u has been forgotten and is given
by the ”oracle” f .

– I allow f(a) to be undefined in the definition of the f-reduction of t because
I made no restrictions in the definition of Λ′. However the typical situation
where the f-reduction is used is the following. Let t = (u −→r ) be in Λ, f
”represents” u and t′ = (c(nil, Id) −→r ). In this case the f-reduction will
clearly always be defined.

– Similarly, if t ”comes from” a λ term, since I only do head reductions the
composition σ′ = τ ◦ σ (in the case R = c(a, σ)) in fact is a concatenation
of substitutions (cf the definition 12 and the lemma 8) but I must allow also
composition when I know nothing on t.

– When t is in Λ, I will not write the symbol f . For example I will write t�
t′ instead of t �f t′ and similarly for all the definitions in this section. For
example hnf(t) instead of hnf(f, t) in the next definition.

– The letters a, b, c, ... are reserved for elements of A, the letters f, g, ... for
Böhm functions and the letters r, s, t, ... for terms in Λ′. This will avoid
possible confusions.

Definition 5. hnf(f, t) (the f-head normal form of t) is defined by

1. – If some step of the f-reduction of t is undefined, then hnf(f, t) is not
defined.

– If t �f t′ for some term t’ in f-head normal form and t’ 6= ⊥, then
hnf(f, t) = t′ . In this case t is said to be f-solvable.

– If the f-reduction of t does not terminate or if t �f ⊥ , then hnf(f, t) =
⊥. In this case t is said to be f-unsolvable.

Definition 6. Let a be an address, t be in Λ′ and f be a Böhm function

1. a is f-accessible in t is defined by

– nil is f-accessible in t
– [i :: l] is f-accessible in t iff hnf(f, t) =

−→
λ (x t1... tn), 1 ≤ i ≤ n and l is

f-accessible in ti

2. Let a be f-accessible in t. hnf(f, t, a) is defined by

– hnf(f, t, nil) = hnf(f, t).

– hnf(f, t, [i :: l]) = hnf(f, ti, l) where hnf(f, t) =
−→
λ (x t1... tn)

3. Let a be f-accessible in t. adr(f, t, a) is defined by

– adr(f, t, nil) = t.

– adr(f, t, [i :: l]) = adr(f, ti, l) where hnf(f, t) =
−→
λ (x t1... tn)
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Comments In the following t is assumed to be in Λ.

– a is accessible in t iff the Böhm tree of t (denoted by BT (t)) has a node at
the address a.

– hnf(t, a) is the λ term we get at the address a when the computation of the
node at this address in BT (t) is terminated.

– adr(t, a) is the λ term we get at the beginning of the computation of the
node at this address in BT (t).

Definition 7. Let a be in A, t be in Λ′ and f be a Böhm function.

1. a is an f-branch in t iff

– ∀i < lg(a) a � i is f-accessible in t.
– if a is finite, then hnf(f, t, a) = ⊥

2. Assume a is an f- branch in t and k be in N . Res(f, t, a, k) and Br(f, t, a, k)
are defined by

– Res(f, t, a, 0) = t and Br(f, t, a, 0) = a
– If Res(f, t, a, k) is not an f-head normal form then Res(f, t, a, k + 1) =
the f- reduct of Res(f, t, a, k) and Br(f, t, a, k + 1) = Br(f, t, a, k)

– If Res(f, t, a, k) =
−→
λ (x t1... tn) and a = [i :: l] then Res(f, t, a, k+1) =

ti and Br(f, t, a, k+ 1) = l
– Otherwise Res(f, t, a, k) and Br(f, t, a, k) are undefined.

3. t�f,a t′ means that t’ = Res(f, t, a, k) for some k.

Comments and examples In the following t is assumed to be in Λ.

1. Res(t, a, k) is the term we get after k many steps in the computation of the
branch a of BT (t).

2. If t′ = Res(t, a, k) then a′ = Br(t, a, k) is the branch of t′ that has to be
computed to finish the computation of the branch a of t. Thus, if t �a t′
and t′ �a0 t” then t �a t”.

3. Let t be in Λ. If t is unsolvable, then nil is the only accessible address (and
the only branch) in t.

4. Let t = (I λx (x (δ δ))). Then hnf(t, nil) = λx (x (δ δ)), adr(t, [1]) = (δ δ)
and hnf(t, [1]) = ⊥. The only branch of t is [1].

5. hnf(Y, nil) = λf (f (B B f)). hnf(Y, [1, 1, ..., 1]) = (f (B B f)). The only
branch of Y is 1∞ = [1, 1, ...].

6. Let w = λxyz (z (y (x x y)) z) and t = (w w).
- hnf(t, nil) = λyz (z (y (w w y)) z),
- hnf(t, [1]) = (y (w w y)),
- hnf(t, [2]) = z,
- hnf(t, [1, 1]) = λz1( z1 (y (w w y)) z1)
- a is accessible in t iff a = [1, 1, ..., 1] or a = [1, 1, ..., 1, 2]. The only branch
of t is 1∞.
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Definition 8. Let u be in Λ′ and g be a Böhm function.

1. ψ(g, u) is the Böhm function f defined as follows

– f(a) is defined iff a is g-accessible in u.
– f(a) = ({x1, ... , xk}, x, p) iff hnf(g, u, a) = λx1 ... λxk (x t1 ... tp) for
some terms t1, ..., tp

– f(a) = ⊥ iff hnf(g, u, a) = ⊥.

2. Let t be in Λ′. t[g, u] is the term obtained by replacing in t the occurrences
of c(a, σ) by σ(adr(g, u, a)) for every a and σ.

Comment and example

– Most of the time the previous definition will be used with u in Λ and thus
t[g, u] also is in Λ and g is useless. In this case the function ψ describes the
nodes of BT (u). Remember (cf. the conventions after the definition 4) that,
in this case, we ”forget” the argument g i.e. we write ψ(u) and t[u]. However
the more general definition is necessary to prove that (see the proposition 2)
”to be useful” is a transitive notion.

– Let f = ψ(Y ). Since Y � λx (x (x (x ... we have f(nil) = ({x}, x, 1) and
f([1, 1, 1..., 1]) = (∅, x, 1)

Definition 9. Let t be in Λ′.

1. The notion of subterm of t is defined as usual, with the following additional
rule. u is a (strict) subterm of c(a, σ) if u is a subterm of σ(x) for some x.

2. Let f be a Böhm function, b be f-accessible in t and t�f,b t′.
– A subterm u’ of t’ is a residue of a subterm u of t if it is a ”copy by
β-reduction” of u where, possibly, the free variables have been substituted.
u’ is a descendent of u if it is a residue of u and the free variables have
not been substituted.

– The subterm u′ = c(a′, σ′) of t’ is an immediate successor of the subterm
u = c(a, σ) of t if

t �f,b t1 =
−→
λ (c(a, τ ) −→r ) →f t2 =

−→
λ′ (τ ′(x) c([a :: 1], τ ′) ... c([a ::

p], τ ′)
−→
r′ )�f,b t′

u’ is a residue of some element of the sequence c([a :: 1], τ ′) ... c([a ::
p], τ ′) in t2

the occurrence of c(a, τ ) in t1 is a residue of u.

3. The successor relation (between terms as c(a, σ)) is the transitive closure of
the immediate successor relation.

Remark A more ”formal” definition of these notions (that are intuitively very
clear) is rather tedious. For more details see [2]. It is clear that the notion of
descendent given above is exactly the one in [2]. In particular, if t = (d −→u )�a
(d′
−→
u′ ) and d′ is a residue of some element of the sequence −→u then it is also a

descendent of this element.
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Definition 10. Let t, u be in Λ and assume that t = D(σ(u)) for some context
D and some substitution σ. Let t’ = D(c(nil, σ)) and f = ψ(u). Let a be a branch
in t.

1. Let b be an address accessible in u. b is (t, a) useful if, for some k, −→v and
σ, Res(f, t′, a, k) =

−→
λ (c(b, σ) −→v ).

2. Let b be a branch in u. b is (t, a) useful if there is a sequence < ki, σi,
−→vi >i<lg(b) such that, for every i, Res(f, t

′, a, ki) =
−→
λ (c(b � i, σi) −→vi )

; moreover the occurrence of c(b � i + 1, σi+1) in Res(f, t′, a, ki+1) is an
immediate successor of the occurrence of c(b � i, σi) in Res(f, t′, a, ki).

Remarks and examples

– A context is a λ term (not a λ′ term !) with some holes. As usual, in a
substitution in a context some variables may be captured.

– It will be shown (see the proposition 1) that, with the notations of the
previous definition, a is an f-branch in t′ and thus the definition makes
sense.

– Most often, either σ is the identity (i.e. u is a subterm of t) or D is an
applicative context (i.e. t = (σ(u) −→r )) but it is not always the case (see the
proposition 6) and I thus need this general definition. In fact both cases are
essentially the same since it is not difficult to prove the following fact.
Let t = D(u) for some context D and a be a branch in t. Assume that the

address nil in u is (t, a) useful, then t �a
−→
λ (σ(u) −→r ) for some σ which

is the identity except on the free variables of u that are captured by the
context D.

– Let t = (Y I). t is unsolvable and thus nil is a branch in t. 1∞ is a branch
in Y . It is easy to check that 1∞ is (t, nil) useful.

– Note that a term t may have many subterms each of them has a branch that
is (t, a) useful. For example, let t = (Y1 F ) (Y2 F ) where Y1 = Y2 = Y and
F = λfλg (g f). The following reduction shows that the branch 1∞ in Y1
(and similarly for Y2) is (t, nil) useful.
Let f = ψ(Y ) and t′ = (c(nil, Id) F (Y F )). Remember that f(nil) =
({x}, x, 1) and f([1, 1, ..., 1]) = (∅, x, 1). The f-reduction of t′ is given by
(where σ(x) = F ) : t′ → (F c([1], σ) (Y F ))� (Y F c([1], σ))�
(F (Y F ) c([1], σ))� (c([1], σ) (Y F ))→ (F c([1, 1], σ) (Y F ))� ...

– Also note that, for an infinite branch b, being (t, a) useful is stronger that
simply asking that for every i, b � i is (t, a) useful. Let t = (Y1 H Y2 0) where
Y1 = Y2 = Y , H = λfnp (u n p (f n (s p))), u = λnpa (n F (p F λx a)),
F = λxy (y x), 0 = λxy y and s = λnfx (f (n f x)). For every k, the
address 1k is (t, nil) useful both in Y2 and Y1. The branch 1

∞ of Y1 is (t, nil)
useful but the branch 1∞ of Y2 is not. The reason is the following : u is a
term (given by Maurey) such that (u n p a) → a for every Church integers
n ≥ p. Since Y may be seen as an ”infinite” Church integer, (u Y k a) → a
for every k and this computation ”uses” the address 1kof Y. It follows that,
letting G = (Y1 H), t = (G Y2 0)→ (G Y2 1)→ (G Y2 2)→ ... . It is easy to
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see that, in this computation, the node at the address 1k+1 of Y1 that is used
for the reduction (G Y2 k)→ (G Y2 k+1) satisfies the descendent condition
whereas, since the occurrence of Y2 in (G Y2 k+1) is a ”new” one, the node
at the address 1k+1 of Y2 that is used in this reduction does not satisfy the
condition.

Definition 11. Let t be in Λ, a be a branch of t and (dn) a sequence of λ
terms. (dn) is a decoration for (t, a) if there is a strictly increasing sequence
(kn) of integers and a sequence (−→r n) such that for every n ≥ 0

1. Res(t, a, kn) =
−→
λ (dn −→rn)

2. dn+1 is the descendent of an element of −→rn
3. dn is solvable.

Theorem 1. Let t be in Λ and a be a branch in t. Then (t, a) has a decoration.

Corollary 1. Every unsolvable λ term has a decoration in the sense of [2].

4 Proof of the theorem

4.1 Some lemmas on the f-reduction and usefulness

In this section I prove essentially two things : The notion of computation and
the notion of usefulness are ”transitive”. Moreover in both cases the notion of
descendence is preserved by this transitivity.
The first one (mainly the lemma 7) means that a computation (by left

reduction) can be ”partitioned” in the following way : Let u be a subterm
of t. Get t′ by replacing in t the subterm u by its Böhm tree. The compu-
tation of a branch a of t is the same as the computation of the branch a
of t′ where, when a node of BT (u) appears in head position, the computa-
tion of this node is ”inserted”. There is a (non essential) technical difficulty
showed in the following example : Assume u � λx u1 � λx (x v) then
(u r) � (λx u1 r) → u1[x := r] � (r v[x := r]) and the order is not ex-
actly the same as (u r)� (λx u1 r)� (λx (x v) r)� (r v[x := r]). This is why
we have to use big steps of head reduction.
The second one is given by the proposition 2.

Lemma 2. Let t, t’ be in Λ′, f be a Böhm function and a be f-accessible in t.
Assume t �f,a t′. Then, for some a’ ≤ a, t �f,a adr(f, t, a′) �f t’.

Proof. Immediate from the definition.

Lemma 3. Let v, v’ be in Λ′ and f be a Böhm function. Assume that v �f v′.

1. Let σ be a substitution. Then σ(v) �f σ(v′).
2. Let −→r be a sequence of terms and assume v’ does not begin with λ. Then
(v −→r ) �f (v′ −→r )
Moreover in both cases the length of the f-reduction remains the same.
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Proof. Note that the more general case, where v′ begins with λ, is treated in
the lemma 5. The proof is by induction on the length of the reduction and case
analysis. Use the fact that σ(u[x := v]) = σ(u)[x := σ(v)].

Lemma 4. Let t be in Λ′ and f be a Böhm function such that t is f-unsolvable.

1. Let σ be a substitution. Then σ(t) is f-unsolvable.
2. Let −→r be a sequence of terms. Then (t −→r ) is f-unsolvable. Moreover (t −→r )
has no reduct of the form

−→
λ (ri −→v ) where ri is a descendent of an element

of −→r.

Proof. 1. This follows immediately from the lemma 3.
2. If t does not reduce to a term beginning with λ this follows immediately
from the lemma 3. Otherwise let −→r = (r1 ... rn) and t′ be the least step
where λ appears. Then (by the lemma 3) (t−→r )�f (t′ −→r ) = (λx t1 −→r )�f
(σ(t1) r2 ... rn) where σ(x) = r1. The result follows by the lemma 3 and by
repeating, if necessary, the same argument.

Corollary 2. Let t be in Λ, a be a branch of t, (dn) be a sequence of λ terms,
(kn) be a strictly increasing sequence of integers and (−→r n) be a sequence of finite
sequences of λ terms. Assume that for every n ≥ 0

1. Res(t, a, kn) =
−→
λ (dn −→rn)

2. dn+1 is the descendent of an element of −→rn

Then (dn) is a decoration for (t, a).

Proof. The fact that dn is solvable follows immediately from the lemma 4.

Lemma 5. Let v, r1, ..., rp be in Λ
′, σ be a substitution and f be a Böhm

function. Assume that v �f λx1... λxk (u
−→
t ). Then (σ(v) r1 ... rp) �f

λxj+1... λxk (σ
′(u)
−−→
σ′(t) rj+1 ... rp) where j = Min(k, p), σ

′ = τ ◦ σ and τ is
given by τ (xi) = ri for 1 ≤ i ≤ j .

Proof. By induction on k. The case k = 0 is given by the lemma 3. Assume
k ≥ 1. Look at the least step in the reduction v �f v′ where v′ begins with
λ, say v′ = λx1 v1. Then, we have the following sequence of f-reductions
: (σ(v) r1 ... rp) �f (λx1 σ(v1) r1 ... rp) →f (σ1(v1) r2 ... rp) �f
λxj+1 ... λxk (σ

′(u)
−−→
σ′(t) rj+1 ... rp) where σ1 = τ ◦ σ and τ is given by :

τ (x1) = r1. The first �f is given by the lemma 3 and the last �f is given by
the induction hypothesis.

Lemma 6. Let t, u be in Λ′, g be a Böhm function and f = ψ(g, u). Assume t

=
−→
λ (R r1 ... rp) and t’ is the f-reduct of t. Then

1. if R = x, then t[g, u] is in g-head normal form.
2. if R = (λx v w) or ⊥ , then the g-reduct of t[g, u] is t’[g, u].
3. if R = c(a, σ)
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– If f(a) = ⊥, then t[g, u] is not g-solvable.
– If f(a) = ({x1, ..., xk}, x, q) then t[g, u] �g t’[g, u].

Proof. (1) and ( 2) are clear. (3.1) follows from the lemma 4 and (3.2) follows
from the lemma 5.

Lemma 7. Let t, u be in Λ′, g be a Böhm function, f = ψ(g, u) and a be f-

accessible in t. Assume t �f,a t’ =
−→
λ (R −→s ) and R = either x or (λx v w) or

c(b, σ) and f(b) 6= ⊥. Then, t[g, u] �g,a t’[g, u]. Moreover, let d’ be a subterm
of t’ that is a residue (resp a descendent) of a subterm d of t. Then d’[g, u] is a
residue (resp a descendent) of the corresponding subterm d[g, u].

Proof. By induction on the length of the reduction of t. For a = nil this follows
from the lemma 6. If a = [i :: b], then t �f −→λ (x t1 ... tn). By the lemma 6,

t[g, u] �g
−→
λ (x t1[g, u] ... tn[g, u]) �g,a ti[g, u] and the result follows easily by

induction on the length of a.

Proposition 1. Let t, u be in Λ′, g be a Böhm function and f = ψ(g, u). Let a
be in A. Then a is an f-branch in t iff a is a g-branch in t[g, u].

Proof. It follows immediately from the lemma 6 that t has an f-head normal form
iff t[g, u] has a g-head normal form.Moreover if hnf(f, t, nil) = λx1... λxk (x t1...
tp) then hnf(g, t[g, u], nil) = λx1... λxk (x t1[g, u] ... tp[g, u]). The result follows
easily.

Definition 12. Let σ, σ′ be substitutions. τ = σ ⊕ σ′ if for every variable x

– if σ(x) 6= x then τ (x) = σ(x) and σ′(x) = x
– if σ′(x) 6= x then τ (x) = σ′(x) and σ(x) = x
– otherwise τ (x) = x

Definition 13. Let u be in Λ. Define, for a accessible in u, FV(u, a) by :

– FV(u, nil) = ∅
– FV(u, [a :: i]) = Fv(u, a) ∪ {x1 ... xk} where hnf(u, a) = λx1 ... xk (x −→r )

Lemma 8. 1. Let t = (σ(u) −→r ) be in Λ, t’ = (c(nil, σ) −→r ), b be accessible in
t, f = ψ(u), t’ �f,b t” and c(a, τ ) be a subterm of t”. Then τ = σ ⊕ σ′ for
some σ′ whose domain is included in FV(u,a). Moreover, for every variable
y in the domain of τ , for every a’ >a and every x in FV(u, a’) - FV(u, a),
x is not free in τ (y).

2. Similarly for t = D(σ(u)) with τ = σ ⊕ σ” ⊕ σ′ where the domain of σ” is
included in the set of variables captured by the context D.

3. Moreover if c(a’, τ ′) is a descendent of c(a, τ ) then τ ′ = τ ⊕ µ for some µ
whose domain is included in FV(u, a’) - FV(u, a)
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Proof. This comes immediately from the fact that we are doing head reduction
(and of course the renaming rule to avoid capture). More precisely, this is proved
by induction on the length of the reduction t′ �f,b t” by a simple case analysis.

Lemma 9. Let t = (σ(u) −→r ) be in Λ, b be a branch in t and f = ψ(u). Let t’
= (c(nil, σ) −→r ).

1. Assume t’ �f,b
−→
λ (c(a, τ ) −→s ) and u �a adr(u, a)� λx1... λxk (d −→v ) �

λx1... λxk ... λxk+k0 (d
′ −→v′ ) and d’ is the descendent of an element of −→v .

Then t �b
−→
λ (µ(d) µ(−→v ) −→w ) �b

−→
λ′ (µ′(d′) µ′(

−→
v′ )
−→
w′) and µ′(d′) = µ(d′)

is a descendent of the corresponding element of µ(−→v ).
2. Similarly assume that :
– t’�f,b −→λ (c(a, τ ) −→s )�f,b

−→
λ′ (c(a′, τ ′)

−→
s′ ) for some a < a′ and c(a′, τ ′)

is a successor of c(a, τ ).

– u �a0 adr(u, a) � −→λ (d −→v ) �a0 adr(u, a′) � −→λ (d′
−→
v′ ) and d’ is the

descendent of an element of −→v .

Then t �b −→λ (µ(d) µ(−→v ) −→w )�b −→λ (µ′(d′) µ′(
−→
v′ )
−→
w′) and µ′(d′) = µ(d′) is

a descendent of the corresponding element of µ(−→v ).

Proof. 1. By the lemma 8, τ = σ ⊕ σ1. By the lemma 7,

t �b
−→
λ (τ (adr(u, a))

−−→
s[u]) and, by the lemma 5,

−→
λ (τ (adr(u, a))

−−→
s[u]) �

−→
λ (µ(d) µ(−→v ) −→w )� −→λ′ (µ′(d′)µ′(−→v′ ) −→w′) where µ = σ′ ◦τ (resp µ′ = σ”◦τ )
and the domain of σ′ (resp σ”) is included in {x1 ... xk} (resp {x1 ... xk+k0}).
By the lemma 8, µ = τ ⊕ σ′ and µ′ = τ ⊕ σ”. Since d′ is the descendent
of an element of −→v the variables xk+1 ... xk+k0 do not appear in d′ and
µ(d′) = µ′(d′).

2. Similarly t�b −→λ (µ(d) µ(−→v ) −→w )�b −→λ (µ′(d′) µ′(
−→
v′ )
−→
w′) where µ = τ ⊕σ′,

µ′ = µ ⊕ σ”and the domain of σ” is included in FV (u, a′) − FV (u, a).
Since d′ is the descendent of an element of −→v , d′ has no free variables in
FV (u, a′)− FV (u, a) and thus µ′(d′) = µ(d′).

Proposition 2. Let t, u, v be in Λ, a (resp b, c) be a branch in t (resp in u, v).
Assume that b is (t, a) useful and c is (u, b) useful. Then c is (t, a) useful.

Proof. Let t = D(σ(u)), u = E(τ (v)). Let t′ = D(c(nil, σ)), u′ = E(c(nil, τ)).
Let F = D(σ(E)). Then t = F (σ ◦ τ (v)). Let t” = F (c(nil, σ ◦ τ )). I only
prove t” �g,a −→λ (c(c � j, τj) −→rj ) for every j < lg(c), where g = ψ(v) . I should
prove a bit more, namely that the corresponding c(c � j, τj) are in the immediate
successor relation (see the definition 10). This is rather tedious to write but this
follows immediately from the proof.
Let f = ψ(u) and d = c � j. Since c is (u, b) useful, u′ �g,b

−→
λ (c(d, τ ′)

−→r ). Thus, by the lemma 2, u′ �g,b adr(g, u′, b′) �g
−→
λ (c(d, τ ′) −→r ) for some

b′ ≤ b. Since b is (t, a) useful, t′ �f,a
−→
λ (c(b′, σ′) −→s ). Clearly t” = t′[g, u′]. Thus,

by the lemmas 7 and 5 , t”�g,b
−→
λ (σ′(adr(u′, b′) −→s )�g,b

−→
λ (c(d, τ”)

−→
r′ ).

Proposition 3. Let t = (σ(u) −→r ) be in Λ and b be a branch in t. Let a be a
branch in u that is (t, b) useful. Assume that Res(u, a, k) =

−→
λ (u1 −→v1 ). Then,
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– For some j and some τ, Res(t, b, j) =
−→
λ (τ (u1) τ (−→v1 ) −→w ).

– Let c be a branch in u1 that is (Res(u, a, k), Br(u, a, k)) useful. Then c is
(Res(t, b, j), Br(t, b, j)) useful.

Proof. By the lemma 2, u �a adr(u, a1) � −→
λ (u1 −→v1 ) = u′. Let

t′ = (c(nil, σ), −→r ) and f = ψ(u). Since a is (t, b) useful t′ �f,b
−→
λ (c(a1, σ1) −→s ).

Thus t�b
−→
λ (σ1(adr(u, a1)) −→s )�b

−→
λ (τ (u1) τ (−→v1 ) −→w ) = Res(t, b, j) = t”. Let

a′ = Br(u, a, k) and b” = Br(t, b, j). Since a is (t, b) useful, it is clear that a′

is (t”, b”) useful and since c is (u′, a′) useful, by the proposition 2, c is (t”, b”)
useful.

4.2 The key results

The propositions 5 and 6 give the key points mentioned in the section 2. Intu-
itively the proposition 6 gives the next step of the decoration and the proposition
7 is the technical result that allows to iterate the construction.

Proposition 4. Let u be in Λ. Assume that u is unsolvable and (dk) is a deco-
ration for (u, nil).

1. Let σ be a substitution. Then (σ(dk)) is a decoration for (σ(u), nil).
2. Let t = (u −→r ) . Then there is a sequence (σk) of substitutions such that
(σk(dk)) is a decoration for (t, nil).

Proof. The first case is trivial since, by the lemma 3, if u� u′ then σ(u)� σ(u′).
For the second case let p be the length of −→r . If p = 0, this is trivial. Assume
p ≥ 1. If, for every k, Res(u, nil, k) does not begin with λ the result follows from
the lemma 3. Otherwise, let k be the least integer such that Res(u, nil, k) =
λx u′. Since (dk) is a decoration for (u, nil), let (kn) be the sequence such that

Res(u, nil, kn) =
−→
λ (dn −→vn).

Assume first that k0 > k. Then (by the lemma 3) (u−→r ) � (λx u′ −→r ) �
(σ(u′) r2 .. rp) where σ(x) = r1. Repeating the same argument with (σ(u

′) r2 rp)
yields the result.
Assume that k0 ≤ k. Let n0 be the largest integer such that kn0 ≤ k. Then

(by the lemma 3) for n ≤ n0 Res(t, nil, kn) = (dn −→v n −→r ). Res(t, nil, kn0) �
(λx u′ −→r )� (σ(u′) r2 ... rp) where σ(x) = r1. Since (dn)n>n0 is a decoration for
(u′, nil), (σ(dn))n>n0 is a decoration for (σ(u

′), nil). Since dn0+1 is a descendent
of an element of vn0 , x is not free in dn0+1 . Repeating the same argument with
((σ(u′) r2 ... rp) , nil) yields the result.

Proposition 5. Let t, u be in Λ and b (resp a) be a branch in t (resp u). Assume
a is (t, b) useful and let (dk) be a decoration for (u, a). Then there is a sequence
(σk) of substitutions such that (σk(dk)) is a decoration for (t, b).

Proof. - If a is infinite, the sequence (σk) is easily constructed by using the
lemma 9.
- If a is finite the sequence (σk) is easily constructed by using the lemma 9

for the finite part of the branch and the proposition 4 for its last node.
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Proposition 6. Let t = (u r1 ... rn) be a λ term and a be a branch in t. Assume
there is no branch neither in u nor in any ri that is (t, a) useful. Then there is
< i, k, u1, ν > such that, letting t

′ = Res(t, a, k) and a′ = Br(t, a, k) :

– t′ =
−→
λ (ν(u1) −→v ) for some −→v ,

– u1 = (ri s1 ... sm) and ν(ri) = ri is a descendent of its occurrence in t.
– For 1 ≤ j ≤m, sj has no branch that is (t′, a′) useful
– u1 has a branch that is (t

′, a′) useful.

Comments The intuition of the proof is the following : Since there is no
useful branch in u the set of useful nodes in BT (u) is (by König’s lemma) finite.
Assume, for example, that t = (λxλy (x s1 s2) r1 r2). Then t � (r1 s′1 s′2). If
there is no useful branch neither in s′1 nor in s

′
2 we are done. Otherwise there

is such a useful branch in, say, s′1. Thus t �
−→
λ (s′1

−→w ) for some −→w . By the
lemmas of the section 4.1 it is mainly enough to prove the result for s′1. But
t′ = (λxλy s1 r1 r2) � s′1 and the cardinality of the set of useful nodes of t

′ is
smaller than the one of t.We get the result by repeating the previous argument.
Before giving the proof I give an example of the difficult case (the case 2.b

in the proof). This is the example 4.3.6 in [1]. Let w = λxyz (y (x (z x))),
R = λz (z I w) and t = (w R I w). t is unsolvable. w,R, I are normal and so
they do not have a branch that is (t, nil) useful. t� (I (R (w R)))� (R (w R)).
We cannot choose the step (I (R (w R))) and the argument I as the first element
of the decoration for t since the unsolvability is already created (and ”used”) in
(R (w R)).We will choose the next step (R (w R)) and the argument R because,
at this step, the unsolvability is not yet created since R and (w R) are solvable.
Thus, here, the solution is : k = 4, u1 = (R (w R)), i = 1, ν = Id and −→v is
empty.

Proof. Let E = {b / b is an address accessible in u, that is (t, a) useful}. Note
that for b in E, hnf(u, b) 6= ⊥ because otherwise b would be a branch in u that
is (t, a) useful.
I define a procedure to construct the desired < i, k, u1, ν > and a branch in u.

This procedure halts (and I thus get the result) because otherwise this means we
always are in the case (1) below and this procedure has constructed an infinite
branch in u that is (t, a) useful and this is a contradiction. Note that I cannot
use the fact that E is finite (and prove the result by induction on the cardinality
of E). Intuitively this is actually the argument used but we cannot formalize it
in this way. If E is infinite, by König’s lemma, there is an infinite branch b such
that for every i, b � i ∈ E but (see the example after the definition 10) this does
not imply that b is (t, a) useful.

nil clearly is in E. Let hnf(u, nil) = λx1 ... xk (x w1 ... wp), j0 =Min(k, n)
and σ is given by σ(xj) = rj for j ≤ j0. It is clear that j0 ≥ 1 because otherwise

t reduces to
−→
λ (x −→w −→r ) and then u or some ri would have a branch that is

(t, a) useful.
1) Assume first that x /∈ {x1 ... xk}. Then t � λxj0+1 ... xk (x σ(w1) ... σ(wp)
rj0+1 ... rn) and thus a 6= nil . Let a = [i :: l]. If i > p, there is a branch in ri
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that is (t, a) useful and this contradicts the hypothesis. Thus i ≤ p. Let u′ =
λx1 ... xj0 wi. Then t �a σ(wi) and (u′ r1 ... rn) � σ(wi). The first node of
the branch constructed by the procedure is i. Repeat the procedure (to get the
other nodes) with (u′ r1 ... rn).
2) Assume that x = xi. Then t� λxj0+1 .. xk (ri σ(w1) .. σ(wp) rj0+1.. rn).
a) Assume first that for 1 ≤ q ≤ p, σ(wq) has no branch that is (t, a)

useful. Then < i, j0, u1, Id > where u1 = (ri σ(w1) ... σ(wp) rj0 ... rn) clearly
satisfies the conclusion of the proposition.
b) Assume that, for some 1 ≤ q ≤ p, σ(wq) has a branch that is (t, a) useful.

Claim
There is b in E and j ≤ j0 such that hnf(u, b) =

−→
λ (xj s1 ... sl) and

σ(hnf(u, b)) has a branch that is (t, a) useful but no σ(sm) has such a branch.
Proof
Note that adr(u, [q]) = wq. By the hypothesis, [q] is in E. Let hnf(u, [q]) =

−→
λ (y s1 ... sl). If y = xj and no σ(sm) has a branch that is (t, a) useful, b = [q]
satisfies the conclusion of the claim. Otherwise some σ(sm) has a branch that
is (t, a) useful. (Proof : If y = xj this is clear. If y /∈ {x1 ... xk}, σ(hnf(u,

[q])) =
−→
λ (y σ(s1) ... σ(sl)) and this is again clear since a branch in σ(hnf(u, [q]))

is a branch in some σ(sm)). We may repeat the argument with b = [q :: m]. If
the claim fails we get in this way an infinite branch in u that is (t, a) useful.
(Q.E.D. of the claim)

Let (b, j) be given by the claim. Let t′ = (c(nil, Id) r1 ... rn) and f = ψ(u). t
′

�f,a −→λ (c(b, τ ) −→w ) for some τ = σ ⊕ σ′ and thus t �a −→λ (τ (adr(u, b)) −→w ). By
the lemmas 5 and 8, there is a substitution τ ′ such that

−→
λ(τ (adr(u, b)) −→w ) �

−→
λ (µ(xj) µ(−→s ) −→v ) = Res(t, a, k) where µ = τ ⊕ τ ′ = σ ⊕ σ′ ⊕ τ ′ . Then,
< j, k, u1, σ

′ ⊕ τ ′ > satisfies the conclusion of the proposition, where u1 =

(rj
−−→
σ(s)) = σ((xj s1 ... sl)).

Proposition 7. Let (dn)n≥0 (resp. (−→un)n≥0, (−→vn)n≥1, resp. (an)n≥0, resp.
(σn)n≥1) be a sequence of λ terms (resp. be sequences of finite sequences of λ
terms, resp. be a sequence of elements of A, resp. be a sequence of substitution).
Assume that for every n ≥ 0

– tn = (dn −→un) and an is a branch in tn.
– For some kn, Res(tn, an, kn) =

−→
λn (σn+1(tn+1) −→v n+1) and an+1 is (Res(tn,

an, kn), Br(tn, an, kn)) useful.
– dn+1 is the descendent of an element of the sequence −→un
– σn+1(dn+1) = dn+1.
Then, there is an increasing sequence (τn) of substitutions such that the
sequence (τn(dn)) is a decoration for (t0, a0).

Proof. I construct (by induction on n) a sequence < jn, rn, bn, τn > such that
: r0 = t0, j0 = 0, τ0 = Id, b0 = a0 and, for n ≥ 1, rn = Res(r0, b0, jn) =
−→
λ (τn(tn) −→wn), bn = Br(r0, b0, jn), τn(dn) = τn−1(dn) and an is (rn, bn) useful.
It is clear that the sequence (τn) satisfies the conclusion.
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tn �an
−→
λn (σn+1(tn+1) −−→vn+1). Since an is (rn, bn) useful and by the propo-

sition 3, rn �bn r′n =
−→
λ (
−→
λ n (τn(σn+1(tn+1)) τn(−−→vn+1)) −→wn) for some τn and

−→wn.
Clearly r′n �

−→
λ′ (τn+1(tn+1)

−−−→
wn+1) = Res(r0, a0, jn+1) for some −−−→wn+1 where

τn+1 = τn ◦ σn+1⊕ µn and the domain of µn is included in the variables in
−→
λ n.

Since dn+1 is the descendent of an element of −→un, dn+1 is not affected by µn .
Since, by the hypothesis, σn+1(dn+1) = dn+1, we have τn+1(dn+1) = τn(dn+1).
Finally, again by the proposition 3, an+1 is (rn+1, bn+1) useful.

4.3 End of the proof of the theorem

Let t be a λ term and a be branch in t. The existence of a decoration is proved
by induction on the complexity of t.

– If t = λx u or t = (x−→r ) the result follows immediately from the induction
hypothesis.

– If t = (u r1... rn) and there is, either in u or in some ri, a branch that is (t, a)
useful. For example, say b is such a branch in u. By the induction hypothesis
there is a decoration of (u, b) and by the proposition 5 there is a decoration
for (t, a).

– Otherwise t = (u r1... rn) and there is no branch neither in u nor in any ri
that is (t, a) useful. Let a0 = a, d0 = u, −→u0 = r1 ... rn, t0 = (d0 −→u0) and −→v0
be the empty sequence. By the proposition 6 there is < i, k0, t1, σ > such
that, letting t′ = Res(t0, a0, k0) and a

′ = Br(t0, a0, k0) :

• t′ =
−→
λ (σ(t1) −→v1 ), t1 = (ri s1 ... sm), σ(ri) = ri for some terms

s1 ... sm −→v1 and some substitution σ.
• For 1 ≤ j ≤ m, sj has no branch that is (t′, a′) useful
• t1 has a branch a1 that is (t′, a′) useful.

Let d1 = ri and −→u1 = s1 ... sm. No sj has a branch that is (t1, a1) useful
since, otherwise, by the proposition 2 such a branch would be (t′, a′) useful. We
may again use the proposition 6 with t1 and the branch a1. By repeating the
same argument we get sequences satisfying the hypothesis of the proposition 7
and thus a decoration for t.
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Abstract. We study extensional models of the untyped lambda calculus
in the setting of game semantics. In particular, we show that, somewhat
unexpectedly and contrary to what happens in ordinary categories of
domains, all reflexive objects in the category of games G, introduced by
Abramsky, Jagadeesan and Malacaria, induce the same λ-theory. This
is H∗, the maximal theory induced already by the classical CPO model
D∞, introduced by Scott in 1969. This results indicates that the current
notion of game carries a very specific bias towards head reduction.

Introduction

λ-theories are congruences over λ-terms, which extend pure β-conversion. Their
interest lies in the fact that they correspond to the possible operational (obser-
vational) semantics of λ-calculus. Although researchers have mainly focused on
only three such operational semantics, namely those given by head reduction,
head lazy reduction or call-by-value reduction, the class of λ-theories is, in effect,
unfathomly rich, see e.g. [6,12,11,7] for interesting examples of this complexity.
Brute force, purely syntactical techniques are usually extremely difficult to use
in the study of λ-theories. Therefore, since the seminal work of Dana Scott on
D∞ in 1969 [16], semantical tools have been extensively investigated.
A large number of mathematical models for λ-calculus, arising from syntax-

free constructions, have been introduced, since then, in various categories of
domains (see e.g. [17,8,6,10,12,5,7]). And a rich host of different λ-theories now
have a “fully abstract” syntax-free model, i.e. a model which induces precisely
those identities which hold in the given theory. However, the denotational se-
mantics supported by these models do not match all the possible operational
semantics of λ-calculus.
For example, in most existing categories of domains, λ-models have too many

functions, and hence many interesting λ-theories, such as those arising from
observing termination under some natural sequential reduction strategies (see
e.g. [11]), do not have fully abstract models [12,5]. An example of such a strategy
is the one which tries to reduce a term to a closed term. In the case of CPOs, the
sequentiality embedded in these strategies clashes with the existence of Scott-
continuous “parallel” functions. While, in the case of coherent spaces, and stable
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functions, the presence of so called “parasitic” functions, prevents other kinds
of identities deriving from monotonicity.
In this paper we explore the methodology for giving denotational seman-

tics based on games, recently introduced by Abramsky, Jagadeesan, Malacaria,
and Hyland, Ong (see [3,14]). This methodology has been extremely success-
ful in modeling sequential languages [3,15]. It should be reasonable to expect,
therefore, that one could obtain fully abstract game models, at least for those
λ-theories mentioned above, which escape domain models. Of course, the very
fact that game semantics faithfully captures sequentiality, should suggest also
that even game semantics is not rich enough to provide fully abstract models for
all λ-theories. It is possible to show, in fact, that there are λ-theories where, say,
the behavior of an unsolvable term, i.e. a term with no head normal form, is that
of a “parallel function”, which checks if at least one of its arguments evaluates
to a fixed term.
Somewhat surprisingly, however, it turns out that all reflexive objects, i.e.

extensional λ-models, in the standard category of games of [3], determine λ-
models which have the same theory. This is the well known maximal λ-theory
H∗ [6], already induced by Scott’s D∞. We recall that, if M,N are closed λ-
terms (i.e. M,N ∈ Λ0), and HNF denotes the set of λ-terms which have a head
normal form, then M =H∗ N if and only if

∀C[ ] . C[M ], C[N ] ∈ Λ0 =⇒ (C[M ] ∈ HNF ⇐⇒ C[N ] ∈ HNF)

Alternatively, this is the theory where two terms are equal if we cannot observe
that head reduction terminates when one is placed in a given context, but does
not terminate when the other is.
More specifically, in this paper we show that all reflexive objects in the Carte-

sian closed category of gamesK!(G) [3] determine λ-models which are isomorphic
to models which can be constructed as special non-initial colimits in a category
Ge of games and “embeddings”, which mimics the traditional Scott’s construc-
tion in CPOs and embedding-projection pairs. By extending the methodology of
approximants originally introduced in [18,13,12] for the continuous case, to the
setting of the game semantics, we study the fine structure of these models.
The paper [9] is a companion to the present one. Finitary logical descriptions

of game models, in the spirit of [8,1], are introduced. The case of one of the
models introduced in this paper is discussed in detail.

One can elaborate in various ways on the main result of this paper. In any
case, we think that it shows that existing game semantics is more rigid than CPO
semantics, which can model a very rich collection of λ-theories. Since the current
notion of game appears to carry a very strong bias towards head reduction, a
new notion of game seems to be necessary to model λ-theories different fromH∗.
The present paper is organized as follows. In section 1, we introduce the

categories of games that we shall utilize, namely G and K!(G). In Section 2 we
discuss initial and non-initial solutions of recursive game equations. In Section
3 we introduce the special class of extensional λ-models D∗, and we prove that
all reflexive objects in K!(G) determine models belonging to D∗. In Section 4 we
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study the fine structure of the models in D∗ and prove that such models induce
the theory H∗. In Section 5 we give some concrete examples of extensional game
λ-models, including the model arising from applying Scott’s trick [17] to the
game setting. Final remarks and directions for future work appear in section 6.
We assume the reader familiar with the basic notions and definitions of

λ-calculus, see e.g. [6]. For the benefit of a reader coming from the λ-calculus
community, this paper is self-contained as far as the theory of games, however
the reader can refer to [2,3,4,14] for more details on this topic.
The authors are grateful to Fabio Alessi, Samson Abramsky, and Marina

Lenisa for useful discussions.

1 Categories of games

In this section, we introduce two categories of games. Both are introduced by
Abramsky, Jadgadeesan and Malacaria in 1993 [3]. Notice however that for our
purposes the machinery of “questions and answers” i.e. the bracketing condition,
seems unnecessary. One can safely, and more simply, focus only on the full and
faithful sub-category of this category consisting of all those games all whose
moves are labeled as questions.
We begin by giving the basic definitions.

Definition 1 (Games). A game has two participants: the Player and the Op-
ponent. A game A is a quadruple (MA, λA, PA,≈A) where:

– MA is the set of moves of the game.
– λA :MA → {O, P }× {Q,A} is the labeling function: it tells us if a move is
taken by the Opponent or by the Player, and if it is a Question or an Answer.
We can decompose λA into λ

OP
A : MA → {O, P } and λ

QA
A : MA → {Q,A}

and put λA = 〈λOPA , λQAA 〉. We denote by
− the function which exchanges

Player and Opponent, i.e. O = P and P = O. We also denote with λOPA
the function defined by λOPA (a) = λOPA (a). Finally, we denote with λA the

function 〈λOPA , λQAA 〉.
– PA is a non-empty and prefix-closed subset of the set M

~
A (which will be

written as PA ⊆nepref M
~
A ), where M

~
A is the set of all sequences of moves

which satisfy the following conditions:
- s = at⇒ λA(a) = OQ

- (∀i : 1 ≤ i ≤ |s|)[λOPA (si+1) = λ
OP
A (si)]

- (∀ t v s)[|t �MA
A | ≤ |t �M

Q
A |]

where MA
A and M

Q
A denote the subsets of game moves labeled respectively

as Answers and as Questions, s � M denotes the set of moves of M which
appear in s and v is the substring relation. PA is called the set of positions
of the game A.

– ≈A is an equivalence relation on PA which satisfies the following properties:
- s ≈A s

′ ⇒ |s| = |s′|
- sa ≈A s′a′ ⇒ s ≈A s′

- s ≈A s′ ∧ sa ∈ PA ⇒ (∃a′)[sa ≈A s′a′]
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In the above s, s′, t and t′ range over sequences of moves, while a, a′, b and
b′ range over moves. The empty sequence is written ε.

Definition 2 (Strategies).
A strategy for the Player in a game A is a non-empty set σ ⊆ P evenA of posi-

tions of even length such that σ = σ ∪ dom(σ) is prefix-closed, where dom(σ) =
{t ∈ P oddA | (∃a)[ta ∈ σ]}, and P oddA and P evenA denote the sets of positions of
odd and even length respectively.

In this paper we shall consider only history-free strategies, i.e. strategies
which depend only on the last move by the Opponent.

Definition 3 (History-free strategies).
A strategy σ for a game A is history-free if it satisfies the following properties:

- sab, tac ∈ σ⇒ b = c
- sab, t ∈ σ, ta ∈ PA ⇒ tab ∈ σ.

Definition 4. Let σ, τ be strategies for a game A, we write σ ≈ τ if and
only if:
- sab ∈ σ, s′a′b′ ∈ τ, sa ≈A s′a′ ⇒ sab ≈A s′a′b′

- s ∈ σ, s′ ∈ τ, sa ≈A s′a′ ⇒ (∃b)[sab ∈ σ] iff (∃b′)[s′a′b′ ∈ τ ].

The above relation on strategies is not an equivalence relation since it might
lack reflexivity. If σ is a strategy for a game A such that σ ≈ σ, we write σ : A.

Definition 5 (Tensor product).
Given games A and B the tensor product A⊗B is the game defined as follows:

– MA⊗B =MA +MB
– λA⊗B = [λA, λB]
– PA⊗B ⊆M

~
A⊗B is the set of positions, s, which satisfy the following:

i) the projections on each component (written as s � A or s � B) are posi-
tions for the games A and B respectively;
ii) every answer in s must be in the same component game as the corre-
sponding question.

– s ≈A⊗B s
′ ⇐⇒ s � A ≈A s′ � A, s � B ≈B s′ � B, (∀i)[si ∈MA ⇔ s′i ∈MA]

Here + denotes disjoint union of sets, that is A + B = {inl(a) | a ∈ A} ∪
{inr(b) | b ∈ B}, and [−,−] is the usual (unique) decomposition of a function
defined on disjoint unions.

Definition 6 (Unit). The unit element for the tensor product is given by the
empty game I = (∅,∅, {ε}, {(ε, ε)}).

Definition 7 (Linear implication). Given games A and B the compound
game A( B is defined as follows:
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– MA(B =MA +MB
– λA(B = [λA, λB]
– PA⊗B ⊆M

~
A⊗B is the set of positions, s, which satisfy:

i) the projections on each component are positions for the games A and B
respectively;
ii) every answer in s must be in the same component game as the corre-
sponding question.

– s ≈A(B s′ ⇐⇒ s � A ≈A s′ � A, s � B ≈B s′ � B, (∀i)[si ∈MA ⇔ s′i ∈ MA]

It is easy to see that in the “tensor game” only the Opponent can switch
component, while in the “linear implication game” only the Player can switch.

Definition 8 (Exponential). Given a game A the game !A is defined by:

– M!A = ω ×MA =
∑
i∈ωMA

– λ!A(〈i, a〉) = λA(a)
– P!A ⊆M

~
!A is the set of positions, s, which satisfy the following conditions:

i) (∀i ∈ ω)[s � Ai ∈ PAi ];
ii) every answer in s is in the same index as the corresponding question.

– s ≈!A s′ ⇐⇒ ∃ a permutation of indexes α ∈ S(ω) such that:
- π∗1(s) = α

∗(π∗1(s
′))

- (∀i ∈ ω)[π∗2(s � α(i)) ≈ π∗2(s � i)]
where π1 and π2 are the projections of ω ×MA and s � i is an abbreviation
of s � Ai.

One can easily see that the following definition is well posed and that the
objects introduced in Definitions 5, 6 provide indeed a categorical tensor product
and its unit.

Definition 9 (The category of games G).
The category G has as objects games and as morphisms, between games A

and B, the equivalence classes, for the relation ≈A(B , of history-free strategies
σ : A( B. We denote the equivalence class of σ by [σ].
The identity for each game A is given by the (equivalence class) of the copy-

cat strategy idA = {s ∈ PA′(A′′ | s � A′ = s � A′′} where the superscripts are
introduced to distinguish between the two different occurrences of the game A.
Composition is given by the extension on equivalence classes of the following

composition of strategies. Given strategies σ : A ( B and τ : B ( C, τ ◦ σ :
A( C is defined by
τ ◦σ = {s � (A,C) | s ∈ (MA+MB+MC)∗ ∧ s � (A,B) ∈ σ, s � (B,C) ∈ τ}even

Throughout this paper, without loss of generality, we shall restrict ourselves
to “irredundant” games, i.e. to games such that every move appears in at least
one position. Any redundant game is in fact categorically isomorphic to an irre-
dundant one.
One can easily see that the constructions introduced in Definitions 5, 7 and 8

can be made to be functorial. Thus the category G is a monoidal closed category
[3], which however is not Cartesian closed.
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Definition 10 (A Cartesian closed category of games). The category
K!(G) is the category obtained by taking the co-Kleisli category over G over the
co-monad (!,der, δ) [3], where for each game A the strategies derA : !A ( A
and δA : !A( !!A are defined as follows:
- derA = [{s ∈ P!A(A | s � (!A)0 = s � A}]
- δA = [{s ∈ P!A( !!A | s � (!A)p(i,j) = s � (!(!A)i)j}]
where p : N× N→ N is a pairing function.

The category K!(G) has as objects games and as morphisms between games
A and B the equivalence classes of history-free strategies for the game !A( B.
Moreover it is Cartesian closed.

Definition 11 (Cartesian product).
Given games A and B the Cartesian product A&B is the game defined as

follows:
- MA&B =MA +MB
- λA&B = [λA, λB]
- PA&B = PA + PB
- ≈A&B= ≈A + ≈B .

1.1 Order-enrichment

Following [3] we can enrich each homset of G with a partial order structure:

Definition 12. Given a game A, and strategies σ : A and τ : A we write σ . τ
iff
(∀s, s′, a, b, a′)[sab ∈ σ ∧ s′ ∈ τ ∧ sa ≈ s′a′ =⇒ ∃b′.(s′a′b′ ∈ τ ∧ sab ≈ s′a′b′)],
and we define [σ] vA [τ ]⇐⇒ σ . τ.
Given a gameA let Â be the set of equivalence classes of history-free strategies

for A. vA is a partial order over Â, whose least element is [{ε}]. Notice that
Â ' G(I,A).
We now prove that this partial order is not complete. This answers a question

raised in [3] page 21.

Definition 13 (Game N). The game N is defined as follows:
- MN = {q, !} ∪ {n, n | n ∈ N}
- λN(q) = λN(n) = OQ and λN(!) = λN(n) = PQ
- PN = {qn(n− 1)(n − 1)(n − 2) . . .00q!q!q! . . . | n ∈ N}nepref

- s ≈N t⇔ |s| = |t|.

Theorem 1. (N̂,vN) is not a complete partial order.

Proof. Consider the following strategies indexed by n ≥ 1:
σn = {qn(n− 1)(n − 1)(n − 2) . . .1}nepref .
It is easy to check that σn . σm for n ≤ m. The chain [σ0], [σ1], . . . , [σn], . . . has
no lub, since there is no infinite history-free strategy in N. ut

Corollary 1. The categories G and K!(G) are not cpo-enriched categories under
the order relation on morphisms of Definition 12.
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2 Solution of recursive games equations

The categories of games G and K!(G) allow for the existence of recursive objects,
i.e. objects that are fixed points of particular functors. In this section we ana-
lyze and elaborate the method proposed by Abramsky and McCusker in [4], for
defining recursive games. In a well-founded setting, this method allows to de-
fine only initial fixed points of functors. However in order to model non-trivially
λβη-calculus, it is well known that we need to define models which arise from
non-initial fixed points. To this end we have to change the functor altogether
and use some form of encoding or, equivalently, generalize the method of [4] and
consider games “up to” isomorphisms, or consider non-well-founded sets. In this
section we shall explore the first two alternatives.

2.1 Initial fixed points

We start by discussing briefly the method of Abramsky and McCusker [4] in a
well-founded setting. This method follows the pattern used for building initial
fixed points in the context of information systems. First a complete partial order
E on games is introduced.

Definition 14. Let A,B be games, A is a sub-game of B (A E B) iff
- MA ⊆MB ;
- λA = λB �MA;
- PA = PB ∩M

~
A ;

- s ≈A s
′ iff s ≈B s

′ and s ∈ PA.

One can easily see that the sub-game relation defines a complete partial
order on games. Hence a functor F which is continuous with respect to E has a
(minimal) fixed point D = F (D) given by

⊔
E F

n(I). Notice that we have indeed
an identity between D and F (D).
In domain theory, non-initial fixed points for a functor F are usually obtained

by carrying out the above construction starting from some object A, different
from the initial one (i.e. I in this case), such that A E F (A). However one can
prove that for functors F obtained from constant functors by composition of the
basic functors &, ⊗, (, ( )⊥, and !, and for every game A, whose moves are
well-founded sets, if A E F (A) then ∃n ∈ N s.t. A E F n(I). Hence only initial
fixed points can be obtained using this technique in well-founded Set Theory.
As remarked earlier, even if no non-trivial model of λβη-calculus can be

obtained applying this technique directly to the functor !D ( D, nevertheless
using Scott’s trick (see [17]) we can still define models of λβη. What we need is a
non-trivial game which satisfies the equivalence D ' D&D. To see this consider
the initial fixed point, E, of the functor F (X) = X → D in a general Cartesian
closed category. This is clearly non trivial. One can easily see that the following
chain of equivalences holds E = E → D = (E → D) → D ' (E → (D ×D)) →
D ' ((E → D) × (E → D)) → D = ((E → D) × E)→ D ' (E → D) → (E →
D) = E → E. We shall present this model in Section 5.
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2.2 Non-initial fixed points

In order to obtain a non-initial fixed point of a functor, without having to
deal with the subtleties of non-well-founded sets, or with indirect encodings,
we present a generalization of the method proposed in [4], “up to isomorphism”.
The basic idea is to obtain a fixed point of a functor F as a limit of a chain

of approximations D0, D1, D2, . . . where, not necessarily Dn E Dn+1, but only
a weaker relation between Dn and Dn+1 holds. We simply ask that each Dn is
isomorphic to a sub-game B of Dn+1. In order to formalize our construction we
need to introduce a new category Ge. A similar category was introduced also in
[2] for other purposes.

Definition 15. Given games A and B an embedding f : A � B is a total
injective function f :MA →MB such that:
- λA = λB ◦ f
- f∗(PA) = PB ∩ (f∗(MA))~

- s ≈A s′ iff f∗(s) ≈B f∗(s′)

In the above we have used the notation f∗ to denote the natural extension
of f both to sequences and sets of sequences.

Definition 16. The category of games Ge has as objects games and as mor-
phisms embeddings.

Proposition 1. The category Ge is ω-cocomplete.

Proof. Given an ω-chain 〈Dn, fn〉 with fn : Dn � Dn+1 its colimit is 〈D∞, µn〉
where D∞ is the game:
- MD∞ = (

⋃
n∈ωMDn)/≡, where ≡ is the least equivalence relation such that
∀n ∈ N ∀a ∈ Dn ∀b ∈ Dn+1. fn(a) = b ⇒ a ≡ b.

- λD∞([a]≡) = λDn(a) if a ∈ Dn
- PD∞ =

⋃
n∈ω{[a1]≡[a2]≡ . . . [ap]≡ | a1a2 . . . ap ∈ PDn}

- ≈D∞=
⋃
n∈ω = {([a1]≡[a2]≡ . . . [ap]≡, [a

′
1]≡[a

′
2]≡ . . . [a

′
p]≡) |

(a1a2 . . . ap, a
′
1a
′
2 . . . a

′
p) ∈ ≈Dn}.

The colimit functions µn : Dn� D∞ are defined by µn(a) = [a]≡. ut

Each embedding f : A� B in Ge induces two morphisms f+ : A( B and
f− : B ( A in G defined as follows.

Definition 17. Given an embedding f : A� B, put:
f+ = {t ∈ PA(B | t ∈ sf}
f− = {t

′ ∈ PB(A | t′ ∈ sf}
where sf is the least set satisfying:
sf = {t a f(a) | t ∈ sf , a ∈MA} ∪ {t′f(a) a | t′ ∈ sf , a ∈MA} ∪ {ε}.

One can easily see that (g ◦ f)+ = g+ ◦ f+ and (g ◦ f)− = f− ◦ g−. The
category Ge is indeed isomorphic to a sub-category of G and to a sub-category
of Gop. Now, using the well-known machinery, we can obtain fixed points of any
continuous functor F in Ge.
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Theorem 2. Given a game D and an embedding f : D � F (D), let
〈D∞, µn〉n∈ω be the colimit of the chain 〈(F )n(D), (F )n(f)〉n∈ω . Then, the game
D∞ is the fixed point of the functor F . The isomorphic embeddings ϕ : D∞ �
F (D∞) and ψ : F (D∞) � D∞ are given by ϕ =

⊔
n∈ω F (µn) ◦ µ

−1
n and

ψ =
⊔
n∈ω µn ◦ F (µn)

−1, where the lubs are taken in the category of partial
embeddings.

Proposition 2. Given a game D and an embedding f : D � F (D) let
〈D∞, µn〉n∈ω be the fixed point of the functor F . For each n ∈ N let pn : D∞ (
D∞ = (µn)

+ ◦ (µn)−. Then for each game A and for each strategy σ : A( D∞,
we have that pn ◦ σ = {s | s ∈ (σ ∩ (inl(MA) ∪ inr(µn(MFn(D))))

~)}.
moreover for each n ∈ N:
- pn v pn+1
-
⊔
n∈ω pn = id

- pn ◦ pm = pmin{m,n}.

Using the above machinery, given an endofunctor F in G (either variant or
covariant), one can obtain a fixed point of F provided there exists a covariant
continuous functor F e in Ge, which coincides with F on objects.
One can easily see that this is the case for constant functors, the functors &,

⊗,(, !, ( )⊥ and their compositions.

3 Extensional λ-models in K!(G)

As it is well known, a model for λβη-calculus is a pair D = 〈D, f〉, where D is an
extensional reflexive object in a Cartesian closed category, i.e. an object D such
that D isomorphic to D → D, and f : D → [D → D] is an isomorphism. Two
models D = 〈D, f〉, D′ = 〈D′, f ′〉 are isomorphic if there exists an isomorphism
g : D → D′ such that f ′ ◦ g = [g−1 → g] ◦ f . This implies that the two
“applicative structures” are the same, i.e. for each σ, τ : A → D we have that
g ◦ ev ◦ 〈f ◦ σ, τ 〉 = ev ◦ 〈f ′ ◦ (g ◦ σ), g ◦ τ 〉.
In this section, using the techniques outlined in Section 2, we define a sub-

class, D∗, of extensional models in K!(G), and prove the crucial result, namely,
that each extensional model in K!(G) is isomorphic to a model in D∗. In Section
4 we will prove that all models in D∗ induce the λ-theory H∗.
The endofunctor Fun on the category Ge is defined by putting:

- Fun(D) = [D → D] = (!D( D)
- Fun(f) = [!f, f ], for f : A� B, where !f(〈i, a〉) = 〈i, f(a)〉.
One can easily see that Fun is continuous.

Definition 18. Let D∗ be the class of λ-models D = 〈D, f〉 where D is the limit
of a chain generated by iterating the functor Fun on an initial game D0, using
an initial embedding f∗ : D0 � Fun(D0), such that for each m ∈MD0 , f

∗(m) =
inr(m

′) for some m′ ∈ MD0 . And where the isomorphism f : D → Fun(D) in
K!(G) is ϕ+ ◦ derD, where ϕ is the isomorphic embedding given by the colimit
construction.

Isomorphisms in K!(G) can be reduced to isomorphisms in Ge:
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Proposition 3. For each isomorphism σ : A→ B in K!(G), there exists an iso-
morphic strategy σ′ : A( B such that σ = σ′ ◦ derA. And, for each isomorphic
strategy σ : A( B, there exists an isomorphic embedding fσ : A� B such that
σ = (fσ)

+.

Proof. The proof of the first part is straightforward. In order to show the second
part, recall from [3] that an history-free strategy σ : A( B can be described as
a map gσ from Opponent’s moves to Player’s moves in the game A ( B. If σ
is an isomorphism, with inverse σ−1 then gσ maps each Player’s move of A in
a Player’s move of B, and each Opponent’s move in B to a Opponent’s move
in A. In fact, suppose by contradiction, that an Opponent’s move b ∈ MB is
such that gσ(b) = b

′ is a Player’s move in B, then gσ−1◦σ(b) = b′ and therefore
σ−1 ◦ σ is not the copy-cat strategy. By a similar argument one can prove that
gσ and gσ−1 are one the inverse of the other. The function fσ is then defined by

fσ(a) =

{
gσ(a) if λOPB (a) = O
gσ−1 (a) if λ

OP
A (a) = P

By an analysis similar to the one above, and using the bracketing condition it is
possible to prove that fσ preserves the labeling and that f

∗
σ(PA) = PB. ut

In order to establish the main result of this section, we need a new definition,
and prove a technical lemma.

Definition 19. Given a game A and a move a ∈ MA, the rank of a, r(a), is
the smallest integer n such that there exists a sequence of moves a1, . . . , an such
that a1, . . . , an, a ∈ PA.

Lemma 1. For each game A, for each embedding f : A� Fun(A) and for each
move a ∈ MA, if f(a) = inl(〈n, a′〉) then r(a′) < r(a); if f(a) = inr(a

′) then
r(a′) ≤ r(a).

Proof. Let sa be a minimal position with end point a. The projection of f
∗(sa)

on the left component must still be a position in P!A. Its length is strictly smaller
than that of sa, since the initial move of sa has to be mapped onto a move on
the right component. ut

Theorem 3. Each extensional model in K!(G) is isomorphic to a model in D∗.

Proof. Let 〈D, σ〉 be an extensional model in K!(G). Then, by Proposition 3 there
exists an isomorphic embedding f : D� Fun(D), such that σ = f+ ◦ derA. Let
MD0 be the largest subset of MD such that ∀d ∈ MD0 ∃d

′ ∈ MD0 such that
f(d) = inr(d

′). Alternatively, with a slight abuse of notation, we can define
MD0 = {d ∈ D | ∀n ∈ N . (inr

−1 ◦ f)n(d) is defined}.
It is immediate to verify that the quadruple D0 = (MD0 , λD � MD0 , PD ∩

M~
D0
,≈D ∩(MD0 ×MD0) ) is indeed a sub-game of D. By the construction of

D0, it follows that f0 = f |D0 is an embedding from D0 to Fun(D0).
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Let D∗ be the limit of the ω-chain 〈Funn(D0), Fun
n(f0)〉n∈N, and let f∗ :

D∗ � Fun(D∗) be the isomorphic embedding induced by the limit construction.
We will prove that there exists an isomorphic embedding f ′ : D∗ � D such that
f ◦ f ′ = Fun(f ′) ◦ f∗.
The isomorphism f ′ is defined as follows: given d ∈ Funn(D0) f

′([d]≡) =
f−10,n(d), where f0,n : D� Funn(D) is the isomorphism Funn−1(f)◦. . .◦Fun(f)◦
f. Since, for each n ∈ N, MFunn(D0) ⊆MFun

n
(D), f

′ is a well defined function

from MD∗ to MD . Moreover it is not difficult to verify that f
′ is an embedding.

We need to prove that f ′ is surjective. This can be done by induction on the
rank of the moves in D. Formally, we will prove that for each move d ∈ MD
there exists a move d′ in MD∗ such that d = f

′(d′).

– Basic step. This follows from the fact that all initial moves (i.e. moves of
rank 0) are in MD0 .

– Induction step. Let d ∈ MD be a move of rank n + 1, two possible cases
arise. Either d ∈ D0, and therefore d = f ′([d]≡), or there exist p, i ∈ N
and d′ ∈ MD such that ∀m ≤ p, (inr

−1 ◦ f)m(d) is defined and f((inr
−1 ◦

f)p(d)) = inl(〈i, d′〉). By Lemma 1 the rank of d′ is less than n + 1 and,
hence, by induction hypothesis, there exists k ∈ N and d′′ ∈ Funk(D0) such
that d′ = f ′([d′′]≡). Let d

′′′ = inr
p ◦ inl(〈i, d′′〉) ∈ Funk+p(D0), it is not

difficult to verify that d = f ′([d′′′]≡).

Moreover, it is straightforward to verify that f ◦ f ′ = Fun(f ′) ◦ f∗, and from the
fact that: [(f+ ◦ derD)−1 → (f+ ◦ derD)] = Fun(f)+ ◦ derD→D, the theorem
follows straightforwardly. ut

4 The fine structure of models in D�

In order to analyze the equational theories induced by the models in D∗, we
establish an Approximation Theorem, in the style of [18,12]. Using this result we
will be able to characterize the meaning of a term in the model as the lub of the
set of the meanings of the syntactical approximants of the term.
To our knowledge this is the first time such a theorem is proved for models

in “non-concrete” categories such as game models.
As usual it is convenient to consider Λ(Ω), an extension of λ-calculus with a

constant to denote divergence, and its indexed version Λ(Ω)N.

Definition 20. 1. The set of λΩ-terms, Λ(Ω)(3 M) is defined from a set of
variables V ar(3 x) as follows: M ::= x |MM | λx.M | Ω.

2. The set of (possibly) indexed terms Λ(Ω)N(3 M) is the superset of Λ(Ω)
defined as follows: M ::= x |MM | λx.M | Ω |Mn.

3. A term is truly indexed if it is of the shape Mn. A term is completely
indexed if all its subterms of the shape constant, variable, abstraction, and
application are immediate subterms of truly indexed terms.

The intended meaning of an indexed term Mn is the n-th projection of the
interpretation of the term M . Hence we give:
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Definition 21. Let D = 〈D,ϕ〉 be in D∗. The interpretation of a term M ∈
Λ(Ω)N (whose free variables are among the list ∆ = {x1, . . . , xn}) in the model

is the strategy [[M ]]D∆ : !(

|∆|︷ ︸︸ ︷
D & . . .& D)( D defined inductively as follows:

- [[xi]]
D
∆ = π

∆
i ;

- [[MN ]]D∆ = ev ◦ 〈(ϕ ◦ [[M ]]
D
∆) , [[N ]]

D
∆〉;

- [[λx.M ]]D∆ = ψ ◦ Λ( [[M ]]
D
∆,x);

- [[Mn]]D∆ = pn ◦ [[M ]]
D
∆ ;

- [[Ω]]D∆ = σε;
where π∆i are the canonical projection morphisms, ev and Λ denote “evaluation”
and “abstraction” in the Cartesian closed category K!(G), σε = [{ε}], ψ = ϕ−1

and the pn are the strategies defined in Proposition 2.
Given strategies σ, τ with codomain D, we use the abbreviation σ ·τ to denote

the strategy ev◦〈(ϕ◦σ), τ 〉, and we will denote with (D)n the game

n︷ ︸︸ ︷
D & . . .& D.

The main result of this section is Theorem 6. In order to establish it we need
several preliminary results.

Lemma 2. For each model D = 〈D∗, ϕ〉 in D∗, for each game A and pair of
strategies σ, τ : !A( D∗, we have:
- (p0 ◦ σ) · τ = (p0 ◦ σ) · σε = p0 ◦ (σ · σε)
- (pn+1 ◦ σ) · τ v pn+1 ◦ (σ · (pn ◦ τ )) ∀n ∈ N.

Notice that in the statement of Lemma 2.2, we have not taken equality but
only inequality. This is done in order to be able to deal simultaneously not only
with models in D∗, but also, in Section 5, with models obtained using the trick
of Scott outlined in Section 2.
The following Lemmata and Definitions follow closely the pattern of [18,12],

and they amount essentially to the game theoretic version of the corresponding
“continuous result”.

Definition 22. The erasing function R : Λ(Ω)N → Λ(Ω) is inductively defined
as follows: R(x) = x; R(Ω) = Ω; R(PQ) = R(P )R(Q), R(λx.P ) = λx.R(P ),
R(Mn) = R(M).

Lemma 3. For each model D = 〈D∗, ϕ〉 in D∗, for each term M ∈ Λ(Ω) whose

free variables are in ∆, given a finite strategy σ : !(D∗)|∆|( D∗ s.t. σ v [[M ]]D∆
there exists a natural number n s.t. σ v [[Mn]]D∆ .

Lemma 4. For each model D = 〈D∗, ϕ〉 in D∗, for each term M ∈ Λ(Ω) whose

free variables are in ∆, given a finite strategy σ : !(D∗)|∆|( D∗ s.t. σ v [[M ]]D∆
there exists a completely indexed term Q ∈ Λ(Ω)N such that R(Q) =M and σ v

[[Q]]D∆ .

Lemma 5. Let σ : A, then σ =
⊔
{τ : A | τ finite and τ v σ}.
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Proposition 4. For each model D = 〈D∗, ϕ〉 in D∗, for each term M ∈ Λ,

[[M ]]D∆ =
⊔
{[[Q]]D∆ | Q is a completely indexed term s.t. R(Q) =M}.

Definition 23. The following reduction rules are definable on Λ(Ω):
(Ω1) λx.Ω → Ω (Ω2) ΩM → Ω.

The following reductions are definable on completely indexed terms of Λ(Ω)N:
(Ωn1 ) λx.Ωn → Ω0

(Ωn2 ) ΩnM → Ω0

(βI) ((λx.P
n)m+1Qp)h → (P [x/Qa])b

where b = min{n,m+ 1, h}, a =min{m, p}
(β0) ((λx.P )

0Q)h → (P [x/Ω])0

(βi,j) (M
i)j →Mmin{i,j}.

Notice again that the above definition of the (βI ) indexed reduction rule and
the statement of the following Theorem are not formulated as in [18], but are
relaxed so as to take care of the model DN (see Section 5).

Theorem 4 (Validity of indexed reduction). For each model D = 〈D∗, ϕ〉
in D∗, the rules (Ωn1 ), (Ω

n
2 ), (βI ), (β0) and (βi,j) are valid in the following sense:

let P,Q ∈ Λ(Ω)N then: (P �Ωn1Ωn2 β0βIβi,j Q) =⇒ [[P ]]D∆ v [[Q]]D∆ .

Lemma 6. A completely indexed term Q is Ωn1Ω
n
2 β0βIβi,j-normalizing.

Lemma 7. For each model D = 〈D∗, ϕ〉 in D∗, for each term M ∈ Λ, [[M ]]D∆ =⊔
{[[N ]]D∆ | ∃Q completely indexed term such that R(Q) = M and N is the

Ωn1Ω
n
2 β0βIβi,j-normal form of Q}.

Definition 24. The direct approximant of a λ-term M ∈ Λ is a normal form
A ∈ Λ(Ω) obtained from M by replacing each redex in M by Ω, and performing
all the Ωn1Ω

n
2 -reductions.

Definition 25. The set of approximants of M is the set A(M) = {A | ∃M ′,
M �βη M ′ and A is the direct approximant of M ′}.

Theorem 5 (Approximation theorem). For each model D = 〈D∗, ϕ〉 in D∗,

for each term M ∈ Λ, [[M ]]D∆ =
⊔
{[[A]]D∆ | A ∈ A(M)}.

Theorem 6. For each model D = 〈D∗, ϕ〉 in D∗, Th(D) = H∗.

Proof. (sketch) Using theorems 4 and 5, the standard argument for the contin-
uous case (see e.g. [6] Sec. 19.2) can be mimicked in the game setting. ut
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5 Examples of game models for λβη-calculus

We introduce four extensional λ-models in K!(G). The first three are defined
using Theorem 2. The first two belong to D∗, while the third does not. The
fourth is the model obtained by Scott’s trick as outlined in Section 2.

Definition 26. 1. Let D◦0 = ({∗}, λ(∗) = OQ, {ε, ∗}, id) and define f◦ : D
◦
0 �

(!D◦0 ( D◦0) by f◦(∗) = inr(∗);
2. let D∗◦0 = ({∗, ◦}, (λ(∗) = OQ, λ(◦) = PQ), {ε, ∗, ∗◦}, id) and define f∗◦ :

D∗◦0 � (!D∗◦0 ( D∗◦0 ) by f∗◦(∗) = inr(∗) and f∗◦(◦) = inr(◦);
3. let D∗∗0 = ({∗, ◦}, (λ(∗) = OQ, λ(◦) = PQ), {ε, ∗, ∗◦}, id) and define f∗∗ :

D∗∗0 → (!D
∗∗
0 ( D∗∗0 ) by f∗∗(∗) = inr(∗) and f∗∗(◦) = inl(〈0, ∗〉).

Definition 27. The models D◦∞, D
∗◦
∞ , D

∗∗
∞ are determined by the limits of the

chains generated by iterating the functor Fun on the embeddings f∗, f∗◦, f∗∗, and
by the corresponding injection ϕ respectively.

Definition 28. Let AN = (N, λn.OQ, {ε} ∪ N, id). The model DN is the one
naturally induced by the least fixed point of the functor F (D) = !D( AN where
the following chain holds for every n ∈ N: DN

n+1 ' !D
N
n ( AN ' !DN

n (
(AN & AN) ' (!DN

n ( AN) & (!D
N

n ( AN) ' DN

n+1 & DN

n+1 and hence, D
N

n+1 '
!DN
n ( AN ' !(DN

n & DN
n)( AN ' !DN

n ( (!DN
n ( AN) ' !DN

n ( DN

n+1.

One can easily see that DN is a λ-model since any bijection p : N +N → N,
induces an isomorphism between AN and AN & AN.

6 Conclusions and Final Remarks

In this paper we have shown that all extensional λ-models in the category K!(G)
of [3] induce the same λ-theory, this is the well-known theory H∗. It is natural
to conjecture, therefore, that also there is only one non-extensional sensible λ-
theory which can be modeled using games. We recall that a sensible λ-theory is
a theory where all unsolvable terms are equated. This would be the theory B of
Böhm trees, and would be the theory of any reflexive object in K!(G), 〈D, f〉,
for which f maps the undefined strategy on !D( D on the undefined strategy
on D, but it is not an isomorphism.
Our results clearly indicate that existing game models are even more rigid

than continuous models. But is this really a “surprise”, or a “bad surprise”?
Definitely there must be some intrinsic feature of games, as they are currently
defined, that is intimately related with head reduction. Probably it is not the
fact that we have considered only “history-free” strategies, more likely it has
to do with the “strict” protocol of alternation of moves between Opponent and
Player. We feel however that when the appropriate constraint will be relaxed,
the perspicuous analytic power of games will become applicable also to other
reduction strategies, besides head reduction.
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We end this paper with two technical remarks. In the game models of λ-
calculus that we have introduced it is not necessary to take an extensional quo-
tient at the end in order to get a “fully abstract” model, as is done in the typed
case [3] or in the lazy case. The essential ingredient in the proof of Theorem
6 is Lemma 2. The same argument used there implies also that CPO models
obtained using “Scott’s trick” as presented in [17] induce the theory H∗.
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Abstract. Induction-recursion is a schema which formalizes the princi-
ples for introducing new sets in Martin-Löf’s type theory. It states that
we may inductively define a set while simultaneously defining a function
from this set into an arbitrary type by structural recursion. This extends
the notion of an inductively defined set substantially and allows us to in-
troduce universes and higher order universes (but not a Mahlo universe).
In this article we give a finite axiomatization of inductive-recursive defin-
itions. We prove consistency by constructing a set-theoretic model which
makes use of one Mahlo cardinal.

1 Introduction

In this article we present an elegant, uniform method for introducing large sets in
type theory. We draw on experience from proof theory, category theory, and set
theory to formulate a compact, completely formal theory of inductive-recursive
definitions, and to prove its consistency.

Induction-recursion is a schema for introducing new sets in type theory de-
veloped by Dybjer [18]. All the usual sets in Martin-Löf’s type theory and
practically all sets (data types), which are defined in analogy with it, are in-
stances of this schema. Applications of induction-recursion include not only
a variety of type-theoretic analogues of large cardinals (inaccessible cardinals,
hyper-inaccessible cardinals, etc) but also various powerful notions needed for
the type-theoretic formalization of metamathematics (such as reducibility pred-
icates and logical relations for dependent types). Induction-recursion can also
provide novel ways to formalize simple concepts such as the set of lists with
distinct elements [18].
The original presentation of induction-recursion was as an external schema

[18]. In this article we internalize this concept. The new theory has a special
type of codes for inductive-recursive definitions. New sets defined by induction-
recursion are introduced by deriving codes in this type. Therefore we achieve full
precision of the concept of an inductive-recursive definition. The meta-theory
becomes easier, as will be demonstrated by building a full function space model.

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 129–146, 1999.
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Ordinary dependent type theory with generalized inductive definitions (that
is, Martin-Löf’s type theory without universes) has a natural full function space
interpretation in classical set theory [5,20]. As shown by our construction of
a set-theoretic model the step from inductive to inductive-recursive definitions
in type theory is roughly analogous to moving from ordinary ZF set theory
to ZF set theory with a Mahlo cardinal. The proof-theoretic strength of type
theory increases accordingly when inductive-recursive definitions are added. The
consistency of the theory is shown without assuming the positivity restriction on
parameters needed for Dybjer’s original realizability model of inductive-recursive
definitions [18].
The new theory explains that induction-recursion can be viewed as a very

general reflection principle: given finitely many (possibly infinitary) operations
on a type D, we can construct by simultaneous induction-recursion a universe U
with decoding function T : U→ D, which reflects each of the D-operations. This
reflection principle can be expressed formally by a diagram which extends the
initial algebra diagram used for categorical semantics of inductively defined sets.
The resulting theory has been implemented in the Half system, a proof assistant
for Martin-Löf’s type theory developed by Coquand and Synek, see Cederquist
[15].

Plan of the paper. In Section 2 we present Martin-Löf’s Logical Frame-
work. In Section 3 we recall how to use initial algebras for giving categorical
semantics of inductive types in the simply typed lambda calculus. In Section 4
we discuss the step from induction to induction-recursion and how we need to
modify the notion of an endofunctor Φ and of an initial Φ-algebra in order to
capture the formal rules for induction-recursion. We then show how to give a
finite axiomatization of inductive-recursive definitions by introducing a type of
codes for such modified endofunctors. In Section 5 we show how to recover some
well-known set constructors by giving appropriate codes. In Section 6 we build
a set-theoretic model. In Section 7 we mention some related work.

2 An Extension of the Logical Framework

The Logical Framework (see [21]) has the following forms of judgements:
Γ context, and A : type, A = B : type, a : A, a = b : A, depending on contexts Γ
(written as Γ ⇒ A : type, etc.). We have set : type and if A : set, then A : type.
The collection of types is closed under the formation of dependent function types
written as (x : A) → B, with elements formed by abstraction (x : A)a, appli-
cation written in the form a(b) and which has the η-rule. Types are also closed
under the formation of dependent products written as (x : A)×B, with elements
〈a, b〉, projections π0 and π1 and again the η-rule (surjective pairing). There is
also the type 1, with unique element 〈〉 : 1 and η-rule expressing, that if a : 1,
then a = 〈〉 : 1.
We will add a level between set and type, which we call stype for small types:

stype : type. (The reason for the need for stype is discussed in [18].) If a : set
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then a : stype. Moreover, stype is also closed under dependent function types,
dependent products and includes the one-element type. However, set itself will
not be in stype.
Finally, in order to make it possible to code all constructors into one (see the

remark on page 132), we add the set B of booleans with elements tt for true and
ff for false and as elimination rule case distinction if a then b else c : D for a : B,
D : type and b, c : D.
We also use some abbreviations, such as omitting the type in an abstrac-

tion, that is, writing (x)a instead of (x : A)a, and writing repeated applica-
tion as a(b1, . . . , bn) instead of a(b1) · · · (bn) and repeated abstraction as (x1 :
A1, . . . , xn : An)a instead of (x1 : A1) · · · (xn : An)a.

3 Inductive Types as Initial Algebras

Let us first consider the question of how to formalize inductive types in the
setting of the simply typed λ-calculus. We shall consider generalized inductive
definitions of types given by a finite number of constructors

introi : Φi(U)→ U ,

where Φi are strictly positive in the following restricted sense:

– The constant functor Φ(D) = 1 is strictly positive. This is the base case
corresponding to an introduction rule with no premises.

– If Ψ is strictly positive and A is an stype, then Φ(D) = A× Ψ(D) is strictly
positive. This corresponds to the addition of a non-inductive1 premise.

– If Ψ is strictly positive and A is an stype, then Φ(D) = (A→ D) × Ψ(D) is
strictly positive. This corresponds to the addition of an inductive premise,
where A corresponds to the hypotheses of this premise in a generalized in-
ductive definition (and when A = 1 we have the special case of an ordinary
inductive definition).

Note that all occurrences of U in Φ(U) are strictly positive in the standard sense
that U does not occur to the left of an arrow in Φ(U).
Assume Φ1, . . . , Φn are strictly positive functors, and let � := (Φ1, . . . , Φn).

Then the inductive type generated by � can be captured categorically as an
initial �-algebra, that is, a sequence of arrows (i = 1, . . . , n)

Φi(U)
introi- U

such that for any other �-algebra

Φi(D)
di - D

1 In [18] the terminology “non-recursive premise” was used, but “non-inductive
premise” seems better in connection with induction-recursion, since it primarily has
to do with the inductively defined set and not with the recursively defined function.
Similarly we will use “inductive premise” instead of “recursive premise”.
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there is a unique arrow T : U −→ D, such that the following diagrams commute

Φi(U)
introi- U

Φi(D)

Φi(T)

? di - D

T

?

4 Inductive-Recursive Definitions

4.1 From Inductive to Inductive-Recursive Definitions

In the presence of dependent types more inductive definitions become possible.
Let us look at some examples:
The set Σ(A,B) has one constructor p : (x : A)→ (y : B(x)) → Σ(A,B). It

has two non-inductive arguments, where the type B(x) of the second argument
depends on the first premise x : A.
The well-ordering set W(A,B) has one constructor sup : (x : A) → (y :

B(x) → W(A,B)) → W(A,B). It has a first non-inductive argument x and a
second B(x)-indexed inductive argument y. So the second argument depends on
the first non-inductive argument.
Both are examples of inductive definitions (no simultaneously defined func-

tion participates in the definition yet). For this case later premises can only
depend on earlier non-inductive premises, but not on earlier inductive premises.
We cannot make use of inductive premises, because they only give information
about the set we are currently defining.
To capture inductive definitions of sets in the presence of dependent types

[20,1], we thus only need to change the notion of a strictly positive functor Φ
above by replacing the non-inductive case by:

– If A is an stype, and Ψx is a strictly positive functor depending on x : A,
then Φ(D) = (x : A)× Ψx(D) is strictly positive.

We shall now replace the sequence of functors (Φ1, . . . , Φn) by a single functor
by defining Φ(D) := (x : Nn) × Φx(D). In order to make this possible we need
the existence of finite sets with n elements Nn. An easy observation shows that
B and the empty set N0 suffice. (It will however be possible to define N0, see
section 5).
In the case of inductive-recursive definitions however, a later premise may

also depend on an earlier inductive premise. We consider the key example, the
ordinary first universe U à la Tarski [3], which is defined inductively, while si-
multaneously defining the decoding function T : U → set recursively. Consider
one of its constructors, Σ̂ : (x : U) → (y : T(x) → U) → U with the defining

equality T(Σ̂(a, b)) = Σ(T(a),T ◦ b) : set. Here we have two inductive premises:
x : U (implicitly indexed by the one-element type 1) and y : U indexed by T(x).
The second argument depends on the first inductive argument via T.
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Is U inductively generated by a strictly positive functor Φ as was the case
for inductively defined sets? If this is the case, Φ must depend on the recursively
defined function T as well: we need something like Φ : (U : set) → (T : U →
set)→ set defined by Φ(U, T ) = (x : U)× (T (x)→ U)!
In general, induction-recursion allows that a simultaneously defined function

T : U → D for an arbitrary fixed type D may participate in the inductive
generation of the set U.

– The modified non-inductive case thus becomes: if A is an stype, and Ψx is
a strictly positive functor depending on x : A, then Φ(U, T ) = (x : A) ×
Ψx(U, T ) is strictly positive.

– The modified inductive case becomes: if A is an stype, and Ψg is a strictly
positive functor depending on g : A → D, then Φ(U, T ) = (f : A → U) ×
ΨT◦f (U, T ) is strictly positive.

We see that the Φ which generates U (as defined above), is isomorphic to the
following strictly positive functor: Φ(U, T ) = (f : 1→ U)× (T (f(〈〉)) → U) 2.

Furthermore, T is defined by T(Σ̂(a, b)) = Σ(T(a),T ◦ b), i.e. T(Σ̂(a, b)) =
d(T(a),T ◦ b) with d : (A : set)→ (A→ set)→ set and d(A,B) := Σ(A,B).
In general, we need an additional component ΦArg which specifies the domain

of d. (Note that this domain only depends on D and not on U and T !). Finally,
we need a third component Φmap(U, T ) : Φarg(U, T ) → ΦArg and then we can
draw a diagram

Φarg(U,T)
intro- U

ΦArg

Φmap(U,T)

?
d - D

T

?

which summarizes the inductive definition of U and recursive definition of T.
Think of D as a type of “semantic” objects and of d : ΦArg → D as a (possibly
infinitary) “semantic” operation with ΦArg as the domain (or generalized arity)
of d. U is a universe of codes for objects in D and T : U → D is the decoding
function. The constructor intro is the syntactic reflection of d : ΦArg → D.3

Note the similarity between the above diagram for induction-recursion and
the ordinary diagram for an initial algebra of an endofunctor which was displayed
in Section 2! The key difference is that here Φ is no longer a functor in the
ordinary sense, but consists of three components: ΦArg, Φarg, and Φmap. These
will be axiomatized below.

2 As this example shows the term “strictly positive” may no longer be wholly appropri-
ate, since the T -argument now can appear negatively. Allen [12] used the alternative
term “half-positive” for this reason. U always appears strictly positively however.

3 Recall that the term “universe à la Tarski” was chosen by Martin-Löf [3] because
of the similarity between the definition of T (for the ordinary first universe) and
Tarski’s definition of truth.



134 Peter Dybjer and Anton Setzer

4.2 A Finite Axiomatization

We shall now give the formal rules for the inductive-recursive definition of a set
U and a function T : U → D. Such a definition is always parameterized with
respect to the target type D of T, since a particular inductive-recursive definition
generates a universe for a finite number of D-operations.

The main step is to introduce a new type SPD, the objects of which are
representatives of strictly positive “functors” Φ as above:

D : type

SPD : type

(There is also a rule, which lets us infer that SPD = SPD′ if D = D
′, but we

will omit all such equality preservation rules.)

SPD has three associated operations corresponding to Φ
Arg, Φarg, and Φmap

in the informal exposition above:

D : type φ : SPD

ArgD,φ : type

φ : SPD U : set T : U → D

argφ(U, T ) : stype

φ : SPD U : set T : U → D

mapφ(U, T ) : (argφ(U, T ))→ ArgD,φ

To simplify notation we have suppressed the parameter (the “global” premise)
D : type and the argument D for the second and third operation4. It should
be emphasized that argφ and mapφ are only abbreviations of the proper formal
expressions argD,φ and mapD,φ. Similarly, we will suppress the D in some later
operations as well.

With this new notation the diagram for the inductive-recursive definition of
U and T becomes:

argφ(Uφ,d,Tφ,d)
introφ,d- Uφ,d

ArgD,φ

mapφ(Uφ,d,Tφ,d)

? d - D

Tφ,d

?

4 In Arg we have not suppressed it, since the equality rules for it will make use of D.
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We have the following introduction rules for SPD (again with D suppressed):

nil : SPD

A stype φ : A→ SPD
nonind(A, φ) : SPD

A stype φ : (A→ D) → SPD

ind(A, φ) : SPD

ArgD,nil = 1
ArgD,nonind(A,φ) = (x : A)× ArgD,φ(x)
ArgD,ind(A,φ) = (f : A→ D) × ArgD,φ(f)

argnil(U, T ) = 1
argnonind(A,φ)(U, T ) = (x : A)× (argφ(x)(U, T ))
argind(A,φ)(U, T ) = (f : A→ U) × (argφ(T◦f)(U, T ))

mapnil(U, T, 〈〉) = 〈〉
mapnonind(A,φ)(U, T, 〈a, γ〉) = 〈a,mapφ(a)(U, T, γ)〉
mapind(A,φ)(U, T, 〈f, γ〉) = 〈T ◦ f,mapφ(T◦f)(U, T, γ)〉

We are now ready to give the formal rules for U and T. These rules have the
common premises D : type, φ : SPD and d : ArgD,φ → D which will be omitted.
Formation rules:

Uφ,d : set

Tφ,d : Uφ,d → D

Introduction rule:
a : argφ(Uφ,d,Tφ,d)

introφ,d(a) : Uφ,d

Equality rule:

a : argφ(Uφ,d,Tφ,d)

Tφ,d(introφ,d(a)) = d(mapφ(Uφ,d,Tφ,d, a))

Moreover, structural recursion on U into a type D′, that is, the analogue of
universe elimination, is expressed by the following diagram (we omit the indices
φ, d of U, T, intro, R, write D′[t] for the substitution of some fixed variable in
D′ by t and, when used as an argument, D′ instead of (x)D′[x]; assume in the
following x : Uφ,d ⇒ D′[x] : type as a global premise)

argφ(U,T)
intro - U

(γ : argφ(U,T))× IHφ,U,T,D′(γ)

〈id,mapIHφ,U,T,D′(RD′(e))〉

? 〈intro ◦ π0, e〉- (x : U) ×D′[x]

〈id,RD′(e)〉

?
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where we have used the operation IH which generates the induction hypothesis
and the operation mapIH which generates the recursive call:

U : set T : (x : U)→ D x : U ⇒ D′[x] : type γ : argφ(U, T )

IHφ,U,T,D′(γ) : type

U : set T : (x : U)→ D x : U ⇒ D′[x] : type R : (x : U)→ D′[x]

mapIHφ,U,T,D′(R) : (x : argφ(U, T ))→ IHφ,U,T,D′(x)

IHnil,U,T,D′(〈〉) = 1
IHnonind(A,φ),U,T,D′(〈a, γ〉) = IHφ(a),U,T,D′(γ)
IHind(A,φ),U,T,D′(〈f, γ〉) = ((y : A)→ D

′[f(y)]) × (IHφ(T◦f),U,T,D′(γ))

mapIHnil,U,T,D′(R, 〈〉) = 〈〉
mapIHnonind(A,φ),U,T,D′(R, 〈a, γ〉) = mapIHφ(a),U,T,D′(R, γ)
mapIHind(A,φ),U,T,D′(R, 〈f, γ〉) = 〈R ◦ f,mapIHφ(T◦f),U,T,D′(R, γ)〉

Elimination rule (universe elimination):

e : (γ : argφ(Uφ,d,Tφ,d))→ (IHφ,Uφ,d,Tφ,d,D′(γ)) → (D
′[introφ,d(γ)])

Rφ,d,D′(e) : (a : Uφ,d)→ D′[a]

Equality rule (universe elimination, premises omitted):

Rφ,d,D′(e, introφ,d(γ)) = e(γ,mapIHφ,Uφ,d,Tφ,d,D′ (Rφ,d,D′(e), γ))

5 Examples

We shall show how to find φ : SPD for some well-known set constructors.
(Compare the informal discussion in Section 4.1.) We will write intro instead
of introφ,d. Let in the first examples D := 1 and d := (x : C)〈〉 for some suitable
type C, since this is how we obtain inductive definitions as degenerate cases of
inductive-recursive definitions.

Σ-sets. Let
φA,B := nonind(A, (x)nonind(B(x), (y)nil))

in the context A : set, B : A → set. It follows that Σ(A,B) := UφA,B,d : set.
This set has the constructor intro : ((x : A)× (B(x) × 1))→ Σ(A,B). If we
define p := (A,B, x, y)intro(〈x, 〈y, 〈〉〉〉), then p : (A : set, B : A → set, x :
A, y : B(x)) → Σ(A,B) and one can easily derive the ordinary elimination
rules as if p were the constructor of Σ. Note that this illustrates that we
get dependencies on parameters (in the sense of Dybjer [1,18]) like A, B
for free.
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Natural numbers. Let

φ := nonind(B, (x) if x then nil else ind(1, (y)nil)) ,
N := Uφ,d ,
0 := intro(〈tt, 〈〉〉) : N ,
S := (n)intro(〈ff , 〈(y)n, 〈〉〉〉) : N→ N .

Although this definition is like the definition of N by the equation N =
1+ (1→ N)× 1, because of the η-rule on 1 this is equivalent to the ordinary
definition of N. The usual elimination rules for N can be derived.

The empty set. Let
φ := ind(1, (x)nil) ,

and define N0 := Uφ,d. Then we can show the elimination rule for the empty
set N0. Note that this corresponds to the definition of N0 by having one
constructor intro : N0 → N0. We can define now N′0 := Unonind(N0,(x)nil),d,
which can be regarded as the empty set with no constructors. However, one
might prefer to add the set N0 like the set B as a basic set.

Well-orderings. Let

φA,B := nonind(A, (x)ind(B(x), (y)nil)) ,

in the context A : set, B : (x : A)→ set, and define W(A,B) := UφA,B,d : set
with the constructor intro : ((x : A)×((B(x) →W(A,B))×1))→W(A,B).
As before we can define the ordinary constructor sup with its elimination
rules.

A universe closed under N and Σ. Let D := set,

φ := nonind(B, (x) if x then nil else ind(1, (f)ind(f(〈〉), (y)nil))) .

Hence ArgD,φ = (x : B)× E(x), with

E(tt) = 1 ,
E(ff) = (x : 1→ set)× (f : x(〈〉)→ set)× 1 .

Moreover, let d : ArgD,φ → set be defined such that

d(〈tt, 〈〉〉) = N ,
d(〈ff , 〈A, 〈B, 〈〉〉〉〉) = Σ(A(〈〉), (y)B(y)) ,

using the elimination rules for B and product. Define U′ := Uφ,d, T
′ := Tφ,d,

and

N̂ := intro(〈tt, 〈〉〉) : U′ ,

Σ̂ := (a, b)intro(〈ff , 〈(x)a, 〈b, 〈〉〉〉〉) : (a : U′, b : T′(a)→ U′)→ U′ .

N̂ and Σ̂ are essentially the two constructors of the universe U′,T′ and we
have T′(N̂) = N, T′(Σ̂(a, b)) = Σ(T′(a),T′ ◦ b).
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Lists with distinct elements. Assume A : set and # : (A × A) → A, where
# is an (infix) apartness relation on A. In [18] the set Dlist of lists with ele-
ments which are distinct with respect to the relation # is defined inductively
together with the recursively defined relation (family of sets) Fresh : Dlist→
A → set, where Fresh(l, a) expresses that a is distinct from all elements in
l. (If we wish to make the dependence on the parameters A and # explicit,
we may write Dlist(A,#) and Fresh(A,#).) Dlist has the constructors5

empty : Dlist ,
cons : (a : A, u : Dlist,Fresh(u, a))→ Dlist ,

and Fresh(l, a) is defined such that

Fresh(empty) = (b)1 ,
Fresh(cons(a, u, p)) = (b)((b#a) ∧ Fresh(u, a)) .

Then Dlist = UφA,#,dA,#, Fresh = TφA,#,dA,#, where D := A→ set,

φA,# := nonind(B, (x) if x then nil
else nonind(A, (a)ind(1, (u)nonind(u(〈〉, a), nil)))) ,

dA,#(〈tt, 〈〉〉) = (b)1 ,
dA,#(〈ff , 〈a, 〈u, 〈p, 〈〉〉〉〉〉) = (b)((b#a) ∧ u(〈〉, a)) .

The above examples show that we can derive all inductive-recursive sets in a
form, which is close to the way we would ordinarily like to write them down.
We must for example write the arguments in list notation and, if we have a
non-indexed inductive argument, write it as an argument depending on the type
1. In an implementation of the calculus one could of course easily avoid this
administrative overhead.

6 Set-Theoretic Model

6.1 Interpretation of Expressions

The idea behind the model is simple: interpret all constructions in set theory
in the obvious way! In particular, each type is interpreted as a set, equal types
are interpreted as equal sets, a : A is interpreted as a ∈ A, and a = b : A is
interpreted as a and b are equal elements of A. Moreover, A→ B is interpreted
as the set of all functions fromA to B in the set-theoretic sense, and (x : A)→ B
as the set-theoretic cartesian product Πx∈AB, etc.
The inductively defined type SPD of codes for strictly positive operators is

interpreted as an inductively defined set in the set-theoretic sense, that is, as a
set generated by iterating a monotone operator up to a fixed point. Similarly, the
inductive-recursively defined set U and function T : U→ D, are also interpreted
by iterating a monotone operator up to a fixed point.

5 We have here renamed the constructor nil in [18] to empty.
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In order to ensure that a fixed point indeed can be reached we postulate the
existence of one Mahlo cardinal in addition to the ordinary axioms of ZF set
theory.6 We also need the the axiom of choice to deal with cardinals, and for
simplicity we assume the generalized continuum hypothesis.7

Note, that a cardinal κ is inaccessible, iff it is regular and ℵκ = κ, where ℵα
enumerates the infinite cardinals. An inaccessible cardinal κ is a Mahlo cardinal,
iff every normal function f : κ→ κ has a regular fixed point. (A normal function
f is a (strictly) monotone function, which is continuous at limit ordinals λ, i.e.
f(λ) = supα<λ f(α).) The standard model of our extension of ZF is VM+ , where
M+ is the first inaccessible above M, however all types will be interpreted as
elements of VΛ, where Λ is the first (non-regular) fixed point of λα.ℵα above M.
We will develop the semantics following the approach in [20]. Let λ0 := ℵM+1,

λn+1 := ℵλn , and Λ := supn∈ω λn.
If a, a1, . . . , an, c are sets, and b is a function with domain a, let

Πx∈ab(x) := {f | f function ∧ dom(f) = a ∧ ∀x ∈ a.f(x) ∈ b(x)} ,
λx ∈ a.b(x) := {〈x, b(x)〉 | x ∈ a} ,
Σx∈ab(x) := {〈c, d〉 | c ∈ a ∧ d ∈ b(c)} ,

a0 + · · ·+ an := Σi∈{0,...,n}ai (if n ≥ 1) ,
(a→ c) := Πx∈ac .

Moreover, (a)i := ai, if a = 〈a0, . . . , ai〉 and undefined otherwise.
Whenever we introduce sets Aα indexed by ordinals α, let in the following

A<α :=
⋃
β<α

Aβ .

We shall use the set VΛ as the set-theoretic universe for our interpretation.
All types and objects of types will thus be interpreted as elements of VΛ

8. Terms
which depend on free variables will be interpreted relative to an assignment ρ,
that is, a function, which maps a finite set of variables to elements of VΛ. In the
following ρ (possibly with indices or accents) will always be an assignment. If
a ∈ VΛ, then ρax is the assignment with dom(ρ

a
x) := dom(ρ) ∪ {x}, such that

ρax(y) :=

{
a if x = y,

ρ(y) otherwise.

Let terms be the set of expressions which possibly occur as elements of a type or
as types: So variables are terms and if a, b, a1, . . . , an are terms, x is a variable,

6 In Sect. 7 (“Constructive versions of the model”) we will discuss how to replace these
strong set theoretic requirements by far weaker ones.

7 Without the generalized continuum hypothesis one has to replace Mahlo and inac-
cessible by strongly Mahlo and strongly inaccessible, respectively, and @α by iα.

8 We here use a notion of model which only requires all derivable types to be inter-
preted as elements of VΛ. Note however that VΛ is not closed under the formation
of dependent function types. If we wish to satisfy this requirement we can either
reinterpret type as the class of all sets or as VI for some inaccessible cardinal I > M.
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and C is an n-ary constructor (including set, stype and constructors like 〈·, ·〉,
π0 but excluding type) of the system, then (x : a)→ b, (x : a)b, (x : a) × b and
C(a1, . . . , an) are terms.
For terms t and assignments ρ we will determine, whether its interpretation

t∗ρ is defined, and if it is defined, the value of t
∗
ρ. This will be done in such a

way that for every term t and every n ∈ ω there exists an m ∈ ω such that,
if rng(ρ) ⊆ Vλn , t

∗
ρ ∈ Vλm . For closed terms, t

∗
ρ will not depend on ρ and we

therefore omit the subscript ρ. We will use ' for partial equality in the usual
sense, and also let t∗ρ :' s mean that the interpretation of t under assignment ρ
is defined to be s, provided s is defined, and is undefined otherwise. We extend
this definition further by defining

type∗ := VΛ .

The interpretation of terms is given by

x∗ρ :' ρ(x) , set∗ :' stype∗ :' VM ,
((x : A)→ B)∗ρ :' Πy∈A∗ρB

∗
ρyx
, ((x : A)a)

∗
ρ :' λy ∈ A

∗
ρ.a
∗
ρyx
,

(a(b))
∗
ρ :' a

∗
ρ(b
∗
ρ) , ((x : A)× B)∗ρ :' Σy∈A∗ρB

∗
ρyx
,

〈a, b〉∗ρ :' 〈a
∗
ρ, b
∗
ρ〉 , (π0(a))

∗
ρ :' (a)0 ,

(π1(a))
∗
ρ :' (a)1 , 1∗ :' 1 ,

〈〉∗ :' 0 , B
∗ :' {0, 1} ,

tt∗ :' 0 , ff∗ :' 1 ,

(if a then b else c)
∗
ρ :'


b∗ρ if a∗ρ = 0 ,

c∗ρ if a∗ρ = 1 ,

undefined otherwise .

To interpret terms with constructors SP, nonind, ind, Arg, . . . , we first define
SP∗, nonind∗, ind∗, Arg∗, arg∗, map∗, IH∗, mapIH∗, U∗, T∗ and interpret

(SPD)
∗
ρ :' SP

∗(D∗ρ) ,

(nonind(a, b))
∗
ρ :' nonind

∗(a∗ρ, b
∗
ρ) ,

(ArgD,φ)
∗
ρ
:' Arg∗(D∗ρ, φ

∗
ρ) ,

(mapD,φ(U, T ))
∗
ρ
:' λx ∈ arg∗(D∗ρ , φ

∗
ρ, U

∗
ρ , T

∗
ρ ).map

∗(D∗ρ , φ
∗
ρ, U

∗
ρ , T

∗
ρ , x) ,

etc.

SP∗(D) is defined for D ∈ type∗ as the least set such that

SP∗(D) = 1 +Σa∈set∗(a→ SP
∗(D)) + Σa∈set∗((a→ D) → SP

∗(D)) ,

which we get by iterating the appropriate operator κ times, if for all a ∈ set∗

the cardinality of a and of a→ D is less than κ. If D ∈ Vλn , therefore SP
∗(D) ∈

Vλn+1 .

nil∗ :' 〈0, 0〉, nonind∗(a, b) :' 〈1, 〈a, b〉〉, ind∗(a, b) :' 〈2, 〈a, b〉〉 .

Arg∗(D, φ) is defined, if φ ∈ SP∗(D), and then defined in accordance with the
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equations for Arg, that is,

Arg∗(D, nil∗) :' 1 ,
Arg∗(D, nonind∗(A, φ)) :' Σx∈AArg

∗(D, φ(x)) ,
Arg∗(D, ind∗(A, φ)) :' Σf∈(A→D)Arg

∗(D, φ(f)) .

Similarly, we define arg∗(D, φ, U, T ), map∗(D, φ, U, T, a), and for D′ ∈ (U →
type∗), IH∗(D, φ, U, T,D′, γ), mapIH∗(D, φ, U, T,D′, R, a).

U∗(D, φ, d) :' UM(D, φ, d) ,
T∗(D, φ, d) :' λx ∈ UM(D, φ, d).TM(D, φ, d, x) ,

where Uα(D, φ, d) and Tα(D, φ, d) or shorter Uα and Tα are simultaneously
defined by recursion on α as

Uα :' arg∗(D, φ,U<α,T<α) ,
Tα(a) :' d(map∗(D, φ,U<α,T<α, a)) ,

intro(a)
∗
ρ :' a

∗
ρ ,

R∗(D, φ, d,D′, e, a) :' RM(D, φ, d,D′, e, a), where
Rα(D, φ, d,D′, e, a) :' e(a,mapIH∗(D, φ,U∗(D, φ, d),T∗(D, φ, d) ,

D′,R<α(D, φ, d,D′, e), a)) .

Contexts will be interpreted as sets of assignments:

∅∗ :' ∅ , (Γ, x : A)∗ :' {ρax | ρ ∈ Γ
∗
ρ ∧ a ∈ A

∗
ρ} .

6.2 Soundness of the Rules

Theorem 1. (Soundness theorem)

(a) If ` Γ context, then Γ ∗ is defined.
(b) If ` Γ ⇒ A : E, where E ≡ type or E is a term, then Γ ∗ is defined,
∀ρ ∈ Γ ∗.A∗ρ ∈ E

∗
ρ , and if E 6≡ type, ∀ρ ∈ Γ

∗.E∗ρ ∈ type
∗.

(c) If ` Γ ⇒ A = B : E, where E ≡ type or E is a term, then Γ ∗ is defined,
∀ρ ∈ Γ ∗(A∗ρ ∈ E

∗
ρ ∧B

∗
ρ = A

∗
ρ), and if E 6≡ type, ∀ρ ∈ Γ

∗.E∗ρ ∈ type
∗.

(d) 6` a : N0, where N0 is the empty set, for any of the possibilities mentioned in
Section 5.

The proof of the Soundness theorem is more or less routine, except for the
verification that U : set. In order to prove this we will need some lemmata.

First we need to verify that Uα is increasing with α and that for α < β Tα and
Tβ coincide on Uα. In order to prove this we need to verify that arg∗(D, φ, U, T )
and map∗(D, φ, U, T ) are monotone in U , T , as expressed by the following lemma:
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Lemma 1. Assume D ∈ type∗, φ ∈ SP∗(D), U ⊆ U ′ ∈ set∗, T ′ : U ′ → D,
T = T ′ � U . Then
(a) arg∗(D, φ, U, T ) ⊆ arg∗(D, φ, U ′, T ′) and
(b) map∗(D, φ, U ′, T ′) � arg∗(D, φ, U, T ) = map∗(D, φ, U, T ).

We want to show that there is a κ < M such that U<κ = Uκ. This is the
case if κ is a limit ordinal such that arg∗(D, φ, U, T ) is κ-continuous in U and
T , that is,

arg∗(D, φ,U<κ,T<κ) =
⋃
α<κ

arg∗(D, φ,Uα,Tα) . (1)

To obtain this we need that all index sets, which start an inductive argument,
have cardinality less than κ. The set Aux(D, φ, U, T ) ∈ set∗, where D ∈ type∗,
φ ∈ SP∗(D), U ∈ set∗, T ∈ U → D, collects all possible such index sets. It is
defined by induction on φ:

Aux(D, nil∗, U, T ) := 1 ,
Aux(D, nonind∗(A, φ), U, T ) := Πx∈AAux(D, φ(x), U, T ) ,
Aux(D, ind∗(A, φ), U, T ) := A+Πf∈(A→U)Aux(D, φ(T ◦ f), U, T ) .

Lemma 2. Assume D ∈ type∗, φ ∈ SP∗(D). Let κ be inaccessible and let for
α < κ Uα ∈ set∗, Tα : Uα → D such that for α < β, Uα ⊆ Uβ, Tα = T β � Uα.
Assume also for some α0 < κ and for all α0 ≤ α < κ

Aux(D, φ, Uα, Tα) ∈ Vκ . (2)

Then arg∗(D, φ, U, T ) is κ-continuous in U and T , that is, (1) holds.

Proof: “⊇” follows by Lemma 1b.
“⊆” follows by induction on φ. We treat only the main case φ = ind∗(A, γ).

Assume a ∈ arg∗(D, φ, U<κ, T<κ), and show a ∈ arg∗(D, φ, Uα, Tα) for some
α < κ. We know a = 〈f, c〉 for some f : A → U<κ, c ∈ arg∗(D, γ(T<κ ◦
f), U<κ, T<κ). By (2) it follows A ∈ Vκ, and by the inaccessibility of κ there
exists a β < κ such that f : A→ U<β, especially f : A → Uβ . W.l.o.g. α0 ≤ β.
For β ≤ α < κ it follows Aux(D, γ(Tα ◦ f), Uα, Tα) ∈ Vκ and therefore by
induction hypothesis there exists a β′ such that c ∈ arg∗(D, γ(T β

′

◦f), Uβ
′

, T β
′

).
With α := max{β, β′} follows the assertion. ut

Lemma 3. Assume φ ∈ SP∗(D), s ∈ Arg∗(D, φ) → D. Abbreviate Uα :=
Uα(D, φ, d), Tα := Tα(D, φ, d) and note that U∗(D, φ, d) = UM, T∗(D, φ, d) =
TM.

(a) Tα : Uα → D, and if α < M, Uα ∈ VM.
(b) If α < β then Uα ⊆ Uβ and Tβ � Uα = Tα.
(c) There exists κ < M such that Uα = Uκ (and therefore Tα = Tκ) for all
α > κ.

(d) UM ∈ VM, arg∗(D, φ,UM,TM) ⊆ UM.
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Proof:
(a) Easy induction on α.
(b) Induction on α, β, by using Lemma 1(b).
(c) Define f : Ord→ Ord by transfinite recursion:

f(β) = min{α | ∀β′ < β(f(β′) < α)∧

∀β′ <M(Uβ
′

⊆ Vβ → U
β′+1 ∪Aux(D, φ,Uβ

′

,Tβ
′

) ⊆ Vα}

f : M→ M follows immediately by M being inaccessible, since

{Uβ
′

| β′ < M ∧Uβ
′

⊆ Vβ} ∈ Vβ+1 ⊆ VM .

Let for α < M θ(α) := fα(0). By the regularity of M we have θ : M → M.
Since f is increasing, θ is normal. Hence, since M is Mahlo, θ has an inaccessible
fixed point κ <M.
Therefore f : κ→ κ: Assume α < κ. κ is a limit ordinal, therefore α < θ(β)

for some β < κ, f(α) < f(θ(β)) = θ(β+1) < θ(κ) = κ. By induction on α, using
the regularity of κ, for α < κ Uα ∈ Vκ, Aux(D, φ,U

α,Tα) ∈ Vκ, and therefore
by Lemma 2

Uκ = arg∗(D, φ,U<κ,T<κ)

=
⋃
α<κ

arg∗(D, φ,Uα,Tα)

=
⋃
α<κ

Uα+1 = U<κ.

By induction on α for all α ≥ κ Uα = U<κ = Uκ.
(d) UM = Uκ ∈ VM, arg∗(D, φ,UM,TM) = arg∗(D, φ,Uκ,Tκ) ⊆ Uκ+1 ⊆ UM. ut

7 Related and Future Work

Universes in type theory. The first example of an inductive-recursive defi-
nition in type theory was Martin-Löf’s universe à la Tarski [3]. 9 Then Palmgren
[22] defined external and internal universe hierarchies and also a super universe.
Rathjen, Griffor, and Palmgren [23] defined quantifier universes and Palmgren [2]
defined higher order universe hierarchies. All these constructions use induction-
recursion, whereas Setzer [10] defined a Mahlo universe, which goes beyond it.

Inductive definitions in type theory. Previous work on formalization
of inductive definitions in Martin-Löf’s type theory has mainly used external
schemata in the style of Martin-Löf’s intuitionistic theory of iterated inductive
definitions in predicate logic [17]. See for example Backhouse [19], Dybjer [1],
and Paulin [16]. A schema for inductive-recursive definitions was introduced by
Dybjer [18].

9 There are earlier examples of informal inductive-recursive definitions, for example,
Martin-Löf’s simultaneous definition of the notions of computable type and term
[4] from 1972. However, the explicitly inductive-recursive nature of type-theoretic
universes was only brought out when they were formulated à la Tarski rather than
à la Russell.
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Categorical semantics of inductive types and of universes. The cat-
egorical semantics of inductively defined dependent types has been discussed
for example by Coquand and Paulin [14] and Mendler [11]. The latter arti-
cle also discusses categorical semantics of universes in type theory. In a future
article we plan to extend Mendler’s work, by giving categorical semantics of
inductive-recursive definitions in terms of initial algebras on endofunctors in
slice categories. We will also show how such semantics suggest an alternative
finite axiomatization of inductive-recursive definitions.

Set-theoretic semantics of type theory. It is well-known that Martin-Löf’s
type theory has a “naive” full function-space model, see for example the introduc-
tion in Troelstra [7]. Dybjer [20] gives a full function space model of Martin-Löf’s
type theory with an external schema for inductive definitions. Aczel’s recent ar-
ticle [5] contains further information about set-theoretic interpretations of type
theory.

Large cardinals in set theory. Induction-recursion gives quite a general
approach to type-theoretic analogues of large cardinals in set theory. See for
example Drake [9] for an introduction to large cardinals. Induction-recursion
gives rise to analogues of for example inaccessible, hyper-inaccessible cardinals,
and more generally Mahlo’s π-numbers [23], but does not justify the definition
of a set, which is an analogue of a Mahlo cardinal. However, the type of sets has
closure properties similar to those of a Mahlo cardinal.

Constructive versions of the model. The current model requires much
more proof theoretic power than is actually needed: the strength of the type the-
ory considered is very weak relative to ZF, even without any addition of large
cardinals. Aczel [5] shows that the set theoretic models interpret as well the
principle of excluded middle of type theory, an enormous strengthening of the
type theory. In order to get a model in a theory which has the same strength,
Aczel modifies the model and replaces ZF by constructive set theory CZF. One
can as well define a model in a theory of the same strength by giving a realiz-
ability interpretation in Kripke-Platek set theory extended by a recursive Mahlo
ordinal and ω admissibles above, extending [24,25,6]. Both models require some
extra work, which exceeds the space available in this article.10

Proof-theoretic strength of type theory. It should be easy to develop a
term model of the theory in KPM+ used in [6] for the interpretation of Mahlo
type theory. Such a model, which will make use of a (countable) recursive Mahlo
ordinal and ω admissibles above it only, would show that the strength of the
current type theory is at most as big as the Mahlo universe. On the other hand,
set can be seen as being almost a Mahlo-universe, since we have induction over
arbitrary types. What is missing to get the full strength is the possibility of

10 The interpretation in the extension of Kripke-Platek set theory will be presented in
an extended version of this article.



A Finite Axiomatization of Inductive-Recursive Definitions 145

having the W-type on top of the universe. In [13] together with [26], [25], [8] it
was shown that in case of one universe such a restriction reduces the strength
from |KPI+| to |KPI| and with a similar argument for the lower bound as in
[13] it is very likely that using the Mahlo-feature of set we have a lower bound
|KPM|. Therefore it seems that the strength of our theory lies in the interval
[|KPM|, |KPM+|].
Inductive-recursive definitions seem to cover what is by many (but not all)

researchers considered at the moment as predicative type theory. Even if some
extensions are not covered by our calculus, it seems unlikely that such extensions
will get beyond the strength of the Mahlo universe. This indicates that Mahloness
is a natural boundary in the world of predicativity, which can only be crossed
by adding principles such as the existence of the Mahlo universe as a set. The
second author regards such principles as predicatively justifiable.

Inductive-recursive definition of indexed families. The external schema
by Dybjer [18] considers the more general case of the simultaneous inductive-
recursive definition of a set-indexed family of sets and functions. The present
finite axiomatization can be extended to this case too, but we postpone the
presentation of this to a future article.
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Abstract. We introduce a notion of Grothendieck logical relation and
use it to characterise the definability of morphisms in stable bicartesian
closed categories by terms of the simply-typed lambda calculus with
finite products and finite sums. Our techniques are based on concepts
from topos theory, however our exposition is elementary.

Introduction

The use of logical relations as a tool for characterising the λ-definable elements
in a model of the simply-typed λ-calculus originated in the work of Plotkin [10],
who obtained such a characterisation of the definable elements in the full type
hierarchy using a notion of Kripke logical relation. Subsequently, the more gen-
eral notion of a Kripke logical relation of varying arity was developed by Jung
and Tiuryn, and shown to characterise the definable elements in any Henkin
model [4]. Although not emphasised in [4], relations of varying arity are power-
ful enough to characterise relative definability with respect to any given set of
elements considered as constants. The full generality of the approach is demon-
strated in Alimohamed [1], where such relations are used to characterise relative
definability in an arbitrary cartesian closed category.
In general, results about the pure simply-typed λ-calculus extend easily to

analogous results for systems containing finite product types. This is not the case
for finite coproduct (sum) types. Although the equational theory of bicartesian
closed categories provides a basic formal system, the syntactic techniques used to
study systems without coproducts fall over in their presence. Two fundamental
properties of this equational theory, decidability (Ghani [3]) and its completeness
relative to the equalities valid in the category, Set, of sets (Dougherty and
Subrahmanyam [2]), were established only recently. It is apparently still an open
question whether the finite model property holds for this theory (although it is
inconceivable that it does not). Also, both the above results have been proved
only for nonempty sums (i.e. with the empty type omitted).
In this paper, we extend the logical relations characterization of relative de-

finability to the simply-typed λ-calculus with products and sums (including the
empty type). As might be expected, this requires some development of the theory
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of logical relations. It turns out that what is needed is a natural generalization
of Kripke logical relations of varying arity, in which the base poset (or, more
generally, category) for the relation is endowed with a Grothendieck topology [6].
Using such Grothendieck logical relations, we characterise relative definability in
any bicartesian closed category in which the finite coproducts are stable (as is
the case in Set). We do not know if the characterisation extends also to the non
stable case.

From the categorical point of view our results are best explained in terms
of glueing [12,1]. However, for this conference version of the paper, we keep our
exposition elementary, in the hope that it will be accessible to most type theorists
with some background in categorical semantics.

It should be said that the research in this paper originated as part of a
strategy conceived by the authors for attacking the full abstraction problem for
call-by-value FPC (which includes finite sums). Kripke logical relations of vary-
ing arity had already been used to obtain full abstraction for PCF by O’Hearn
and Riecke [8]. The extension of these results to FPC seemed to us to require an
additional analysis of both partiality and sums. This line of research was never
fully pursued because similar full abstraction results for FPC were soon obtained
by Riecke and Sandholm [11]. However, their treatment of coproducts is some-
what ad hoc (although one does get the feeling that a Grothendieck topology
is at work behind the scenes). We believe that it would be very worthwhile to
integrate our more conceptual approach to coproducts into the full abstraction
picture.

It seems likely that the notion of Grothendieck logical relation will have other
applications. For example, the lengthy and heavily syntactic proof of equational
completeness relative to Set in [2], has hints of Grothendieck toplologies within
it. It is plausible that Grothendieck logical relations will lead to simpler and
more general such completeness proofs.

1 Simply typed lambda calculus with sums

The language we work with is a simply-typed λ-calculus with additional types for
finite products and sums. In this section we describe the syntax of the language,
and its interpretation in any bicartesian closed category.

Syntax. We use T, . . . to range over a set T of base types, and τ, . . . to range
over types which are specified by the grammar below.

τ ::= T | τ1 // τ2 | ×(n)(τ1, . . . , τn) | +(n)(τ1, . . . , τn) n ∈ N

We write 1 and 0 for ×(0)() and +(0)() respectively. We use n-ary products and
sums as primitive to emphasize that all our definitions for the zero-ary cases are
just the natural instances of the general n-ary scheme. This is of particular inter-
est in the case of the empty type 0, which is generally thought of as troublesome,
and often omitted from consideration altogether [3,2].
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We use x, . . . to range over a countably infinite set of variables. A (type)
environment is a finite sequence x1 : τ1, . . . , xn : τn where all the variables are
distinct. We use Γ, . . . to range over environments. We write 〈〉 for the empty
sequence in general, and the empty environment in particular.
Terms are specified according to a T-signature, Σ, which is a set of pairs of

the form (c : τ ) assigning types τ to constants c, such that each constant symbol
inΣ is assigned only one type. The terms are generated by the rules in Fig. 1. For
notational convenience, we will always omit the superscripts from the injections
in
τ1,...,τn
i (t). As usual we consider terms as identified up to α-equivalence.
For the remainder of the paper we consider a fixed (though arbitrary) set of

base types T and signature Σ.

Semantics. For the purpose of this paper, a bicartesian closed category is a
category with finite coproducts, finite products and exponentials (we do not as-
sume finite limits). Let S be bicartesian closed with chosen structure (0, +, 1,
×, ⇒) (here we are distinguishing initial object, binary coproduct, terminal ob-
ject, binary product and exponential). We define canonical finite coproducts by∐(0) def

= 0 and
∐(n+1)

(A1, . . . , An, An+1)
def
=
∐(n)

(A1, . . . , An) +An+1. Canoni-

cal finite products
∏(n)(A1, . . . , An) are defined similarly. We use standard no-

tation for injections, projections, the universal maps, and the “evaluation” map
and “Currying” operation associated with the closed structure.
A T-interpretation in S is a function from T to objects of S. Under a T -

interpretation I every type τ is interpreted as an object [[τ ]]I in the obvious way.
The interpretation of types extends to environments by the usual definition:

[[x1 : τ1, . . . , xn : τn]]I
def
=
∏(n)

([[τ1]]I, . . . , [[τn]]I)

A (T , Σ)-interpretation I in S is a pair (IT , IΣ) where IT is a
T -interpretation, and IΣ is a function mapping each constant (c : τ ) ∈ Σ to a
global element IΣ(c) : 1 // [[τ ]] in S. Under a (T , Σ)-interpretation every term
Γ ` t : τ is interpreted as a generalised element [[Γ ` t : τ ]]I : [[Γ ]] // [[τ ]] in S by:

[[x1 : τ1, . . . , xn : τn ` xi : τi]]
def
= πi

[[Γ ` c : τ ]]
def
= IΣ(c) ◦ 〈〉

[[Γ ` λx. : τ1.t : τ1 // τ2]]
def
= λ[[Γ, x : τ1 ` t : τ2]]

[[Γ ` t(t1) : τ2]]
def
= ev ◦ 〈[[Γ ` t : τ1 // τ2]], [[Γ ` t1 : τ1]]〉

[[Γ ` 〈t1, . . . , tn〉 : ×(n)(τ1, . . . , τn)]]
def
= 〈[[Γ ` t1 : τ1]], . . . , [[Γ ` tn : τn]]〉

[[Γ ` proji(t) : τi]]
def
= πi ◦ [[Γ ` t : ×(n)(τ1, . . . , τn)]]

[[Γ ` ini(t) : +(n)(τ1, . . . , τn)]]
def
= qi ◦ [[Γ ` t : τi]]

[[Γ ` case t of [in1(x1).t1, . . . , inn(xn).tn] : τ ]]
def
=

[[[Γ, x1 : τ1 ` t1 : τ ]], . . . , [[Γ, xn : τn ` tn : τ ]]] ◦
δ(n) ◦ 〈id[[Γ ]] , [[Γ ` t : +

(n)(τ1, . . . , τn)]]〉

where δ(n) : C × (
∐(n)

(A1, . . . , An)) //
∐(n)

(C × A1, . . . , C × An)) is the dis-
tributivity isomorphism.
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x1 : τ1, . . . , xn : τn ` xi : τi
1 ≤ i ≤ n

Γ ` c : τ
(c : τ) ∈ Σ

Γ, x : τ1 ` t : τ2
Γ ` λx : τ1. t : τ1 // τ2

Γ ` t : τ1 // τ2 Γ ` t1 : τ1
Γ ` t(t1) : τ2

Γ ` t1 : τ1 . . . Γ ` tn : τn
Γ ` 〈t1, . . . , tn〉 : ×

(n)(τ1, . . . , τn)

Γ ` t : ×(n)(τ1, . . . , τn)
Γ ` proji(t) : τi

1 ≤ i ≤ n

Γ ` t : τi
Γ ` inτ1,...,τni (t) : +(n)(τ1, . . . , τn)

1 ≤ i ≤ n

Γ ` t : +(n)(τ1, . . . , τn) Γ, xi : τi ` ti : τ 1 ≤ i ≤ n
Γ ` case t of [in1(x1).t1, . . . , inn(xn).tn] : τ

Fig. 1. Term syntax

Γ | Ξ ` t = t : τ

Γ | Ξ ` t = t0 : τ
Γ | Ξ ` t0 = t : τ

Γ | Ξ ` t1 = t2 : τ Γ | Ξ ` t2 = t3 : τ
Γ | Ξ ` t1 = t3 : τ

x1 : τ1, . . . , xn : τn | t1 =τ′1 t
0
1, . . . , tn =τ′n t

0
n ` ti = t

0
i : τ

0
i
1 ≤ i ≤ n

Γ | Ξ ` t1 = t01 : τ1
Γ | Ξ ` t(t1) = t(t

0
1) : τ2

Γ, x : τ1 | Ξ, x =τ1 x ` t = t
0 : τ2

Γ | Ξ ` λx : τ1. t = λx : τ1. t
0 : τ1 // τ2

Γ | Ξ ` (λx : τ1. t)(t0) = t[t0/x] : τ2 Γ | Ξ ` t = λx : τ1. t(x) : τ1 // τ2
x 6∈ FV(t)

Γ | Ξ ` proji〈t1, . . . , tn〉 = ti : τi
1 ≤ i ≤ n

Γ | Ξ ` t = 〈proj1(t), . . . , projn(t)〉 : ×
(n)(τ1, . . . , τn)

Γ | Ξ ` case ini(t) of [in1(x1).t1, . . . , inn(xn).tn] = ti[t/xi] : τ
1 ≤ i ≤ n

Γ, xi : τi | Ξ, ini(xi) = t ` ti = t
0 : τ 1 ≤ i ≤ n

Γ | Ξ ` case t of [in1(x1).t1, . . . , inn(xn).tn] = t
0 : τ

Fig. 2. Equational rules
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2 Stable coproducts

To obtain our characterisation of definability, we shall be interested in bicartesian
closed categories which enjoy the additional property that coproducts are stable.

Definition 1 (Stable coproducts). In an arbitrary category, a coproduct
{Ai // A}i∈I is said to be stable if, for every arrow X // A and i ∈ I, there
is a pullback square

Xi //

��

X

��

Ai // A

and the family {Xi // X}i∈I is also a coproduct.

Note that, the stability of the empty coproduct amounts to the strictness of
initial objects, which holds in any cartesian closed category [5, Proposition 8.3].
We call a bicartesian closed category stable if it has stable finite coproducts

(for which it suffices that binary coproducts are stable). Any elementary topos
provides an example of a stable bicartesian closed category, and so does any
Heyting algebra (note that the latter example shows that stable coproducts
need not be disjoint).

We next present a sound formal system for deriving equalities between terms,
which is naturally interpreted in stable bicartesian closed categories. The formal
system is essentially equivalent to the system WBCT of [2], which was introduced
as a critical tool in their proof of the completeness of the equational theory of
bicartesian closed categories relative to the valid equations in Set. The fact that
this system has a natural interpretation in any stable bicartesian closed category
has not been observed before.
The proof system is based on a notion of constrained (type) environment

implementing equational assumptions about terms of sum type.

Definition 2 (Constrained environment). The constrained environments
Γ | Ξ, consisting of an environment Γ subject to constraints Ξ, are defined
inductively by the following rules.

〈〉 | 〈〉
Γ | Ξ

Γ, x : τ | Ξ, x =τ x
x 6∈ Γ

Γ | Ξ Γ ` t : +(n)(τ1, . . . , τn)
Γ, x : τi | Ξ, ini(x) =+(n)(τ1,...,τn) t

x 6∈ Γ, 1 ≤ i ≤ n

The equational rules manipulate judgements of the form Γ | Ξ ` t = t′ : τ
where both Γ ` t : τ and Γ ` t′ : τ are terms. The rules are given in Fig. 2. They
are to be understood as applying only when all the premises and conclusions are
genuine (well-typed) terms as specified above.
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Henceforth in this section, let S be a stable bicartesian closed category with
chosen structure. (In addition to the chosen bicartesian closed structure, de-
scribed earlier, we assume a choice of pullbacks for coproduct morphisms. It
is not necessary to assume any coherence conditions for these!) Let I be an
interpretation in S. We interpret constrained environments Γ | Ξ as monos
[[Γ | Ξ]] // // [[Γ ]]. The definition is by structural induction as follows.

– ([[〈〉 | 〈〉]] // // [[〈〉]])
def
= id1.

– ([[Γ, x : τ | Ξ, x =τ x]] // // [[Γ ]]× [[τ ]])
def
= ([[Γ | Ξ]] // // [[Γ ]])× id[[τ]] .

– [[Γ, xi : τi | Ξ, ini(xi) =+(n)(τ1,...,τn) t]]
// // [[Γ ]]×[[τi]] is the pairing 〈m◦pi , qi〉

arising from the following pullback square.

[[Γ, xi : τi | Ξ, ini(xi) = t]]
pi

//

qi

��

[[Γ | Ξ]]
��

m

��

[[Γ ]]

[[Γ`t:+(n)(τ1,...,τn)]]

��

[[τi]]
qi

//
∐(n)

([[τ1]], . . . , [[τn]])

(1)

Note that, by stability, the family

{pi : [[Γ, xi : τi | Ξ, ini(xi) = t]] // [[Γ | Ξ]]}1≤i≤n

from (1) is a coproduct. Observe also that, by definition, for a constrained en-
vironment Γ | Ξ of the form x1 : τ1, . . . , xn : τn | x1 =τ1 x1, . . . , xn =τn xn, we
have that ([[Γ | Ξ]] // // [[Γ ]]) = id[[Γ ]] . Thus the interpretation of constrained envi-
ronments extends that of environments. Furthermore, for any Γ | Ξ of the form
(x1 : τ1, . . . , xn : τn | t1 =τ′1 t

′
1, . . . , tn =τ′n t

′
n), we have an equaliser diagram

[[Γ | Ξ]] // // [[Γ ]]

〈[[Γ`ti :τ
′
i ]]〉i=1,n

//

〈[[Γ`t′i :τ
′
i ]]〉i=1,n

//
–
p

p
–

∏(n)
([[τ ′1]], . . . , [[τ

′
n]]) (2)

Proposition 1 (Soundness). If Γ | Ξ ` t = t′ : τ is derivable then

([[Γ | Ξ]] // // [[Γ ]]
[[Γ`t:τ]]

// [[τ ]]) = ([[Γ | Ξ]] // // [[Γ ]]
[[Γ`t′ :τ]]

// [[τ ]]) .

The proof is the usual straightforward induction on the structure of derivations,
using the facts observed above.
It would be interesting to obtain a completeness converse to Proposition

1. We do not know if such a result holds, although weaker versions can be
obtained by not insisting that all exponentials exist in S. Also, following [2,
Theorem 5.3], one can show that the proof system is sound and complete for
deriving the equalities between terms in unconstrained environments that are
valid in an arbitrary bicartesian closed category. These issues will be discussed
further in the full version of this paper.
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3 Grothendieck logical relations

For each object A of the semantic category S we define the notion of a (cate-
gorical) Kripke relation of varying arity over A. The idea is that the arity of the
relation varies over a categoryW (of worlds), as specified by a functor a :W // S
(that associates arities to worlds). For each object w of W, the object a(w) is
considered as an arity in the natural internal sense that a(w)-tuples of A are
given by morphisms x : a(w) // A in S. The action of the arity functor a on
morphisms allows such a tuple x of arity a(w) to be reinterpreted along any
change of world ψ : v // w inW to obtain the a(v)-tuple x ◦a(ψ). For notational
convenience, we write x · ψ for x ◦ a(ψ) when a is clear from the context.

Definition 3 (Kripke relation). Given a small category W and a functor
a : W // S, a W-Kripke relation R of arity a over an object A of S is a family
{R(w) ⊆ S(a(w), A)}w∈|W| satisfying

(Monotonicity) For every ψ : w // v in W and every x : a(v) // A in S, if
x ∈ R(v) then x · ψ ∈ R(w).

The notion of Kripke relation has a natural formulation in the language of

presheaves. Writing Ŵ for the category of presheaves [Wop,Set], any arity func-

tor a : W // S induces a hom functor a ∗ : S // Ŵ given by (a ∗A)( )
def
=

S(a , A) : Wop // Set. A Kripke relation of arity a over A ∈ S is just a sub-

presheaf R ⊆ a ∗A in Ŵ. So, a Kripke relation of arity a is a unary relation on
a ∗A in the internal logic of the presheaf topos Ŵ.
Our generalisation of Kripke relation allows us to impose additional structure

on the category of worlds in the form of a Grothendieck topology. A Grothendieck
topology is a collection of covers, which are families of morphisms with the same
codomain, subject to axioms on the collection. A cover {ϕi : wi // w}i∈I of w
specifies that information about w can be recovered “locally” by piecing together
relevant information about each of the wi along ϕi. The formal definition of a
Grothendieck topology specifies the properties that the collection of covers must
satisfy in order for such local determination to behave properly.

Definition 4 (Basis for a topology). A (basis for a Grothendieck) topology
K on a category W consists of a family of (basic) covers K(w) ⊆

⋃
v∈WW(v, w)

for each object w in W, satisfying:

(Identity) The singleton family {idw} ∈ K(w).
(Stability) For every family {ϕi}i∈I ∈ K(w) and morphism ψ : v // w there
exists a family {γj}j∈J ∈ K(v) such that, for each γj ∈ K(v), there exists
ϕi ∈ K(w) such that ψ ◦ γj factors through ϕi.

(Transitivity) If {ϕi : wi // w}i∈I ∈ K(w) and {γij}j∈Ji ∈ K(wi) for every
i ∈ I then the family {ϕi ◦ γij}i∈I, j∈Ji ∈ K(w).

A small category together with a Grothendieck topology is called a site.



154 Marcelo Fiore and Alex Simpson

Example 1. In any category the trivial topology , I, consists only of the singleton
families {id}.

Example 2. In a category with stable finite coproducts, the finite coproduct topol-
ogy is given by

{{ϕi : wi // w}1≤i≤n | n ≥ 0 and {ϕi : wi // w}1≤i≤n is a coproduct}.

The stability of coproducts ensures that the stability axiom for a Grothendieck
topology is satisfied. Note that the empty family covers an object if and only if
the object is (necessarily strict) initial.

In order to generalise the notion of Kripke relation to take into account a
Grothendieck topology, we add an extra condition establishing that the relation
is determined locally in the sense discussed above.

Definition 5 (Grothendieck relation). Given a site (W, K) and a functor
a :W // S, a (W, K)-Grothendieck relation of arity a over A ∈ S is a W-Kripke
relation {R(w) ⊆ S(a(w), A)}w∈|W| that further satisfies:

(Local character) For every cover {ϕi : wi // w}i∈I ∈ K(w) and for all maps
x : a(w) // A in S, if x · ϕi ∈ R(wi) for all i ∈ I then x ∈ R(w).

In the case of the trivial topology, the local character property is vacuous and
so any Kripke relation is a Grothendieck relation.
It is instructive to reformulate the notion of a Grothendieck relation in terms

of standard concepts from sheaf theory. For notational convenience, given a

presheaf P in Ŵ, for any ψ : v // w in W and x ∈ P (w) we write x · ψ for the
element P (ψ)(x) ∈ P (v). (This generalises our previous notation for presheaves
a ∗A to arbitrary presheaves.)

Definition 6 (Closed subpresheaf). Given a site (W, K) and a presheaf P

in Ŵ, a subpresheaf R ⊆ P is said to be K-closed if, for every cover {ϕi : wi //

w}i∈I ∈ K(w) and for all x ∈ P (w) if x ·ϕi ∈ R(wi) for all i ∈ I then x ∈ R(w).

Hence, a Grothendieck relation R of arity a over A is precisely a K-closed sub-
presheaf R ⊆ a ∗A.
There is another, less elementary, characterisation of Grothendieck relations.

Writing Sh(W, K) for the full subcategory of Ŵ whose objects are sheaves (for
K) [6], it is well-known (see [6, III.5 and V.3] for example) that the embed-

ding Sh(W, K) ↪ // Ŵ has a (left-exact) left adjoint, the associated sheaf func-

tor a : Ŵ // Sh(W, K). For every presheaf P , the closed subpresheaves of P
are in natural bijective correspondence with the subsheaves of a(P ) [6]. Thus, a
Grothendieck relation of arity a over A is just a subsheaf of a(a ∗A) in Sh(W, K).
In particular, when the presheaf a ∗A is already a sheaf for K, a Grothendieck
relation over A is just a subsheaf of a ∗A. However, we shall not assume in
general that a ∗A is a sheaf.
We define a category of Grothendieck relations over S whose morphisms are

given by those morphisms of S that preserve the relations.
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Definition 7. Given a site (W, K) and an arity functor a :W // S:

1. G(W, K, a) is the category with

objects: given by pairs (A,R) consisting of an object A ∈ S and a (W, K)-
Grothendieck relation R of arity a over A,
arrows (A,R) // (B, S): given by arrows f : A // B in S such that,

for all x : a(w) // A, x ∈ R(w) implies f ◦ x ∈ S(w) , (3)

identity and composition: as in S.

2. We write U : G(W, K, a) // S for the forgetful functor mapping (A,R) to A.

Proposition 2. For S bicartesian closed, the category G(W, K, a) is bicartesian
closed and the forgetful functor U : G(W, K, a) // S is faithful, and preserves
and creates the bicartesian closed structure.

Proof. Finite coproducts:
∐
n(An, Rn) = (

∐
n An,

∨
n Rn) where

(a(w)
x

//
∐
n An) ∈ (

∨
nRn)(w) iffdef there exists a cover {ϕi : wi

// w}i∈I ∈

K(w) such that for all i ∈ I, there exist ni with 1 ≤ ni ≤ n and (a(wi)
xi

//

Ani) ∈ Rni(wi) such that x · ϕi = qni ◦ xi : a(wi) //
∐
n An.

Finite products:
∏
n(An, Rn) = (

∏
n An,

∧
n Rn) where (a(w)

x
//
∏
nAn) ∈

(
∏
nRn)(w) iffdef for all n, (a(w)

x
//
∏
n An

πn
// An) ∈ Rn(w).

Exponentials: (A,R)⇒ (B, S) = (A⇒ B, SR) where (a(w)
f

// (A⇒ B)) ∈

SR(w) iffdef for all ψ : v // w and all (a(v)
x

// A) ∈ R(v), we have

(a(v)
〈f·ψ, x〉

// (A⇒ B) × A
ev

// B) ∈ S(v). 2

Although straightforward, the proposition above is the categorical analogue
of the fundamental lemma of logical relations [7], which states that any syntac-
tically definable morphism in S automatically preserves relations. To formulate
this result explicitly, we require further definitions.
Definition 8. Given a site (W, K), an arity functor a : W // S and a
Grothendieck relation R of arity a over A ∈ S, we say that a global element

x : 1 // A in S satisfies R if, for all w ∈ |W |, it holds that (a(w) // 1
x

// A) ∈
R(w).

Definition 9 (Grothendieck logical relation). Let I be a (T , Σ)-interpre-
tation in a bicartesian closed category S. A Grothendieck logical relation for Σ
under I is given by: a site (W, K); an arity functor a : W // S; and, a family
{RT}T∈T such that:

1. each RT is a Grothendieck relation of arity a over IT(T), and
2. for all (c : τ ) ∈ Σ, it holds that IΣ(c) satisfies Rτ , where we write Rτ (RΓ )
for the Grothendieck relation on [[τ ]] ([[Γ ]]) determined by the bicartesian
closed structure on G(W, K, a) according to the structure of τ (Γ ).
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Lemma 1 (Fundamental Lemma of GLRs). Let S be a bicartesian closed
category and let I be a (T , Σ)-interpretation in S. For any Grothendieck log-
ical relation ((W, K), a, {RT}T∈T ) for Σ under I, the following two equivalent
statements hold.

1. For every term Γ ` t : τ , the interpretation [[Γ ` t : τ ]] is an arrow
([[Γ ]], RΓ) // ([[τ ]], Rτ) in G(W, K, a).

2. For every term ` t : τ , the global element [[` t : τ ]] : 1 // [[τ ]] satisfies Rτ .

Our motivation for generalising Kripke relations to Grothendieck relation is
to obtain the converse: any global element of S that satisfies all Grothendieck
logical relations is syntactically definable. At present we have such a result only
in the special case that S is stable. This is the content of the theorem below,
which is the principal result of the paper.

Theorem 1 (Definability). Suppose S is a stable bicartesian closed category
and I is a (T , Σ)-interpretation in S. Then there exists a Grothendieck logical
relation ((W, K), a, {RT}T∈T ) for Σ under I, such that every global element of
[[τ ]] that satisfies Rτ is definable by a closed term of type τ .

4 Proof of Definability

In this section we prove Theorem 1. Accordingly, suppose S is a stable bicartesian
closed category (with chosen structure) and I is a (T , Σ)-interpretation in S. We
construct a Grothendieck logical relation, satisfying the property of Theorem 1,
based on a syntactic site (W,K) defined below. The construction has similarities
with the syntactic sites used in recent approaches to obtaining intuitionistic
completeness results for intuitionistic logic, see e.g. [9].

Definition 10 (Syntactic site).

1. The category W has

objects: given by constrained environments as in Definition 2,

arrows Γ ′ | Ξ ′ // Γ | Ξ: given by renamings (
def
= monotone injections)

ρ : dom(Γ ) // dom(Γ ′), where dom(x1 : τ1, . . . , xn : τn)
def
= (x1 ≤ · · · ≤ xn),

that preserve typing:

x : τ ∈ Γ ⇒ ρ(x) : τ ∈ Γ ′ ,

and preserve constraints:

t =τ t
′ ∈ Ξ ⇒ t[ρ] =τ t

′[ρ] ∈ Ξ ′ ,

identities and composition: as for functions.
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2. The covers in K are defined inductively by the following rules:

{iddom(Γ)} ∈ K(Γ | Ξ)

{ρj} ∪ {ρ : Γ
′ | Ξ ′ // Γ | Ξ} ∈ K(Γ | Ξ) Γ ` t : +(n)(τ1, . . . , τn)

{ρj} ∪ {ρ ◦ ιk : Γ ′k | Ξ
′
k

// Γ | Ξ}1≤k≤n ∈ K(Γ | Ξ)

where Γ ′k | Ξ
′
k = (Γ

′, x′k : τk | Ξ ′, ink(x
′
k) = t) for any choice of fresh

variables x′1, . . . , x
′
n and the renamings ιk : dom(Γ

′) // dom(Γ ′, x′k : τk) are
the inclusion functions.

It follows that any cover {ρj} consists entirely of inclusion functions (which
is why Γ ′k | Ξ

′
k can be defined using t rather than t[ρ]). Observe also that a

constrained environment Γ | Ξ is covered by the empty family if and only if
there exists a term Γ ` t : 0.
The above definition provides, for every Γ ` t : +(n)(τ1, . . . , τn), sub-basic

covers of the form

{ (Γ, xi : τi | Ξ, ini(xi) = t) − // (Γ | Ξ) }1≤i≤n

keeping the morphisms as simple a possible whilst allowing the axioms of a
Grothendieck topology to hold. For instance, the stability axiom holds because
for any inclusion

ιi : (Γ, xi : τi | Ξ, ini(xi) = t) − // Γ | Ξ

(as present in the non-trivial covers) and any renaming ρ : Γ ′ | Ξ ′ // Γ | Ξ, we
have a commuting diagram:

(Γ ′, x′ : τi | Ξ ′, ini(x′) = t[ρ])

ι′i
��

ρ[xi
�

// x′ ]
// (Γ, xi : τi | Ξ, ini(xi) = t)

ιi

��

(Γ ′ | Ξ ′) ρ
// (Γ | Ξ)

for any x′ not in Γ ′. Observe that the possibility of morphisms renaming variables
is crucial here, as the variable xi may already appear in the environment Γ

′. Thus
the stability of covers would not hold if we only allowed inclusions as morphisms
inW. Indeed, the category W is not a preorder.

Definition 11 (Standard arity functor). The standard arity functor s :
W // S sends any constrained environment Γ | Ξ to its interpretation [[Γ | Ξ]],
and any renaming ρ : Γ ′ | Ξ ′ // Γ | Ξ to the unique map s(ρ), given by the
universal property of the equaliser [[Γ | Ξ]] // // [[Γ ]] of (2) in Section 2, such that
the square below commutes.

[[Γ ′ | Ξ ′]] // //

s(ρ)
��

[[Γ ′]]

〈πρx 〉x∈Γ

��

[[Γ | Ξ]] // // [[Γ ]]

(4)
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For a cover {ιi : (Γ, xi : τi | Ξ, ini(xi) = t) // Γ | Ξ}1≤i≤n in K it follows,
from (1) and the stability of coproducts, that the family {s(ιi)}1≤i≤n is a
coproduct in S. By induction, this property extends to arbitrary covers in K and
hence we have the following consequence.

Proposition 3. For every cover { ρi : Γi | Ξi // Γ | Ξ }, the family { s(ρi) :
[[Γi | Ξi]] // [[Γ | Ξ]] } is a coproduct.

Corollary 1. For all A ∈ | S |, the presheaf s ∗A in Ŵ is a sheaf for K.

The key lemma for establishing the definability result follows.

Lemma 2. For every cover { ρi : Γi | Ξi // Γ | Ξ } and every family of terms
{ Γi ` ti : τ } there exists a term Γ ` t : τ such that

1. Γi | Ξi ` ti = t : τ .
2. If Γ ` t′ : τ is such that Γi | Ξi ` ti = t′ : τ for all i, then Γ | Ξ ` t′ = t : τ .
3. The diagram below commutes for all i

[[Γi | Ξi]]
s(ρi)

//

��

��

[[Γ | Ξ]]

x

��

[[Γi]]
[[Γi`ti:τ]]

// [[τ ]]

iff x = ([[Γ | Ξ]] // // [[Γ ]]
[[Γ`t:τ]]

// [[τ ]]).

Proof. (1)–(2) To a derivation D of a cover { ρi : Γi | Ξi // Γ | Ξ } and terms
{ Γi ` ti : τ } we associate a term Γ ` T (D, {Γi ` ti : τ}) : τ by induction on
the structure of the derivation as follows.

– T ({iddom(Γ)}, {Γ ` t : τ})
def
= t.

– For r the rule
{ρj}j∈J ∪ {ρ}

{ρj}j∈J ∪ {ρ ◦ ιk}1≤k≤n

where ιk : (Γ, xk : τk | Ξ, ink(xk) = t) // Γ | Ξ, we set

T (D.r, {Γj ` tj : τ}j∈J ∪ {Γ, xk : τk ` tk : τ}1≤k≤n)
def
= T (D, {Γj ` tj : τ}j∈J ∪ {Γ ` case t of [in1(x1).t1, . . . , inn(xn).tn] : τ}).

That the term T (D, {Γi ` ti : τ}) has the desired properties can be shown by
induction using the equational rules.

(3) By Proposition 3, because

([[Γi | Ξi]] // // [[Γi]]
[[Γi`ti:τ]]

// [[τ ]])

= ([[Γi | Ξi]] // // [[Γi]]
[[Γi`t:τ]]

// [[τ ]]) , by Proposition 1

= ([[Γi | Ξi]] // // [[Γi]]
〈πρi(x)〉x∈Γ

// [[Γ ]]
[[Γ`t:τ]]

// [[τ ]])

= ([[Γi | Ξi]]
s(ρi)

// [[Γ | Ξ]] // // [[Γ ]]
[[Γ`t:τ]]

// [[τ ]]) , by (4)
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Proposition 4. Let S be a stable bicartesian closed category (with chosen struc-
ture) and let I be a (T , Σ)-interpretation in S. Then

1. for

RT(Γ | Ξ)
def
= { [[Γ | Ξ]] // // [[Γ ]]

[[Γ`t:T]]
// [[T]] } , (5)

((W,K), s, {RT}T∈T ) is a Grothendieck logical relation for Σ under I;
2. for every type τ ,

Rτ (Γ | Ξ) = { [[Γ | Ξ]] // // [[Γ ]]
[[Γ`t:τ]]

// [[τ ]] } .

Proof. (1) Follows from (2) below.

(2) By induction on the structure of τ .

τ = T: By (5).
τ = τ1 // τ2:
(⊇) Let m = ([[Γ | Ξ]] // // [[Γ ]]) and m′ = ([[Γ ′ | Ξ ′]] // // [[Γ ′]]).
For ρ : Γ ′ | Ξ ′ // Γ | Ξ and x ∈ Rτ (Γ ′ | Ξ ′) we have, by induction, that
x = [[Γ ′ ` t′ : τ1]]◦m′ for some t′. Thus, to establish that [[Γ ` t : τ1 // τ2]]◦m
is in Rτ1 //τ2(Γ | Ξ) we need show that ev◦〈[[Γ ` t : τ1

// τ2]]◦m◦s(ρ), [[Γ ′ `
t′ : τ1]] ◦m′〉 is in Rτ2(Γ

′ | Ξ ′).
Using that m ◦ s(ρ) = 〈πρx〉x∈Γ ◦m′ and that [[Γ ` t : τ1 // τ2]] ◦ 〈πρx〉x∈Γ =
[[Γ ′ ` t[ρ] : τ1 // τ2]] one sees that ev ◦ 〈[[Γ ` t : τ1 // τ2]] ◦m ◦ s(ρ), [[Γ ′ ` t′ :
τ1]] ◦m′〉 = [[Γ ′ ` t[ρ](t′) : τ2]] ◦m′ and, by induction, we are done.
(⊆) Let

f ∈ Rτ1 //τ2(Γ | Ξ) . (6)

Recall that ([[Γ, x : τ1 | Ξ, x =τ1 x]] // // [[Γ ]] × [[τ1]]) = m × id[[τ]] where
m = ([[Γ | Ξ]] // // [[Γ ]]). Thus, for ι : (Γ, x : τ1 | Ξ, x =τ1 x) // Γ | Ξ the
inclusion, we have that s(ι) = π1 : [[Γ | Ξ]]× [[τ1]] // [[Γ | Ξ]].
Since, by induction, π2 = [[Γ, x : τ1 ` x : τ1]] ◦ (m× id[[τ1 ]]) : [[Γ | Ξ]]× [[τ1]] //

[[τ1]] is in Rτ1(Γ, x : τ1 | Ξ, x =τ1 x) it follows from (6) that ev ◦ 〈f ◦π1, π2〉 is
in Rτ2 (Γ, x : τ1 | Ξ, x =τ1 x). So, again by induction, ev◦〈f ◦π1, π2〉 = [[Γ, x :
τ1 ` t : τ2]]◦(m×id[[τ1 ]]) for some t, and hence f = [[Γ ` λx : τ1.t : τ1

// τ2]]◦m.

τ = ×(n)(τ1, . . . , τn):
(⊇) Let m = ([[Γ | Ξ]] // // [[Γ ]]).
By induction, for 1 ≤ i ≤ n, πi ◦ [[Γ ` t : ×(n)(τ1, . . . , τn)]] ◦ m = [[Γ `
proji(t) : τi]] ◦m is in Rτi (Γ | Ξ). Thus, [[Γ ` t : ×

(n)(τ1, . . . , τn)]] ◦m is in
R×(n)(τ1,...,τn)(Γ | Ξ).
(⊆) Let x ∈ R×(n)(τ1,...,τn)(Γ | Ξ). Then, for 1 ≤ i ≤ n, we have that
πi ◦ x ∈ Rτi (Γ | Ξ). By induction, πi ◦ x = [[Γ ` ti : τi]] ◦ m, where
m = ([[Γ | Ξ]] // // [[Γ ]]), for some ti (1 ≤ i ≤ n). Thus, x = [[Γ ` 〈t1, . . . , tn〉 :
×(n)(τ1, . . . , τn)]] ◦m.

τ = +(n)(τ1, . . . , τn):
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(⊇) Let m = ([[Γ | Ξ]] // // [[Γ ]]) and, for xi 6∈ Γ (1 ≤ i ≤ n), let mi = ([[Γ, xi :
τi | Ξ, ini(xi) =+(τ1 ,...,τn) t]] // // [[Γ ]]× [[τ1]]).
By induction, we have that π2 ◦mi = [[Γ, xi : τi ` xi : τi]]◦mi is in Rτi (Γ, xi :
τi | Ξ, ini(xi) =+(n)(τ1,...,τn) t) for all i.
Consider the cover

{ (Γ, xi : τi | Ξ, ini(xi) =+(n)(τ1,...,τn) t)
ιi

// Γ | Ξ }1≤i≤n .

Then since, for 1 ≤ i ≤ n, the diagram below commutes,

[[Γ, xi : τi | Ξ, ini(xi) = t]]
pi=s(ιi)

//

qi

��

))

〈m◦pi,qi〉

))SS
SSS

SSS
SSS

SS
S

[[Γ | Ξ]]
��

m

��

[[Γ ]]× [[τi]]
π1

//

π2

uukkk
kkk

kkk
kkk

kkk
kk

−
p
p
−

[[Γ ]]

[[Γ`t:+(n)(τ1,...,τn)]]

��

[[τi]]
qi

//
∐(n)

(τ1, . . . , τn)

it follows that [[Γ ` t : +(n)(τ1, . . . , τn)]] ◦m is in R+(n)(τ1,...,τn)(Γ | Ξ).
(⊆) If x ∈ R+(n)(τ1,...,τn)(Γ | Ξ) then there exists a cover { ρi : Γi | Ξi

// Γ |
Ξ } such that for all i, using the induction hypothesis, there exist Γi ` ti : τni
with 1 ≤ ni ≤ n such that for all i

[[Γi | Ξi]]
s(ρi)

//

��

��

[[Γ | Ξ]]

x

��

[[Γi]]
[[Γi`inni (ti):+

(n)(τ1,...,τn)]]

// [[+(n)(τ1, . . . , τn)]]

Hence, by Lemma 2, we are done.

2

Corollary 2. For the Grothendieck logical relation ((W,K), s, {RT}T∈T ), a
global element of [[τ ]] in S satisfies Rτ if and only if it is definable by a closed
term of type τ .

5 Further results

In the full version of this paper, we shall show that Theorem 1 can be strength-
ened by requiring that a “universal” site (W, K) can be found in which W is
a partial order. This strengthening could be proved directly by making clumsy
modifications to the construction of the syntactic site (W,K) given in Section
4. It is preferable, however, to derive the result by means of an elegant general
construction. As in the well-known construction of the Diaconescu cover of a
Grothendieck topos [6, IX.9], any site (W, K) determines a related site D(W, K)
over a poset D(W) together with a surjective functor dW : D(W) // (W). We
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have proved that, for any arity functor a : W // S (for S bicartesian closed),
there is an associated full and faithful bicartesian closed functor G(W, K, a) //

G(D(W),D(K), a dW). This means that our definability result for the syntactic
site (W,K) yields the desired poset-based definability result for D(W,K).
Other aspects of the paper also benefit from a more abstract categorical

treatment. For example, the construction of the category G(W, K, a) is an ex-
ample of the subscone variant of glueing [1], in which the objects are restricted

to K-closed monos (in Ŵ). Essentially this amounts to glueing relative to a fac-
torization system. The analysis of the structure on G(W, K, a) can be performed
entirely at this more general level.
Finally, it is also possible to give syntax-free account of definability. For any

bicartesian closed functor F : B // S where B is small and S is stable, there
exists a site (W, K) (with W a poset) and an arity functor a :W // S such that
F factors as UG where G : B // G(W, K, a) is a full bicartesian closed functor.
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Abstract. We introduce an explicitly typed λµ-calculus of call-by-value
as a short-hand for the 2nd order Church-style. Our motivation comes
from the observation that in Curry-style polymorphic calculi, control op-
erators such as callcc or µ-operators cannot, in general, treat the terms
placed on the control operator’s left. Following the continuation seman-
tics, we also discuss the notion of values in classical system, and propose
an extended form of values. It is shown that the CPS-translation is sound
with respect to λ2 (2nd order λ-calculus). Next, we provide an explicitly
and an implicitly typed Damas-Milner systems with µ-operators. Finally,
we give a brief comparison with standard ML plus callcc, and discuss
a natural way to avoid the unsoundness of ML with callcc.

1 Introduction

On the basis of the Curry-Howard-De Bruijn isomorphism [19], proof reductions
can be regarded as computational rules, and the algorithmic contents of proofs
can be used to obtain correct programs that satisfy logical specifications. The
computational meaning of proofs has been investigated in a wide range of fields,
including not only intuitionistic logic but also classical logic and modal logic
[21]. In the area of classical logic, there have been a number of noteworthy inves-
tigations including Griffin[12], Murthy[26], Parigot[30], Berardi&Barbanera[4],
Rehof&Sørensen[35], de Groote[8] and Ong[28].
As far as we know, however, polymorphic call-by-value calculus is less studied

from the viewpoint of classical logic. In this paper, we introduce an explicitly
typed λµ-calculus of call-by-value as a short-hand for the 2nd order Church-style.
Our motivation comes from the observation that in Curry-style polymorphic cal-
culi, control operators such as callcc or µ-operators cannot, in general, treat
the terms placed on the control operator’s left. Following the continuation se-
mantics, we also discuss the notion of values in classical system, and propose an
extended form of values. It is shown that the CPS-translation is sound with re-
spect to λ2 (System F of Girard, Polymorphic calculus of Reynolds). We observe
that the inverse of the soundness does not hold, and that adding ⊥-reduction in
Ong&Stewart [29] breaks down the soundness of the CPS-translation. As one of
by-products, it can be obtained that the 2nd order call-by-value λµ-calculus has
the strong normalization property. Next, we provide an explicitly and an implic-
itly typed Damas-Milner systems with µ-operators, and compare those from a

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 162–177, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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viewpoint of polymorphic control operators under call-by-value. Finally, we give
a brief comparison with standard ML plus callcc, and discuss a natural way to
avoid the unsoundness of ML with callcc [14].

2 Curry-Style vs. Church-Style

With respect to the simply typed lambda calculus λ→, there is a forgetful map
from λ→ à la Church to à la Curry, and conversely, well-typed terms in λ→-Curry
can be lifted to well-typed terms in λ→-Church [3]. In the case of ML [25], there
also exists implicitly typed and explicitly typed systems, and they are essentially
equivalent [17]. Hence, the implicitly typed system serves as a short-hand for the
explicitly typed system.
However, the equivalence between Curry-style and Church-style does not

always hold for complex systems. Parigot [30] introduced λµ-calculus in Curry-
style as 2nd order classical logic although λµ-calculus à la Church was also
given [32]. An intrinsically classical reduction is called the structural reduction
that is a kind of permutative proof reductions in Prawitz [34] or the so-called
commutative cut. The λµ-calculus of Parigot is now known as a call-by-name
system. If we construct a call-by-value λµ-calculus, then the Curry-style cannot
work for a consistent system. In a call-by-value system of λµ, we can adopt a
certain permutative reduction [30,29], called the symmetric structural reduction,
to manage the terms placed on the µ-operator’s left. However, the symmetric
structural proof reduction, in general, violates the subject reduction property in
the Curry-style. Consider the following figures:

V : (∀t.σ1)→ σ2

M1 : σ1
[α]M1 : ⊥; σα1....
M : ⊥; σα1
µα.M : σ1
µα.M : ∀t.σ1

V (µα.M) : σ2 .

V : (∀t.σ1)→ σ2

M1 : σ1
M1 : ∀t.σ1

(∀I)∗

VM1 : σ2
[α](VM1) : ⊥; σα2....
M [V ⇒ α] : ⊥; σα2
µα.M [V ⇒ α] : σ2

whereM [V ⇒ α] denotes a term obtained by replacing each subterm of the form
[α]N inM with [α](VN). Here, whenM is in the form of [α](λx1 · · ·xn.M ′) and
the type σ1 depends on type of some xi (1 ≤ i ≤ n), the eigenvariable condition
of (∀I)∗ is broken down. For instance,

λx.(λf.(λx1x2.x2)(fx)(f(λx.x))) (µα.[α](λy.µβ.[α](λv.y)))
has type t → t → t. But this term is reduced to λx.x by the use of the sym-
metric structural reduction. Let P ≡ λf.(λx1x2.x2)(fx)(f(λx.x)) and Q ≡
µα.[α](λy.µβ.[α](λv.y)). Then similarly

λg.(λx.g(PQx))(λx.g(PQx)) : (∀t′.(t′ → t′))→ t→ t
is reduced to λg.(λx.g(xx))(λx.g(xx)). On the other hand, the case µα.M of
µα.[α](λv.µβ.[α](λx.x)) is a special case where the symmetric structural reduc-
tion is applicable even to polymorphic µα.M , and then, for example,

λx.((λf.(λx1x2.x2)(fx)(f(λx.x))) (µα.[α](λv.µβ.[α](λx.x))) x) : t→ t
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is reduced to λx.x. This kind of phenomenon was first discovered by Harper
& Lillibridge [14] as a counterexample for ML with callcc. From the view-
point of classical proof reductions, the fatal defect can be explained such that
in λµ-calculus à la Curry (2nd order classical logic), an application of the sym-
metric structural reduction, in general, breaks down the eigenvariable condi-
tion of polymorphic generalization, and then the terms placed on the polymor-
phic µ-operator’s left cannot be managed by the symmetric structural reduc-
tion. In terms of explicit polymorphism, in other words, an evaluation under
Λ-abstractions cannot be allowed without restricting Λt.M to Λt.V [15]. Even
in the Damas-Milner style [6] (implicitly typed ML) plus control operators, a
similar defect still happens under a ML-like call-by-value [15,16].
To avoid such a problem in implicitly typed ML with control operators, one

can adopt an η-like expansion for polymorphic control operators [11], such that
let f=µα.M1 in M2 . let f=λx.µα.M1[α⇐ x] in M2,

where each subterm in the form of [α](λy.w) inM1 is replaced with [α](λy.w)x.
Another natural way to avoid the problem in call-by-value λµ is to take an ex-
plicitly typed system. In the above example, the term Q is a polymorphic term,
and this type becomes ∀t.(t→ t). Here, the explicitly typed term as a form of a
value, V ≡ Λt.Q is used for βv-reductions, such that

λx.(λf.(λx1x2.x2)(ftx)(f(t → t)(λx.x))) V : t→ t→ t
is now reduced to λvx.x. In the next section, under the call-by-value strategy
we introduce an explicitly typed λµ-calculus especially for polymorphic terms,
which is regarded as a short-hand for the complete Church-style. To obtain the
results in this paper, it is enough to consider a system such that Λt.M is rep-
resented simply by ΛM such as lifting and Mσ by M(), and (ΛM)() is reduced
to M . A similar observation is given for let-polymorphism in Leroy [23]. The
annotations Λ and () for polymorphic terms play a role of choosing an appro-
priate computation under call-by-value. However, from the viewpoint of logic, a
call-by-value λµ-calculus with explicit polymorphism, called a domain-free sys-
tem in Barthe&Sørensen [5], is considered here rather than such a simplified
polymorphism using the annotations or implicit polymorphism by name [23].
On the other hand, Harper&Lillibridge [15] extensively studied explicit poly-

morphism and CPS-conversion for Fw with callcc. The call-by-value system
λV µ introduced in section 3 can be regarded as a meaningful simplification of
the 2nd order fragment of their system. Moreover, the Damas-Milner style λµml
introduced in section 5 has no restriction for establishing the subject reduction
and Meyer-Wand typing properties, as compared with those of [15,16].

3 Explicitly Typed λV µ-Calculus

Following the observation in the previous section, we introduce an explicitly
typed λµ-calculus of call-by-value especially for polymorphic terms, called a
domain-free system [5], which is regarded as a short-hand for the Church-style.
The types σ are defined from type variables t and a type constant ⊥. We

have a set of (λ-)variables x, y, z, · · ·, and a set of names (that will be called
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continuation variables later) α, β, · · ·. The type assumptions are defined as usual,
and ∆ is used for a set of name-indexed types. The terms M are defined as
variables, λ- or Λ-abstractions, applications, µ-abstractions, or named terms.
From a logical viewpoint, the typing rule (⊥E) for µα.M is regarded as a classical
inference rule such that infer Γ,¬∆ ` µα.M : σ from Γ,¬∆, α :¬σ `M : ⊥. The
typing rule (⊥I) for [α]M can be considered as a special case of ⊥-introduction
by the use of (→ E). On the basis of the continuation semantics in the next
section, a name can be interpreted as a continuation variable. In the rule (⊥I),
the continuation variable α appears only in the function-position, but not in
the argument-position. Here, the negative assumption α : ¬σ corresponding to
σα of (⊥I) can be discharged only by (⊥E). This style of proofs consisting of
the special case of ⊥-introduction is called a regular proof in Andou [1]. The
notion of values is introduced below as an extended form; the class of values is
closed under both value-substitutions induced by (βv) and left and right context-
replacements induced by (µl,r), as defined later. The definition of the reduction
rules is given below under call-by-value. In particular, the classical reductions
(µl,r,t) below can be explained as a logical permutative reduction in the sense of
Prawitz [34] and Andou [1]. Here, in the reduction of (µα.M)N .µα.M [α⇐ N ],
since both type of µα.M and type of each subterm M ′ with the form [α]M ′ inM
can be considered as members of the segments ending with the type of µα.M ,
the application of (→ E, ∀E) is shifted up to each occurrence M ′, and then
M [y ⇐ N ] (each [α]M ′ is replaced with [α](M ′N)) is obtained. This reduction
is also called a structural reduction in Parigot [30]. On the other hand, since a
term of the form µα.M is not regarded as a value, (λx.M1)(µα.M2) will not be a
β-contractum, but will be a contractum of (µl) below, which can be considered
as a symmetric structural reduction. FV (M) stands for the set of free variables
in M , and FN(M) for the set of free names in M .

λV µ:
Types σ ::= t | ⊥ | σ → σ | ∀t.σ
Type Assumptions Γ ::= 〈 〉 | x :σ, Γ ∆ ::= 〈 〉 | σα, ∆
Terms M ::= x | λx.M | MM | Λt.M | Mσ | µα.M | [α]M
Type Assignment

Γ ` x : Γ (x);∆

Γ `M1 : σ1 → σ2;∆ Γ `M2 : σ1;∆

Γ `M1M2 : σ2;∆
(→ E)

Γ, x :σ1 `M : σ2;∆

Γ ` λx.M : σ1 → σ2;∆
(→ I)

Γ `M : ∀t.σ1;∆

Γ `Mσ2 : σ1[t := σ2];∆
(∀E)

Γ `M : σ;∆

Γ ` Λt.M : ∀t.σ;∆
(∀I)∗

Γ `M : σ;∆

Γ ` [α]M : ⊥;∆, σα
(⊥I)

Γ `M : ⊥;∆, σα

Γ ` µα.M : σ;∆
(⊥E)

where (∀I)∗ denotes the eigenvariable condition.
Values V ::= x | λx.M | Λt.M | [α]M
Term reductions



166 Ken-etsu Fujita

(βv) (λx.M)V . M [x := V ]; (ηv) λx.V x . V if x 6∈ FV (V );
(βt) (Λt.M)σ . M [t := σ]; (µt) (µα.M)σ . µα.M [α⇐ σ];
(µr) (µα.M1)M2 . µα.M1[α⇐M2]; (µl) V (µα.M) . µα.M [V ⇒ α];
(rn) [α](µβ.V ) . V [β := α]; (µ-η) µα.[α]M . M if α 6∈ FN(M),
where the termM [α⇐ N ] denotes a term obtained byM replacing each subterm
of the form [α]M ′ in M with [α](M ′N). That is, the terms (context) placed on
µα.M ’s right is replaced in an argument position of M ′ in [α]M ′. In turn, the
term M [V ⇒ α] denotes a term obtained by M replacing each subterm of the
form [α]M ′ in M with [α](VM ′).
Values are reduced to simpler values by (ηv), eta-reduction and (rn), renam-

ing rules, and those rules are restricted to values, whose condition is necessary
to establish a sound CPS-translation in section 4. We note that as observed in
Ong&Stewart [29], there are closed normal forms which are not values, called
canonical forms, e.g., µα.[α](λx.µβ.[α](λv.x)). Those terms can be reduced by
(S3) in [31] or ζ

ext
fun in [29], but in this case, (µα.M)(µβ.N) is reduced in the

two ways (not confluent). Note also that the failure of operational extensionality
for µPCF−v is demonstrated in [29]. In fact, ζ

ext
fun becomes admissible under the

eta-reduction and (µr). Here, however a term in the form of µα.M is not a value,
and we have the value-restricted (ηv) rather than the eta-reduction itself.
We denote .µ by the one-step reduction induced by .. We write =µ for the

reflexive, symmetric, transitive closure of .µ. The notations such as .β, .βη, .
+
β ,

.∗βη, =βη , etc. are defined as usual, and .
i
β denotes i-step β-reductions (i ≥ 0).

Proposition 1 (Subject reduction property for λV µ). If we have Γ `M1
: σ;∆ and M1 .µM2 in λV µ, then Γ `M2 : σ;∆ in λV µ.

Proof. By induction on the derivation ofM1 .µM2. Note that in λV µ, typing
rules are uniquely determined depending on the shape of terms. 2

The well-known type erasure M◦ is defined as follows:
(x)◦ = x; (λx.M)◦ = λx.M◦; (M1M2)

◦ =M◦1M
◦
2 ;

(Λt.M)◦ =M◦; (Mσ)◦ =M◦; (µα.M)◦ = µα.M◦; ([α]M)◦ = [α]M◦.
Then it can be seen that the typing relation is preserved between λV µ and
implicitly typed λµ:
(i) If we have Γ `M : σ;∆ in λV µ, then Γ `M◦ : σ;∆ in implicit λµ.
(ii) If we have Γ ` M1 : σ;∆ in implicit λµ, then there exists M2 such that
M1 =M

◦
2 and Γ `M2 : σ;∆ in λV µ.

The set of types inhabited by terms coincides between implicit λµ and λV µ.
However, erasing type information makes much more reductions possible, such
as η-reduction of the erasure in Mitchell [24], and the subject reduction property
for M◦ is broken down, for example, a counterexample in section 2.

4 CPS-Translation for λV µ-Calculus

To provide the CPS-translation, we define a simplified version of λ2 à la Church
as the intuitionistic fragment of λV µ (This system of λ2 is the so-called domain-
free system [5]). Here, besides λ-variables x, y, z, · · · used in λ-calculus as usual,
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λ2 has the distinguished variables α, β, · · · called continuation variables. Reduc-
tion rules in λ2 are also defined as usual under call-by-name. The term with the
form [α]M (value) will be interpreted as λk.k(Mα), where the representation of
Mα is consumed by the continuation k, such as the case of λ-abstraction. The
translation from λV µ to λ2, with an auxiliary function Ψ for values, comes from
Plotkin [33].

Definition 1 (CPS-translation). x = λk.kx; λx.M = λk.k(λx.M);
M1M2 = λk.M1(λm.M2(λn.mnk)); Λt.M = λk.k(Λt.M);
Mσ = λk.M(λm.mσqk); µα.M = λα.M(λx.x); [α]M = λk.k(Mα).
Ψ(x) = x; Ψ(λx.M) = λx.M ; Ψ(Λt.M) = Λt.M; Ψ([α]M) =Mα.
tq = t; (σ1 → σ2)q = σ

q
1 → ¬¬σ

q
2; (∀t.σ)q = ∀t.¬¬σq.

According to the continuation semantics of Meyer&Wand [27], our definition of
the CPS-translation can be read as follows: If we have a variable x, then the
value x is passed on to the continuation k. In the case of a λ- or Λ-abstraction,
a certain function that will take two arguments is passed on to the continuation
k. If we have a term with a continuation variable α, then a certain function with
the argument α is passed on to the continuation k, where the variable α will be
substituted by a continuation. Here, it would be natural that a value is regarded
as the term that is mapped by Ψ to some term consumed by the continuation
k, since the continuation is the context in which a term is evaluated and then
to which the value is sent. Our notion of values as an extended form is derived
following this observation.

Lemma 1. Let = denote the definitional equality of the CPS-translation.
(i) For any term M where k 6∈ FV (M), λk.Mk .β M .
(ii) For any value V , V = λk.kΨ(V ).
(iii) For any term M , value V , and type σ, we have M [x := V ] =M [x := Ψ(V )]
and M [t := σ] =M [t := σq].

The above lemma can be proved by straightforward induction. On the basis of
the CPS-translation, the left and right context-replacements M [α ⇐ M1] and
M [V ⇒ α] can be interpreted as the following substitutions for continuation
variables, respectively.

Lemma 2. Let M contain i free occurrences of [α] where i ≥ 0. Then we have
that M [α⇐M1] .iβ M [α := λm.M1(λn.mnα)] and M [α⇐ σ] .

i
β M [α :=

λm.mσqα].

Proof. By induction on the structure of M . 2

Lemma 3. For any termM and value V , M [V ⇒ α] .3iβ M [α := λn.Ψ(V )nα],
where M contains i free occurrences of [α].

Proof. By induction on the structure of M . 2

Lemma 4. If we have M .µ N in λV µ, then M =βη N in λ2.
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Proof. By induction on the derivation of M .µ N . 2

Now, we have confirmed the soundness of the translation in the sense that equiva-
lent λV µ-terms are translated into equivalent λ2-terms. This property essentially
holds for untyped terms.

Proposition 2 (Soundness of the CPS-translation). If we have M =µ N
in λV µ, then then M =βη N in λ2.

The translation logically establishes the double negation translation of
Kuroda. For a set of name-indexed formulae∆, we define (σα, ∆)q as α :¬σq, ∆q.

Proposition 3. If λV µ has Γ `M : σ;∆, then λ2 has Γ q, ∆q `M : ¬¬σq.

Proof. By induction on the derivation. 2

From the consistency of λ2, it is derived that λV µ is consistent in the sense that
there is no closed term M such that `M : ⊥; in λV µ.
With respect to Proposition 2, it is known that the implication is, in general,

not reversible. The counterexample in [33] is not well-typed. Even though we
consider well-typed λV µ-terms, the completeness does not hold for λV µ: If we
have M1 ≡ (λx.x)(xy) and M2 ≡ xy in λV µ, then M1 =βη xy =βη M2 in λ2,
but M1 6=µ M2 in λV µ. Note that in this counterexample, if one excluded η-
reduction, then M1 6=β M2. Following Hofmann [18], the rewriting rules of λV µ
are weak from the viewpoint of the semantics, since Ident, (λx.x)M = M is
necessary in this case.
According to Ong&Stewart [29], their call-by-value λµ-calculus has more re-

duction rules with the help of type annotation; ⊥-reduction:
V ⊥→σM⊥ . µβσ .M⊥ if σ 6≡ ⊥.

Here, assume that we have N1 ≡ (λx.x)(x([α]y)) and N2 ≡ x([α]y), such that
x :⊥ → σ, y : σ ` Ni : σ; σ

α (i = 1, 2) where σ 6≡ ⊥ in λV µ. Then N1 and N2
are reduced to N3 ≡ µβ.[α]y by the use of ⊥-reduction. Now, we have N1 =βη
x(αy) =βη N2 in λ2, but N3 =β λβ.αy in λ2. This example means that the
soundness of the CPS-translation is broken down for λV µ with ⊥-reduction, even
in the absence of η-reduction. However, on the basis of the correspondence be-
tween µ-operator and Felleisen’s C-operator [9] such that µα.M = C(λα.M) and
[α]M = αM , one obtains that x(αy) =C (λx.A(x))(αy) =C A(αy) =C C(λβ.αy)
in the equational theory λC [18]. From the naive observation, Hofmann’s cate-
gorical models for λC would also work for an equational version of call-by-value
λµ-calculus.
Let .βηr be one-step .µ consisting of (βv), (βt), (ηv), (µ-η), or (rn). Let .st

be one-step .µ consisting of (µl), (µr), or (µt). Following the proof of lemma 2,
ifM1 .βηrM2, thenM1 .

+
βηM2. On the one hand, each .st-step fromM does not

simply induce β-steps from M , i.e., β-conversion may be used. To demonstrate
the strong normalization for well-typed λV µ-terms, it is enough to construct
an infinite reduction path from M if M has an infinite reduction path. In the
case of .st, following lemmata 2 and 3, the CPS-translated terms without the
β-conversion still have enough β-, η-redexes to construct an infinite reduction.
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For instance, in the case M1 of (V (µα.M))N , we have M1 .stM2 .stM3, where
M2 ≡ (µα.M [V ⇒ α])N and M3 ≡ µα.M [V ⇒ α][α ⇐ N ]. Here, M1 can be
reduced as follows:
M1 .

+
β N2 ≡ λk.(λα.Midθ1)(λm.N (λn.mnk)) .β N3 ≡ λα.Midθ1θ2,

where id = λx.x, θ1 = [α := λn.Ψ(V )nα], and θ2 = [α := λm.N(λn.mnα)]. We
now have M2 .

∗
β N2 and M3 .

∗
β N3. Let [N/α] be either [N ⇒ α] or [α⇐ N ].

Lemma 5. (i) If M1 .stM2 .stM3, then M1 .
+
β N2 .

+
β N3 for some λ2-terms N2

and N3 such that M2 .
∗
β N2 and M3 .

∗
β N3.

(ii) Let α 6∈ FN(N). IfM1[N/α].βηrM2, thenM1θ1.
+
βηN2θ2 for some λV µ-term

N2 and substitutions θ1 and θ2 such that M1[N/α] .
∗
β M1θ1 and M2 .

∗
β N2θ2.

Proof. By induction on the derivations of .st and .βηr . 2

Lemma 6. If there exits an infinite .µ-reduction path from λV µ-term M , then
M also has an infinite .βη-reduction path.

Proof. From Lemma 5 and the proof of Lemma 4. 2

From Proposition 3, Lemma 6 and the fact that λ2 is strongly normalizing [5],
the strong normalization property for λV µ can be obtained.

Proposition 4 (Strong Normalization Property for λV µ). Any well-typed
λV µ-term is strongly normalizable.

It is observed [10] that the straightforward use of the Tait&Martin-Löf parallel
reduction [37] could not work for proving the Church-Rosser property for λµ
including renaming rule, contrary to the comments on Theorem 2.5 in [29].
Even though one defines parallel reduction � as usual, we cannot establish that
if Mi � Ni (i = 1, 2), then M1[α ⇐ M2] � N1[α⇐ N2]; fact (iv) in the proof
of Theorem 1 in [30].

Lemma 7 (Weak Church-Rosser Property for λV µ). If M .µ M1 and
M .µM2, then M1 .

∗
µ N and M2 .

∗
µ N for some N .

From Proposition 4 and Lemma 7, we can obtain the Church-Rosser property
using Newman’s lemma [2].

Proposition 5 (Church-Rosser Theorem). λV µ has the Church-Rosser
property for well-typed terms.

5 Damas-Milner Style with µ-Operators

There exist implicitly typed and explicitly typed ML, and with respect to the
implicitly typed ML, there also exist two styles; the conventional ML [6] and
the system ML* [22] in which assumption types are universal and derived types
are monomorphic. Those two implicitly typed ML are essentially equivalent [22],
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and moreover, implicitly and explicitly typed ML are also equivalent [17]. First,
we provide an explicitly typed ML with µ-operators, called λµeml, and define
CPS-translation into λ2. Next, an implicitly typed ML* with µ-operators, called
λµiml is provided, and CPS-translation into ML is defined. Finally, we give a
brief comparison between those.

5.1 λµeml: Explicit let-polymorphism by value

Following the observation in section 2, we introduce an explicitly typed ML with
µ-operators especially for polymorphic terms, which is regarded as a short-hand
for the completely explicitly typed ML plus µ-operators. We define the system
λµeml under call-by-value in the following. The types τ and the type schemes σ
are defined as usual. A type assumption Γ is a finite set of declarations with the
form x :σ, and ∆ is a finite set of name-indexed types with the form τα.
τ ::= t | ⊥ | τ → τ σ ::= τ | ∀t.σ Γ ::= 〈 〉 | x :σ, Γ ∆ ::= 〈 〉 | τα, ∆

Γ ` x : Γ (x);∆

Γ `M1 : τ1 → τ2;∆ Γ `M2 : τ1;∆

Γ `M1M2 : τ2;∆
(→ E)

Γ, x : τ1 `M : τ2;∆

Γ ` λx.M : τ1 → τ2;∆
(→ I)

Γ `M : ∀t.σ;∆

Γ `Mτ : σ[t := τ ];∆
(Inst)

Γ `M : σ;∆

Γ ` Λt.M : ∀t.σ;∆
(Gen)∗

Γ `M1 : σ;∆ Γ, x :σ `M2 : τ ;∆

Γ ` let x=M1 in M2 : τ ;∆
(Let)

Γ `M : τ ;∆

Γ ` [α]M : ⊥;∆, τα
(⊥I)

Γ `M : ⊥;∆, τα

Γ ` µα.M : τ ;∆
(⊥E)

where (Gen)∗ denotes the eigenvariable condition.
Reduction rules:
(βv) (λx.M)V . M [x := V ]; (ηv) λx.V x . V if x 6∈ FV (V );
(let) let x=V in M . M [x := V ]; (βt) (Λt.M)τ . M [t := τ ];
(let-µe) let x=µα.M1 in M2 . µα.M1[λx.M2 ⇒ α];
(µr) (µα.M1)M2 . µα.M1[α⇐M2]; (µl) V (µα.M) . µα.M [V ⇒ α];
(rn) [α](µβ.V ) . V [β := α]; (µ-η) µα.[α]M . M if α 6∈ FN(M),
where the notion of values is the same as that in section 3.
We denote .eml by the above one-step reduction induced by .. We write =eml

for the reflexive, symmetric, transitive closure of .eml.
Since in the reduction (let-µe), the let-bound expression µα.M must have a

monomorphic type, that is, let x=µα.M1 inM2 can be read as an abbreviation
for (λx.M2)(µα.M1) for well-typed terms, we have the subject reduction property
for λµeml without any restrictions.

Proposition 6 (Subject reduction property for λµeml). If we have Γ `M1
: σ;∆ and M1 .emlM2 in λµeml, then Γ `M2 : σ;∆ in λµeml.
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Definition 2 (CPS-translation from λµeml to λ2). x = λk.kx;
λx.M = λk.k(λx.M); Λt.M = λk.k(Λt.M); [α]M = λk.k(Mα);
M1M2 = λk.M1(λm.M2(λn.mnk)); Mτ = λk.M(λm.mτ qk);
let x=M1 in M2 = λk.M1(λx.M2k); µα.M = λα.M(λx.x).
Ψ(x) = x; Ψ(λx.M) = λx.M; Ψ(Λt.M) = Λt.M ; Ψ([α]M) =Mα.
τ q = τ where τ is atomic; (τ1 → τ2)q = τ

q
1 → ¬¬τ

q
2 .

Lemma 8. If M .eml N , then M =βη N .

Proof. By induction on the derivation of M .eml N . 2

We have confirmed the soundness of the CPS-translation for untyped terms.

Proposition 7 (Soundness of the CPS-translation). If we haveM =eml N
in λµeml, then M =βη N in λ2.

Without any restriction, the translation logically establishes Kuroda’s transla-
tion. We define (τα, ∆)q as α :¬τ q, ∆q and (∀t.τ )q as ∀t.¬¬τ q.

Proposition 8. If λµeml has Γ `M : σ;∆, then λ2 has Γ q, ∆q `M : ¬¬σq.

Similarly to Proposition 4, we also have the strong normalization property for
well-typed λµeml-terms.

Proposition 9. λµeml has the strong normalization property for well-typed
terms.

5.2 λµiml: Implicit let-polymorphism by value

We introduce an implicitly typed ML* (see also [22]) with µ-operators.

Γ ` x : τ ;∆ if τ ≤ Γ (x)

Γ `M1 : τ1 → τ2;∆ Γ `M2 : τ1;∆

Γ `M1M2 : τ2;∆
(→ E)

Γ, x : τ1 `M : τ2;∆

Γ ` λx.M : τ1 → τ2;∆
(→ I)

Γ `M1 : τ1;∆ Γ, x :∀t.τ1 `M2 : τ2;∆

Γ ` let x=M1 in M2 : τ2;∆
(let)∗

Γ `M : τ ;∆

Γ ` [α]M : ⊥;∆, τα
(⊥I)

Γ `M : ⊥;∆, τα

Γ ` µα.M : τ ;∆
(⊥E)

where (let)∗ denotes the eigenvariable condition, and ⊥ is a type constant.
Reduction rules:
(βv) (λx.M)V . M [x := V ]; (ηv) λx.V x . V if x 6∈ FV (V );
(let) let x=V in M . M [x := V ];
(let-µi) let x=µα.M1 in M2 . let x=λx.µα.M1[α⇐ x] in M2

where M1 contains a subterm in the form [α](λy.w);
(µr) (µα.M1)M2 . µα.M1[α⇐M2]; (µl) V (µα.M) . µα.M [V ⇒ α];
(rn) [α](µβ.V ) . V [β := α]; (µ-η) µα.[α]M . M if α 6∈ FN(M),
where the notion of values is the same as that in section 3.
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Note the similarity of ζextfun in [29] to (let-µi), but note also that in λµiml,

ζextfun is applied only to the top level of the let-bound expression, whose result can
be reduced by (let) under call-by-value. On the other hand, since a term in the
form of µα.M is not a value, let x=µα.M1 in M2 cannot be reduced by (let)
directly. In other words, the application of (let-µi) regards polymorphic µα.M
as a value in the form of λx.µα.M [α⇐ x] (polymorphic µα.M cannot cooperate
with (µl); see below), and then let f=µα.M in (λx.N)f is not reduced by (µl)
but by (βv), and let f=µα.M in f(µβ.N) is not by (µr) but by (µl).
As in λµeml, we can establish the subject reduction property for λµiml. How-

ever, in λµiml we cannot adopt (let-µe): let x=µα.M in N . µα.M [λx.N ⇒ α],
since (let-µe) cannot be well-typed in λµiml. One may still consider (let-µe) in
the β-reduced form:

(let-µe’) let x=µα.M in N . µα.M [[α](N [x := w])/[α]w],
where the term M [[α](N [x := w])/[α]w] is a term obtained from M , replacing
each subterm of the form [α]w with [α](N [x := w]). In general, (let-µe’) cannot
represent a correct proof reduction either. To verify this, assume that we have
the following proof figure for the left-hand side of (let-µe’), where µα.M is used
polymorphically in N more than once:

Π1
P : τ1

[α]P : ⊥; τα1
Π2

M : ⊥; τα1
µα.M : τ1

[x : ∀t.τ1]

x : τ1[t := τ3]

[x : ∀t.τ1]

x : τ1[t := τ4]
Π3
N : τ2

let x=µα.M in N : τ2
(let)∗

Then one obtains the following type assignment for the right-hand side:

Π1[t := τ3] ◦ S
P : τ1[t := τ3] ◦ S

Π1[t := τ4] ◦ S
P : τ1[t := τ4] ◦ S

Π3S
N [x := P ] : τ2S

[α](N [x := P ]) : ⊥; (τ2S)α

Π2[t := τ3] ◦ S
M [[α](N [x := w])/[α]w] : ⊥; (τ2S)

α

µα.M [[α](N [x := w])/[α]w] : τ2S

Here, τ3 and τ4 must be unifiable under some substitution S, since the assump-
tion whose type contains a free variable t in Π1 may be discharged by (→ I)
in Π2, and in this case those assumptions must be chancelled by the single
application of (→ I) after the reduction.
Following the above observation, we obtain that (let-µe’) represents a correct

proof reduction only if all types of x in N can be unified, where the merit of
polymorphism is lost. It can also be observed that, in the above proof figure, if
Π2 contains no (→ I) that discharges the type containing free t, then there is
no need to unify each type of x in N , and (let-µe’) becomes correct in this case.



Explicitly Typed λµ-Calculus for Polymorphism and Call-by-Value 173

For example, in the case of let x=µα.[α]λy.µβ.[α](λv.y) in N , one has to unify
each type of x in N . On the other hand, (let-µe’) is a correct reduction for the
case of let x=µα.[α]λv.µβ.[α](λy.y) in N . See also observation in section 2.
It would not be straightforward to give a CPS-translation to λµiml, since,

as observed in the above, polymorphic let-expressions cannot be read as an ab-
breviation of λ-expressions, which can cooperate with (µl) under call-by-value.
Hence, we start with separating the λ-variables x into two categories; monomor-
phic x : τ and polymorphic X : ∀t.τ . We also consider a strict class of values,
excluding a single occurrence X: V ::= x | λx.M | [α]M . To establish the CPS-
translation, the call-by-value reduction rules are applied for the strict class. Then
a call-by-value CPS-translation is given to monomorphic x, and a call-by-name
CPS-translation is to polymorphic X. The translation from λµiml (ML* plus
µ-operator) to ML (λµeml without µ-operators) is defined as follows:

Definition 3 (CPS-translation from λµiml to ML). x = λk.kx;
X = λk.Xk; λx.M = λk.k(λx.M); [α]M = λk.k(Mα);
M1M2 = λk.M1(λm.M2(λn.mnk));
let X=M1 in M2 = λk.(let X=M1 in (M2k)); µα.M = λα.M(λx.x).
Ψ(x) = x; Ψ(λx.M) = λx.M ; Ψ([α]M) =Mα.

The Meyer-Wand typing property (Kuroda’s double negation) can be established
for λµiml without any restriction.

Proposition 10. If λµiml has Γ `M : τ ;∆, then ML has Γ q, ∆q `M : ¬¬τ q.

Now, λµiml without (let-µi) has the soundness of the CPS-translation.

Lemma 9. If M .iml N in λµiml without (let-µi), then M =βη N in ML.

Proof. By induction on the derivation of M .iml N . 2

Following the proof of lemma 9, not only (let) itself but also (let) without re-
stricting to values (call-by-name) can be interpreted. This point would justify the
’by-name’ semantics for let-expressions in Harper et al. [13,16] and the implicit
let-polymorphism by name in Leroy [23], which is quite similar to λµeml.
The type erasure M◦ from λµeml to λµiml is defined as that in section 3.

Then the typing relations between λµeml and λµiml are equivalent as follows:
(i) If we have Γ `M1 : τ ;∆ in λµiml, then there exists M2 such that M1 =M◦2
and Γ `M2 : τ ;∆ in λµeml.
(ii) If we have Γ `M : ∀t.τ ;∆ in λµeml, then Γ `M◦ : τ ;∆ in λµiml.
However, computationally they are different with respect to (let) of λµeml and
(let-µi). We compare the two rules in the case the let-bound expression of the
polymorphic control operators.
On the one hand, if we did not consider a reduction strategy, then there were

two critical cases such that (1) (µα.M)(µβ.N); and (2) (λx.N)(µα.M). One can
apply (µr) and (µl) in the case of (1), and (µl) and (β) in the case of (2).
(1) In λµeml, let f=Λt.µα.M in (fτ)(µβ.N) is reduced by (µr) after (let). In
turn, let f=µα.M in f(µβ.N) can be reduced by (µl) in λµiml .
(2) In λµeml, let f=Λt.µα.M in (λx.N)(fτ) is reduced by (µl) after (let). On
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the other hand, let f=µα.M in (λx.N)f can be reduced by (βv) in λµiml.
With respect to the critical cases, λµeml (explicit let-polymorphism by value)
and λµiml (implicit let-polymorphism by value) choose different computations.

6 Comparison with Related Work and Concluding
Remarks

We briefly compare λµml with ML [25] together with callcc [13]. In ML, the
class of type variables is partitioned into two subclasses, i.e., the applicative and
the imperative type variables. The type of callcc is declared with imperative
type variables to guarantee the soundness of the type inference. On the basis
of the classification, the typing rule for let-expressions is given such that if the
let-bound expression is not a value, then generalization is allowed only for ap-
plicative type variables; otherwise generalization is possible with no restriction.
There is a simple translation from the ML-programs to the λµml-terms, such
that the two subclasses of type variables in ML are degenerated into a single
class: dcallcc(M)e = µα.[α](dMe(λx.[α]x));

dthrow M Ne = µβ.dMedNe where β is fresh.
However, according to Harper et al. [13], the following program:

let f=callcc(λk.λx.throw k (λv.x)) in (λx1x2.x2)(f 1)(f true)
is not typable in ML, since callcc(λk.λx.throw k (λv.x)) with imperative type
variables is not a value, and in the case of non-value expressions, polymorphism
is allowed only for expressions with applicative type variables. If it were typable
with bool, then this was reduced to 1 following the operational semantics. Under
the translation d e together with type annotation, in λµeml we have

let f=Λt.µα.[α]λx.µβ.[α](λv.x) in (λx1x2.x2)(f int 1)(f bool true)
with type bool, and this is now reduced to true, as in Fω plus callcc under
call-by-value, not under ML-like call-by-value [15]. In turn, the following term

let f=µα.[α]λx.µβ.[α](λv.x) in (λx1x2.x2)(f 1)(f 2)
with type int is reduced to 1 by (µl). On the other hand, in λµiml we have

let f=µα.[α]λx.µβ.[α](λv.x) in (λx1x2.x2)(f 1)(f true)
with type bool, and this is also reduced to true. λµml could overcome the coun-
terexample of polymorphic callcc in ML, and moreover, the typing conditions
for let-expressions could be deleted, which is observed in section 5. In particular,
λµiml is another candidate for implicit polymorphism by value, compared with
implicit polymorphism by name in Leroy [23].
Ong&Stewart [29] extensively studied a call-by-value programming language

based on a call-by-value variant of finitely typed λµ-calculus. There are some
distinctions between Ong&Stewart and our finite type fragment; their reduction
rules have type annotations like the complete Church-style, and, using the an-
notation, more reduction rules are defined than ours, which can give a stronger
normal form. In addition, our notion of values is an extended one, which would
be justified by observation based on the CPS-translation. Moreover, our renam-
ing rule is applied for the extended values, and following the proof of lemma
4, this distinction is essential for the CPS-translation of renaming rule. Other-
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wise the reductions by renaming rule would not be simulated by β-reductions.
On the other hand, in the equational theory λC of Hofmann [18], one obtains
α(C(λβ.M)) =C M [β := α] without restricting to values, which would be dis-
tinction between equational theory and rewriting theory.
We used the CPS-translation as a useful tool to show consistency and strong

normalization of the system. With respect to Proposition 2 (soundness of CPS-
translation); for call-by-name λµ, on the one hand, the completeness is obtained
in de Groote [7], i.e., the call-by-name CPS-translation is injective. For a call-
by-value system with Felleisen’s control operators [9], on the other hand, the
completeness is established with respect to categorical models [18], and more-
over, this method is successfully applied to call-by-name λµ [20]. We believe
that our CPS-translation would be natural along the line of [33], and it is worth
pursuing the detailed relation to such categorical models [20,36].

Acknowledgements I am grateful to Susumu Hayashi, Yukiyoshi Kameyama,
and the members of the Proof Animation Group for helpful discussions. I would
also like to thank the referees for most helpful comments and suggestions.

References

1. Y.Andou: A Normalization-Procedure for the First Order Classical Natural Deduc-
tion with Full Logical Symbols. Tsukuba Journal of Mathematics 19 (1) pp.153–162,
1995. 165, 165

2. H.P.Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition),
North-Holland, 1984. 169

3. H.P.Barendregt: Lambda Calculi with Types, Handbook of Logic in Computer
Science Vol.II, Oxford University Press, pp.1–189, 1992. 163

4. F.Barbanera and S.Berardi: Extracting Constructive Context from Classical Logic
via Control-like Reductions, Lecture Notes in Computer Science 664, pp.45–59, 1993.
162

5. G.Barthe and M.H.Sørensen: Domain-free Pure Type Systems, Lecture Notes in
Computer Science 1234, pp.9–20, 1997. 164, 164, 166, 169

6. L.Damas and R.Milner: Principal type-schemes for functional programs, Proc. 9th
Annual ACM Symposium on Principles of Programming Languages, pp.207–212,
1982. 164, 169

7. P.de Groote: A CPS-Translation for the λµ-Calculus, Lecture Notes in Computer
Science 787, pp.85–99, 1994. 175

8. P.de Groote: A Simple Calculus of Exception Handling, Lecture Notes in Computer
Science 902, pp.201–215, 1995. 162

9. M.Felleisen, D.P.Friedman, E.Kohlbecker, and B.Duba: Reasoning with Continua-
tions, Proc. Annual IEEE Symposium on Logic in Computer Science, pp.131–141,
1986. 168, 175

10. K.Fujita: Calculus of Classical Proofs I, Lecture Notes in Computer Science 1345,
pp.321–335, 1997. 169

11. K.Fujita: Polymorphic Call-by-Value Calculus based on Classical Proofs, Lecture
Notes in Artificial Intelligence 1476, pp.170–182, 1998. 164

12. T.G.Griffin: A Formulae-as-Types Notion of Control, Proc. 17th Annual ACM
Symposium on Principles of Programming Languages, pp.47–58, 1990. 162



176 Ken-etsu Fujita

13. R.Harper, B.F.Duba, and D.MacQueen: Typing First-Class Continuations in ML,
J.Functional Programming, 3 (4) pp.465–484, 1993. 173, 174, 174

14. R.Harper and M.Lillibridge: ML with callcc is unsound, The Types Form, 8, July,
1991. 163, 164

15. R.Harper and M.Lillibridge: Explicit polymorphism and CPS conversion, Proc.
20th Annual ACM Symposium on Principles of Programming Languages, pp.206–
219, 1993. 164, 164, 164, 164, 174

16. R.Harper and M.Lillibridge: Polymorphic type assignment and CPS conversion,
LISP and Symbolic Computation 6, pp.361–380, 1993. 164, 164, 173

17. R.Harper and J.C.Mitchell: On The Type Structure of Standard ML, ACM Trans-
actions on Programming Languages and Systems, Vol. 15, No.2, pp.210–252, 1993.
163, 169

18. M.Hofmann: Sound and complete axiomatisations of call-by-value control opera-
tors, Math.Struct. in Comp. Science 5, pp.461–482, 1995. 168, 168, 175, 175

19. W.Howard: The Formulae-as-Types Notion of Constructions, To H.B.Curry: Es-
says on combinatory logic, lambda-calculus, and formalism, Academic Press, pp.479–
490, 1980. 162

20. M.Hofmann and T.Streicher: Continuation models are universal for λµ-calculus,
Proc. 12th Annual IEEE Symposium on Logic in Computer Science, 1997. 175, 175

21. S.Kobayashi: Monads as modality, Theor.Comput.Sci. 175, pp.29–74, 1997. 162
22. A.J.Kfoury, J.Tiuryn, and P.Urzyczyn: An Analysis of ML Typability, Journal of
the Association for Computing Machinery, Vol.41, No.2, pp.368–398, 1994. 169,
169, 171

23. X.Leroy: Polymorphism by name for references and continuations, Proc. 20th An-
nual ACM Symposium of Principles of Programming Languages, pp.220–231, 1993.
164, 164, 173, 174

24. J.C.Mitchell: Polymorphic Type Inference and Containment, Information and
Computation 76, pp.211–249, 1988. 166

25. R.Milner: A Theory of Type Polymorphism in Programming, Journal of Computer
and System Sciences 17, pp.348–375, 1978. 163, 174

26. C.R.Murthy: An Evaluation Semantics for Classical Proofs, Proc. 6th Annual IEEE
Symposium on Logic in Computer Science, pp.96–107, 1991. 162

27. A.Meyer and M.Wand: Continuation Semantics in Typed Lambda-Calculi, Lecture
Notes in Computer Science 193, pp.219–224, 1985. 167

28. C.-H.L.Ong: A Semantic View of Classical Proofs: Type-Theoretic, Categorical,
and Denotational Characterizations, Linear Logic ’96 Tokyo Meeting, 1996. 162

29. C.-H.L.Ong and C.A.Stewart: A Curry-Howard Foundation for Functional Com-
putation with Control, Proc. 24th Annual ACM Symposium of Principles of Pro-
gramming Languages, 1997. 162, 163, 166, 166, 166, 168, 169, 172, 174

30. M.Parigot: λµ-Calculus: An Algorithmic Interpretation of Classical Natural De-
duction, Lecture Notes in Computer Science 624, pp.190–201, 1992. 162, 163, 163,
165, 169

31. M.Parigot: Classical Proofs as Programs, Lecture Notes in Computer Science 713,
pp.263-276, 1993. 166

32. M.Parigot: Proofs of Strong Normalization for Second Order Classical Natural
Deduction, J.Symbolic Logic 62 (4), pp.1461–1479, 1997. 163

33. G.Plotkin: Call-by-Name, Call-by-Value and the λ-Calculus, Theor.Comput.Sci.
1, pp. 125–159, 1975. 167, 168, 175

34. D.Prawitz: Ideas and Results in Proof Theory, Proc. 2nd Scandinavian Logic
Symposium, edited by N.E.Fenstad, North-Holland, pp.235–307, 1971. 163, 165



Explicitly Typed λµ-Calculus for Polymorphism and Call-by-Value 177

35. N.J.Rehof and M.H.Sørensen: The λ�-Calculus, Lecture Notes in Computer Sci-
ence 789, pp.516–542, 1994. 162

36. T.Streicher and B.Reus: Continuation semantics: abstract machines and control
operators, to appear in J.Functional Programming. 175

37. M.Takahashi: Parallel Reductions in λ-Calculus, J.Symbolic Computation 7,
pp.113–123, 1989. 169



Soundness of the Logical Framework for Its

Typed Operational Semantics

Extended Abstract

Healfdene Goguen?

Department of Computer Science, University of Edinburgh
The King’s Buildings, Edinburgh, EH9 3JZ, United Kingdom

Fax: (+44) (131) 667-7209

Abstract. Typed operational semantics [4,5] is a technique for describ-
ing the operational behavior of the terms of type theory. The combination
of operational information and types provides a strong induction prin-
ciple that allows an elegant and uniform treatment of the metatheory
of type theory. In this paper, we adapt the new proof of strong normal-
ization by Joachimski and Matthes [6] for the simply-typed λ-calculus
to prove soundness of the Logical Framework for its typed operational
semantics. This allows an elegant treatment of strong normalization,
Church–Rosser, and subject reduction for βη-reduction for the Logical
Framework. Along the way, we also give a cleaner presentation of typed
operational semantics than has appeared elsewhere.

1 Introduction

Typed operational semantics [4,5] is a technique for describing the operational
behavior of the terms of type theory. Originally developed for Luo’s type the-
ory UTT [11], a system with dependent types, type universes, inductive types,
and impredicative propositions, it has also been applied to modal logics [8] and
higher-order subtyping [2].
A presentation similar to typed operational semantics was discovered inde-

pendently by van Raamsdonk and Severi [18]1. Their approach is to define an
operational definition of strong normalization, by elaborating the weak-head
normal forms and the one-step weak-head β-expansions with suitable premisses.
However, their system is limited by their adherence to capturing strong nor-

malization. If the operational system is instead equipped with types then it can
serve as the basis for developing the full metatheory of type theory, including
strengthening, subject reduction, Church–Rosser and strong normalization. This
is the basis of the technique developed for UTT [4], which gave a new proof of
subject reduction for βη-reduction using the strength of the induction principle
of typed operational semantics.

? Now at AT&T Labs, 180 Park Ave., Florham Park NJ 07932 USA.
1 Loader [9] also developed his work using the same system, after reading [4].

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 177–197, 1999.
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It seems that these benefits of including types in the operational presentation
have been ignored elsewhere because others have worked in the framework of
simple types. Among the properties that are easy for simple types and more
difficult for dependent types are:

– The well-formedness of types. In the simply-typed λ-calculus types are al-
ways well-formed. In systems with dependent types, there is an interdepen-
dency between the well-formed terms and the well-formed types.

– The inversion of typing judgements. The simply-typed λ-calculus can be
formulated as a syntax-directed system, meaning that each term constructor
has exactly one corresponding rule of inference. This cannot be done with
dependent types because of judgemental equality, which can interfere at any
point in the derivation of a judgement.

– The enumeration of variables. In the simply-typed λ-calculus, it can be as-
sumed that there are an infinite number of variables at each type. In systems
with dependent types, this cannot be achieved so easily2, and so we need to
formulate lemmas about the manipulation of the hypotheses in the context,
such as Thinning and Strengthening.

For these reasons, the metatheory of dependent types is much more complex than
that of simple types, and results such as subject reduction require an extensive
background development.
Recently, Joachimski and Matthes [6] developed a simple and elegant proof

of strong normalization for the simply-typed λ-calculus using the operational
definition of strong normalization, replacing the Tait–Girard style proof using
saturated sets or candidates of reducibility. The proof using the operational
system follows by simultaneously showing the admissibility of substitution and
application in the operational system, by complete induction on the type of the
substituted variable or the domain of the application.
Our goal in the present paper is to show that this proof can be adapted to

the typed operational semantics for the Logical Framework. This shows that
the technique lifts successfully to dependent types, and serves to make explicit
the information about types necessary in the proof that can be left implicit and
informal for the simply-typed λ-calculus. Along the way, we also give a cleaner
presentation of typed operational semantics than has appeared elsewhere for the
Logical Framework, using ideas incorporated from recent work with Compagnoni
on typed operational semantics for subtyping [2].
The final result of the paper, Corollary 2, is the equivalence of the usual

typing rules of the Logical Framework and the typed operational semantics. This
equivalence allows us to use an approach quite different to the traditional one for
Pure Type Systems [1,10,17]. We develop all of the properties of the type theory
in the typed operational semantics—the only induction on derivations of the

2 Adding a new variable to the context extends the possible types, because types can
depend on that variable, and so infinite contexts require some kind of diagonaliza-
tion. Pottinger’s infinite contexts [10,14] are one solution, but they are quite heavy
technical machinery.



Soundness of the Logical Framework for Its Typed Operational Semantics 179

Logical Framework is in the proof of soundness—and then use the equivalence
to transfer these properties to the usual presentation.
We believe that the elegance of the development outlined in this paper jus-

tifies our approach. Furthermore, although the traditional development of the
metatheory of type theory works well with non-normalizing type theories, our
approach is more robust for strongly normalizing type theories. For example, as
the current paper shows, the difference between the approach for systems with
or without η-reduction is very small when using typed operational semantics, as
opposed to other developments [3,15,19].
The operational understanding of type theory, through the operational de-

finition of strong normalization or through typed operational semantics, seems
to have been crucial to the discovery of the new proof technique. The same
technique almost certainly works directly for strong normalization, without the
intermediary operational definition, but verifying the details using traditional
tools of λ-calculus such as residuals is likely to be difficult and tedious.
Our terminology for soundness and completeness of the typed operational

semantics has been controversial. Our view is that the operational semantics
defines a term model for the standard typing rules. This was motivated by our
earlier proof of soundness, which relied on a saturated-set style term model, but
we believe that this view is still valid with the new proof.
In this paper we study Martin-Löf’s Logical Framework. Although there are

important differences in philosophy between this system and the Edinburgh Log-
ical Framework, technically the work needed to establish results about the two
systems in their pure form is very similar.
We see this paper as part of a larger program to redevelop the computa-

tional foundations of type theory, replacing the Tait–Girard saturated sets or
candidates of reducibility proof by the simpler proof using typed operational
semantics.
The structure of the rest of the paper is as follows. In Section 2 we give a

short presentation of the Logical Framework. In Section 3 we present the typed
operational semantics for the Logical Framework and briefly discuss the motiva-
tions for the system. In Section 4 we develop the basic metatheory of the typed
operational semantics. In Section 5 we prove the main lemma for the admissibil-
ity of substitution and application, and use this to show soundness of the Logical
Framework for its typed operational semantics. Because the admissibility lemma
is the most important technical contribution of this paper, we give the proof of
the result in full detail. Finally, in Section 6 we summarize the contributions of
the paper and mention possible further work.

2 The Logical Framework

In this section we give a brief introduction to Martin-Löf’s Logical Framework.
Our intention is only to give the basic definitions necessary for the technical de-
velopment of this paper. For an introduction to the philosophy and intended use
of the type theory, the interested reader should consult one of the more extensive
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references [11,13]. To help the reader, we use standard λ-calculus notation rather
than the usual notation for the Logical Framework.

The terms of the Logical Framework are defined by the following grammar:

A,B, C ∈ K ::= Type | El(M) | Πx:A.B
M,N, P ∈ T ::= x | λx:A.M | M(N)
Γ,∆, Φ ∈ C ::= () | Γ, x:A

The elements A,B, C ∈ K are called kinds. The kind Type represents the pos-
sible types of the type theory, and the operator El(M) represents the kind of
elements of type M , ifM is a type. This introduces an interdependency between
terms and kinds.
We identify terms that are equivalent up to the renaming of bound variables

and write M ≡ N if M and N are equal in this way. We write FV(M) for
the free variables in a term M , those variables not bound by abstractions. We
write [N/x]M for the usual capture-free substitution of N for the free variable x
inM . Each of these operations is lifted to kinds and contexts in the natural way.

We say that a context Γ ≡ x1:A1, . . . , xn:An such that the xi are dis-
tinct and FV(Ai) ⊆ {x1, . . . , xi−1} is consistent. We write dom(Γ ) for the set
{x1, . . . , xn}.

2.1 Basic Rules of Inference

The Logical Framework has five judgement forms:

– Γ ` ok, meaning that Γ is a well-formed context of assumptions,
– Γ ` A kind, meaning that A is a kind under assumptions Γ ,
– Γ ` A = B, meaning that A and B are kinds and are equal under the
assumptions Γ ,

– Γ `M : A, meaning that A is a kind and thatM is in A, under assumptions
Γ , and

– Γ ` M = N : A, meaning that A is a kind, that M and N are in A, and
that they are equal in A, under assumptions Γ .

These judgements are defined inductively by the following rules of inference.

Valid Contexts

Emp

() ` ok
Weak

Γ ` A kind x 6∈ dom(Γ )

Γ, x:A ` ok

Types

Type
Γ ` ok

Γ ` Type kind
El

Γ `M : Type

Γ ` El(M) kind
Π

Γ, x:A1 ` A2 kind

Γ ` Πx:A1.A2 kind
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Type Equality

KRefl

Γ ` A kind

Γ ` A = A
KSym

Γ ` A = B

Γ ` B = A

KTrans

Γ ` A = B Γ ` B = C
Γ ` A = C

El-Eq
Γ `M = N : Type

Γ ` El(M) = El(N)
Π-Eq

Γ ` A1 = B1 Γ, x:A1 ` A2 = B2
Γ ` Πx:A1.A2 = Πx:B1.B2

Terms

Var

Γ0, x:A, Γ1 ` ok
Γ0, x:A, Γ1 ` x : A

Eq

Γ `M : A Γ ` A = B
Γ `M : B

λ
Γ, x:A1 `M0 : A2

Γ ` λx:A1.M0 : Πx:A1.A2
App

Γ `M1 : Πx:A1.A2 Γ `M2 : A1
Γ `M1(M2) : [M2/x]A2

Term Equality

Refl

Γ `M : A
Γ `M =M : A

Sym

Γ `M = N : A
Γ ` N =M : A

Trans

Γ `M = N : A Γ ` N = P : A

Γ `M = P : A

=R
Γ `M = N : A Γ ` A = B

Γ `M = N : B

λ-Eq
Γ ` A1 = B1 Γ, x:A1 `M0 = N0 : A2
Γ ` λx:A1.M0 = λx:B1.N0 : Πx:A1.A2

App-Eq

Γ `M1 = N1 : Πx:A1.A2 Γ `M2 = N2 : A1
Γ `M1(M2) = N1(N2) : [M2/x]A2

β
Γ, x:A1 `M0 : A2 Γ `M2 : A1

Γ ` (λx:A1.M0)(M2) = [M2/x]M0 : [M2/x]A2

2.2 Structural Rules of Inference

The rules in this section are separated out because they are admissible. We
write Γ ` J for judgements derived in the full system including these rules, and
Γ `− J for judgements derived in the system without these rules. We shall prove
the admissibility of the rules through the equivalence with the typed operational
semantics.
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Substitution Rules

Γ, x:A, Γ ′ ok Γ ` P : A

Γ, [P/x]Γ ′ ok

Γ, x:A, Γ ′ ` B kind Γ ` P : A

Γ, [P/x]Γ ′ ` [P/x]B kind

Γ, x:A, Γ ′ ` B kind Γ ` N = P : A

Γ, [M/x]Γ ′ ` [N/x]B = [P/x]B

Γ, x:A, Γ ′ `M : B Γ ` P : A

Γ, [P/x]Γ ′ ` [P/x]M : [P/x]B

Γ, x:A, Γ ′ `M : B Γ ` N = P : A

Γ, [N/x]Γ ′ ` [N/x]M = [P/x]M : [N/x]B

Γ, x:A, Γ ′ ` B = C Γ ` P : A
Γ, [P/x]Γ ′ ` [P/x]B = [P/x]C

Γ, x:A, Γ ′ `M = N : B Γ ` P : A
Γ, [P/x]Γ ′ ` [P/x]M = [P/x]N : [P/x]B

Thinning

Γ, Γ ′ ok Γ ` A kind x 6∈ FV (Γ, Γ ′)

Γ, x:A, Γ ′ ok

Γ, Γ ′ ` B kind Γ ` A kind x 6∈ FV (Γ, Γ ′)

Γ, x:A, Γ ′ ` B kind

Γ, Γ ′ `M : B Γ ` A kind x 6∈ FV (Γ, Γ ′)

Γ, x:A, Γ ′ `M : B

Γ, Γ ′ ` B = C Γ ` A kind x 6∈ FV (Γ, Γ ′)

Γ, x:A, Γ ′ ` B = C

Γ, Γ ′ `M = N : B Γ ` A kind x 6∈ FV (Γ, Γ ′)

Γ, x:A, Γ ′ `M = N : B

Context Replacement

Γ, x:A, Γ ′ ok Γ ` A = B

Γ, x:B, Γ ′ ok

Γ, x:A, Γ ′ ` C kind Γ ` A = B

Γ, x:B, Γ ′ ` C kind

Γ, x:A, Γ ′ `M : C Γ ` A = B

Γ, x:B, Γ ′ `M : C

Γ, x:A, Γ ′ ` C = D Γ ` A = B

Γ, x:B, Γ ′ ` C = D

Γ, x:A, Γ ′ `M = N : C Γ ` A = B

Γ, x:B, Γ ′ `M = N : C

Presuppositions

Γ ` J

Γ ` ok

Γ ` A = B

Γ ` A kind

Γ `M = N : A

Γ `M : A

Γ `M : A

Γ ` A kind
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3 A Typed Operational Semantics for the Logical
Framework

The typed operational semantics for the Logical Framework has the following
judgement forms with associated informal meaning:

– |= Γ → ∆, meaning that Γ has normal form ∆.

– Γ |= A → B, meaning that A is well-formed under assumptions Γ and has
normal form B.

– Γ |= M → N → P : A, meaning that M , N and P are well-formed of kind
A under assumptions Γ , and M has weak-head normal form N and normal
form P .

We also use the following abbreviations:

– Γ |= ok for |= Γ → ∆ when ∆ is not relevant.

– Γ |=M →w N : A for Γ |=M → N → P : A when P is not relevant.

– Γ |=M →n P : A for Γ |=M → N → P : A when N is not relevant.

– Γ |=M : A for Γ |=M → N → P : A when N and P are not relevant.

We say that the meanings of the judgements are informal because the rules do
not depend on weak-head or normal forms: the demonstration that ∆ is the
normal form of Γ in |= Γ → ∆, for example, is left to Lemma 11.

The typed operational semantics is defined inductively by the following rules
of inference.

Contexts

Emp

|= ()→ ()
Weak

|= Γ → ∆ Γ |= A→ B x 6∈ dom(Γ )
|= Γ, x:A→ ∆, x:B

Kinds

Type
Γ |= ok

Γ |= Type→ Type
El
Γ |=M → N → P : Type
Γ |= El(M)→ El(P )

Π
Γ |= A1 → B1 Γ, x:A1 |= A2 → B2

Γ |= Πx:A1.A2 → Πx:B1.B2
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Terms

Var

Γ0, x:A, Γ1 |= A→ B

Γ0, x:A, Γ1 |= x→ x→ x : B

η
Γ |= A1 → B1

Γ, x:A1 |=M0 →n P (x): B2
Γ |= P → P → P : Πx:B1.B2

Γ |= λx:A1.M0 → λx:A1.M0 → P : Πx:B1.B2

λ

Γ |= A1 → B1
Γ, x:A1 |=M0 →n P0 : B2 λx:B1.P0 not an η-redex

Γ |= λx:A1.M0 → λx:A1.M0 → λx:B1.P0 : Πx:B1.B2

Base

Γ |=M1 → N1 → P1 : Πx:B1.B2
Γ |=M2 → N2 → P2 : B1 Γ |= [M2/x]B2 → CN1 not an abstraction

Γ |=M1(M2)→ N1(M2)→ P1(P2) : C

β

Γ |=M1 →w λx:A1.N0 : Πx:B1.B2
Γ |= [M2/x]N0 → P → Q : C

Γ |=M2 : B1
Γ |= [M2/x]B2 → C

Γ |=M1(M2)→ P → Q : C

The typed operational semantics can be viewed as an alternative induction
principle for the well-typed terms of the Logical Framework. We have chosen
the rules of inference so that the induction principle be as powerful as possible,
with the particular criterion that the completeness theorem, Theorem 1, follow
as simply as possible.
The system is not simply a reduction relation with added type information.

Each of the rules involving application requires the normal forms of the domain
kind in the function to be identical to the kind of the argument, replacing the
rules for kind equality. The relationship between judgements and derivations is
therefore much closer than in the declarative presentation of the Logical Frame-
work of Section 2, and we always know what the last rule of inference must be
based on the structure of the judgement.

4 Metatheoretic Properties

In this section, we give an outline of the proofs of the metatheoretic properties
of the typed operational semantics. We divide this into two subsections, one for
results about typing and the other for results about reduction. As most of the
results and proofs in this section have been published elsewhere [2,4] for similar
systems, we avoid giving many details.
We shall use “inversion” on a derivation of a judgement to mean a case analy-

sis on the possible last rules of inference for that judgement. Hence, inversion
of a derivation of Γ |= x → N → P : B gives us that N ≡ x, P ≡ x, x:A ∈ Γ
and Γ |= A → B (we also know that the derivation used Var as the last rule
of inference, but this is usually not important). This is similar to Generation as
used for PTS [1], and can be automatized as done in the proof assistants Lego
and Coq.
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4.1 Typing

Lemma 1 (Subcontext). If Γ0, Γ1 |= J then there is a not necessarily strict
subderivation of Γ0 |= ok.

Lemma 2 (Contexts). If Γ |= J then Γ is consistent. Furthermore:

– If Γ |= A→ B then FV(A) ∪ FV(B) ⊆ dom(Γ ).
– If Γ |=M → N → P : A then FV(M)∪FV(N)∪FV(P )∪FV(A) ⊆ dom(Γ ).

Definition 1 (Renaming). A map γ is a substitution from ∆ to Γ if ∆ |= ok,
dom(γ) = dom(Γ ) and x:A ∈ Γ implies ∆ |= A[γ]→ B and ∆ |= γ(x) : B.
A renaming is a parallel substitution γ from ∆ to Γ such that for each x:A ∈

Γ we have γ(x) ≡ y and y:A[γ] ∈ ∆. We write weak∆Γ for the identity map over
dom(Γ ) if ∆ has all components of Γ .

Lemma 3 (Renaming). If γ is a renaming from ∆ to Γ then:

– If Γ |= A→ B then ∆ |= A[γ]→ B[γ].
– If Γ |=M → N → P : A then ∆ |=M [γ]→ N [γ]→ P [γ] : A[γ].

Proof. By induction on derivations, using Contexts (Lemma 2) for Π , λ and η.

Lemma 4. If Γ |= ok, ∆ |= ok and ∆ has all components of Γ then weak∆Γ is
a substitution from ∆ to Γ .

Corollary 1 (Thinning). If Γ |= J and ∆ is a valid context with all compo-
nents of Γ then ∆ |= J .

The above proof of Thinning was inspired by McKinna and Pollack’s [12]
treatment of α-equivalence. The more complex treatment of Thinning is neces-
sary because the new variables occurring in ∆ may have been used for the bound
variables of the subject in Γ |= J . This is also a problem for the traditional proof
of Thinning for PTS [1]. See [12,4] for more details.
In practice, we use the simpler result of Weakening, which simply says that

if Γ |= J and Γ,∆ |= ok then Γ,∆ |= J ; this follows as a corollary to Thinning.

Lemma 5 (Determinacy).

– If |= Γ → ∆ and |= Γ → Φ then ∆ ≡ Φ.
– If Γ |= A→ B and Γ |= A→ C then B ≡ C.
– If Γ |= M → N → P : B and Γ |= M → Q → R : C then N ≡ Q, P ≡ R,
and B ≡ C.

Proof. By simultaneous induction on derivations.
We consider case Π . By inversion of Γ |= Πx:A1.A2 → Πy:C1.C2 we know

that Γ |= A1 → C1 and Γ, y:A1 |= [y/x]A2 → C2. By the induction hypothe-
sis B1 ≡ C1. Furthermore, by Renaming Γ, x:A1 |= A2 → [x/y]C2, so by the
induction hypothesis again B2 ≡ [x/y]C2, and so Πx:B1.B2 ≡ Πy:C1.C2.
Cases λ and η use Renaming similarly.
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Strengthening is often the most difficult of the metatheoretic results for a
type theory with an equality rule for types. For the typed operational semantics
this result is straightforward, because kind equality is taken care of in the indi-
vidual rules. The kind in each judgement about terms must always be normal,
and although we do not explicitly use this fact it ensures that the strengthened
variable never occurs in the kind. This is different from the situation in the Logi-
cal Framework, where variables that do not occur in the term can be introduced
into the kind by kind equality.

Lemma 6 (Strengthening). Suppose z is a variable such that z 6∈ FV(Γ1).
Then:

– If Γ0, z:C, Γ1 |= ok then Γ0, Γ1 |= ok.
– If Γ0, z:C, Γ1 |= A→ B and z 6∈ FV(A) then Γ0, Γ1 |= A→ B.
– If Γ0, z:C, Γ1 |=M → N → P : A and z 6∈ FV(M) then Γ0, Γ1 |=M → N →
P : A.

Proof. By simultaneous induction on derivations, using Contexts for rule η.

We now show that the typed operational semantics is complete for the Logical
Framework. We remind the reader that Γ `− J represents judgements derived
in the system without the structural rules in Section 2.2.

Theorem 1 (Completeness for LF−).

– If Γ |= ok then `−Γ .
– If Γ |= A→ B then Γ `− A kind and Γ `− A = B.
– If Γ |=M → N → P : A then Γ `− M : A, Γ `− M = N : A, Γ `− M =
P : A and Γ `− A = A.

Proof. By simultaneous induction on derivations.
We consider Var. By the induction hypothesis, Γ0, x:A, Γ1 `− A kind and

Γ0, x:A, Γ1 `− A = B. By Subcontext Γ0, x:A, Γ1 |= ok, so by the induction hy-
pothesis `−Γ0, x:A, Γ1. By Var Γ0, x:A, Γ1 `− x : A, and by Eq Γ0, x:A, Γ1 `−

x : B. Furthermore, by Refl Γ0, x:A, Γ1 `− x = x : B. Finally, by KSym and
KTrans Γ0, x:A, Γ1 `

− B = B.

4.2 Untyped Reduction

Untyped reduction is an essential component of the presentation of some type
theories, for example Pure Type Systems, where the equality relation is defined
as the least equivalence relation containing untyped reduction. We have instead
followed the Martin-Löf style presentation using judgemental equality, which
ensures that all intermediate terms in a proof of equality are well-formed. Our
formal presentation of the Logical Framework does not rely on untyped reduction
in any way.
However, untyped reduction is still an essential component of our develop-

ment of the metatheory of the Logical Framework, because the proof of sound-
ness of the usual typing rules for the typed operational semantics relies on the
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result of subject reduction. In particular, we establish properties such as that if
Γ |= M →n P : A then Γ |= P → P → P : A, and if Γ |= [N/x]A → C and
Γ |= A → B then Γ |= [N/x]B → C, using Adequacy, properties of untyped
reduction such as substitution, and subject reduction.
We introduce the following one-step reduction relations:

(λx:A1.M0)(M2) β [M2/x]M0

λx:A1.M(x) η M x 6∈ FV(M)

A term M is a redex if there is an N such that MβN or MηN . Let untyped
reduction, or just reduction, written M B N , be the compatible closure of all of
the above rules. We write M B+ N for the transitive closure of reduction and
M B? N for the reflexive, transitive closure of reduction.

Lemma 7 (Adequacy for Untyped Reduction).

– If Γ |=M → N → P : A then there is an N ′ such thatM B∗β N B∗β N ′ B∗η P .
– If Γ |= A→ C then there is a B such that A B∗β B B∗η C.

Proof. By simultaneous induction on derivations, using Contexts for rule η.

Lemma 8. If Γ |= M →w Q : Πx:A.B, Γ |= N →w Q : Πx:A.B and Γ |=
M(P )→ R→ S : C then Γ |= N(P )→ R→ S : C.

Proof. By inversion of the derivation of Γ |=M(P )→ R → S : C, using Deter-
minacy.

We now give some basic definitions and lemmas about weak-head normal and
normal forms.

Definition 2 (Head Variable). We say that x has head variable x, and that
M(N) has head variable x if M has head variable x.

Definition 3 (Weak-Head Normal and Normal). We say that x is weak-
head normal, that λx:A.M is weak-head normal and that M(N) is weak-head
normal if M is weak-head normal and not an abstraction.
We say that x is normal, that λx:A.M is normal if it is not an η-redex and

A and M are normal, and that M(N) is normal if M and N are normal and
M is not an abstraction.
Normal forms lift to kinds in the natural way.

Lemma 9. M is normal if and only if M has no reductions.

Lemma 10. There is an x such that M has head variable x if and only if M is
weak-head normal and not an abstraction.
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Lemma 11 (Weak-head and Normal Forms).

– If |= Γ → ∆ then ∆ is normal.
– If Γ |= A→ B then B is normal.
– If Γ |= M → N → P : A then N is weak-head normal and P and A are
normal.

We define a simple ordering on kinds by the natural length function.

Definition 4. We define the length of a kind A, written |A|, by structural re-
cursion on A:

|Type| =df 0 |El(M)| =df 0 |Πx:A1.A2| =df |A1|+ |A2|+ 1

Lemma 12. If Γ |=M →w N : A, N not an abstraction, x:B ∈ Γ and the head
variable of N is x then |A| ≤ |B|.

Proof. By induction on derivations of Γ |=M →w N : A.

Lemma 13. If Γ |= A→ B then |A| = |B|.

Lemma 14. If Γ |=M →w N : A and M is weak-head normal then M ≡ N .

Proof. By induction on derivations that Γ |=M →w N : A.
For the β case, ifM1(M2) is weak-head normal thenM1 is weak-head normal,

so by the induction hypothesis M1 ≡ λx:A1.M0, which is impossible by the
definition of M1(M2) being weak-head normal.

Lemma 15. IfM has head variable x and x 6= y then [N/y]M has head variable
x.

Lemma 16. If M is weak-head normal and not an abstraction and M B?βη N
then N is weak-head normal and not an abstraction.

We write |= Γ ↓ ∆ if there is a Φ such that |= Γ → Φ and |= ∆→ Φ.

Lemma 17 (Context Conversion). If Γ |= J and |= Γ ↓ ∆ then ∆ |= J .

Proof. By simultaneous induction on derivations.
We consider Var. If Γ0, x:A, Γ1 ≡ ∆ then∆ ≡ ∆0, x:C,∆1, with Γ0 |= A→ B

and ∆0 |= C → B. By Weakening ∆0, x:C,∆1 |= C → B, so ∆0, x:C,∆1 |= x→
x→ x : B by Var.

We can now show Subject Reduction for η-reduction.

Lemma 18 (Subject Reduction for η).
If Γ |= λx:A1.M(x) → N → P : Πx:B1.B2 and x 6∈ FV(M) then there is a N ′

such that Γ |=M → N ′ → P : Πx:B1.B2.
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Proof. We first prove that if Γ |= M → N → P : Πx:B1.C, Γ |= A1 → B1
and Γ, x:A1 |= C → B2 then Γ |= λx:A1.M(x) → Q → P : Πx:B1.B2 for some
Q. This follows by case analysis of N , using inversion, Context Conversion and
Weakening if N is an abstraction and Weakening if it is not.

Then, using inversion twice with Determinacy, we know Γ, x:A1 |=M → Q→
R : Πx:B1 .C and Γ, x:A1 |= C → B2 for some Q, R and C, so by Strengthening
Γ |= M → Q → R : Πx:B1.C, so Γ |= λx:A1.M(x) → S → R : Πx:B1 .C for
some S by the above. By Determinacy R ≡ P and C ≡ B2.

The idea underlying the proof of strong normalization for typed operational
semantics is the same as that for all other such proofs for λ-calculus, which
depends on bounding the length of weak-head reduction sequences. Then, be-
cause internal reduction is bounded by the induction hypothesis, and because
internal reduction does not generate new weak-head reductions (the property
of quasi-commuting from term rewriting), we know that strong normalization
holds.

However, for technical reasons we use a slightly different presentation. In-
stead of defining internal reduction and showing that weak-head and internal
reduction quasi-commute, we use the reflexive, transitive closure of weak-head
reduction (as defined by the typed operational semantics) and parallel reduc-
tion. This allows us to prove subject reduction and Church–Rosser at the same
time as establishing the necessary relationship between ordinary and weak-head
reduction.

We now give a brief development of parallel reduction, necessary for the proof
of subject reduction and strong normalization. Tait and Martin-Löf’s proof of
Church–Rosser using it highlighted the notion; an elegant presentation is given
by Takahashi [16].

Definition 5 (Parallel Reduction).We define parallel reduction as the least
relation closed under the following rules of inference:

Var

x⇒ x
λ
A⇒ A′ M ⇒M ′

λx:A.M ⇒ λx:A′.M ′
App

M ⇒M ′ N ⇒ N ′

M(N)⇒M ′(N ′)

β
M ⇒M ′ N ⇒ N ′

(λx:A.M)(N)⇒ [N ′/x]M ′
η
M0 ⇒M

′(x) x 6∈ FV(M ′)

λx:A1.M0 ⇒M
′

We extend the reduction in the obvious way to kinds and contexts.

Parallel reduction has some simple properties. First, we know M ⇒M for
all M . Furthermore, if M B N then M ⇒ N , and if M ⇒ N then M B? N .
Finally, if M ⇒M ′ and N ⇒ N ′ then [N/x]M ⇒ [N ′/x]M ′.
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Lemma 19 (Parallel Subject Reduction).

– If |= Γ → ∆ and Γ ⇒ Γ ′ then |= Γ ′ → ∆.
– If Γ |= A→ B, Γ ⇒ Γ ′ and A⇒ A′ then Γ ′ |= A′ → B.
– If Γ |= M → N → P : A, Γ ⇒ Γ ′ and M ⇒M ′ then there are N ′ and N ′′

such that Γ ′ |=M ′ → N ′′ → P : A, N ⇒ N ′ and Γ ′ |= N ′ → N ′′ → P : A.

Proof. By simultaneous induction on derivations.

Lemma 20 (Subject Reduction). If Γ |= M → N → P : A, Γ ⇒ Γ ′ and
M BM ′ then there is an N ′ such that Γ |=M ′ → N ′ → P : A and N B? N ′.
Notice that this lemma captures both subject reduction and Church–Rosser,

because the full judgement and in particular the normal form is stable under
one-step reduction.

Definition 6 (Strong Normalization). Strong normalization for kinds, writ-
ten SN(A), is the least predicate closed under the following rule of inference:

SN-i

for all B.(A B B)⇒ SN(B)
SN(A)

and similarly for kinds.

Lemma 21. If λx:A1.M0 ⇒ N and Γ |= N →w λx:B.N0 : C then M0 B? N0.

Lemma 22 (Strong Normalization). If Γ |= M → N → P : A then M is
strongly normalizing. Similarly, if Γ |= A→ B then A is strongly normalizing.

Proof. By simultaneous induction on derivations.
We consider the case Base. By the induction hypothesis we know thatM1 and

M2 are strongly normalizing, and by assumption Γ |= M1 →w N1 : Πx:B1.B2
whereN1 is not an abstraction. By induction on the maximal length of reductions
forM1 andM2, we show that if Γ |=M1 →w N1 : Πx:B1.B2 where N1 is not an
abstraction then M1(M2) is strongly normalizing.
Then, by SN-i, we need that if M1(M2) B P then P is strongly normalizing.

We consider the possible reductions:

–M1 BM ′1. Then by Parallel Subject Reduction there areN ′1 andN ′′1 such that
N1 ⇒ N ′1, Γ |= N

′
1 →w N

′′
1 : Πx:B1.B2, and Γ |= M

′
1 →w N

′′
1 : Πx:B1.B2.

Hence by Lemma 16 N ′′1 is not an abstraction, so by the induction hypothesis
M ′1(M2) is strongly normalizing.

–M2 BM ′2. By the induction hypothesis.
Case β uses Lemma 21, Parallel Subject Reduction, the closure of Strong

Normalization under reduction and the closure of reduction under substitution.

Finally, the following admissible rule is useful in the proof of Soundness,
Theorem 2. It differs from the rule η by replacing the premise Γ |= P : Πx:B1.B2
by the requirement that x 6∈ FV(P ).

Proposition 1 (Admissibility of η’). If Γ |= A1 → B1 and Γ, x:A1 |=M0 →n
P (x): B2, with x 6∈ FV(P ), then there is an N ′ such that Γ |= λx:A1.M0 →
N ′ → P : Πx:B1.B2.
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4.3 Comparison with Other Work

We have introduced a new class of formal systems, typed operational seman-
tics, which present type theory from a computational perspective. In doing so,
we have arrived at a strategy for studying reduction in type theory opposite to
the frequently adopted approach of removing type information from the proof
of normalization. The specific typed operational semantics that we study, based
on standard reduction, itself gives a precise, coherent description of the rela-
tionship between typing and reduction. We have demonstrated that this system
gives a new treatment of fundamental results, including Church–Rosser, subject
reduction and strong normalization.

The alternative presentation introduced by van Raamsdonk and Severi [18]
uses sequences of applications to isolate the one-step weak-head reductions. This
formulation hides the use of the diagram stating that weak-head and internal
reduction commute in the proof of strong normalization, by giving an explicit
description of each of the weak-head reduction steps. However, the basic argu-
ment for strong normalization is exactly the same: the number of weak-head
reductions of a term is bounded by the derivation, and the internal reductions
are bounded by the induction hypothesis, so the term is strongly normalizing.

In our approach, we incorporate the commuting diagram into the proof of
Subject Reduction, and we prove Church–Rosser at the same time. Moreover,
our use of a more abstract approach based on weak-head and parallel reduction
means that it is more generally applicable. For example, when Joachimski and
Matthes show strong normalization for Gödel’s System T, they need to overload
the syntax of application in order to maintain the validity of their rules of in-
ference, instead of extending the reduction relations in the natural way as we
would be able to do.

Parallel reduction is a tool we use in the proof of Subject Reduction, which
would lead to a clear proof of Subject Reduction for the presentation with se-
quences of applications as well. The problem in both approaches is the same: the
induction hypothesis needs to be strong enough to accommodate the closure of
reduction under substitution. One-step reduction does not satisfy this property,
and parallel reduction is the simplest reduction relation that does. This problem
has not been faced in the alternative approach because that approach has not
been used to study typing.

Finally, we have chosen a judgement form, Γ |= M → N → P : A, that
includes weak-head normal forms. An alternative presentation used elsewhere
[4,5] uses two judgement forms Γ |=M →n P : A and Γ |=M →w N : A, where
the first indicates thatM has normal form P and the second indicates that N is
a one-step weak-head reduct ofM . We prefer the former presentation because it
involves fewer judgements and rules of inference, and because it extends naturally
to systems of subtyping where the weak-head normal form is important [2], but
the development discussed here can be adapted to the latter presentation without
difficulty.
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5 Soundness

We now show the admissibility of substitution and application in the typed
operational semantics.
Intuitively, application and substitution are closely related. If we can substi-

tute at a kind, then we can also apply at that kind, by analysis of the weak-head
normal form of the applicator: if it is an abstraction then we substitute, and oth-
erwise we use the rule Base. Hence, we prove the admissibility of substitution
and application simultaneously. Furthermore, values at the base kind can safely
be substituted, because they have no applicative behavior. The admissibility of
substitution and application can be lifted to higher kinds by induction, using
the admissibility of application at smaller kinds.
By complete induction we mean the principle that:

Ind

∀m.(∀n.n < m⇒ φ(n))⇒ φ(m)

∀m.φ(m)

Lemma 23. Suppose Γ |= N → Q→ S : A′ and Γ |= A→ A′. Then:

1. Substitution is admissible:
(a) If |= Γ, x:A,∆→ Φ then there is a Ψ such that |= Γ, [N/x]∆→ Ψ .
(b) If Γ, x:A,∆ |= B → C then there is a D such that Γ, [N/x]∆ |=
[N/x]B → D.

(c) If Γ, x:A,∆ |= M → P → R : B then there are T , U and C such that
Γ, [N/x]∆ |= [N/x]M → T → U : C, Γ, [N/x]∆ |= [N/x]P → T → U : C
and Γ, [N/x]∆ |= [N/x]B → C.

2. Application is admissible: if Γ |=M → P → R : Πx:A′.B then there are T ,
U and C such that Γ |=M(N)→ T → U : C and Γ |= [N/x]B → C.

Proof. We prove the two cases simultaneously by complete induction on |A′|.

1. This follows by simultaneous induction on derivations that Γ, x:A,∆ |= J .
– Emp. Immediate.
– Wk. If ∆ ≡ () then |= Γ → Ψ by Subcontext. If ∆ ≡ ∆0, z:B then
Γ, [N/x]∆0 |= [N/x]B → C by the induction hypothesis, and
|= Γ, [N/x]∆0 → Ψ by Subcontext, so |= Γ, [N/x]∆0, z:[N/x]B → Ψ, z:C.

– Type. By the induction hypothesis Γ, [N/x]∆ |= ok, so Γ, [N/x]∆ |=
Type→ Type.

– El. By the induction hypothesis Γ, [N/x]∆ |= [N/x]M → T → U : C,
where Γ, [N/x]∆ |= Type → C implies C ≡ Type by inversion. Hence
Γ, [N/x]∆ |= [N/x]El(M)→ El(U).

– Π . By the induction hypothesis Γ, [N/x]∆ |= [N/x]A1 → C1
and Γ, [N/x]∆, z:[N/x]A1 |= [N/x]A2 → C2, so Γ, [N/x]∆ |=
[N/x](Πz:A1.A2)→ Πz:C1.C2 by Π .

– Var. Then M ≡ y, P ≡ y and R ≡ y. There are two cases:
• x = y. We have the premise that Γ, x:A,∆ |= A→ B, and Γ |= N →
Q→ S : A′ and Γ |= A→ A′ by assumption. By Subcontext we have
a subderivation of Γ, x:A,∆ |= ok, by Weakening Γ, x:A,∆ |= A →
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A′, and so by Determinacy A′ ≡ B. By the induction hypothesis
Γ, [N/x]∆ |= ok, and so by Weakening again Γ, [N/x]∆ |= N →
Q→ S : A′. Furthermore, by Free Variables x 6∈ FV(A)∪FV(A′), so
A′ ≡ [N/x]A′, and Γ, [N/x]∆ |= [N/x]A′ ≡ A′ → A′ by Adequacy,
Subject Reduction and Weakening.
• x 6= y. We have the premise that Γ, x:A,∆ |= C → B, with y:C ∈
Γ, x:A,∆. By the induction hypothesis Γ, [N/x]∆ |= [N/x]C → D,
so Γ, [N/x]∆ |= y → y → y : D. Finally, by Adequacy and Subject
Reduction Γ, [N/x]∆ |= [N/x]B → D.

– Base. We have premisses Γ, x:A,∆ |= M1 → P1 → R1 : Πz:B1.B2
with P1 not an abstraction, Γ, x:A,∆ |= M2 : B1, and Γ, x:A,∆ |=
[M2/x]B2 → B. By Lemma 11 P1 is weak-head normal, so by Lemma 10
there is a y that is the head variable of P1.
Also, by the induction hypothesis there are T1, U1 and C such that
Γ, [N/x]∆ |= [N/x]M1 → T1 → U1 : C, Γ, [N/x]∆ |= [N/x]P1 → T1 →
U1 : C and Γ, [N/x]∆ |= [N/x](Πz:B1.B2) → C, and also there are U2
and C1 such that Γ, [N/x]∆ |= [N/x]M2 →n U2 : C1 and Γ, [N/x]∆ |=
[N/x]B1 → C1. Furthermore, Γ, [N/x]∆ |= [N/x][M2/z]B2 → D, again
by the induction hypothesis.
We know C ≡ Πz:C ′1.C2, Γ, [N/x]∆ |= [N/x]B1 → C ′1 and
Γ, [N/x]∆, z:[N/x]B1 |= [N/x]B2 → C2 by inversion. Hence by De-
terminacy C1 ≡ C ′1. Furthermore, by Adequacy [N/x]B2 B? C2, and
[N/x][M2/z]B2 ≡ [[N/x]M2/z][N/x]B2 , so by Subject Reduction
Γ, [N/x]∆ |= [[N/x]M2/z]C2 → D. Also, Γ, x:A,∆ |= [M2/z]B2 → B
implies [M2/z]B2 B? B by Adequacy, and so Γ, [N/x]∆ |= [N/x]B → D
by Subject Reduction.
We have two cases:
• x = y. Then |Πz:B1 .B2| ≤ |A′| by Lemma 12, so |B1| < |A′| and
|C1| < |A′| by Lemma 13. Hence by the induction hypothesis there
are T , U and D′ such that Γ, [N/x]∆ |= ([N/x]M1)([N/x]M2) →
T → U : D′ and Γ, [N/x]∆ |= [[N/x]M2/z]C2 → D′. By Determi-
nacy D ≡ D′, and Γ, [N/x]∆ |= ([N/x]P1)([N/x]M2) → T → U : D
by Lemma 8.
• x 6= y. Then by Lemma 15 [N/x]P1 has head variable y, so [N/x]P1 ≡
T by Lemma 14 because Γ, [N/x]∆ |= [N/x]P1 → T → U : Πz:C1.C2.
We know [N/x]P1 is not an abstraction by Lemma 10, so by Base

Γ, [N/x]∆ |= ([N/x]M1)([N/x]M2)→w ([N/x]P1)([N/x]M2) : D,
and Γ, [N/x]∆ |= ([N/x]P1)([N/x]M2)→w ([N/x]P1)([N/x]M2) : D

– λ, η. By the induction hypothesis there is a C1 such that
Γ, [N/x]∆ |= [N/x]A1 → C1, and there are U and C2
such that Γ, [N/x]∆, y:[N/x]A1 |= [N/x]M0 →n U0 : C2 and
Γ, [N/x]∆, y:[N/x]A1 |= [N/x]A2 → C2. If U0 ≡ U(x) with x 6∈ FV(U)
then Γ, [N/x]∆ |= [N/x](λy:A1.M0)→n U : Πz:C1.C2 by η

′, and other-
wise Γ, [N/x]∆ |= [N/x](λy:A1.M0)→n λy:C1.U0 : Πz:C1.C2 by λ. Fur-
thermore, Γ, [N/x]∆ |= [N/x](Πz:A1.A2)→ Πz:C1.C2 by Π .
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– β. By the induction hypothesis there are T1 and C such that Γ, [N/x]∆ |=
[N/x]M1 →w T1 : C, Γ, [N/x]∆ |= [N/x](λy:A1.M0) →w T1 : C, and
Γ, [N/x]∆ |= [N/x](Πz:B1.B2) → C. Also, there is a C1 such that
Γ, [N/x]∆ |= [N/x]M2 : C1 and Γ, [N/x]∆ |= [N/x]B1 → C1. Further-
more, there are T , U and D such that

Γ, [N/x]∆ |= [N/x][M2/y]M0 ≡ [[N/x]M2/y][N/x]M0 → T → U : D,
Γ, [N/x]∆ |= [N/x]P → T → U : D, and Γ, [N/x]∆ |= [N/x]B → D

Also, there is a D′ such that Γ, [N/x]∆ |= [N/x][M2/z]B2 → D′.
We know T1 ≡ [N/x](λy:A1.M0) by Lemma 14. By inver-
sion C ≡ Πz:C ′1.C2 with Γ, [N/x]∆ |= [N/x]B1 → C ′1 and
Γ, [N/x]∆, z:[N/x]B2 |= [N/x]B2 → C2, so by Determinacy C1 ≡ C ′1.
By Adequacy [M2/z]B2 B? B, so by Subject Reduction Γ, [N/x]∆ |=
[N/x]B → D′, and so by Determinacy D ≡ D′.
Finally, [N/x](λz:A1.M0) ≡ λz:[N/x]A1.[N/x]M0 and
[N/x][M2/z]M0 ≡ [[N/x]M2/z][N/x]M0, so by β we get
Γ, [N/x]∆ |= [N/x](M1(M2))→ T → U : D.

2. This follows by induction on derivations that Γ |=M → P → R : Πx:A′.B.
– Var. We have y:D ∈ Γ and Γ |= D → Πx:A′.B. By inversion D ≡
Πx:D1.D2 and Γ, x:D1 |= D2 → B. By Case 1 we know Γ |= [N/x]D2 →
C for some C, and by Adequacy and Subject Reduction Γ |= [N/x]B →
C.

– Base. P1(M2) is not an abstraction. Hence, by Base Γ |=M1(M2)(N)→
P1(M2)(N) → R1(R2)(S) : C, where Γ |= [N/x]B → C by Case 1,
Adequacy and Subject Reduction.

– λ, η. We have the premisses Γ, x:A |= M0 : B and Γ |= A → A′. Hence
by Case 1 there are T , U and C such that Γ |= [N/x]M0 → T → U : C
and Γ |= [N/x]B → C, so Γ |= (λx:A.M0)(N)→ T → U : C by β.

– β. By the induction hypothesis there are T , U and C such that Γ |=
R(N) → T → U : C and Γ |= [N/x]B → C, so Γ |= M1(M2)(N) →
T → U : C by Lemma 8.

The typed operational semantics can now be shown sound for the Logical
Framework.

Theorem 2 (Soundness).

– If Γ ` ok then there is a ∆ such that |= Γ → ∆.
– If Γ ` A kind then there is a B such that Γ |= A→ B.
– If Γ ` A = B then there is a C such that Γ |= A→ C and Γ |= B → C.
– If Γ ` M : A then there are P and B such that Γ |= A → B and Γ |=
M →n P : B.

– If Γ ` M = N : A then there are P and B such that Γ |= A → B,
Γ |=M →n P : B and Γ |= N →n P : B.

Proof. By simultaneous induction on derivations. We consider several cases. No-
tice that we need to consider all structural rules at this point.
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– El. By the induction hypothesis there are P and B such that Γ |= M →n
P : B and Γ |= Type→ B. By inversion B ≡ Type, so Γ |= El(M)→ El(P )
by El.

– Var. By the induction hypothesis Γ0, x:A, Γ1 |= ok. By Subcontext Γ0, x:A |=
ok, so by inversion there is a B such that Γ0 |= A→ B. Hence, by Weakening
Γ0, x:A, Γ1 |= A→ B, and by Var Γ0, x:A, Γ1 |= x→ x→ x : B.

– λ. By the induction hypothesis there are P0 and B2 such that Γ, x:A1 |=
M0 →n P0 : B2 and Γ, x:A1 |= A2 → B2 . Furthermore, by Subcontext and
inversion there is a B1 such that Γ |= A1 → B1. We know Γ |= Πx:A1.A2 →
Πx:B1.B2 by Π . We then have two cases:
• P0 ≡ P (x) with x 6∈ FV(P ). Then Γ |= λx:A1.M0 →n P : Πx:B1.B2
by η′.

• λx:B1.P0 is not an η-redex. Then Γ |= λx:A1.M0 →n λx:B1.P0 : Πx:B1.B2
by λ.

– App-Eq. By the induction hypothesis we know that Γ |= M1 →n P1 : B,
Γ |= N1 →n P1 : B, and Γ |= Πx:A1.A2 → B. Also, Γ |= M2 →n P2 : B

′
1,

Γ |=M2 →n P2 : B′1, and Γ |= A1 → B
′
1. By inversion of Γ |= Πx:A1.A2 →

B we know B ≡ Πx:B1.B2, Γ |= A1 → B1 and Γ, x:A1 |= A2 → B2. By
Determinacy B1 ≡ B′1.
By Lemma 23 Case 2 we know Γ |=M1(M2)→n U : C and Γ |= [M2/x]B2 →
C, and Γ |= N1(N2) →n U ′ : C ′ and Γ |= [N2/x]B2 → C ′. By Adequacy
and Subject Reduction Γ |= P1(P2)→n U : C and Γ |= [P2/x]B2 → C, and
Γ |= P1(P2) →n U ′ : C ′ and Γ |= [P2/x]B2 → C ′. Hence, by Determinacy
U ≡ U ′ and C ≡ C ′.
Finally, we know Γ, x:A1 |= A2 → B2, so by Lemma 23 Case 1 Γ |=
[M2/x]A2 → C ′′. By Adequacy and Subject Reduction Γ |= [M2/x]B2 →
C ′′, so by Determinacy C ≡ C ′′.

– We consider the classical substitution rule, where other structural rules
are similar. By the induction hypothesis Γ0, x:A, Γ1 |= M →n P : D with
Γ0, x:A, Γ1 |= B → D, and Γ0 |= N →n Q : C with Γ0 |= A → C.
By Lemma 23 Case 1 we know Γ0, [N/x]Γ1 |= [N/x]M →n R : E and
Γ0, [N/x]Γ1 |= [N/x]D → E for some R and E, and
Γ0, [N/x]Γ1 |= [N/x]B → F for some F . By Adequacy and Subject Re-
duction Γ0, [N/x]Γ1 |= [N/x]D → F , so by Determinacy E ≡ F .

Corollary 2 (Equivalence).

– Γ ` ok iff Γ |= ok.
– Γ ` A kind iff there is a B such that Γ |= A→ B.
– Γ `M : A iff there is a B such that A |= B → and Γ |=M : B.
– Γ |= A ↓ B iff there is a C such that Γ |= A→ C and Γ |= B → C.
– Γ |= M ↓ N : A iff there are B and P such that Γ |= A → B, Γ |= M →n
P : B and Γ |= N →n P : B.

By the equivalence of the Logical Framework and its typed operational se-
mantics, we can straightforwardly transfer the results of Church–Rosser, subject
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reduction and strong normalization to the Logical Framework. Furthermore, as
the typed operational semantics is sound for judgements Γ ` J and complete
for judgements Γ `− J , we have also demonstrated the admissibility of the
structural rules in Section 2.2, using the trivial inclusion from Γ `− J to Γ ` J .

6 Conclusions

We have showed that the simpler proof of strong normalization developed by
Joachimski and Matthes for the simply-typed λ-calculus lifts naturally to the
typed operational semantics for the Logical Framework. We have also given
an elegant development of the full metatheory of the Logical Framework using
typed operational semantics, and we have discussed the benefits of various design
decisions that differentiate typed operational semantics from the operational
definition of strong normalization used elsewhere in the literature.
We believe that extending this proof technique to the Calculus of Construc-

tions is an important project for the type theory community. Given that we have
now demonstrated the successful use of this technique for the dependent-type
corner of Barendregt’s cube, the most challenging outstanding problem seems to
be studying the proof for System F.
We would also like to prove soundness without the use of untyped reduction.

For the simply-typed λ-calculus this follows naturally, but for the Logical Frame-
work there is a subtle interaction between application, substitution and binders
that makes the straightforward proof technique fail. As untyped reduction plays
no role in defining the Logical Framework, it seems natural to expect that it can
also be removed from the metatheory. In addition to the philosophical interest
of this question, it has practical consequences for the metatheory of systems
where untyped reduction may not be well-behaved, for example in the Logical
Framework with coercions [7].
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Logical Predicates for

Intuitionistic Linear Type Theories
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Abstract. We develop a notion of Kripke-like parameterized logical
predicates for two fragments of intuitionistic linear logic (MILL and
DILL) in terms of their category-theoretic models. Such logical pred-
icates are derived from the categorical glueing construction combined
with the free symmetric monoidal cocompletion. As applications, we ob-
tain full completeness results of translations between linear type theories.

1 Introduction

Suppose that a model of Multiplicative Intuitionistic Linear Logic (MILL) –
the propositional fragment of linear logic [12] with I, ⊗ and ( – is given.
Also suppose that there is a property on elements of the model which is closed
under tensor product and composition (cut) and other structural rules, and
covers the interpretations of base types and constants. We show that such a
property can be extended to the interpretation of all types so that it covers all
MILL-definable elements. We also give a parallel result for Dual Intuitionistic
Linear Logic (DILL) of Barber and Plotkin [5], which is an extension of MILL
with the modality !. To achieve such results, we first give a suitable notion of
such “predicates” on models of MILL and DILL, upon which we develop logical
predicates and state the Basic Lemma. We then show that the construction
above is an instance of our logical predicates.
To see why we need to introduce a property closed under tensor and so on, it

would be instructive to observe that the standard logical predicates for models
of simply typed lambda calculus do not work well with the linear calculi and
their models. We may have a predicate Pb ⊆ Ab for each base type b, where Aσ
is a set in which the closed terms of type σ are interpreted. As the standard
logical predicates, we hope to define a predicate Pσ ⊆ Aσ for every type σ in an
inductive way. However, we soon face a difficulty in constructing Pσ⊗τ from Pσ
and Pτ . The naive construction Pσ⊗τ = {a⊗b | a ∈ Pσ, b ∈ Pτ} makes sense but
can miss some interesting “undecomposable” elements of Aσ⊗τ ; in particular
assume a constant of type σ⊗ τ , then its interpretation may not belong to Pσ⊗τ
for any Pσ and Pτ . The same trouble appears when we construct P!σ from Pσ.
We solve this problem by parameterizing the predicates on the tensor-closed

property (in the similar way to the Kripke logical relations [2]), so that the
parameter indicates the linearly used resource (or the linear context). Such pa-
rameterized predicates form a model of MILL and serve as a basis for construct-

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 198–213, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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ing logical predicates for MILL. The problem of tensor types disappears if each
interesting element satisfies the tensor-closed property.
The construction is based on a few category-theoretic tools, specifically the

presheaf construction (free symmetric monoidal cocompletion [15]) for symmetric
monoidal categories and also a glueing (sconing, Freyd covering) construction
[16,21] on symmetric monoidal closed categories. It is known that a setting for
standard logical predicates can be obtained by glueing a cartesian closed category
to Set [21,14]; ours is derived by glueing a symmetric monoidal closed category
to the presheaf category of a small symmetric monoidal category (which specifies
the tensor-closed property mentioned above). For DILL we further use a glueing
construction of symmetric monoidal adjunction to accommodate the modality.
However in this paper we leave these abstract idea rather implicit (except in
Sect. 4) and describe all constructions concretely.

By applying our logical predicates method, we obtain the full completeness
of syntactic translations between linear type theories. For instance, it is an im-
mediate corollary of the Basic Lemma that MILL is a full fragment of DILL
(Example 3), in the sense that, for any DILL-term ∅ ; ∆ `M : σ with no ! in ∆
nor σ, there always exists an MILL-term ∆ ` N : σ such that ∅ ; ∆ `M = N : σ
holds. See Example 2 and 4 for other examples.
Though the existing syntax for linear type theories are rather diverging, their

semantic models are now well-established and related each other, in terms of sym-
metric monoidal (closed) categories and adjunctions [6,8,5], and our approach
based on such categorical models is likely to apply to many other linear type the-
ories as well. In fact it is routine to modify our technique for non-commutative
linear logic and monoidal (bi)closed categories (see [17]). Furthermore, by com-
bining our approach with Hyland and Tan’s double glueing construction [23] (see
Example 5) we can deal with a classical linear type theory (MLL). These results,
proofs and further category-theoretic analysis are reported in the full paper [13].
Also it might be fruitful to adapt our method to programming languages, see

for example the complexity-parameterized logical relation used in [11]. Another
interesting direction is to combine our approach to other techniques of specifying
properties of semantic categories, for instance that of specification structures [1].

Acknowledgements I thank Gordon Plotkin for discussions at the initial
stage of this work.

2 Multiplicative Intuitionistic Linear Logic

We recall a simple fragment of intuitionistic linear logic (Multiplicative Intu-
itionistic Linear Logic, MILL) together with the associated term calculus. The
category-theoretic models are given as symmetric monoidal closed categories,
for which soundness and completeness are known (e.g. [7]). See [10,8] for the
category-theoretic concepts used in this paper.
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2.1 Syntax of MILL

We briefly recall the syntax of MILL. The detail is discussed e.g. in [7]; our
presentation is chosen so that it will be compatible with DILL (Sect. 5). A set
of base types (write b for one) and also a set of constants are fixed throughout
this paper.

Types and Terms

σ ::= b | I | σ ⊗ σ | σ( σ
M ::= c(M) | x | ∗ | let ∗ be M in M | M ⊗M | let x⊗ x be M in M |

λx.M | MM

We assume that each constant c has a fixed arity σ → τ , where σ and τ are types
which do not involve(. (This restriction on arity is for ease of presentation and
not essential.)

Typing

c : σ → τ ∆ `M : σ
∆ ` c(M) : τ

(Constant)
x : σ ` x : σ

(Variable)

` ∗ : I
(II)

∆1 `M : I ∆2 ` N : σ
∆1]∆2 ` let ∗ be M in N : σ

(IE)

∆1 `M : σ ∆2 ` N : τ
∆1]∆2 `M ⊗N : σ ⊗ τ

(⊗I)

∆1 `M : σ ⊗ τ
∆2, x : σ, y : τ ` N : θ

∆1]∆2 ` let x⊗ y be M in N : θ
(⊗E)

∆, x : σ `M : τ

∆ ` λx.M : σ( τ (( I)
∆1 `M : σ( τ ∆2 ` N : σ

∆1]∆2 `MN : τ
(( E)

where ∆1]∆2 is a merge of ∆1 and ∆2 (this notation is taken from [5]). We note
that any typing judgement has a unique derivation.

Axioms

let ∗ be ∗ in M =M let ∗ be M in ∗ =M
let x⊗ y be M ⊗N in L = L[M/x,N/y] let x⊗ y be M in x⊗ y =M

(λx.M)N =M [N/x] λx.Mx =M

C[let ∗ be M in N ] = let ∗ be M in C[N ]
C[let x⊗ y be M in N ] = let x⊗ y be M in C[N ]

In the above C[−] indicates a (well-typed) context – we assume suitable condi-
tions on variables for avoiding undesirable captures. The equational theory of
MILL is defined as the congruence relation on the terms with typing judgement
generated from these axioms.
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2.2 Semantics of MILL

Let C be a symmetric monoidal closed category with tensor product ⊗, unit
object I and exponent(. Assume that there is an object [[b]] for each base type
b and an arrow [[c]] : [[σ]]→ [[τ ]] for each constant c : σ → τ , where [[σ]] is defined by
[[I]] = I, [[σ⊗τ ]] = [[σ]]⊗[[τ ]] and [[σ( τ ]] = [[σ]]( [[τ ]]. For each typing judgement
∆ `M : τ , we define its interpretation [[∆ `M : τ ]] : [[|∆|]]→ [[τ ]] in C as follows,
where |∆| = (. . . ([[σ1]]⊗ [[σ2]]) . . .)⊗ [[σn]] for ∆ ≡ x1 : σ1, x2 : σ2, . . . , xn : σn.

[[∆ ` c(M) : τ ]] = [[|∆|]]
[[∆`M :σ]]
−−−−−→ [[σ]]

[[c]]
−→ [[τ ]]

[[x : σ ` x : σ]] = [[σ]]
id[[σ]]
−→ [[σ]]

[[` ∗ : I]] = I
idI−→ I

[[∆1]∆2 ` let ∗ be M in N : σ]] =

[[|∆1]∆2|]]
'
→ [[|∆1|]]⊗ [[|∆2|]]

[[∆1`M :I]]⊗[[∆2`N:σ]]
−−−−−−−−−→ I ⊗ [[σ]]

'
→ [[σ]]

[[∆1]∆2 `M⊗N : σ ⊗ τ ]] =

[[|∆1]∆2|]]
'
→ [[|∆1|]]⊗ [[|∆2|]]

[[∆1`M :σ]]⊗[[∆2`N:τ]]
−−−−−−−−−→ [[σ]]⊗ [[τ ]]

[[∆1]∆2 ` let x⊗ y be M in N : θ]] =

[[|∆1]∆2|]]
'
→ [[|∆1|]]⊗ [[|∆2|]]

[[∆1`M :σ⊗τ]]⊗id[[|∆2 |]]
−−−−−−−−−→

([[σ]]⊗ [[τ ]])⊗ [[|∆2|]]
'
→ ([[|∆2|]]⊗ [[σ]])⊗ [[τ ]]

[[∆2 ,x:σ,y:τ`N:θ]]
−−−−−→ [[θ]]

[[∆ ` λx.M : σ( τ ]] = [[|∆|]]
Λ([[∆,x:σ`M :τ]])
−−−−−→ [[σ]]( [[τ ]]

[[∆1]∆2 `MN : τ ]] = [[|∆1]∆2|]]
'
→

[[|∆1|]]⊗ [[|∆2|]]
[[∆1`M :σ(τ]]⊗[[∆2`N:σ]]

−−−−−−−−−→ ([[σ]]( [[τ ]])⊗ [[σ]]
ev
−→ [[τ ]]

where “'” denotes a (uniquely determined) canonical isomorphism. We write ev
for the counit of the adjunction −⊗C a C(−, and Λ(f) : A→ C(B for the
adjoint mate of f : A⊗ C → B.

Proposition 1. This semantics is sound and complete. ut

3 Logical Predicates for MILL

We introduce parameterized predicates on objects of a symmetric monoidal
closed category, and show that such predicates give rise to another symmetric
monoidal closed category. We then define the logical predicates as type-indexed
families of the predicates (inductively determined on the type structure), and
state the Basic Lemma. We also give the canonically determined logical pred-
icate which is used in showing full completeness of translations between linear
type theories. We conclude this section by sketching the generalization to logical
relations.
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3.1 C0-Predicates

Let C0 be a small symmetric monoidal category, C1 a locally small symmetric
monoidal closed category and I be a strict symmetric monoidal functor from C0
to C1.

Definition 1. An Obj(C0)-indexed set P = {P (X)}X∈C0 is a C0-predicate on
A ∈ C1 when

– P (X) ⊆ C1(IX,A) for X ∈ C0, and
– for f ∈ C0(X, Y ), g ∈ P (Y ) implies g ◦ If ∈ P (X). ut

We may intuitively think that C1(IX,A) represents the set of proofs of a se-
quent X ` A, and C0 (imported into C1 via I) determines a property on proofs
which is closed under tensor, composition and structural constructions. Unlike
the traditional non-linear calculi and logical predicates over them, we explicitly
state the “resource” X, which plays some significant role in our work. Then, for
a C0-predicate P on A, P (X) is a predicate on the proofs of X ` A. The second
condition tells us that P is stable under the change of resource along a proof of
X ` Y , provided that it satisfies the property C0.

Definition 2. Define the category of C0-predicates C0PRED as follows:

– an object of C0PRED is a pair (P,A) where P is a C0-predicate on A ∈ C1;
– an arrow from (P,A) to (Q,B) is an arrow h ∈ C1(A,B) such that g ∈ P (X)
implies h ◦ g ∈ Q(X). ut

Definition 3. For C0-predicates P on A and Q on B, define C0-predicates P⊗Q
on A⊗ B and P ( Q on A( B as follows.

(P ⊗Q)(X) =

{
((g ⊗ h) ◦ If)

∣∣∣∣∣ ∃Y, Z ∈ C0 f ∈ C0(X, Y ⊗ Z),g ∈ P (Y ), h ∈ Q(Z)

}

(P ( Q)(X) =

{
f ∈ C1(IX,A( B)

∣∣∣∣∣ ∀Y ∈ C0 a ∈ P (Y ) impliesev ◦ (f ⊗ a) ∈ Q(X ⊗ Y )

}
ut

The definition of P ⊗ Q above is derived from a few category-theoretic tools,
which will be explained in Sect. 4; for now, we shall give a proof-theoretic ex-
planation. A sequent X ` A⊗ B can be derived as

Πf....
X ` Y ⊗ Z

Πg....
Y ` A

Πh....
Z ` B

Y, Z ` A ⊗B
(⊗I)

X ` A⊗ B
(⊗E)

where X ` Y ⊗ Z splits a resource X to Y and Z which are used to prove A
and B respectively. In general, such a splitting of resource is not unique, so we
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consider all possible cases such that (i) the proof Πf of the splitting satisfies the
“tensor-closed property” C0 and (ii) the proofs Πg of Y ` A and Πh of Z ` B
satisfy the predicates P (Y ) and Q(Z) respectively – in such cases we say that
the derivation satisfies the property (P ⊗Q)(X).
The definition of P ( Q is in spirit the same as the usual definition of

logical predicates; M : A ⇒ B satisfies P ⇒ Q if and only if MN : B belongs
to Q for any N : A satisfying P . However, since our type theory is linear, we
have to deal with the resources of terms linearly, and we explicitly state them
in the definition: intuitively, ∆ ` M : A ( B satisfies P ( Q if and only if
∆,∆′ `MN : B satisfies Q for any ∆′ ` N : A satisfying P .

Lemma 1. For each X,A ∈ C0 define PA(X) = {If | f ∈ C0(X,A)}. Then

– PA is a C0-predicate on IA.
– f : (PA, IA)→ (PB , IB) in C0PRED iff f = Ig for some g ∈ C0(A,B).
– PA ⊗ PB = PA⊗B. ut

Proposition 2. C0PRED forms a symmetric monoidal closed category by the
following data: the unit object is (PI , I), tensor is given by (P,A) ⊗ (Q,B) =
(P ⊗ Q,A ⊗ B), and exponent (P,A)( (Q,B) = (P (Q,A(B). Moreover
P extends to a strict symmetric monoidal functor from C0 to C0PRED which
is full. ut

Remark 1. If C0 is closed and I preserves exponents strictly, then so is P – in
particular we have PA(B = PA ( PB . ut

Example 1 (Subsconing). If C0 is equivalent to the one object one arrow cate-
gory, a C0-predicate on A is just a subset of C1(I, A), thus is a predicate on the
global elements of A. For predicates P on A and Q on B, we have

P ⊗Q = {(g ⊗ h)◦ ' | g ∈ P, h ∈ Q}
P ( Q = {f ∈ C1(I, A( B) | ev ◦ (f ⊗ g)◦ '∈ Q for any g ∈ P }

where ' indicates the canonical isomorphism I
'
→ I ⊗ I. Following [21] we call

this category of predicates the subsconing of C1 and write C̃1 for it. ut

3.2 Logical C0-Predicates

Suppose that we have C0, C1 and I : C0 → C1 as before. Also we fix an inter-
pretation [[−]]1 of MILL in C1.

Definition 4. A type-indexed family {Pσ} is a logical C0-predicate if

– Pσ is a C0-predicate on [[σ]]1,
– PI = PI , Pσ⊗τ = Pσ ⊗ Pτ , Pσ(τ = Pσ ( Pτ , and
– [[c]]1 : (Pσ, [[σ]]1)→ (Pτ , [[τ ]]1) for each constant c : σ → τ . ut
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Note that a logical C0-predicate is determined by its instances at base types.
Given a logical C0-predicate {Pσ}, we can interpret MILL in C0PRED by [[b]] =
(Pb, [[b]]1) for each base type b and [[c]] = [[c]]1 : (Pσ, [[σ]]1) → (Pτ , [[τ ]]1) for each
constant c : σ→ τ . Thus we have

Lemma 2 (Basic Lemma for MILL). Let {Pσ} be a logical C0-predicate.
Then, for any term ∆ ` M : τ , [[∆ ` M : τ ]]1 : (P|∆|, [[|∆|]]1) → (Pτ , [[τ ]]1)
holds. ut

C0 itself determines a logical C0-predicate in a canonical way, provided that

– for each base type b there is an object [[b]]0 ∈ C0, and
– for each constant c : σ → τ there is an arrow [[c]]0 ∈ C0([[σ]]0, [[τ ]]0)

where [[σ]]0 is defined inductively by [[I]]0 = I and [[σ⊗τ ]]0 = [[σ]]0⊗[[τ ]]0. Then we
automatically have an interpretation [[−]]1 inC1 determined by [[b]]1 = I([[b]]0) and
[[c]]1 = I([[c]]0). Now define the canonical logical C0-predicate {P∗σ} by P

∗
b = P[[b]]0 .

Basic Lemma for the canonical logical C0-predicate implies that, at(-free types
(at any types if C0 and I are closed) a definable element is in the image of I.

3.3 Binary Logical C0-Relations

It is straightforward to generalize (or specialize) our logical predicates to multiple
arguments, i.e. logical relations, in the same way as demonstrated in [21]. Here we
spell out the case of binary ones. Suppose that C0 is a small symmetric monoidal
category, C1 and C2 are locally small symmetric monoidal closed categories and
that I1 : C0 → C1 and I2 : C0 → C2 are strict symmetric monoidal functors. A
binary C0-relation is just a C0-predicate obtained by replacing C1 by C1 × C2
and I by 〈I1, I2〉 : C0 → C1 ×C2. Explicitly:

Definition 5. An Obj(C0)-indexed set R = {R(X)}X∈C0 is a C0-relation on
(A,B) ∈ C1 × C2 when R(X) ⊆ C1(I1X,A) ×C2(I2X,B) for X ∈ C0, and, for
f ∈ C0(X, Y ), (g, h) ∈ P (Y ) implies (g ◦ I1f, h ◦ I2f) ∈ P (X). ut

Definition 6. Define the category of C0-relations C0REL as follows: an object
of C0REL is a triple (A,B,R) where R is a C0-relation on (A,B); and an arrow
from (A,B,R) to (A′, B′, R′) is a pair (h ∈ C1(A,A′), k ∈ C2(B,B′)) such that
(f, g) ∈ R(X) implies (h ◦ f, k ◦ g) ∈ R′(X). ut

Proposition 2 tells us that C0REL is a symmetric monoidal closed category. More
explicitly, for C0-relations R on (A,B) and R

′ on (A′, B′), we have C0-relations
R⊗R′ on (A ⊗A′, B ⊗ B′) and R( R′ on (A( A′, B( B′) as follows.

(R⊗ R′)(X) =

{
((g⊗g′) ◦ I1f, (h⊗h

′) ◦ I2f)

∣∣∣∣∣ ∃Y, Z ∈ C0 f ∈ C0(X, Y ⊗Z),(g, h) ∈ R(Y ), (g′, h′) ∈ R′(Z)

}

(R(R′)(X) =
{
(f, g)

∣∣∣∣∣ ∀Y ∈ C0 (a, b) ∈ R(Y ) implies(ev ◦ (f ⊗ a), ev ◦ (g ⊗ b)) ∈ R′(X ⊗ Y )

}
Now fix interpretations [[−]]1 and [[−]]2 of MILL in C1 and C2 respectively.
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Definition 7. A type-indexed family {Rσ} is a logical C0-relation if

– Rσ is a C0-relation on ([[σ]]1, [[σ]]2),
– RI(X)={(I1f, I2f) | f ∈C0(X, I)}, Rσ⊗τ=Rσ ⊗ Rτ , Rσ(τ =Rσ(Rτ and
– ([[c]]1, [[c]]2) : ([[σ]]1, [[σ]]2, Rσ)→ ([[τ ]]1, [[τ ]]2, Rτ) for each constant c : σ→ τ . ut

Lemma 3 (Basic Lemma, binary version). Let {Rσ} be a logical C0-relation.
Then, for any ∆ `M : τ , ([[∆ `M : τ ]]1, [[∆ `M : τ ]]2) : ([[|∆|]]1, [[|∆|]]2, R|∆|)→
([[τ ]]1, [[τ ]]2, Rτ) holds. ut

4 Categorical Glueing

We sketch the categorical glueing constructions used in our development; the
detailed category-theoretic analysis is found in [13].
We write (D ↓ Γ ) for the comma category [19] (or the “glued category”) of a

functor Γ : C→ D. An object of (D ↓ Γ ) is a triple (D ∈ D, C ∈ C, f : D → ΓC).
An arrow from (D,C, f) to (D′, C ′, f ′) is a pair (d : D → D′, c : C → C ′)
satisfying Γc ◦ f = f ′ ◦ d. We note that there is a projection functor p : (D ↓
Γ )→ C given by p(D,C, f) = C and p(d, c) = c.

Lemma 4. Suppose that C and D are symmetric monoidal closed categories and
that Γ : C→ D is a symmetric monoidal functor. Moreover suppose that D has
pullbacks. Then the comma category G ≡ (D ↓ Γ ) can be given a symmetric
monoidal closed structure, so that the projection p : G → C is strict symmetric
monoidal closed.

Proof (sketch). We define the symmetric monoidal structure on G by

IG ≡ (ID, IC, mI)
(D,C, f)⊗ (D′, C ′, f ′) ≡ (D ⊗D′, C ⊗C ′, mC,C′ ◦ (f ⊗ f ′))

(d, c)⊗ (d′, c′) ≡ (d⊗ d′, c⊗ c′)

where mI : ID → ΓIC and mC,C′ : ΓC ⊗ ΓC ′ → Γ (C ⊗ C ′) are the coherent
morphisms of the symmetric monoidal functor Γ . Exponents are defined as

(D,C, f)( (D′, C ′, f ′) ≡ ((D( D′)×D(ΓC′ Γ (C ( C ′), C ( C ′, π2)

which is given by the following pullback in D.

D( D′

(D( D′) ×D(ΓC′ Γ (C ( C ′)

D( ΓC ′

ΓC( ΓC ′

Γ (C ( C ′)

?

π1

?
Λ(ΓevC,C′ ◦mC(C′,C)

?
f ( ΓC0

-
D( f 0

-π2

ut
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This result seems to be folklore. Notice that the glueing functor Γ does not have
to be strong.
In the situation of the last section, by letting Γ : C1 → SetC

op
0 be the

functor which sends X to C1(I−, X), we obtain the setting for the category of

C0-predicates. The symmetric monoidal closed structure of Set
C
op
0 is given by

I(−) = C0(−, I), (F ⊗ G)(−) =

∫ X,Y
FX × GY × C0(−, X ⊗ Y ) and (F (

G)(−) = SetC
op
0 (F (=), G(−⊗ =)) (see [15]), for which Γ becomes symmetric

monoidal. For describing the predicates, we are interested in the full subcategory
of the glued category whose objects are subobjects in SetC

op
0 . This is precisely

the category C0PRED, which is again symmetric monoidal closed; the definition
of unit and tensor are patched in the obvious way (this is possible because SetC

op
0

admits epi-mono factorization), resulting the concrete descriptions in Sect. 3.
Lafont has shown that, using the glueing for cartesian closed categories, a

small cartesian category fully and faithfully embeds to the cartesian closed cat-
egory freely generated from the former [16]. We can use C0PRED for showing a
parallel result:

Example 2. Let C0 be a small symmetric monoidal category and C1 be the sym-
metric monoidal closed category freely generated from C0. Then the embedding
I : C0 → C1 is full faithful. Faithfulness is easily shown by constructing a sym-
metric monoidal closed category to which C0 faithfully embeds. Fullness follows
from the commutative diagrams

C1

C0 C0PRED

C1

A
A
A
A
A
A
A
A
A
AAU

Id
?

P
∗

�
�
�
���

I

-P
HHHHHHHHHHj

I

@
@
@
@@R

p

where P∗ is the uniquely determined strict symmetric monoidal closed functor
making the upper triangle commute, and the right triangle commutes because
of the universal property of I. Since both P and p are full, so is I = p ◦ P. ut

Syntactically, this implies that the I, ⊗-fragment of MILL is full in MILL; we
can show it by applying the Basic Lemma to the canonical logical predicate
(where C0 is the term model of the I, ⊗-fragment), which in fact is a concrete
reworking of Example 2.

For interpreting the modality ! of DILL in the following section, we will need
to determine a symmetric monoidal adjunction between the glued categories:
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Lemma 5. Suppose that C1
F−→
⊥←−
U
C2 and D1

F ′−→
⊥←−
U ′
D2 are (symmetric monoidal)

adjunctions, with (symmetric monoidal) functors Γ1 : C1 → D1 and Γ2 : C2 →
D2 together with a (monoidal) natural isomorphism τ : U

′Γ2 ' Γ1U . For G1 ≡
(D1 ↓ Γ1) and G2 ≡ (D2 ↓ Γ2), there are functors F : G1 → G2 and U : G2 → G1
given by

F(D,C, f) = (F ′D, FC, σC ◦ F ′f), F(d, c) = (F ′d, F c),
U(Y,X, g) = (U ′Y, UX, τX ◦ U ′g), U(y, x) = (U ′y, Ux)

where σC = ε
′
Γ2FC

◦ F ′τ−1FC ◦ F
′Γ1ηC : F

′Γ1C → Γ2FC (η is the unit of F a U
and ε′ is the counit of F ′ a U ′). F is (strong symmetric monoidal and) left
adjoint to U . Moreover the projections p1 : G1 → C1 and p2 : G2 → C2 give a

map of adjunction [19] from G1
F−→
⊥←−
U
G2 to C1

F−→
⊥←−
U
C2. ut

5 Dual Intuitionistic Linear Logic

Now we enrich our logic and calculus with the modality !. There are many
possible choices for this, see for instance [7]. Here we choose the formulation
due to Barber and Plotkin, called Dual Intuitionistic Linear Logic (DILL) [5]
for its simple syntax and equational theory, as well as for the well-established
category-theoretic models of DILL in terms of symmetric monoidal adjunctions.
Alternatively we could use Benton’s Linear Non-Linear Logic (LNL Logic) [6]
which has essentially the same class of category-theoretic models as DILL. In
DILL a typing judgement takes the form Γ ; ∆ `M : σ in which Γ represents an
intuitionistic (or additive) context whereas ∆ is a linear (multiplicative) context.

5.1 Syntax of DILL

Types and Terms

σ ::= b | I | σ ⊗ σ | σ( σ | !σ
M ::= c(M) | x | ∗ | let ∗ be M in M | M ⊗M | let x⊗ x be M in M |

λx.M | MM | !M | let !x be M in M

Typing

c : σ → τ Γ ; ∆ `M : σ

Γ ; ∆ ` c(M) : τ
(Constant)

Γ ; x : σ ` x : σ
(Variablelin)

Γ ; ∅ ` ∗ : I
(II)

Γ ; ∆1 `M : I Γ ; ∆2 ` N : σ

Γ ; ∆1]∆2 ` let ∗ be M in N : σ
(IE)

Γ ; ∆1 `M : σ Γ ; ∆2 ` N : τ

Γ ; ∆1]∆2 ` M ⊗N : σ ⊗ τ
(⊗I)

Γ ; ∆1 `M : σ ⊗ τ
Γ ; ∆2, x : σ, y : τ ` N : θ

Γ ; ∆1]∆2 ` let x ⊗ y be M in N : θ
(⊗E)

Γ ; ∆, x : σ `M : τ

Γ ; ∆ ` λx.M : σ( τ
((I) Γ ; ∆1 `M : σ( τ Γ ; ∆2 ` N : σ

Γ ; ∆1]∆2 ` MN : τ
((E)
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Γ1, x : σ, Γ2 ; ∅ ` x : σ
(Variableint)

Γ ; ∅ `M : σ

Γ ; ∅ `!M :!σ
(!I)

Γ ; ∆1 `M :!σ Γ, x : σ ; ∆2 ` N : τ

Γ ; ∆1]∆2 ` let !x be M in N : τ
(!E)

Axioms

let ∗ be ∗ in M =M let ∗ be M in ∗ =M
let x⊗ y be M ⊗N in L = L[M/x,N/y] let x⊗ y be M in x⊗ y =M

(λx.M)N =M [N/x] λx.Mx =M
let !x be !M in N = N [M/x] let !x be M in !x =M

C[let ∗ be M in N ] = let ∗ be M in C[N ]
C[let x⊗ y be M in N ] = let x⊗ y be M in C[N ]
C[let !x be M in N ] = let !x be M in C[N ]

where C[−] is a linear context (no ! binds [−]).

5.2 Semantics of DILL

Let C be a cartesian category (category with finite products), D a symmetric

monoidal closed category and C
F−→
⊥←−
U
D a symmetric monoidal adjunction; we

understand that the symmetric monoidal structure on C is given by (a choice
of) the terminal object and binary product. Assume that there is an object
[[b]] ∈ D for each base type b and an arrow [[c]] ∈ D([[σ]], [[τ ]]) for each constant
c : σ → τ , where [[σ]] ∈ D is inductively defined by [[I]] = I, [[σ ⊗ τ ]] = [[σ]]⊗ [[τ ]],
[[σ ( τ ]] = [[σ]]( [[τ ]] and [[!σ]] = FU [[σ]]. For each typing judgement Γ ; ∆ `
M : σ, we define [[Γ ; ∆ ` M : σ]] : [[|Γ ; ∆|]] → [[τ ]] in D as follows, where
|Γ ; ∆| = |!Γ,∆| in which !Γ = x1 :!σ1, . . . , xn :!σn for Γ ≡ x1 : σ1, . . . , xn : σn.
First eight cases are dealt with as in MILL, with care for discarding or duplicating
the intuitionistic context, using

discardΓ,∆ : [[|Γ ; ∆|]]→ [[|∆|]]
splitΓ,∆1,∆2 : [[|Γ ; ∆1]∆2|]]→ [[|Γ ; ∆1|]]⊗ [[|Γ ; ∆2|]]

which are defined in terms of projections and diagonal maps in C and imported
into D via F . For last three cases we have

[[Γ1, x : σ, Γ2 ; ∅ ` x : σ]]=

[[|Γ1, x : σ, Γ2|]]
'
→ F (. . .× U [[σ]]× . . .)

Fproj
−→ FU [[σ]]

ε
→ [[σ]]

[[Γ ; ∅ `!M :!σ]] = [[|Γ ; ∅|]]
'
→
⊗
i FU [[σi]]

N
i δ

−−−−−→
⊗
i FUFU [[σi]]

m
−→

FU(
⊗
i FU [[σi]])

'
→ FU [[|Γ ; ∅|]]

FU [[Γ ; ∅`M :σ]]
−−−−−−−−−→ FU [[σ]]

[[Γ ; ∆1]∆2 ` let !x be M in N : τ ]] =

[[|Γ ; ∆1]∆2|]]
split
−−−−−→ [[|Γ ; ∆1|]]⊗ [[|Γ ; ∆2|]]

[[Γ ; ∆1`M :!σ]]⊗id
−−−−−−−−−→

[[!σ]]⊗ [[|Γ ; ∆2|]]
'
→ [[|Γ, x : σ ; ∆2|]]

[[Γ,x:σ ; ∆2`N:τ]]
−−−−−−−−−→ [[τ ]]
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where proj is a suitable projection in C, ε and δ are the counit and comultipli-
cation of the comonad FU while m is an induced coherent morphism.

Proposition 3. This semantics is sound and complete [5]. ut

5.3 Logical Predicates for DILL

Consider the following commutative diagram of functors

C0 D0

C1 D1

?
I

-F0

?
J

-
F1

in which C0 and C1 are cartesian categories, D0 symmetric monoidal and D1
symmetric monoidal closed; and F0, F1 are strong symmetric monoidal while I,
J are strict symmetric monoidal. Moreover assume that F1 has a right adjoint
U1 : D1 → C1.
As in Sect. 3, we define the categories of C0- and D0-predicates – let us

call them C0PRED and D0PRED respectively. Note that C0PRED is a cartesian
category with products given by (P ×Q)(X) = {〈f, g〉 | f ∈ P (X), g ∈ Q(X)}
for C0-predicates P and Q (which coincides with P ⊗Q in Definition 3).
Now we give functors between C0PRED and D0PRED. For a C0-predicate P

on A ∈ C1, define a D0-predicate L(P ) on F1A ∈ D1 by

L(P )(Y ) = {F1g ◦ Jf | ∃X ∈ C0 f ∈ D0(Y, F0X), g ∈ P (X)}

and, for a D0-predicate Q on B ∈ D1, a C0-predicate F̂0(Q) on U1B ∈ C1 by

F̂0(Q)(X) = {f
∗ ∈ C1(IX,U1B) | f ∈ Q(F0X) ⊆ D1(JF0X,B) = D1(F1IX,B)}

where f∗ : IX → U1B is the adjoint mate of f : F1IX → B.

Proposition 4. L and F̂0 extend to functors between C0PRED and D0PRED.
Moreover L is strong symmetric monoidal, and left adjoint to F̂0. ut

Therefore we have a symmetric monoidal adjunction between a cartesian cate-
gory C0PRED and a symmetric monoidal closed category D0PRED. Let ! be the
induced comonad on D0PRED, that is, we define a D0-predicate !P on F1U1A by

(!P )(Y ) = {F1g
∗ ◦ Jf | ∃X ∈ C0 f ∈ D0(Y, F0X), g ∈ P (F0X)}

for a D0-predicate P on A. These are derived from a category-theoretic construc-
tion (left Kan extension [19] gives a left adjoint of (−) ◦ F0 : Set

D
op
0 → SetC

op
0 )

together with Lemma 5 (for glueing C1
F1−→
⊥←−
U1

D1 to Set
C
op
0 −→

⊥←−
(−)◦F0

SetD
op
0 ), but here
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let us motivate !P more intuitively. A sequent ∅ ; Y `!A can be proved as

Πf....
∅ ; Y `!X

Πg....
X ; ∅ ` A

X ; ∅ `!A
(!I)

∅ ; Y `!A
(!E)

where ∅ ; Y `!X converts a linear resource Y to !X which is used non-linearly
in X ; ∅ `!A to produce !A. Taking all such possible cases into account, we say
that the proof satisfies (!P )(Y ) when Πf belongs to D0 and Πg satisfies P (X).

Now let us fix an interpretation [[−]]1 of DILL in C1
F1−→
⊥←−
U1

D1.

Definition 8. A type-indexed family {Pσ} is a logical (C0
F0→ D0)-predicate if

– Pσ is a D0-predicate on [[σ]]1,
– PI = PI , Pσ⊗τ = Pσ ⊗ Pτ , Pσ(τ = Pσ ( Pτ and P!σ =!Pσ hold, and
– [[c]]1 : (Pσ, [[σ]]1)→ (Pτ , [[τ ]]1) for each constant c : σ → τ . ut

Lemma 6 (Basic Lemma for DILL). Let {Pσ} be a logical (C0
F0→ D0)-

predicate. Then, for Γ ; ∆ `M : τ , [[Γ ; ∆ `M : τ ]]1 : (P|Γ ; ∆|, [[|Γ ; ∆|]]1)→
(Pτ , [[τ ]]1) holds. ut

(C0
F0→ D0) itself determines the canonical logical (C0

F0→ D0)-predicate when

– for each base type b there is an object [[b]]0 ∈ D0, and
– for each constant c : σ → τ there is an arrow [[c]]0 ∈ D0([[σ]]0, [[τ ]]0)

where [[σ]]0 is defined inductively by [[I]]0 = I and [[σ ⊗ τ ]]0 = [[σ]]0 ⊗ [[τ ]]0. In
such cases we automatically have an interpretation [[−]]1 in D1 determined by

[[b]]1 = J([[b]]0) and [[c]]1 = J([[c]]0), and the canonical logical (C0
F0→ D0)-predicate

{P∗σ} is determined by P
∗
b = P[[b]]0 .

Example 3 (From MILL to DILL). Let D0 be the term model of MILL and C0

equivalent to the one object one arrow category, and C1
F1−→
⊥←−
U1

D1 be the term

model of DILL with the same base types and constants. Applying the Basic
Lemma to the canonical logical (C0 → D0)-predicate it follows that MILL is a
full fragment of DILL; note that Pσ(τ = Pσ ( Pτ holds for !-free types σ and
τ (see Remark 1). ut

Example 4 (From action calculi to DILL). Suppose that C0
F0→ D0 is the term

model of an action calculus [20,22] and C1
F1−→
⊥←−
U1

D1 is that of the corresponding

DILL (alternatively the LNL Logic of Benton [6]), with I and J induced by the
translation from the action calculus to DILL. If we have only non-parameterized
constants, Basic Lemma applied to the canonical logical predicate implies that
the translation is full. In fact we can deal with parameterized constants (control
operators) as well (see [13]), so together with the conservativity [4] we have the
full completeness of DILL (LNL) over (static) action calculi. ut
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6 Related Work, Further Work

6.1 Categorical Logical Predicates

Our treatment of logical predicates in category-theoretic framework is inspired
by Hermida’s work on fibrations and logical predicates [14], and also influenced
by Mitchell and others’ work, in particular [21]. However, all these results are for
typed lambda calculi. Blute and Scott [9] do consider a linear variant, and the
intuition behind their work seems close to ours, though their work is on classical
linear logic and better understood in connection with Tan’s recent work (see
below). We also note that Ambler [3] has studied some relevant idea. The fact
that our construction yields (bi)fibrations has some significance in our glueing
constructions; we leave this categorical analysis to the full paper [13].

6.2 Classical Linear Type Theories

So far we have only considered “intuitionistic” linear type theories. It is natural
to expect that our construction works equally well in the settings with duality,
i.e., classical linear theories. Here is a relevant construction explored by Tan:

Example 5 (Double Glueing). An attractive use of categorical glueing is devel-
oped in Tan’s thesis [23]. Let C be a ∗-autonomous category (typically a com-
pact closed category). Because of the duality, Cop is also ∗-autonomous and

we have subscones (Example 1) C̃ and C̃op with projections p1 : C̃ → C and

p2 : C̃op → Cop. Hyland noticed that the category GC obtained by the following
pullback is a ∗-autonomous category.

GC C̃op
op

C̃ C

-

? ?

pop2

-
p1

Explicitly, GC’s object is a triple A = (|A| ∈ C, As ⊆ C(I, |A|), At ⊆ C(|A|, I))
and an arrow f : A→ B inGC is an arrow f : |A| → |B| inC satisfying f◦a ∈ Bs
for a ∈ As and also b ◦ f ∈ At for b ∈ Bt (this generalizes Loader’s “linear

logical predicates” [18]). The duality between C̃ and C̃op
op
induces a duality on

GC which determines a ∗-autonomous structure. Tan calls this construction a
double glueing, from which she has obtained various full completeness results for
multiplicative linear logic (MLL). ut

In fact it makes sense to replace the subscones in double glueing by C0PRED for
some suitably chosen symmetric monoidal category C0. Using this we can derive
a notion of logical predicates for MLL and, for example, can show that MILL is
a full fragment of MLL. See [13] for an exposition.
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versité Paris VII. 199, 206

17. Lambek, J. (1995), Bilinear logic in algebra and linguistics, in “Advances in Linear
Logic”, pp. 43–59, Cambridge University Press. 199

18. Loader, R. (1994), “Models of Lambda Calculi and Linear Logic: Structural, Equa-
tional and Proof-Theoretic Characterisations”, Ph.D. thesis, Oxford University.
211

19. Mac Lane, S. (1971), “Categories for the Working Mathematician”, Graduate Texts
in Mathematics 5, Springer-Verlag. 205, 207, 209

20. Milner, R. (1996), Calculi for interaction, Acta Inform. 33(8), 707–737. 210
21. Mitchell, J.C., and Scedrov, A. (1992), Notes on sconing and relators, in “Computer
Science Logic (CSL’92), Selected Papers”, Springer LNCS 702, pp. 352–378. 199,
199, 203, 204, 211



Logical Predicates for Intuitionistic Linear Type Theories 213

22. Power, A.J. (1996), Elementary control structures, in “Proceedings, Concurrency
Theory (CONCUR’96)”, Springer LNCS 1119, pp. 115–130. 210

23. Tan, A.M. (1997), “Full Completeness for Models of Linear Logic”, Ph.D. thesis,
University of Cambridge.



Polarized Proof-Nets: Proof-Nets for LC

(Extended Abstract)

Olivier Laurent
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Abstract. We define a notion of polarization in linear logic (LL) com-
ing from the polarities of Jean-Yves Girard’s classical sequent calculus
LC [4]. This allows us to define a translation between the two systems.
Then we study the application of this polar ization constraint to proof-
nets for full linear logic described in [7]. This yields an important simpli-
fication of the correctness criterion for polarized proof-nets. In this way
we obtain a system of proof-nets for LC.

The study of cut-elimination takes an important place in proof-theory. Much
work is spent to deal with commutation of rules for cut-elimination in sequent
calculi. The introduction of proof-nets (see [7] for instance) solves commutation
problems and allows us to define a clear notion of reduction and complexity.

In [4], Jean-Yves Girard defines the sequent calculus LC using polarities. LC
is a refinement of LK with a deterministic cut-elimination. J.-Y. Girard leaves
open the following problem about the syntax:

“Find a better syntax (which would be to LC what typed λ-calculus is to LJ)
for normalization [. . . ]. A kind of proof-nets could be the solution, and the fact
that proof-nets are not available for full linear logic could be compensated by the
fact that only certain linear configurations are used.”

In this paper we address this problem but the situation is now slightly differ-
ent since proof-nets for full linear logic are given in [7]. In these proof-nets, the
boxes for additives are replaced by weights on the nodes giving less sequential-
izatio n information. To use these proof-nets, we will first define a translation
from LC to the fragment LLP of LL defined by restricting to polarized formu-
las. The “particular linear configurations” of LC correspond to the polarization
of LLP.

We then turn to the study of proof-structures for LLP and show that the
restriction to polarized formulas induces a natural orientation, the orientation
of polarization, which is respected by the paths of LL’s correctness condition
(Orientation Lemma). This yields a striking simplification of the correctness
condition which allows us to get rid of the notion of switches. In particular it
turns out to be cubic in the size of polarized proof-nets whereas the LL condition
is immediately seen to be exponential.

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 213–227, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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1 Classical Logic: LC

Gentzen’s classical sequent calculus LK has well known problems, such as the
lack of a denotational semantics and the non determinism of cut-elimination.
J.-Y. Girard proposed in [4] the calculus LC as a refinement of LK to solve
these defects . The key point is the introduction of polarities for formulas. Let
us just remind the syntax.

1.1 Formulas and Polarity

The formulas of LC are built from the atomic formulas and the constants V
and F by using the connectives ∧, ∨, ¬, ∃ and ∀. For each formula, we define its
polarity : atomic formulas, V and F are positive; a s for the compound formulas
we use the following table:

A B A ∧B A ∨B ¬A ∃xA ∀xA
+ + + + − + −
− + + − + + −
+ − + −
− − − −

In the sequel, P and Q will stand for positive formulas and N and M for
negative ones.

1.2 Rules of the Sequent Calculus LC

To limit the number of rules, we will use one-sided sequents. The formulas will be
defined modulo the De Morgan’s laws. The sequents for LC are written ` Γ ;Π
where Γ (the body) is a multi-set of formulas and Π (the stoup) is either empty
or a unique positive formula.
Then the sequent calculus is defined by the following rules:

` ¬P ;P

` Γ ;P ` ¬P,∆;Π

` Γ,∆;Π

` Γ,N ; ` ¬N,∆;Π

` Γ,∆;Π

` Γ ;P

` Γ, P ;

` Γ ;Π

` Γ, A;Π

` Γ, A, A;Π

` Γ, A;Π

`; V ` Γ,¬F ;Π

` Γ ;P ` ∆;Q

` Γ,∆;P ∧Q

` Γ ;P ` ∆,N ;

` Γ,∆;P ∧N

` Γ,M ; ` ∆;Q

` Γ,∆;M ∧Q

` Γ,M ;Π ` Γ,N ;Π

` Γ,M ∧N ;Π

` Γ, A, B;Π

` Γ, A ∨B;Π
A ∨B negative

` Γ ;P

` Γ ;P ∨Q

` Γ ;Q

` Γ ;P ∨Q

` Γ, A;Π

` Γ, ∀xA;Π
x /∈ Γ,Π

` Γ,N [t/x];

` Γ ; ∃xN

` Γ ;P [t/x]

` Γ ; ∃xP
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2 Linear Logic with Polarities

We can give a translation from LC to LL using the definition of the denotational
semantics described in [4]. More precisely, we will define a polarized fragment
of LL and we will show in which way it corresponds to LC. We start with the
defin ition of two polarized fragments of LL.
The first notion of polarization for LL splits the connectives into reversible

and non reversible ones.

Definition 1 (Polarized formula). We define in the same time the positive
(denoted by P, Q) and negative (denoted by M, N) formulas, starting from a set
of atoms (denoted by A, B):

P ::= !A | P ⊗ P | P ⊕ P | ∃xP | 1 | 0 | !N
N ::= ?A⊥ | N P N | N &N | ∀xN | ⊥ | > | ?P

A polarized formula is either a positive one or a negative one.

The second notion of polarization is more precise and corresponds to LC’s
polarities. It will be used for studying translations between LC and LL.

Definition 2 (Strictly polarized formula). We define in the same time the
strictly positive (denoted by P, Q) and strictly negative (denoted by M, N )
formulas, starting from a set of atoms (denoted by A, B):

P ::= !A | P ⊗ P | P ⊗ !N | !N ⊗ P | P ⊕ P | ∃xP | ∃x!N | 1 | 0
N ::= ?A⊥ | N P N | N P ?P | ?P P N | N &N | ∀xN | ∀x?P | ⊥ | >

A strictly polarized formula is P, N , ?P or !N .

Definition 3 (LLP and LLPc). The fragment LLP (resp. LLPc) of LL is
obtained by restricting to polarized (resp. strictly polarized) formulas and by
adding the constraint that the >-rule must introduce at most one positive for-
mula.

LLPc is a fragment of LLP (strictly polarized formulas are polarized) so
all the results we will prove on LLP (about proof-nets,. . . ) will be also true for
LLPc.
The constraint on the >-rule is needed in particular for the next proposition.

Proposition 1. If ` Γ is provable in LLP then Γ has at most one positive
formula.

3 Translations between LC and LLPc

We now prove the similarity of the two systems by defining two translations
between LC and LL. More precisely these translations show that LC and LLPc
are almost isomorphic.
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Definition 4. LCrev is the fragment of LC which refuses:

– structural rules on negative non atomic formulas;
– negative non atomic formulas in the context of the negative premise of:
• negative cut-rule,
• ⊗-rule between a negative and a positive formula,
• ∃-rule on a negative formula.

Every proof of LC can be transformed into a proof of LCrev by commuting
some reversible rules with structural ones so we have no loss of provability in
LCrev. A study of these commutations of reversible rules has been done in a
similar case by M. Quatrini and L. Tortora de Falco in [9] for translation of
LKη,ρpol into LL.

3.1 LCrev ! LLPc

Definition 5. The translation G 7→ G• from LCrev into LLPc is defined on
formulas by:

A• = !A (¬P )• = P •⊥

V • = 1 F • = 0
(P ∧Q)• = P • ⊗Q• (N ∧M)• = N• &M•

(P ∧N)• = P • ⊗ !N• (N ∧ P )• = !N• ⊗ P •

(∃xP )• = ∃xP • (∃xN)• = ∃x!N•

Given a sequent of LC, we can split the body into two parts: positive for-
mulas and negative formulas, ` Γ ;Π = ` Γ−, Γ+;Π. Then we can define the
translation on sequents: (` Γ−, Γ+;Π)• = ` Γ−

•
, ?(Γ+)•, Π•.

The translation of proofs is defined rule by rule by introducing promotion rules
on the negative premise before negative cut, before ∧ between a positive and a
negative formula and before ∃ for a negative formula. For example here is the
case of the negative cut:

` Γ−, Γ+, N ; ` ¬N,∆−, ∆+;Π

` Γ−, ∆−, Γ+, ∆+;Π

↓

` Γ−
•
, ?(Γ+)•, N•

` Γ−
•
, ?(Γ+)•, !N• ` ?(¬N)•, ∆−

•
, ?(∆+)•, Π•

` Γ−
•
, ∆−

•
, ?(Γ+)•, ?(∆+)•, Π•

Remark 1. An empty stoup corresponds to a ?Γ context in LL, i.e. to a correct
context for promotion.

LC accepts structural rules on non atomic negative formulas which are not
translated by ?G formulas in LL. A solution is to add the constraints of LCrev

to LC as we have done, but another one is to introduce cuts for the translation
of these rules. This has been done with linear isomorphisms in Danos-Joinet-
Schellinx [1].



Polarized Proof-Nets: Proof-Nets for LC 217

3.2 LLPc ! LCrev

Definition 6. The translation G 7→ G∗ from LLPc into LCrev is defined on
strictly polarized formulas by:

(!A)∗ = A (!N )∗ = N ∗

1∗ = V 0∗ = F
(P ⊗Q)∗ = P∗ ∧ Q∗ (P ⊕ Q)∗ = P∗ ∨ Q∗

(P ⊗ !N )∗ = P∗ ∧ N ∗ (!N ⊗P)∗ = N ∗ ∧ P∗

(∃xP)∗ = ∃xP∗ (∃x!N )∗ = ∃xN ∗

(P⊥)∗ = ¬P∗

By Proposition 1, a sequent ` Γ of LLPc can be written ` Γ ′, Π where Π
is the unique strictly positive formula of Γ (if it exists). Then the translation
is given on sequents by: (` Γ ′, Π)∗ = ` Γ ′∗;Π∗. There is no problem for the
translation of proofs, we just have to precise the translation of the promotion
rule: 



π
...

` ?Γ,N
` ?Γ, !N




∗

=

π∗

...
` Γ ∗,N ∗;

Remark 2. This particular translation corresponds to the fact that a promotion
is always followed by another rule: a cut-rule, a ⊗-rule or a ∃-rule. So promotion
rules can be erased by the translation.

The translations (.)• and (.)∗ are almost inverse of each other, more precisely:

– If G is a formula of LCrev, G•∗ = G.
– If P is a strictly positive formula of LLPc, P∗

• = P and (?P)∗• = P.
– If N is a strictly negative formula of LLPc, N ∗

• = N and (!N )∗• = N .
– For the sequents: (` Γ ;Π)•∗ = ` Γ ;Π and (` Γ )∗• = ` Γ .
– If π is a proof in LCrev, π•∗ = π.

However the converse is wrong for proofs: π∗• 6= π because LLPc is more
flexible about the position of promotions. In the following example, the first
LL proof puts weakening in between the promotion and its associated ∃-r ule
whereas the third one, being translated from LC, has glued the promotion with
the ∃-rule.

` !A, ?A⊥

` ?!A, ?A⊥

` ?!A, !?A⊥

` ?B⊥, ?!A, !?A⊥

` ?B⊥, ?!A, ∃x!?A⊥

∗

→

` ¬A;A

` ¬A,A;

` ¬B,¬A,A;

` ¬B,A; ∃x¬A

•

→

` !A, ?A⊥

` ?!A, ?A⊥

` ?B⊥, ?!A, ?A⊥

` ?B⊥, ?!A, !?A⊥

` ?B⊥, ?!A, ∃x!?A⊥
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4 Proof-Nets

Proof-nets have been introduced in [3] for the multiplicative case and then ex-
tended in [5] and [7] to full linear logic.

4.1 Proof-Structure

The following definitions come from [7] with just some modifications.

Definition 7 (Weight). Given a set of elementary weights, i.e. boolean vari-
ables, (denoted by p, q,. . . ), a weight is a product (conjunction) of elementary
weights p and of negations of elementary weights p̄.
As a convention, we use 1 for the empty product and 0 for a product where

p and p̄ appear. We also replace p.p by p. With this convention we say that the
weight w depends on p when p or p̄ appears in w.

A proof-structure is an oriented graph with pending edges, for which each
edge is associated with an LL formula, constructed on the following set of nodes
respecting the following typing constraints. The orientation is from top to bot-
tom.

......

...

......

ax cut

!

>

A A⊥

A⊥A

A

BABA B A B A AA

⊗

A⊗B

P

APB

&

A&B

⊕1

A⊕B

⊕2

A⊕B

C

1 ⊥ > A1 An

A

!A ?A1 ?An

A

?d

?A

?A ?A

?A?A

?c ?w ∀ ∃t

A[t/x]

∃xA∀xA

1 ⊥

To avoid confusion with the other orientation that we will introduce later,
this orientation will be called the geographic orientation and we will refer to it
by the terms: top, bottom, above, bellow, to go up, to go down, premise of a node
(edge just above the node), conclusion of a node (edge just bellow the node),. . .
A unary node is a node with only one premise and a binary node is a node

with two premises. The C-nodes must have at least two premises.
In such a graph:

– we associate an elementary weight to each &-node called its eigen weight ;
– the variable used in the quantification of a ∀-node is called its eigen variable;
– we associate a non empty set of nodes (different from cut) to each ⊥-node
and ?w-node. These are called the jumps of the node.

Eigen weights and eigen variables are supposed to be different.
We associate a weight to each node with the constraint that if two nodes

have a common edge, they must have the same weight except if the edge is a
premise of a &-node or of a C-node (additive contraction). In these particular
cases the weight changes:
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– if w is the weight of a &-node and p is its eigen weight then w does not
depend on p and its premise nodes must have weights w.p and w.p̄;

– if w is the weight of a C-node and w1, . . . , wn are the weights of its premise
nodes then we must have w = w1 + . . .+wn and wiwj = 0, ∀i 6= j.

Then we can define the following notions:

– A node L with weight w is said to depend on p if w depends on p or if L is
a C-node and one of the weights just above it depends on p.

– A node L is said to depend on an eigen variable x if x is free in the formula
associated to the conclusion of L or if L is a ∃t-node and x is free in t.

A proof-structure must also satisfy the following properties:

– a conclusion node (i.e. a node with pending edge) has weight 1;
– eigen variables are not free in the formulas associated to pending edges;
– if w is the weight of a &-node with eigen weight p and w′ is a weight de-
pending on p and appearing in the proof-structure then w′ ≤ w;

– if w is the weight of a ∀-node with eigen variable x and w′ is the weight of
a node depending on x then w′ ≤ w;

– if w is the weight of a ⊥-node or of a ?w-node and w′ is the weight of one of
its jumps then w ≤ w′.

With this definition we have a notion of proof-structures for full linear logic.
Now to make it clear, let us look at the example of a proof-structure for A⊕B(
A⊕B:

A

p

1

p̄

1 C

A⊕B

&

A⊥&B⊥

p̄

ax

ax

p

⊕⊕

B

A⊕B
A⊕B

A⊥

B⊥

4.2 Sequentialization and Correctness

An important point in the study of proof-nets is the problem of correctness
criterions that is the problem to know whether a proof-structure is a proof.
More technically, can you inductively deconstruct a proof-structure?
There exist different correctness criterions for multiplicative proof-structures

like [3] or [2] which lead to the criterion of [7] for the full case. We present here
this general criterion.

Definition 8 (Sequentialization of a proof-structure). The relation “L
sequentializes R into E” is defined for each possible L. R is a proof-structure, E
is a set of proof-structures and L is a conclusion node of R or a cut.

– ax, !, 1, >: if L is the only node of R then L sequentializes R into ∅;
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– cut, ⊗: if it is possible to split the graph obtained by erasing L into two
proof-structures R1 and R2 then L sequentializes R into {R1,R2};

– P, ⊕1, ⊕2, ?d, ?c, ?w, ∀, ∃, ⊥: if when we erase L in R, we obtain a
proof-structure R0 then L sequentializes R into {R0};

– &: let p be the eigen weight of L. The graph R0 (resp. R1) is obtained by
giving to p the value 0 (resp. 1) and just keeping nodes with non zero weights
and identifying the unary C-nodes to the node just above. If R0 (resp. R1)
is a proof-structure then L sequentializes R into {R0,R1};

– C: a C-node never sequentializes a proof-structure.

Definition 9 (Sequentializable proof-structure). A proof-structure R is
said to be sequentializable if one of its nodes sequentializes R into a set of
sequentializable proof-structures or into the empty set.

Definition 10 (Valuation). A valuation ϕ for a proof-structure R is a func-
tion from the set of the eigen weights of R into {0, 1}. Such a valuation can
easily be seen as a function defined on the set of all the weights of R.

Definition 11 (Slice). Given a valuation ϕ of a proof-structure R, the slice
ϕ(R) is the proof-structure obtained from R by keeping only the nodes with
weights w such that ϕ(w) = 1 and the edges bellow a kept node and by identifying
the unary C-nodes with the upper node. A slice is not really a proof-structure
according to definition of the Sect. 4.1 because unary &-nodes appear.

Definition 12 (Switch). Given a valuation ϕ of a proof-structure R, a switch
S of R is defined as a non oriented graph constructed with the nodes and the
edges of ϕ(R) with the modifications:

– for each P- or ?c-node, we keep only one premise;
– for each &-node L, we erase the premise appearing in ϕ(R) and we add an
edge, called dependency edge, from a node depending on L to L (this may
change nothing);

– for each ∀-node L, we erase the premise and we add an edge, called de-
pendency edge, from a node depending on its eigen variable to L (this may
change nothing);

– for each ?w- or ⊥-node L, we add an edge, called jump edge, from a jump
of L to L.

Definition 13 (Proof-net). A proof-structure is a proof-net if all its switches
are acyclic and connected.

Theorem 1 (Sequentialization – J.-Y. Girard in [7]). A proof-structure is
sequentializable iff it is a proof-net.

5 Polarized Proof-Nets

Now we restrict proof-nets to the polarized case. This strong constraint will allow
us to define a new and simpler correctness criterion.
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Definition 14 (Polarized proof-structure). A polarized proof-structure is
a proof-structure made only of polarized formulas and with the constraint that
at most one of the formulas associated to the conclusions of a >-node can be
positive.

In other words, a polarized proof-structure is a proof-structure typed by
LLP. As LLPc is a fragment of LLP, all the following results will give a notion
of proof-nets for LC through the translations in Sect. 3.

Definition 15 (Edges). We give here some new terminology on edges in a
polarized proof-structure:

– a positive (resp. negative) edge is an edge with a positive (resp. negative)
formula;

– a principal edge in a switch is an edge already appearing in the proof-
structure; a switching edge is either a dependency edge or a jump edge.
For switching edges, we extend the polarization and the geographic orienta-
tion by considerin g them negative and oriented towards the corresponding
&-, ∀-, ?w- or ⊥-node.

In the sequel, we will distinguish between two C-nodes: the C+-node with
positive premises and conclusion and the C−-node with negative ones.

Definition 16 (Positive and negative nodes). A positive node is a node
with positive edges, that is ⊗, ⊕, C+, ∃ and 1, and a negative node is a node
with negative edges, that is P, &, C−, ?c, ?w, ∀ and ⊥.

5.1 Towards Specific Criterions

The key point for the simplification of the correctness criterion in the case of
polarized proof-nets is the existence of a specific orientation in these proof-nets
as shown in Lemma 2. The use of this orientation allows us to forget the notion
of switch and then also the notion of slice.
The idea of orientation linked to polarization in proof-nets has already been

used. For example François Lamarche proposed in [8] a criterion for proof-nets
for intuitionistic linear logic with Danos-Regnier polarities.
We define a new orientation on proof-structures, the orientation of polariza-

tion (or p-orientation): positive edges are oriented upwardly and negative edges
downwardly. We will talk about this orientation using the terms: to arrive to ,
to come from, incident edge, emergent edge,. . .

Lemma 1. In a switch of a polarized proof-structure, a node has at most one
incident edge. Positive and negative nodes have exactly one incident edge.

Proof. We study each node:

– the only nodes with incident switching edges are &, ∀, ?w and ⊥ and by the
definition of a switch these nodes have exactly one incident edge in a switch
(either a premise or a switching edge);
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– P- and ?c-nodes have just one premise in a switch so just one incident edge;
– positive nodes, ax, cut and ! have only principal edges in a switch and the
only incident one is their positive conclusion (negative premise for cut);

– ?d-nodes have only emergent edges;
– >-nodes with a positive conclusion are like ! and those with only negative
conclusions have no incident edges;

– there are no C-nodes in a switch. ut

Lemma 2 (Orientation lemma). A non bouncing path in a switch of a po-
larized proof-structure starting accordingly to the p-orientation always respects
this orientation.

Proof. We prove the result by induction on the length of the path, the case of
length 0 being given by the starting hypothesis. Now when the path arrives to
a new node, this is only possible through the incident edge so when the path
continues it must be by anot her edge, thus an emergent one (by Lemma 1) since
it does not bounce. ut

Lemma 3. A non oriented cycle in a switch of a polarized proof-structure is
p-oriented.

Definition 17 (Correction graph). The correction graph of a proof-structure
R is the oriented graph obtained by putting on R the p-orientation and by adding
some new edges:

– from each node depending on an eigen weight to the corresponding &-node;
– from each node depending on an eigen variable to the corresponding ∀-node;
– from the jumps to the nodes they are associated to.

Lemma 4. If there is a (non oriented) cycle in a switch of a proof-structure
then there is a p-oriented cycle in its correction graph.

Definition 18 (Initial and final nodes). In a correction graph, a node is
initial (resp. final) if all the edges starting from (resp. arriving to) it are pending
edges.

Remark 3. A final node is a conclusion node so its weight is always 1. A ?d-node
is always initial.

5.2 Weak Criterion

We give here our first criterion for polarized proof-nets, which is simpler than
the general one but equivalent. To obtain this result we still need to use the
notion of slices.

Definition 19 (Slice of a correction graph). A slice of a correction graph
G is the sub-graph of G made only of the nodes and the edges of a slice of the
proof-structure (in other terms it is the correction graph of the slice).
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Theorem 2 (Correctness criterion). A polarized proof-structure has all its
switches acyclic and connected iff all the slices of its correction graph are acyclic
(with orientation), contain exactly one initial node and all the nodes of the slice
are p-accessible from the initial one (in thi s case we say that the correction
graph is weakly correct).

Proof. By Theorem 1, a proof-structure with all its switches acyclic and con-
nected is sequentializable and by an easy induction, a sequentializable polarized
proof-structure has a weakly correct correction graph. Conversely if the correc-
tion graph is weakly correct, switches cannot contain any cycle by Lemma 4.
To finish, we can prove by induction on the sum Σ of the lengths of all the

paths from the initial node i of the slice to a fixed node s that in all the switches
of this slice there is a path between i and s.

– If Σ = 0 then s = i.
– If Σ = n + 1, s is not an initial node in the slice. We choose a switch S,
there exist a node s′ and an edge a from s′ to s such that a appears in S (by
definition of a switch we always keep such an edge). Then by induction hyp
othesis on s′, there is a path in S between i and s′ which can be extended
with a into a path between i and s. ut

We can apply to our polarized proof-structures all the results of the general
case given in [7] about sequentialization, cut-elimination,. . .

5.3 Strong Criterion

Following the same direction we obtain a second and most important criterion
which allows us to forget also slices.

Definition 20 (Strong correctness criterion). The correction graph of a
polarized proof-structure is strongly correct if it is acyclic and if for all pair of
distinct initial nodes with weights wi and wj: wi.wj = 0.

Theorem 3 (Strong criterion and weak criterion). A strongly correct cor-
rection graph is weakly correct.

Proof. No problem for acyclicity because a slice of a correction graph has less
edges than the correction graph itself. Then by acyclicity of the slices we have
at least one initial node in each slice. But also at most one because taking a slice
does not create any initial node (a negative node is never initial and the other
ones cannot lose the node under their conclusion) so the condition on initial
nodes of the correction graph is sufficient.

For accessibility of nodes, we prove by induction on the sum Σ of the lengths
of all the paths from an initial node to a fixed node s that s is p-accessible by
the initial node in each slice where it appears:
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– if Σ = 0 then s is initial;
– if Σ = n+1 then in a slice where s appears either it is initial and there is no
problem or there is another node s′ with an edge from s′ to s. By induction
hypothesis s′ is accessible from the initial node in every slice where it ap
pears. Thus in the slice we are looking at, s′ is accessible and also s by
adding the edge to a path arriving to s′. ut

The converse is wrong, some proof-structures are weakly correct but rejected
by the strong criterion because some cycles may come from the interactions
between different slices. However we keep enough proof-structures to have proof-
nets for all proofs of sequent calculus and the strong criterion is preserved by
cut-elimination. We will see this in the Sects. 5.5 and 5.6.

5.4 Sequentialization

We will now give a proof of sequentializability of strongly correct proof-nets
different from the one consisting in using the proof for the general criterion by
Theorems 3, 2 and then 1.

Definition 21 (Positive tree). A positive tree of a correction graph is a non
empty connected set of positive nodes and positive edges maximal for inclusion.
A positive tree A is terminal when for each positive edge a of the correction

graph if there is a path from A to a then a is in A.

Theorem 4 (Sequentialization). A polarized proof-net is sequentializable.

Proof. The first point is to sequentialize by all negative final nodes. We prove
that if a P-, &-, ?c-, ?w-, ⊥- or ∀-node is final then it sequentializes the proof-
net. We remark that ⊗-, ⊕i, ∃-, C+-, C−-, ?d- a nd cut-nodes are never final.
So we have to sequentialize a proof-net with only ax, !, > and 1-nodes as final
ones.

Lemma 5. If the only final nodes of a polarized proof-net are ax, !, > and 1
then from each non final node there exists a path to a terminal positive tree.

Definition 22 (Cut positive tree). A positive tree is said to be cut if it has
a cut-node hereditary above it.

Proof (Theorem 4 – continued). Given a proof-net with only ax, !, > and 1-nodes
as final ones, by Lemma 5 it contains a terminal positive tree. If there is no nodes
under this tree, it can be sequentialized. Otherwise this is a cut positive tree and
we show by termin ality of the tree that the cut-node under it sequentializes the
proof-net. ut

Proposition 2. The criterion given by Theorem 4 has a cubic complexity in the
size of the proof-net (i.e. the number of its nodes).
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5.5 Translation from Sequent Calculus

To show that the strong criterion keep enough proof-structures we have to define
a translation from LLP to polarized proof-structures and to prove the correct-
ness of the proof-structures built in this way.
When we talked about sequentialization we used proof-structures with !-

nodes just seen as generalized axioms but to talk about the translation of proofs
and about cut-elimination, we need to refine our definition of proof-structure.

Definition 23 (Proof-structure and proof-net with boxes). We define a
proof-structure with boxes by induction, it is:

– either a proof-structure with no !-nodes,
– or a proof-structure together with a proof-structure with boxes of conclusions
A, ?B1, . . . , ?Bn associated to each !-node of conclusions !A, ?B1, . . . , ?Bn.

We can define in the same way proof-nets with boxes from proof-nets.

In the sequel we will use the term proof-structure (resp. proof-net) instead
of proof-structure (resp. proof-net) with boxes.

Definition 24 (Translation of proofs).We define the translation from LLP
to polarized proof-structures by induction on the size of the proof:

– &: by induction we obtain two polarized proof-structures R1 and R2 from
the two proofs of the premises of the &-rule. We choose a new elementary
weight p and multiply all the weights of R1 by p and all the weights of R2
by p̄. Then we add a &-node (with eigen weight p) between the two pending
edges corresponding to the formulas used by the & and a C-node for each
pair of formulas of the context coming from R1 and R2;

– !: the new proof-structure is just a single !-node introducing the conclusions
!A, ?B1, . . . , ?Bn of the rule and the proof-structure associated to it is the
one obtained at the previous step with conclusions A, ?B1, . . . , ?Bn;

– ?w: we just add a ?w-node to the proof-structure R of the previous step with
a set of jumps constituted of all the conclusion nodes of R;

– ⊥: same as ?w;

no problem for the other rules.

Theorem 5. The previous translation is in fact from LLP to polarized
proof-nets.

5.6 Cut Elimination

Definition 25 (Reduction step). The different cut-elimination steps are the
following ones:

– Axiom cut: we erase the ax- and cut-nodes and replace them by an edge, the
jumps coming from the ax-node are moved to the other node above the cut.
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– Multiplicative cut: we erase the P and the ⊗, the cut is duplicated between
the two pairs of premises. All the jumps are duplicated and moved up.

⊗ P

cut

cut

cut

– Additive cut: if the ⊕-node is a ⊕1-node (resp. ⊕2-node) we erase in the
proof-structure all the nodes with null weights when p = 1 (resp. p = 0) and
the cut moves up as the jumps.

&w ⊕1w

p = 1

cut cut

w.p w.p̄ w w w

w w

– Dereliction cut: the box is opened and the cut moves up as the jumps.
– Contraction cut: the !-node is duplicated and also the cut to be put between
each premise of the ?c and a box. New ?c-nodes are put between the pairs of
conclusions of the !. Jumps from the ! and from the ?c are duplicated.

– Weakening cut: we just erase the box and put new ?w-nodes above its con-
clusions. The jumps of these new nodes are the jumps of the cut one.

– Commutative exponential cut: the box with the cut !-node comes into the
other one and the other !-node is extended with the conclusions of the first
one. All the jumps coming from the two !-nodes are put on the second one.

– Quantifier cut: we erase the two nodes ∀ and ∃t, the cut goes up as the jumps.
In all the proof-structure we make the substitution of x by t.

∀ ∃t

∀xN ∃xN⊥

[t/x]

cut cut

N⊥[t/x]

N [t/x] N⊥[t/x][
t/x]

N

– Multiplicative constant cut: we erase the three nodes: 1, ⊥ and cut. The
jumps starting from them are duplicated and moved to the jumps of ⊥.

The cases of a cut with a >- or a C-node are still to be studied. A solution
for the additive contraction is proposed in [7] but is not uniform with the other
reduction steps. However with the restriction on the steps defined above, we have
th e same result as in [7]:

Theorem 6. A proof-net without >-node and without &-connectives in the for-
mulas associated to its pending edges, which cannot be reduce by any step de-
scribed above, is in normal form (i.e. without cut-node).

This has been already proved by J.-Y. Girard for the multiplicative-additive
case but we give here a really different proof using the p-orientation.
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Proof. If the proof-net contains no &-nodes, all the weights are 1 and there are
no problems. Otherwise let L be a terminal &-node, that is with no paths to
another &-node. By the hypothesis, there must be a cut-node (hereditary) under
L. Then this cut-node can be reduced by terminality of L. ut
Theorem 7 (Cut-elimination). Strong correctness is preserved by the cut-
elimination procedure.

Proof. The steps are well defined in a proof-net (x is not free in N⊥[t/x] for the
quantifier step by acyclicity). Then each step preserves the strong criterion. ut

Conclusion

The polarization constraint, coming from LC, gives a system of proof-nets with a
correctness criterion which is really simpler than the one in the general case [7].
Through the translation between LC and LLP, this gives proof-nets for the
sequen t calculus LC, solving our starting problem.
The last section of this paper is devoted to cut-elimination where the problem

of commutative additive contraction appears. A full solution has still to be found.
Much work is now possible such as an extension of our approach to second

order quantifiers, the study of a geometry of interaction or of a game seman-
tics for such proof-nets, the continuation of this work towards the intuitionistic
polarities as defined i n [6],. . .
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Call-by-Push-Value: A Subsuming Paradigm

(Extended Abstract)

Paul Blain Levy?
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Abstract. Call-by-push-value is a new paradigm that subsumes the
call-by-name and call-by-value paradigms, in the following sense: both
operational and denotational semantics for those paradigms can be seen
as arising, via translations that we will provide, from similar semantics
for call-by-observable.
To explain call-by-observable, we first discuss general operational ideas,
especially the distinction between values and computations, using the
principle that “a value is, a computation does”. Using an example pro-
gram, we see that the lambda-calculus primitives can be understood as
push/pop commands for an operand-stack.
We provide operational and denotational semantics for a range of com-
putational effects and show their agreement. We hence obtain semantics
for call-by-name and call-by-value, of which some are familiar, some are
new and some were known but previously appeared mysterious.

1 Introduction

1.1 A Single Paradigm

In a recent invited lecture [Rey98], Reynolds, surveying over 30 years of pro-
gramming language development, called for a common framework for typed call-
by-name (CBN) and typed call-by-value (CBV). We consider this an important
problem, as the existence of two separate paradigms is troubling:

– it makes each language appear arbitrary (whereas a unified language might
be more canonical);

– on a more practical level, each time we create a new style of semantics,
e.g. Scott semantics, operational semantics, game semantics, continuation
semantics etc., we always need to do it twice—once for each paradigm.

We propose call-by-push-value (CBPV), a new typed paradigm based on Filin-
ski’s variant of Moggi’s computational λ-calculus [Fil96,Mog91], as a solution to
this problem. We will introduce a CBPV language, and give translations from
CBN and CBV languages into it. We claim that, via these translations, CBPV
“subsumes” CBN and CBV.
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But what does it mean for one language to subsume another? After all,
there are sound, adequate translations from CBN and CBV languages into each
other [Plo76,HD97] and into other languages such as linear λ-calculus, Moggi’s
calculus [BW96,Mog91] and others [Mar98,MC88,JLST98,SJ98]. So we must ex-
plain in what sense our translations into CBPV go beyond these “classic” trans-
forms, and why, consequently, CBPV is a solution to Reynolds’ problem.
We therefore introduce the following informal criterion. A translation α from

language L′ into language L is subsumptive if every “naturally arising” denota-
tional semantics, operational semantics or equation for L′ arises, via α, from a
“similar” denotational semantics, operational semantics or equation for L.
The importance of such a translation is that the semanticist need no longer

attend to L′, because its primitives can be seen as no more than syntactic sugar
for complex constructs of L. We shall see in Sect. 1.2 that the classic translations
mentioned above are not subsumptive.
The essence of Reynolds’ problem can now be expressed as follows:

Give subsumptive translations from CBN and CBV languages into a
single language.

The key features of CBPV that enable it to solve this problem are that

1. it divides Moggi’s type constructor T into two type constructors U and F ,
that give types of thunks and of producers respectively;

2. it distinguishes between values and computations;
3. writing V ‘M for “M applied to V ”, the λ-calculus primitives can be under-
stood as commands for an operand-stack :
– V ‘ can be read as “push V ”;
– λx can be read as “pop x”.

(1) is reminiscent of the division of a monad into an adjunction. However, while
an adjunction (with extra structure) gives rise to a model for CBPV, different
(non-equivalent) adjunctions can give rise to the same model, because not all of
the adjunctional structure is used. This is explained in [Lev98].
Feature (2) is shared with CBV, and feature (3) with CBN. (Indeed the

push/pop reading is widely used in implementation of lazy languages [Jon92].)
That our translations into CBPV are subsumptive is too informal a claim to

prove, but we have a diverse collection of examples to corroborate it:

– We can give operational semantics for CBPV in big-step, small-step or ma-
chine form, and recover standard operational semantics for CBV and CBN.
These can be formulated to include various computational effects.

– We can give Scott semantics for CBPV, and recover those for CBN [Plo77]
and for CBV [Plo85].

– We can give state-passing semantics for CBPV, and recover the mysterious
CBN semantics of O’Hearn [O’H93], and a straightforward CBV semantics.

– We can give continuation semantics for CBPV, and recover the CBV seman-
tics of [Plo76] and the CBN semantics of [SR96] (NB not that of [Plo76]
which is not quite CBN, as it does not validate the η-law).



230 Paul Blain Levy

– We can give game semantics for CBPV, and recover the CBN game semantics
of [HO94] and the CBV game semantics of [AM98].

– We can give an equational theory for CBPV. The equations that this gives
us for CBN include the β- and η-laws for functions, which generally fail in
CBV. The equations that we obtain for CBV include for example

Γ, x : bool `M = if x then M [true/x] else M [false/x] (1)

which generally fails in CBN. (1) is in fact a special case of the η-law for
sum types.

– We can give a (rather messy) categorical semantics for CBPV. From a
CBPV-structure we can construct for CBN a cartesian closed category, and
for CBV a premonoidal category in the sense of [PR97].

– If we add sum types to both CBN and CBV languages, our translations
into CBPV can be extended to include them. While both operational and
denotational semantics for sum types differ between CBN and CBV, all the
differences are recovered from their translation into CBPV.

After discussing related work, we give an operational account of the principles
of CBPV. We add divergence and recursion to the basic language, and provide
Scott semantics, which helps to motivate our translations from CBN and CBV
into CBPV. Finally, we provide operational and denotational semantics for a
range of computational effects.

Acknowledgements I am grateful to M. Fiore, M. Marz, E. Moggi, P. O’Hearn,
S. Peyton Jones, J. Power, U. Reddy, J. Reynolds, E. Robinson, H. Thielecke,
referees and others for their helpful comments on this and related material.

1.2 Related Work

We briefly give some ways in which other proposed translations from CBN and
CBV, even those on which ours are based, are not subsumptive. Of course, the
objectives that they were designed to achieve are different.
We first look at cases in which semantics for the source language does not,

so far as we can see, extend along the translation.

– It is not evident how to provide operational semantics for the monadic tar-
get languages of [BW96,Fil96,Mog91] so as to recover standard operational
semantics for the source languages.

– The monad language of [BW96,Mog91] does not provide semantics for CBN,
because the translation from CBN into it—like the thunking transform from
CBN to CBV [HD97,SJ98]—does not preserve the η-law for functions.

– As remarked in [BW96], the linear language used there assumes “commu-
tativity” of effects, so that continuation models, for example, do not arise
from it; likewise for the language of [Mar98,MC88].

– The CPS transforms of [SR96,Plo76] do not, of course, preserve Scott se-
mantics.
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More subtly, there are cases where a semantics for the source language does
extend to one for the target, but not (as subsumptiveness requires) to a “similar”
one—the semantics of type becomes more complicated.

– To decompose the CBV predomain1 model of [Plo85] using A →CBV B =
A → TB [BW96,Mog91], we must drop the countable-base condition on
predomains, because the total function space operation does not preserve it.
For example, N→ N is a flat, uncountable “predomain”.

– The CBN game model of [HO94] can exhibit a linear decomposition A→CBN
B =!A ( B [BW96,Gir87], but types must then denote games rather
than arenas. (Some further problems with this linear approach are discussed
in [McC96], and it is abandoned for technical reasons in [AHM98].)

2 Call-by-push-value

We introduce CBPV in this section using an operational account, because (as for
CBN and CBV) the operational ideas remain essentially constant across different
effects, whereas the range of models is wide.

2.1 Operational Principles and Types

In CBPV we distinguish between computations and values. Intuitively speaking,
a computation does, while a value is. CBPV has two disjoint classes of types: a
computation has a computation type, while a value has a value type. For clarity
we underline computation types.
The two classes of types are given by

A ::= UB |
∑
i∈IAi | 1 | A× A

B ::= FA |
∏
i∈I Bi | A→ B

(2)

where each set I of tags is countable (so the language is infinitary).
We explain the types as follows; notice how this explanation maintains the

does/is principle. Throughout execution, there is an operand-stack of values and
tags that is pushed onto and popped from.

– A value of type UB is a thunk of a computation of type B.
– A value of type

∑
i∈IAi is a pair (i, V ), where i ∈ I and V is a value of type

Ai.
– A value of type A × A′ is a pair (V, V ′), where V is a value of type A and
V ′ is a value of type A′.

– A value of type 1 is the 0-tuple (). We largely omit further mention of this
type, as it is entirely analogous to ×.

1 A predomain (X,6) is a countably based, algebraic directed-complete poset, with
joins of all nonempty bounded subsets, in which the down-set {y ∈ X : y 6 x} of
each x ∈ X has a least element. (The last condition is adapted from [AM98]). A
domain (X,6,⊥) is a predomain with a least element ⊥.
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– A computation of type FA produces a value of type A.

– A computation of type
∏
i∈IBi pops a tag i ∈ I from the operand-stack, and

then behaves as a computation of type Bi.

– A computation of type A → B pops a value of type A from the operand-
stack, and then behaves as a computation of type B.

A computation can perform other effects besides popping and producing. For
example, a computation M of type A → FA′ might output, then pop a value
of type A, then push a value of type C, then input, then pop a value of type C
and finally produce a value of type A′. Or it might crash, diverge, make some
choices, jump out etc. But it cannot perform any further effects after producing,
for then another computation begins, using the value that M produced.

Values alone can be stored, input, output, pushed, popped or chosen. Iden-
tifiers can be bound to (or replaced by) values alone, and therefore they always
have value type. A computation is too “active” for this, although a thunk of a
computationM is a value, so it can be stored etc. Later the thunk can be forced,
and M then happens. Of course, a single thunk can be forced several times.

We call a value type of the form
∑
i∈I1 a groundtype and write n or even

just n for (n, ()). In particular, we write bool and nat for the groundtypes∑
i∈{true,false}1 and

∑
i∈N1 respectively. A computation of type F

∑
i∈I1 is called

a ground producer because it produces a ground value.

Moggi’s type TA [Mog91] becomes in our type system UFA, because a value
of type TA is a thunk of a computation that produces a value of type A.

2.2 The basic language

Definition 1. A context Γ is a finite sequence of identifiers with value types
x0 : A0, . . . , xm−1 : Am−1. Sometimes we omit the identifiers and write Γ as a
list of value types.

The calculus has two kinds of judgement

Γ `c M : B Γ `v V : A

for computations and values respectively. The terms are defined by Fig. 1. We
include let, although it could be regarded as sugar. Note that

∏
is a projection

product, whereas × is a pattern-match product. The key computations are

– produce V , the trivial producer of V ;

– M to x in M ′, the sequenced computation (called “generalized let” by
Filinski [Fil96]) where firstly the producer M happens, and if it produces a
value V then M ′ happens with x bound to V .

Imperatively, V ‘ means “push V ” and λx means “pop x”; and there are
similar interpretations for πi0 and 〈· · ·〉. This reading is illustrated in Sect. 2.3.
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Γ, x : A,Γ ′ `v x : A

Γ `v V : A Γ, x : A `c M : B

Γ `c let x be V in M : B

Γ `v V : A

Γ `c produce V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x in N : B

Γ `c M : B

Γ `v thunk M : UB

Γ `v V : UB

Γ `c force V : B

Γ `v V : Ai0

Γ `v (i0, V ) :
∑
i∈IAi

Γ `v V :
∑
i∈IAi · · · Γ, x : Ai `c Mi : B · · ·

Γ `c pm V as . . . , (i, x) in Mi, . . . : B

Γ `v V : A Γ `v V ′ : A′

Γ `v (V, V ′) : A ×A′

Γ `v V : A ×A′ Γ, x : A, y : A′ `c M : B

Γ `c pm V as (x,y) in M : B

· · · Γ `c Mi : Bi · · ·

Γ `c 〈. . . ,Mi, . . .〉 :
∏
i∈IBi

Γ `c M :
∏
i∈IBi

Γ `c πi0M : Bi0

Γ, x : A `c M : B

Γ `c λxM : A→ B

Γ `v V : A Γ `c M : A→ B

Γ `c V ‘M : B

pm is an abbreviation for pattern− match.

M [V/x] ⇓ T

let x be V in M ⇓ T

produce V ⇓ produce V

M ⇓ produce V N [V/x] ⇓ T

M to x in N ⇓ T

M ⇓ T

force thunkM ⇓ T

Mi0 [V/x] ⇓ T

pm (i0, V ) as . . . , (i, x) in Mi, . . . ⇓ T

M [V/x, V ′/y] ⇓ T

pm (V, V ′) as (x, y) in M ⇓ T

〈. . . ,Mi, . . .〉 ⇓ 〈. . . ,Mi, . . .〉

M ⇓ 〈. . . , Ni, . . .〉 Ni0 ⇓ T

πi0M ⇓ T

λxM ⇓ λxM

M ⇓ λxN N [V/x] ⇓ T

V ‘M ⇓ T

Fig. 1. Terms of Basic Language, and Big-Step Semantics
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Remark 1. The reader may wonder why we have not included complex values
such as x : A×A′ `v pm x as (y, z) in y : A or arithmetic expressions. The reason
is that they somewhat complicate the operational semantics, our presentation of
which exploits the fact that values do not need to be evaluated. Consequently,
and since they lie outside the range of our translations from CBN and CBV,
we omit them, except in the example program of Sect. 2.3. Nonetheless, all our
denotational and categorical models can interpret them straightforwardly.

2.3 Example Computation

The following example M illustrates the naive imperative reading of CBPV. To
this end, we add to the language arithmetic expressions as values (Remark 1)
and the facility to prefix a print command to any computation.

print "hello0";
let x be 3 in

let y be thunk (
print "hello1";
λz
print "we just popped "z;

produce x+ z
) in

print "hello2";

( print "hello3";

7‘
print "we just pushed 7";

force y

) to w in

print "w is bound to "w;

produce w+ 5

Note that if the word thunk were omitted, M would be ill-typed, because y
can identify only a value, not a computation. The type of y is U(nat→ F nat),
because y identifies a thunk of a computation that pops a natural number and
then produces a natural number.
M outputs as follows

hello0

hello2

hello3

we just pushed 7

hello1

we just popped 7

w is bound to 10

and finally produces the value 15.
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It is clear that if the lines print "hello1" and λz were exchanged, or if
the lines print "hello3" and 7‘ were exchanged, the behaviour of M would be
unchanged. We say that “effects commute with λ and with ‘ ”. A more familiar
example of this phenomenon is the equivalence of λx diverge and diverge. (We
are assuming here that, as in our example, the global computation is a producer,
so there is no danger that we will try to pop from an empty stack.)

2.4 Big-Step Operational Semantics

Terminal computations (a subset of closed computations) are given by

T ::= produce V | 〈. . . ,Mi, . . .〉 | λxM (3)

Intuitively these are computations that cannot proceed if the operand-stack is
empty. We write CB for the set of closed computations of type B, TB for the
set of terminal elements of CB, and VA for the set of closed values of type A.
For the basic language, we define in Fig. 1 a relation ⇓ from CB to TB . It can

be proved to be a total function. Note that only computations happen; values
do not need to be evaluated.

2.5 Equations and Observational Equivalence

We form an equational theory whose axioms are all substitution instances of the
equations in Fig. 2. Compare this theory to those of CBN and CBV.

– In CBV, equations such as η for + types hold because an identifier can be
bound only to a value.

– In CBN, equations such as η for→ types hold because a term of → type can
be evaluated only by applying it.

Since CBPV has both of these features, it has both kinds of equation, which is
essentially why it can subsume both paradigms.

Definition 2. A ground context C[] is a closed ground producer with zero or
more occurrences of a hole which can be either a computation or a value.

Definition 3. We say that M ' M ′ when for all ground contexts C[], C[M ] ⇓
produce n iff C[M ′] ⇓ produce n.

In all of our CBPV languages (e.g. in Sect. 5.1) the equations of the theory
hold as observational equivalences (for the appropriate variation on Def. 3). As
usual, this will follow from the soundness and adequacy of our models.
It is worth noticing that, with our imperative understanding of V ‘ and λx,

the β-law for→ equates “push V , then pop x, then M” withM [V/x]. Similarly,
the η-law for → equates M (in which x is not free) with “pop x, then push x,
then M”. These are both intuitively compelling.
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Γ `c let x be V in M = M [V/x] : B
Γ `c (produce V ) to x in M = M [V/x] : B
Γ `c force thunk M = M : B
Γ `c pm (i0, V ) as . . . , (i, x) in Mi, . . . = Mi0 [V/x] : B
Γ `c pm (V, V ′) as (x,y) in M = M [V/x, V ′/y] : B
Γ `c πi0 〈. . . ,Mi, . . .〉 = Mi0 : Bi0
Γ `c V ‘λxM = M [V/x] : B

Γ `c M = M to x in produce x : FA (x 6∈ Γ )
Γ `v V = thunk force V : UB
Γ, z :

∑
i∈IAi `

c M = pm z as . . . , (i, x) in M [(i, x)/z], . . . : B (x 6∈ Γ )
Γ, z : A ×A′ `c M = pm z as (x, y) in M [(x, y)/z] : B (x,y 6∈ Γ )
Γ `c M = 〈. . . , πiM, . . .〉 :

∏
i∈IBi

Γ `c M = λx x‘M : A→ B (x 6∈ Γ )
Γ `c (M to x in M ′) to y in M ′′ = M to x in (M ′ to y in M ′′) : B (x, y 6∈ Γ )
Γ `c πi0(M to x in M

′) = M to x in πi0M
′ : Bi0 (x 6∈ Γ )

Γ `c V ‘(M to x in M ′) = M to x in V ‘M ′ : B (x 6∈ Γ )

Fig. 2. β-laws, η-laws and other laws

3 Divergence, Recursion and Scott Semantics

As divergence is the computational effect most familiar to semanticists, we study
it first. We add to the basic language the computations

Γ `c diverge : B

Γ, x : UB `c M : B

Γ `c µxM : B

and the big-step rules

diverge ⇓ T

diverge ⇓ T

M [thunk µxM/x] ⇓ T

µxM ⇓ T

so that ⇓ is now a partial function from CB to TB. The recursion binder µx can
be read imperatively as “bind-to-a-thunk-of-the-present-computation x”, and
therefore µxM is a computation.
The Scott semantics for CBPV interprets value types (and hence contexts)

as predomains and computation types as domains. For example,

– [[FA]] is the lift of [[A]];
– if [[B]] is the domain (X,6,⊥) then [[UB]] is its underlying predomain (X,6);
– [[A→ B]] is the domain of continuous functions from [[A]] to [[B]]

Then to each computation Γ `c M : B we associate a continuous function
[[M ]] : [[Γ ]] → [[B]], and to each value Γ `v V : A we associate a continuous
function [[V ]] : [[Γ ]]→ [[A]]. For example, where ρ ∈ [[Γ ]],

[[produce V ]]ρ = lift ([[V ]]ρ)
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[[M to x in N ]]ρ =

{
⊥ if [[M ]]ρ= ⊥
[[N ]](ρ, x 7→ x) if [[M ]]ρ= lift x

[[thunk M ]]ρ = [[M ]]ρ

[[force V ]]ρ = [[V ]]ρ

In particular, [[thunk diverge]]ρ is the least element of the predomain [[UB]].

Proposition 1 (Soundness/Adequacy). For any closed computation M ,

1. if M ⇓ T , then [[M ]] = [[T ]];
2. if [[M ]] > ⊥, then M ⇓ T for some T .

4 Translating CBN and CBV into CBPV

As we would expect from the Scott semantics of Sect. 3, CBN types translate
into computation types, while CBV types translate into value types. The most
important type decomposition into CBPV is

B →CBN B
′ = (UB)→ B′ (4)

This corresponds to the fact that in CBN a function is effectively applied to a
thunk. Perhaps it is because the interpretation of U and of thunk is almost
invisible in CBPV Scott semantics that this decomposition has remained hidden
for so long.
Another important type decomposition into CBPV is

A→CBV A
′ = U(A→ FA′) (5)

This is similar, and in a sense equivalent, to Moggi’s decomposition [Mog91]
as A → TB, but notice that (5) avoids the countability problem mentioned in
Sect. 1.1. It says that a CBV function from A to A′ is a thunk of a computation
that pops a value of type A and then produces a value of type A′.
The translations into CBPV are given in Fig. 3 and Fig. 4. The source lan-

guages of these translations are prototypical CBN and CBV languages like PCF
and PCFv, with sum types. They are equipped with Scott semantics [[−]]CBN and
[[−]]CBV (together with a semantics [[−]]valCBV for CBV values) and big-step seman-
tics ⇓CBN and ⇓CBV. We omit presenting them in detail. For simplicity, we have
supplied a projection product for CBN but a pattern-match product for CBV;
although in principle one could have both kinds of product in each paradigm.
Some of the technical results for the CBN translation concern not the function

−n (which does not commute with substitution) but a relation 7→n from CBN to
CBPV terms. Informally, M 7→n M ′ means that M ′ is Mn with possibly some
extra force thunk prefixes. The direct inductive definition of 7→n is comprised
of one rule for each CBN term-constructor, e.g.

x 7→n force x

N 7→n N ′ M 7→n M ′

N ‘M 7→n (thunk N ′)‘M ′
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C Cn (a computation type)

bool F
∑
b∈{true,false}1

A→ B UAn → Bn

A× B An Π Bn

A+ B F (UAn + UBn)

A0, . . . , Am−1 `M : C UA0
n, . . . , UAm−1

n `c Mn : Cn

x force x

false produce false
if M then N else N ′ Mn to z in pm z as true in N n, false in N ′

n

λxM λxMn

N ‘M (thunk N n)‘Mn

〈M,M ′〉 〈Mn,M ′n〉
πM πMn

inl M produce inl thunk Mn

pm M as inl x in N, inr x in N ′ M to z in pm z as inl x in N n, inr x in N ′
n

µxM µxMn

Fig. 3. Translation of CBN types and terms

C Cv (a value type)

bool
∑
b∈{true,false}1

A→ B U(Av → FBv)
A×B Av ×Bv

A+B Av +Bv

A0, . . . , Am−1 ` V : C A0
v, . . . , Am−1

v `v V val : Cv

x x

false false
λxM thunk λxM v

µyλxM thunk µyλxM v

(V, V ′) (V val, V ′
val
)

inl V inl V val

A0, . . . , Am−1 `M : C A0
v, . . . , Am−1

v `c M v : FCv

V (a value) produce V val

if M then N else N ′ M v to z in pm z as true in N n, false in N ′
n

MN (M first) M v to f in N v to x in x‘(force f)
pm M as (x, y) in N M v to z in pm z as (x,y) in N ′

v

pm M as inl x in N, inr x in N ′ M v to z in pm z as inl x in N v, inr y in N ′
v

Fig. 4. Translation of CBV types, values and terms
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and the additional rule
M 7→n M ′

M 7→n force thunk M ′

Proposition 2. 1. (M [V/x])
v
=M v[V val/x]

2. If M 7→n M ′ and N 7→n N ′ then M [N/x] 7→n M ′[thunk N ′/x]

We are now in a position to describe the fundamental subsumption properties:
that the Scott and big-step semantics of CBN and CBV can be recovered from
those of CBPV.
The preservation of the Scott semantics is straightforward:

Proposition 3. 1. If A is a CBN type then [[A]]CBN = [[A
n]]

2. If Γ `M : A is a CBN term and M 7→n M ′ then [[M ]]CBN = [[M ′]]
3. If A is a CBV type then [[A]]CBV = [[A

v]]
4. If Γ ` V : A is a CBV value then [[V ]]valCBV = [[V

val]]
5. If Γ `M : A is a CBV term then [[M ]]CBV = [[M v]]

That the equations of CBN/CBV are preserved follows from Prop. 2.

Proposition 4. Suppose M is a closed CBN term, and M 7→n M ′.

1. If M ′ is terminal then M is, and M is terminal iff Mn is.
2. If M ⇓CBN T then, for some T ′, T 7→n T ′ and M ′ ⇓ T ′.
3. If Mn ⇓ T ′, then, for some T , T 7→n T ′ and M ⇓CBN T .

Proposition 5. Suppose M is a closed CBV term.

1. M is terminal iff M v is terminal.
2. If M ⇓CBV T then M v ⇓ T v.
3. If M v ⇓ T ′, then, for some T , T v = T ′, and M ⇓CBV T .

Parts (2) and (3) of these are proved by induction, primarily on the big-step
derivation, and secondarily on 7→n (for Prop. 4) or M (for Prop. 5).

5 Operational Semantics for Computational Effects

It is straightforward to adapt the big-step semantics of Sect. 2.4 to various com-
putational effects (except for control effects, which require machine semantics,
where the search for a redex is made explicit). We give two examples: global
store and nondeterminism.

5.1 Global Groundtype Store

We will consider a single global storage cell X that stores a value of groundtype∑
s∈S1. We add to the basic langugage the computations

Γ `c deref X : F
∑
s∈S1

Γ `v V :
∑
s∈S1 Γ `

c M : B

Γ `c X := V ;M : B
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While it is possible to give type F 1 to commands such as assignment and output,
here we regard them as prefixes.
We define a relation ⇓ from S×CB to S×TB , adapting the rules of Sect. 2.4

and adding rules for the new constructs. For example:

s, T ⇓ s, T

s,M ⇓ s′, λxN s′, N [V/x] ⇓ s′′, T

s, V ‘M ⇓ s′′, T

s, deref X ⇓ s, produce s

s′,M ⇓ s′′, T

s, X := s′;M ⇓ s′′, T

⇓ can be proved to be a total function.
Finally, we say that M 'M ′ when for all ground contexts C[] and s, s′ ∈ S,

s, C[M ] ⇓ s′, produce n iff s, C[M ′] ⇓ s′, produce n.

5.2 Nondeterminism

We add to the basic language the divergence and recursion facilities of Sect. 3
together with the following term and big-step rule:

Γ, x : A `c M : B

Γ `c choose xM : B

M [V/x] ⇓ T

choose xM ⇓ T

6 Denotational Semantics for Computational Effects

We describe denotational semantics for the effects of Sect. 5. Part is easy: a value
type (or a context) should denote a set, with × and

∑
interpreted in the usual

way, and a value Γ `v V : A should denote a function [[V ]] : [[Γ ]]−→ [[A]].
The remainder of the semantics differs between the effects. While logically we

should present the various semantics first, and then state the soundness results,
this makes the interpretation of type constructors appear ad hoc. So we will
proceed in reverse order. For global store and nondeterminism, we will state
first the soundness and adequacy theorems that we are aiming to achieve, even
though they are not yet meaningful, and use this to motivate the semantics.
We will also give continuation semantics for the basic language. (Using machine
semantics, this can be similarly motivated.)

Proposition 6 (Soundness/Adequacy). Let M be a closed computation.

1. For global store, if s,M ⇓ s′, T then [[M ]]s= [[T ]]s′.
2. For nondeterminism, [[M ]] =

⋃
M⇓T [[T ]].

By looking at Prop. 6, we can guess the interpretation of a computation
Γ `c M : B. (Recall that if B = FA then this judgement corresponds to a CBV
term of type A, so its interpretation is familiar.)
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– For global store, [[M ]] will be a function from S× [[Γ ]] to [[B]], where [[B]] is a
set. If B = FA then [[B]] = S × [[A]], so that [[M ]] is a function from S × [[Γ ]]
to S × [[A]].

– For nondeterminism, [[M ]] will be a relation from [[Γ ]] to [[B]], where [[B]] is a
set. If B = FA, then [[B]] = [[A]], so that [[M ]] is a relation from [[Γ ]] to [[A]].

– For continuation semantics, [[M ]] will be a function from [[Γ ]]× [[B]] to Ans
(a fixed set that we regard as the set of “answers”), where [[B]] is a set. If
B = FA, then [[B]] = [[A]]→ Ans, so that [[M ]] is a function from [[Γ ]]×([[A]]→
Ans) to Ans.

We next turn our attention to the interpretation of U ,
∏
i∈I and →. For U ,

we know that values Γ `v UB correspond to computations Γ `c B. Thus, in the
case of global store, functions from [[Γ ]] to [[UB]] must correspond to functions
from S × [[Γ ]] to [[B]]. Therefore we set [[UB]] = S → [[B]]. Similarly we can
determine the interpretation of U for each effect. As expected, it follows in each
case that UFA denotes the same set as Moggi’s type TA [Mog91]:

effect U F T = UF
global store S → − S ×− S → (S ×−)
nondeterminism P − P
control − → Ans − → Ans (− → Ans)→ Ans

For A → B, we know that computations Γ `c A → B correspond to com-
putations Γ, A `c B. Thus, in the case of nondeterminism, relations from [[Γ ]] to
[[A→ B]] must correspond to relations from [[Γ ]]× [[A]] to [[B]]. Therefore we set
[[A→ B]] to be [[A]]× [[B]]. Similar reasoning suggests interpretations for both →
and
∏
i∈I for each of our effects:

effect
∏
i∈I →

global store
∏
i∈I →

nondeterminism
∑
i∈I ×

control
∑
i∈I ×

We omit the straightforward semantics of terms.

Proposition 7. These five denotational semantics for CBPV all validate the
equations of Sect. 2.5. More precisely, if M = M ′ is provable in the equational
theory then [[M ]] = [[M ′]].

Prop. 6 is now meaningful and can be proved. In particular, (1) is trivial.

All these models induce models for CBN and CBV. For CBV we recover the
familiar continuation semantics of A →CBV A

′ as (A × (A′ → Ans)) → Ans. For
CBN we recover the continuation semantics of [SR96], and also, from our CBPV
global store semantics, the state-passing semantics of [O’H93].
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Abstract. Abramsky’s Linear Chemical Abstract Machine (lcham) is a
term calculus which corresponds to Linear Logic, via the Curry-Howard
isomorphism. We introduce a translation from a linear λ-calculus into
lcham. The translation result can be well regarded as a black box with
the i/o ports being atomic. We show that one step computation of lcham
is equivalent to that of the linear λ-calculus. Then, we prove the principal
typing theorem of lcham, which implies the decidability of type checking.

1 Introduction

There are attempts to regard concurrent computations as chemical reactions.
Chemical Abstract Machine (cham) [5] is a model of concurrent computation
in this line. Cham influenced on various concurrent calculi such as π-calculus,
ambient calculus [6] and join calculus [8].
The points of cham is the following:

– once a multiset of objects is applied by a rewriting rule, then the multiset will
be consumed and will be transformed to a multiset of objects (in chemistry,
a solution of molecules will changes according to chemical reaction laws). In
fact, cham is resource-sensitive, like Linear Logic (ll).

– a multiset of objects is again an object (in chemistry, a solution encapsulated
by a membrane often acts like a molecule). Inside the multiset, computations
go through independently. This mechanism may enable us to describe com-
putations inside a sub-network and/or dynamic structuring of networks. The
‘membrane’ plays an important role in mobile calculi such as ambient cal-
culus and join calculus. cham’s encapsulation mechanism of computation
reminds us of the boxing operation of proof net (Girard [9]).

So, we are concerned with Linear Chemical Abstract Machine (Abramsky [1]),
which corresponds to ll through Curry-Howard isomorphism. Linear Chemical
Abstract Machine (lcham) consists of not only rewriting rules but also typing
rules.
To investigate computational properties of lcham, we introduce a translation

from a linear λ-calculus into lcham. A linear λ-calculus is a resource-sensitive

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 243–257, 1999.
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refinement of λ-calculus. It is employed for analyzing functional programming
languages with respect to evaluation strategy [12],[4] and/or resource alloca-
tion [7]. We are concerned with a linear λ-calculus which is introduced by Bier-
man [3], and we translate the terms into proof nets. Then we prove that one step
reduction in the linear λ-calculus corresponds to one step reduction in lcham
modulo a bisimulation.
To investigate type-theoretic properties of ll, we prove the principal typing

theorem of lcham. The principal typing theorem is an indispensable theorem
for implementing a functional language that has a polymorphic type-inference
system, such as a programming language ML.

Related Work There are various versions of linear λ-calculi. Abramsky intro-
duced a call-by-value linear λ-calculus [1], Chirimar-Gunter-Riecke introduced a
linear λ-calculi with a fix point operator for non-linear function [7].
The linear λ-calculus of this paper was introduced in Bierman et al [3]. Their

calculus does not suffer from the coherence problem. Furthermore it has a stable
notion of commuting conversions. The commuting-convertible linear λ-terms is
translated by our translation into the same proof net. Under the presence of the
fix point operator, we don’t know how to define the commuting conversion, and
how the commuting conversion is related to the structure of proof net.
We introduce a translation from the linear λ-calculus into proof nets, and the

translation satisfies the following property: The resulting proof nets can be well
regarded as a black box with the i/o ports being ‘atomic’. So, such black boxes
can be easily connected through their ports. It is not the case in most translation
of their multiplicative λ-calculus into proof nets (Bellin-Scott [2], Mackie [10],
etc.)
Mackie [11] proved the principal typing theorem of Abramsky’s linear λ-

calculus. We prove the same theorem for lcham in this paper. In proving the
principal typing theorems, the reconstruction algorithm of a derivation of a given
typing assertion is essential. In the case of linear λ-calculus, the reconstruction
algorithm will be deterministic. The type assertions are two-sided sequents Γ `
t : A, and we can only decompose t on their antecedents in reconstructing the
derivations.
However, in the case of lcham, the reconstruction algorithm will be non-

deterministic. Because the type assertions are one-sided sequents like ` t1 :
A1, . . . , tn : An, the reconstruction algorithm choose non-deterministically ti to
decompose. Furthermore, some type-inference rules of lcham is another source
of non-determinism. So, the existence proof of principal type is not trivial.

Organization In the next section, we review lcham [1], a rewriting system for
a proof expression, which is a representation of a proof of ll. In Section 3, we
review the linear λ-calculus (Benton et al [3]). We introduce a translation from
the linear λ-calculus to lcham, and show that one step β-reduction in the linear
λ-calculus ‘roughly’ corresponds to one step reaction rules in lcham. In Section
4, we prove the principal typing theorem of lcham. To prove this theorem,
we introduce locally correct assertions, which correspond to proof structures in
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ll [9], (ordinary type assertions correspond to proof nets of ll). The complete
proofs in this paper can be found in [13].

2 Linear Chemical Abstract Machine

We begin by reviewing Linear Chemical Abstract Machine (lcham) [1], a rewrit-
ing system representing the cut-elimination procedure of a proof in ll.

A proof expression (pexp) is an object to rewrite in lcham. Proof expressions
are defined together with terms and coequations as follows. Letters P,Q, . . . stand
for pexps, t, u, . . . for terms, x, y, z, . . . for names, and x̄, ȳ, z̄, . . . for lists of
names. Terms are defined as

t ::= x | ∗ | � | t1 ⊗ t2 | t1
..............................................
............
..................................... t2 | inl(t) | inr(t) | x̄(P ‖ Q) | ?t | | t1 @ t2 | x̄(P ).

We call a term of the form x̄(P ) or x̄(P ‖ Q) a closure and x̄ of x̄(· · ·) binding
names. Coequations have the form t ⊥ u, where t and u are terms. Proof expres-
sions have the form Θ; t̄, where Θ is a finite sequence of coequations and t̄ is a
finite sequence of terms.

2.1 Type inference

Types, ranged over by A,B, C, . . ., are exactly the formulas of ll. For every
formula A, its linear negation is denoted by A⊥. We sometimes write t̄ : Γ for
t1 : A1, . . . , tn : An where t̄ = t1, . . . , tn and Γ = A1, . . . , An. Different names
are introduced for each instance of the Axiom, With and OfCourse rules.

` Θ;Γ, u : A, t : B,∆

` Θ;Γ, t : A, u : B,∆
Exchange

` ; x : A⊥, x : A
Axiom

` Θ; Γ, t : A ` Ξ; ∆, u : A⊥

` Θ, Ξ, t ⊥ u; Γ, ∆
Cut

` ; ∗ : 1
One

` Θ; Γ

` Θ; Γ, � : ⊥
Bot

` Θ; Γ, t : A ` Ξ; ∆, u : B

` Θ, Ξ; Γ, ∆, t ⊗ u : A ⊗B
Times

` Θ; Γ, t : A, u : B

` Θ; Γ, t
..............................................
............
..................................... u : A

..............................................
............
..................................... B

Par

` Θ; t̄ : Γ, t : A ` Ξ; ū : Γ, u : B

` ; x̄ : Γ, x̄(Θ; t̄, t ‖ Ξ; ū, u) : A&B
With

` Θ; Γ, t : A

` Θ; Γ, inl(t) : A⊕B
Plus-1

` Θ; Γ, t : B

` Θ; Γ, inr(t) : A⊕ B
Plus-2

` Θ; Γ

` Θ; Γ, : ?A
Weakening

` Θ; t̄ : ?Γ, t : A

` ; x̄ : ?Γ, x̄(Θ; t̄, t) : !A
OfCourse

` Θ; Γ, t : ?A, u : ?A

` Θ; Γ, t@ u : ?A
Contraction

` Θ; Γ, t : A

` Θ; Γ, ?t : ?A
Dereliction
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Remark 1. Note that we obtain the rules of ll from the type inference rules
by ignoring pexps. We can say that ` Θ; t̄ : Γ corresponds to a proof net [9]
such that

– the lowest nodes are Γ ,
– the Cut-links are represented by Θ, and
– the closures are represented by the boxes.

For example, ` x̄(P ‖ Q) ⊥ inl(y); x̄ : Γ, y : A represents the following
proof net.

A&B
L

L
A

L
B

P Q

T

A B

T

T

A

A

CUT

y
x

2.2 Reductions

Our discussion is limited to linear pexps, which we define slightly different from
the ones in Abramsky [1]. In our definition, we consider occurrences of names in
pexp only outside closures and not ones in pexps inside closures. We consider
binding names to be outside the closure.

Definition 1. A pexp Θ; t̄ is linear if and only if

– Each name occurring in Θ; t̄, does so exactly twice;
– If a closure x̄(· · ·) occurs in Θ; t̄, then none of the other occurrences of x̄ are
binding names; and

– Each pexp inside a closure is linear.

We say a pexp Θ; t̄ is typable if and only if ` Θ; t̄ : Γ is derivable for some
Γ . We note that every typable pexp is linear. Intuitively, the linearity condi-
tion of a pexp means that the pexp can represent a skeleton of some proof
structure [9].
Rewriting rules in lcham are classified into reaction rules and a cleanup rule.

The reduction relation determined by the reaction rules is written as →r. The
reduction relation determined by the cleanup rule is written as→c. The reaction
rule rewrites only the ‘coequations part’ of a pexp.
We regard Θ of a pexp Θ; t̄ as a multiset of coequations, and identify co-

equations t ⊥ u and u ⊥ t. We write Θ ≡ Θ′ if Θ and Θ′ are equal in the sense
described above. (This corresponds to the “structural rules” in Abramsky [1].)
Hereafter, we simply identify Θ and Θ′ if Θ ≡ Θ′.
The cleanup rule represents a contraction of a Cut-link involving an

Axiom-link.
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Cleanup rule.

Θ, x ⊥ t; ū→c Θ; ū[t/x]

where x is outside of closures and not a binding variable.

Reaction rule.

Communication t ⊥ x, x ⊥ u→r t ⊥ u

Unit ∗ ⊥ � →r

Pair t⊗ u ⊥ t′
..............................................
...........
...................................... u′ →r t ⊥ t′, u ⊥ u′

Case Left† x̄(Θ; t̄, t ‖ Ξ; ū, u) ⊥ inl(v) →r Θ, x̄ ⊥ t̄, t ⊥ v

Case Right x̄(Θ; t̄, t ‖ Ξ; ū, u) ⊥ inr(v) →r Ξ, x̄ ⊥ ū, u ⊥ v

Read x̄(Θ; t̄, t) ⊥ ?u→r Θ, x̄ ⊥ t̄, t ⊥ u

Discard x̄(P ) ⊥ →r x1 ⊥ , . . . , xn ⊥

Copy‡ x̄(P ) ⊥ u@ v →r x̄ ⊥ (x̄l @ x̄r), x̄(P )l ⊥ u, x̄(P )r ⊥ v

(†) x̄ ⊥ t̄ denotes x1 ⊥ t1, . . . , xn ⊥ tn if x̄ = x1, . . . , xn and t̄ = t1, . . . , tn.
(‡) x̄l denotes a list of new names xl1, . . . , x

l
n if x̄ = x1, . . . , xn, and x̄(P )

l denotes
a term where small l’s are attached to all names in x̄(P ). x̄r and x̄(P )r are
defined in the same way.

3 Translation From Linear �-calculus to LCHAM

This section begins with a review of a linear λ-calculus which was introduced by
Benton et al[3].

3.1 The Linear �-calculus

We only consider the (−◦,⊗, !)-fragment of intuitionistic linear logic (ill).

Types are either a type variable, A1 ⊗A2, !A, or a linear implication A1 −◦A2.

Pre-linear λ-terms, ranged over by t, u, . . ., are defined as:

t ::= x | t1t2 | λx.t | t1 ⊗ t2 | let t1 be x⊗ y in t2

| promote t1, . . . , tn for x1, . . . , xn in u | derelict(t)

| discard t1 in t2 | copy t1 as x, y in t2.
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Here, bound occurrence of variables are either (1) occurrences of x in (λx. . . .),
(2) occurrences of x or y in (let t1 be x ⊗ y in . . .) or (copy t1 as x, y in . . .),
or (3) occurrences of x1, . . . , xn in (promote t1, . . . , tn for x1, . . . , xn in . . .).
An occurrence of a variable is called free if it is not bound. A linear λ-term
is a pre-linear λ-term t such that each variable occurring free in t does so
exactly once.

Type inference rules.

x : A ` x : A
Id

Γ, x : A ` t : B

Γ ` λx.t : A −◦B
−◦I

Γ ` t : A−◦ B ∆ ` u : A
Γ, ∆ ` tu : B

−◦E

Γ ` t : A ∆ ` u : B
Γ, ∆ ` t ⊗ u : A ⊗B

⊗I
Γ ` t : A ⊗B ∆, x : A, y : B ` u : C

Γ, ∆ ` let t be x⊗ y in u : C
⊗E

∆1 ` t1 : !A1 · · · ∆n ` tn : !An x1 : A1, . . . , xn : An ` u : B

∆1, . . . , ∆n ` promote t1, . . . , tn for x1, . . . , xn in u : !B
Promotion

Γ ` t : !A
Γ ` derelict(t) : A

Dereliction
Γ ` t : !A ∆ ` u : B
Γ, ∆ ` discard t in u : B

Weakening

Γ ` t : !A ∆, x : !A, y : !A ` u : B

Γ, ∆ ` copy t as x, y in u : B
Contraction

β-reduction of the linear λ-calculus is defined by the following five rewriting
rules: (λx.t)u→β t[u/x],

let t⊗ u be x⊗ y in v →β v[t/x, u/y]
derelict (promote t̄ for x̄ in u)→β u[t̄/x̄],

discard (promote t̄ for x̄ in u) in v →β discard t̄ in v, and
copy (promote t̄ for x̄ in u) as yl, yr in s

→β copy t̄ as z̄l, z̄rin s [promote z̄l for x̄l in ul / yl, promote z̄r for x̄r in ur / yr ]

Here t̄, ū, . . . stand for lists of linear λ-terms, x̄, ȳ, . . . for lists of variables.
And if x̄ = x1, . . . , xn and t̄ = t1, . . . , tn, then

promote t̄ for x̄ in u = promote t1, . . . , tn for x1, . . . , xn in u

discard x̄ in t = discard x1 in · · ·discard xn in t

copy t̄ as x̄, ȳ in u = copy t1 as x1, y1 in · · · copy tn as xn, yn in u

3.2 Special Proof Expressions

We translate linear λ-terms into special pexps:

Definition 2 (Special Proof Expressions). We call a pexp Θ; x̄ a special
proof expression, or a special pexp, if x̄ is a list of distinct names.
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The coequation part Θ is sufficient to determine the computational content
of the special pexp Θ; x̄. On the other hand, it is not the case for a usual pexp;
See the following quotation from Abramsky [1]:

The “molecules” of the linear CHAM are the coequations. We refer to
Θ in Θ; t as the “solution”, and to t as the “main body”. The idea is that
the computation is done in the solution, with the result recorded in the
main body. One can think of each coequation either as a single sequential
process, or as a tightly coupled synchronous parallel composition of two
processes, proceeding in lockstep. (So coequations could be modelled
by “membranes” in Berry and Boudol’s terminology; but we shall not
pursue this idea.)

We regard the main part t1, . . . , tn of pexp Θ; t1, . . . , tn as the ports, and we
let the computation results be recorded not on t1, . . . , tn but be recorded in the
coequation parts. Moreover, we allow pexps to connect each other through their
ports. So, we restrict t1, . . . , tn being variables x̄. Thus, x̄ can be easily inter-
preted as a list of port names in concurrent calculi such as ccs [14]. Therefore, a
clear translation of special pexps into, for example, agents of ccs may be made
easily.
Thus, in the translation of λ-terms, Θ; x̄, x′ is interpreted as having x̄ as

input ports and x′ as an output port as in the following figure.

P x’

x1

xn

 :
 :

3.3 The Translation

Basic Idea. Linear λ-terms represent natural deduction style proofs in ill, while
pexps represent sequent calculus style proofs in ll (more precisely, an equiva-
lence class of proofs where the equivalence is defined to be “the equality as proof
nets”). We adapt Gentzen’s translation of natural deduction style proofs into
sequent calculus style proofs.
But, we employ a trick to make the translation result a special pexp. For

example, the (−◦I) rule is translated into
` Γ⊥, A⊥, B

` Γ⊥, A⊥
..............................................
............
..................................... B
Par (In ll, A1 −◦

A2 is A
⊥
1

.............................................
............
...................................... A2.). If we assign terms to them, then

x̄ : Γ, x : A ` t : B

x̄ : Γ ` λx.t : A −◦B
−◦I

is translated into
` Θ; x̄ : Γ⊥, x : A⊥, x′ : B

` Θ; x̄ : Γ⊥, x
..............................................
...........
...................................... x′ : A⊥

..............................................
...........
...................................... B
Par. However, the lower pexp

Θ; x̄, x
..............................................
............
..................................... x′ in the last figure is not a special pexp, so we let the translation

result of λx.t be Θ, y′ ⊥ x
..............................................
............
..................................... x′; x̄, y′. with y′ being a fresh variable.
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This coincides with introducing Cut-rule:

` Θ; x̄ : Γ⊥, x : A⊥, x′ : B

` Θ; x̄ : Γ⊥, x
.............................................
............
...................................... x′ : A⊥

.............................................
............
...................................... B
Par

` ; y′ : (A⊥
.............................................
............
...................................... B)⊥, y′ : A⊥

.............................................
............
...................................... B

` Θ, y′ ⊥ x
..............................................
............
..................................... x′; x̄ : Γ⊥, y′ : A⊥

..............................................
............
..................................... B

Cut
.

The Translation Rules. For a linear λ-term t, we define its translation result t◦

by induction on the construction of t. In a pexp Θ; x̄, x′, we consider Θ to be
a multiset of coequations, and x̄, x′ as an ordered pair of a multiset of names x̄
and a name x′.

x◦ = x ⊥ x′; x, x′
Id

t◦ = Θ; x̄, x, x′

(λx.t)◦ = Θ, z′ ⊥ x
.............................................
............
...................................... x′; x̄, z′

−◦I
t◦ = Θ; x̄, x′ u◦ = Ξ; ȳ, y′

(tu)◦ = Θ, Ξ, x′ ⊥ y′ ⊗ z′; x̄, ȳ, z′
−◦E

t◦ = Θ; x̄, x′ u◦ = Ξ; ȳ, y′

(t ⊗ u)◦ = Θ, Ξ, z′ ⊥ x′ ⊗ y′; x̄, ȳ, z′
⊗I

t◦ = Θ; x̄, x′ u◦ = Ξ; ȳ, y1, y2, y
′

(let t be y1 ⊗ y2 in u)◦ = Θ, Ξ, x′ ⊥ y1
..............................................
............
..................................... y2; x̄, ȳ, y

′ ⊗E

t◦i = Θi; ȳi, y
′
i (i = 1, . . . , n) u◦ = Ξ; x̄, x1, . . . , xn, x

′

(promote t1, . . . , tn for x1, . . . , xn in u)
◦ =

Θ1, . . . , Θn, x1 ⊥ y′1, . . . , xn ⊥ y
′
n,

z′ ⊥ x̄x1 · · ·xn(Ξ[z̄/x̄, z1/x1, . . . , zn/xn]; z̄, z1, . . . , zn, x′);
x̄, ȳ1, . . . , ȳn, z

′

Promotion

t◦ = Θ; x̄, x′

(derelict(t))◦ = Θ, x′ ⊥ ?y′; x̄, y′
Dereliction

t◦ = Θ; x̄, x′ u◦ = Ξ; ȳ, y′

(discard t in u)◦ = Θ, Ξ, x′ ⊥ ; x̄, ȳ, y′
Discard

t◦ = Θ; x̄, x′ u◦ = Ξ; ȳ, y1, y2, y
′

(copy t as y1, y2 in u)
◦ = Θ, Ξ, x′ ⊥ y1 @ y2; x̄, ȳ, y′

Copy

3.4 The Computational Properties

The set of all the special pexps is not closed under the cleanup rule, Fortunately,
the cleanup rule is not so important when considering its computational meaning.
Instead of the cleanup rule, we define several concepts about special pexps. In
the rest of this section, we consider only linear special pexps.

Definition 3. On the set of all the linear special pexps, we define ∼= to be the
smallest equivalence relation satisfying:

(1) P [z/x] ∼= P, for a fresh name z. (2) Θ, y ⊥ z; x̄, x′ ∼= Θ[y/z]; x̄, x′.
(3) Θ, x ⊥ ; x̄, x, x′ ∼= Θ; x̄, x′. (4) Θ, x ⊥ �; x̄, x, x′ ∼= Θ; x̄, x′.
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Clause (2) is sufficient to handle a cleanup rule;

Θ, y′ ⊥ x′; x̄, y′
by(2)
∼= Θ[y′/x′]; x̄, y′

by(1)
∼= Θ; x̄, x′ . Clauses (3) and (4) are

required because free variables often disappear via β-reduction in λ-calculus. (In
fact, clause (4) is not needed here, but if we accept clause (3), it is unnatural
not to accept clause (4).)

Definition 4. Define P ⇒r Q
def
⇐⇒ P →∗r0→r1→

∗
r0 Q. Here →

∗
r0 is a reflexive

and transitive closure of →r0. The →r0 is determined by the communication
rule, and →r1 by the other reaction rules.

Proposition 1. The translation result of any linear λ-term is normal with re-
spect to →r1.

Proposition 2. ∼= is a bisimulation with respect to ⇒r, that is, if P ∼= Q and
P ⇒r P ′, then some Q′ satisfies P ′ ∼= Q′ and Q⇒r Q′.

Proof. In view of the linearity of P and Q, it is easily shown that ∼= is a bisimu-
lation with respect to→∗r0 and→r1, from which the proposition follows directly.

Corollary 1. If P ∼=⇒r Q, then P ⇒r∼= Q.

The relation ∼= is ‘compatible’ with the translation. For example, if Θ; x̄, x, x′ ∼=
Ξ; ȳ, x, y′, then Θ, z′ ⊥ x

..............................................
...........
...................................... x′; ȳ, z′ ∼= Ξ, z′ ⊥ x

..............................................
...........
...................................... y′; ȳ, z′ holds. In particular,

if t◦ ∼= u◦, then (λx.t)◦ ∼= (λx.u)◦ and so forth.
Next, we prove the following theorem:

Theorem 1. Let t and u be linear λ-terms. If t→β u, then t
◦ ⇒r∼= u

◦, i.e, t◦

goes to a term which is ⇒r∼= to u◦.

To verify the theorem, we define a concept which corresponds to substitution.

Definition 5. For P = Θ; x̄, x, x′ and Q = Ξ; ȳ, y′, we define P [x ← Q]
def
=

Θ, Ξ, x ⊥ y′; x̄, ȳ, x′.

Intuitively, P [x← Q] is a process where an “input port” x of P is connected to
the “output port” of Q. The following figure illustrates this.

Q P
x

x’

y’
y
_

x
_

Proposition 3. For all linear λ-terms t and u, and for all free variable x in t,
(t[u/x])◦ ∼= t◦[x← u◦].
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Proof. Let u◦ = Ξ; ȳ, y′. The proof is done by induction on the construction of
t. Note that x occurs in t exactly once. In this proof, the ‘compatibility’ of ∼=
with the translation described above is used.

Proposition 4. For each rewriting rule l →β r of β-reduction, we have l◦ ⇒r∼=
r◦. That is,

((λx.t)u)◦ ⇒r∼= (t[u/x])
◦.

(let t1 ⊗ t2 be y1 ⊗ y2 in u)
◦ ⇒r∼= (u[t1/y1, t2/y2])

◦.

(derelict (promote t̄ for x̄ in u))◦ ⇒r∼= (u[t̄/x̄])
◦.

(discard (promote t̄ for x̄ in u) in s)◦ ⇒r∼= (discard t̄ in s)
◦.

(copy (promote t̄ for x̄ in u) as yl, yr in s)◦ ⇒r∼= (copy t̄ as z̄
l, z̄r in

s[promote z̄l for x̄l in ul / yl ,

promote z̄r for x̄r in ur / yr ])◦.

Proof. For the proof of the first claim, let t◦ = Θ; x̄, x, x′ and u◦ = Ξ; ȳ, y′.
Then, (λx.t)◦ = Θ; z′ ⊥ x

..............................................
............
..................................... x′; x̄, z′ and so

((λx.t)u)◦ = Θ, Ξ, z′ ⊥ x
..............................................
...........
...................................... x′, z′ ⊥ y′ ⊗w′; x̄, ȳ, w′

→r0 Θ, Ξ, x
..............................................
............
..................................... x′ ⊥ y′ ⊗ w′; x̄, ȳ, w′

→r1 Θ, Ξ, x ⊥ y
′, x′ ⊥ w′; x̄, ȳ, w′

∼= Θ, Ξ, x ⊥ y′; x̄, ȳ, x′ = t◦[x← u◦] ∼= (t[u/x])◦

The last is by Proposition 3. The other four claims can be proved similarly.

The proof of Theorem 1 is by induction on the derivation of t→β u.
From Theorem 1, we can conclude that the β-reductions in linear λ-calculus

roughly correspond to the reaction rules except the communication rule in
lcham.

The commuting conversion →c is defined as follows. Let f(t) stand for either
(let s be x ⊗ y in t), (discard s in t), or (copy s as x, y in t). And let g(t) stand
for either (tu), (let t be z1 ⊗ z2 in u), (discard t in u), (copy t as z1, z2 in u), or
(derelict(t)). Then, the commuting conversion is by definition g(f(t)) →c f(g(t)).
For example, (let s be x ⊗ y in t)u →c let s be x ⊗ y in tu. The commuting
conversions expose ‘hidden’ redexes in terms.
We can prove that commuting-convertible linear λ-terms are identified when

translated into pexp. More precisely,

Proposition 5. If t, u are linear λ-terms and t→c u, then t◦ ∼= u◦.

Proof. We have only to check all the entries of commuting conversions. For exam-
ple, if s◦ = Θ; x̄, x′, t◦ = Ξ; ȳ, y′ and u◦ = Π ; z̄, z′, then both ((discard s in t)u)◦

and (discard s in tu)◦ turn out to be Θ,Ξ,Π, x′ ⊥ , y′ ⊥ z′ ⊗ w′; x̄, ȳ, z̄, w′.
Thus, the translation is preserved via a commuting conversion
(discard s in t)u→c discard s in tu. The other cases are all done in the same way.
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4 Principal Typing Theorem of LCHAM

Next, we prove the principal typing theorem of lcham:

Theorem 2 (Principal Typing). There is an algorithm such that given a
pexp P ,

1. if P is typable, then it computes a principal type,
2. or else it terminates by outputting “not typable”.

Here,

Definition 6 (Principal Typing).We write  Θ; t̄ : Γ , when for all ∆, these
are equivalent: (1) ` Θ; t̄ : ∆, and (2) ∆ = Γσ for some substitution σ.
Γ is called a principal type of Θ; t̄. It is easy to see that Γ is unique up to

renaming of type variables. Hereafter, we write pt(Θ; t̄) to represent Γ .

In lcham, a type-assertion may have many derivations, unlike a type system
of λ-calculus. In particular, a type-assertion ` Θ, Ξ; Γ, ∆, t⊗ u : A⊗B can be
inferred from ` Θ; Γ, t : A and ` Ξ; ∆, u : B by an inference rule R=Times,
but it may also be inferred by R from another ` · · · , t : A and ` · · · , u : B.
The same annoyance arises when R is a Cut-rule.This is why the algorithm we
will construct in the proof is non-deterministic, while the algorithm for principal
types of λ-terms is deterministic.
In Subsection 4.3, we will present the algorithm, and will prove the ter-

mination property and the correctness. The correctness proof consists of the
verification of Theorem 2 (1) and (2). Theorem 2 (1) will be proved by using
the Principal Inference Lemma (i.e., Proposition 7 and 11) in Subsection 4.1,
and (2) will be proved by using the Generation Lemma (i.e., Proposition 10 and
Proposition 6) in Subsection 4.2.
Hereafter, for sequences Γ and ∆ of formulas, we denote by mgu(Γ ;∆) a

most general unifier θ such that Γθ = ∆θ. Note that it is computable.

4.1 Easy Part of the Proof

Proposition 6 (Generation Lemma, part 1).

1. If ` Θ; Γ, t1
..............................................
............
..................................... t2 : C, then C is of the form A

..............................................
............
..................................... B and ` Θ; Γ, t1 : A, t2 : B.

2. If ` Θ; Γ, inl(t) : C, then C is of the form A⊕ B and ` Θ; Γ, t : A.
3. If ` Θ; Γ, inr(t) : C, then C is of the form A⊕ B and ` Θ; Γ, t : B.
4. If ` Θ; Γ, � : C, then C = ⊥ and ` Θ; Γ .
5. If ` Θ; Γ, : C, then C is of the form ?A and ` Θ; Γ .
6. If ` Θ; Γ, ?t : C, then C is of the form ?A and ` Θ; Γ, t : A.
7. If ` Θ; Γ, t1 @ t2 : C, then C is of the form ?A and ` Θ; Γ, t1 : C, t2 : C.
8. If ` ; x̄ : Γ, x̄(Θ; t̄, t) : A, then for some Γ ′, A′, we have Γ =?Γ ′ and
A = !A′ and ` Θ; t̄ : Γ, t : A′.

9. If ` ; x̄ : Γ, x̄(Θ1; t̄1, u1 ‖ Θ2; t̄2, u2) : C, then C is of the form A1&A2, and
` Θi; t̄i : Γ, ui : Ai for i = 1, 2.
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Proposition 7 (Principal Type inference, part 1). The following are ad-
missible inference rules.

 Θ; Γ, t : A, u : B
 Θ; Γ, t ..............................................

...........
...................................... u : A

..............................................
...........
...................................... B

 Θ; Γ, t : A
 Θ; Γ, inl(t) : A⊕ α †

 Θ; Γ, t : A
 Θ; Γ, inr(t) : α⊕ A †.

 Θ; Γ
 Θ; Γ, � : ⊥

 Θ; Γ
 Θ; Γ, : ?α †

 Θ; Γ, t : A
 Θ; Γ, ?t : ?A.

 Θ; Γ, t : A, u : B µ = mgu(A;B), ν = mgu( ?α;Aµ) exist

 Θ; Γµν, t @ u : Aµν †
.

 Θ; t̄ : Γ, t : A µ = mgu(Γ ; ?ᾱ) exists

 ; x̄ : Γµ, x̄(Θ; t̄, t) : !Aµ †
.

 Θ; t̄ : Γ, t : A  Ξ; ū : Γ ′, u : B µ = mgu(Γ ;Γ ′) exists

 ; x̄ : Γµ, x̄(Θ; t̄, t ‖ Ξ; ū, u) : (A& B)µ ¶

(†) α is a fresh type variable. (¶) The premises of the form  · · · share no
variables.

4.2 Difficult Part of the Proof

As we explained in Section 2, a linear pexp represents a skeleton of a proof
structure. It is well-known that correctness of a proof structure depends mainly
on the skeleton. We introduce locally correct assertions, which correspond to
‘proof structures.’

Definition 7 (Locally Correct Assertion). An assertion `l Θ; t̄ : Γ , which
we call a locally correct assertion, holds if and only if it is derivable in the
inference system lcham′. Here lcham′ is obtained from lcham by replacing
the Cut-rule and the Times-rule with the following four rules:

`l ;

`l Θ; Γ `l Ξ; ∆

`l Θ, Ξ; Γ, ∆
Mix

`l Θ; Γ, t : A, u : A⊥

`l Θ, t ⊥ u; Γ

`l Θ; Γ, t : A, u : B

`l Θ; Γ, t⊗ u : A⊗ B

Intuitively, the derivation of `l Θ; t̄ : Γ corresponds to a proof structure [9]
with conclusions Γ . It is easy to see the following:

Proposition 8. 1. If `l Θ; Γ, u1⊗ u2 : C, then C must be of the form A⊗B
and `l Θ; Γ, u1 : A, u2 : B.

2. If `l Θ, u1 ⊥ u2; Γ , then there is an A such that `l Θ; Γ, u1 : A⊥, u2 : A.

Proposition 9. If `l Θ; Γ and Θ ⊇ Θ′, Γ ⊇ Γ ′, then `l Θ′; Γ ′; provided that
Θ′;Γ ′ = Θ′; t̄′ : Γ ′′ for some linear pexp Θ′; t̄′.

Proof. By induction on the deduction of `l Θ; Γ .
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Theorem 3. For a typable pexp Θ; t̄, ` Θ; t̄ : Γ if and only if `l Θ; t̄ : Γ .

Proof. The only-if part. Note that for each rule
` Q1 · · · ` Qn

` P
of the system `,

if in the system `l we assume `l Q1 · · · `l Qn as axioms, we can infer `l P by
using the Mix-rule. Therefore, we are done. The if part. Because Θ; t̄ is typable,
there is some ∆ such that ` Θ; t̄ : ∆. The proof is by induction on the height
of this derivation.
If the last rule is the Times-rule, the derivation ends with

` Θi; t̄i : ∆i, ui : Ai (i = 1, 2)

` Θ1, Θ2; t̄1 : ∆1, t̄2 : ∆2, u1 ⊗ u2 : A1 ⊗A2
.

By Proposition 8, `l Θ; t̄ : Γ must be of the form `l Θ; t̄1 : Γ1, t̄2 : Γ2, u1⊗u2 :
A′1 ⊗ A

′
2. Moreover, `l Θ; t̄1 : Γ1, t̄2 : Γ2, u1 : A

′
1, u2 : A

′
2. We note that each

Θi; t̄i, ui is linear. Hence, by Proposition 9, `l Θi; t̄i : Γi, ui : A′i. By induction
hypotheses, ` Θ1; t̄1 : Γ1, u1 : A′1 and ` Θ2; t̄2 : Γ2, u2 : A

′
2. Then, by applying

the Times-rule we can conclude ` Θ1, Θ2; t̄1 : Γ1, t̄2 : Γ2, u1 ⊗ u2 : A′1 ⊗A
′
2, i.e.

` Θ; t̄ : Γ . The other cases are easy and similar.

Proposition 10 (Generation Lemma, part 2).

1. Suppose some deduction ends with
` Θ1; t̄1 : Γ1, u1 : A1 ` Θ2; t̄2 : Γ2, u2 : A2

` Θ; t̄ : Γ, u1 ⊗ u2 : A1 ⊗A2
. Then if ` Θ1, Θ2; t̄1 : ∆1, t̄2 :

∆2, u1 ⊗ u2 : C, then C is of the form B1 ⊗ B2 and ` Θi; t̄i : ∆i, ui : Bi
(i = 1, 2).

2. Suppose some deduction ends with
` Θ1; t̄1 : Γ1, u1 : A ` Θ2; t̄2 : Γ2, u2 : A⊥

` Θ, u1 ⊥ u2; t̄ : Γ
. If ` Θ1, Θ2, u1 ⊥ u2; t̄1 :

∆1, t̄2 : ∆2, there is a B such that ` Θ1; t̄1 : ∆1, u1 : B and ` Θ2; t̄2 :
∆2, u2 : B

⊥.

Proof. The premise implies through Theorem 3 that `l Θ1, Θ2; t̄1 : Γ1, t̄2 :
Γ2, u1 ⊗ u2 : C. By Proposition 8, `l Θ1, Θ2; t̄1 : Γ1, t̄2 : Γ2, u1 : B1, u2 : B2 and
C = B1⊗B2 for some B1 and B2. Because the premise (i) : ` Θi; t̄i : Γi, ui : Ai
implies the linearity of Θi; t̄i, ui, Proposition 9 implies `l Θi; t̄i : ∆i, ui : Bi,
and because of (i), Theorem 3 implies ` Θi; t̄i : ∆i, ui : Bi. The second claim
can be proved in the same way as above.

Proposition 11 (Principal Type Inference, part 2). The following are ad-
missible inference rules.

 Θi; t̄i : Γi, ui : Ai (i = 1, 2)
 Θ1, Θ2; t̄1 : Γ1, t̄2 : Γ2, u1 ⊗ u2 : A1 ⊗ A2

 Θi; t̄i : Γi, ui : Ai (i = 1, 2) µ = mgu(A1;A⊥2 ) exists
 Θ1, Θ2, u1 ⊥ u2; t̄1 : Γ1µ, t̄2 : Γ2µ

The premises of the form  · · · share no variables.
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Proof. To prove the admissibility of the first inference rule, let ` Θ1, Θ2; t̄1 :
∆1, t̄2 : ∆2, u1 ⊗ u2 : C. The premise of the rule implies the existence of a
deduction ending with

` Θi; t̄i : Γi, ui : Ai (i = 1, 2)

` Θ1, Θ2; t̄1 : Γ1, t̄2 : Γ2, u1 ⊗ u2 : A1 ⊗ A2
. By Proposition 10, C is of the

form A′1 ⊗ A
′
2 and ` ∆i; t̄i : Γi, ui : A

′
i with i = 1, 2. Thus, for some σi,

∆i = Γiσi and A
′
i = Aiσi. Because of the side condition, we have ∆i = Γiσ

and Cσ = (A1 ⊗ A2)σ for σ being defined below. If α occurs in Γi, Ai, then
σ(α) is σi(α), or else it is α. Hence we are done. The admissibility of the second
inference rule can be shown in the same way.

4.3 The Algorithm for Principal Type

To compute pt(P ), do the following:

1. If P is of the form Θ; t̄, t1
..............................................
............
..................................... t2, then: if pt(Θ; t̄, t1, t2) = [Γ, A, B], then

pt(P ) = [Γ, A
..............................................
............
..................................... B], else failure.

2. If P is of the form Θ; t̄, inl(t), then: if pt(Θ; t̄, t) = [Γ, A], then pt(P ) =
[Γ, A⊕ α], else failure where α is a fresh type variable.

3. If P is of the form Θ; t̄, inr(t), then: if pt(Θ; t̄, t) = [Γ, A], then pt(P ) =
[Γ, α⊕A], else failure where α is a fresh type variable.

4. If P is of the form Θ; t̄,�, then: if pt(Θ; t̄) = [Γ ], then pt(P ) = [Γ,⊥], else
failure.

5. If P is of the form Θ; t̄, , then: if pt(Θ; t̄) = [Γ ], then pt(P ) = [Γ, ?α], else
failure. Here α is a fresh type variable.

6. If P is of the form Θ; t̄, ?t, then: if pt(Θ; t̄, t) = [Γ, A], then pt(P ) = [Γ, ?A],
else failure.

7. If P is of the form Θ; t̄, t1 @ t2, then: if pt(Θ; t̄, t, u) = [Γ, A, B] and both of
µ = mgu(A;B) and ν = mgu( ?α;Aµ) exist, then pt(P ) = Γµν, Aµν, else
failure.

8. If P is of the form ; ∗, then pt(P ) = [1].
9. If P is of the form ; x, x, then pt(P ) = [α⊥, α], where α is a fresh type
variable.

10. If P is of the form ; x̄, x̄(Q), then: if pt(Q) = [Γ, A], and if µ = mgu(Γ ; ?ᾱ)
exists (where ᾱ is a list of fresh names), then pt(P ) = [Γµ, !Aµ]. Otherwise,
failure.

11. If P is of the form ; x̄, x̄(Q ‖ Q′), then: if pt(Q) = [Γ1, A], pt(Q′) = [Γ2, B],
and µ = mgu(Γ1;Γ2) exists, then pt(P ) = [Γ1µ, (A& B)µ]. Otherwise, fail-
ure.

12. Otherwise, let P = Θ; t̄. For every decomposition of the form Θ = Θ1, Θ2
and t̄ = t̄1, t̄2, u1 ⊗ u2, try to compute pt(Θ1; t̄1, u1) and pt(Θ2; t̄2, u2). If it
fails for every decomposition, go to 13. If it succeeds for a decomposition, let
the result be [Γ, A] and [∆,B]. Then, pt(P ) = [Γ,∆,A⊗ B].

13. For every decomposition of the form Θ = Θ1, Θ2, u1 ⊥ u2 and t̄ = t̄1, t̄2, try
to compute pt(Θ1; t̄1, u1) and pt(Θ2; t̄2, u2). If it succeeds for a decomposi-
tion, let the result be [Γ, A] and [∆,B]. If mgu(A;B⊥) exists, then pt(P ) =
[Γµ,∆µ]. Otherwise, failure.
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This algorithm terminates for any input, because the number of constructors
in P decreases strictly at each step. Moreover, the correctness of each step is
verified as follows: When P is typable, let π be a derivation of it. Then we can
show that pt(P ) is a principal type of P , by induction on π, by using Proposition
7 and Proposition 11. When P is not typable, it outputs “failure,” because of
Proposition 10 and Proposition 6. Thus, the proof of Theorem 2 is completed.

5 Concluding Remarks

Mackie [10] introduced a version of linear λ-calculus, a translation from the
calculus to a proof structure, and studied efficient implementation of call-by-
(name/value/need) evaluation of the λ-calculus.
By using lcham and the extension, we will analyze computation of linear

λ-calculi neatly. Then we will study the (sub)computation can be encapsulated
(and parallelized) in recent concurrent calculi.
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Resource Interpretations, Bunched Implications

and the αλ-Calculus

(Preliminary Version)

Peter W. O’Hearn

Queen Mary & Westfield College

Abstract. We introduce the αλ-calculus, a typed calculus that includes
a multiplicative function type −∗ alongside an additive function type
→. It arises proof-theoretically as a calculus of proof terms for the logic
of bunched implications of O’Hearn and Pym, and semantically from
doubly closed categories, where a single category possesses two closed
structures. Typing contexts in αλ are bunches, i.e., trees built from two
combining operations, one that admits the structural rules of Weakening
and Contraction and another that does not. To illuminate the conse-
quences of αλ’s approach to the structural rules we define two resource
interpretations, extracted from Reynolds’s “sharing reading” of affine
λ-calculus. Based on this we show how αλ enables syntactic control of
interference and Idealized Algol, imperative languages based on affine
and simply-typed λ-calculi, to be smoothly combined in one system.

1 Introduction

The logic BI of bunched implications has two implications, one additive (→)
and the other multiplicative (−∗ ), which it accepts on an equal footing [18].
It may be viewed as a merging of intuitionistic logic (IL) and multiplicative,
intuitionistic linear logic (MILL), where the two subsystems are combined by
using contexts Γ in sequents Γ ` A built from two combining operations, “;”
and “,”. Instead of lists, contexts are trees with internal nodes labelled by “;” or
“,”, or in brief, bunches. By allowing the two context-forming operators to nest
arbitrarily deeply in a bunch the two subsystems intermix freely.
Here we consider BI from the point of view of types, by using its rules to

typecheck terms in what we call the αλ-calculus. Pym introduces αλ indepen-
dently in a separate paper, as part of his account of the theory of propositional
BI [20], and establishes some basic properties of the calculus, including com-
pleteness and strong normalization. Our focus here is more on the use of BI as a
type system, and especially the semantic and computational implications of its
approach to structural rules.
Bunches first arose in work on relevant logic in the seventies [9], where they

were used to manage interactions between additive (or extensional, in the rele-
vant terminology) and multiplicative (or intensional) connectives. (See [18] for
an account of the relation of BI to relevant and other substructural logics.) The
crucial point is that, with bunches, it is possible to control access to structural

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 258–279, 1999.
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rules by allowing them for one form of combination but not another. For exam-
ple, the rules of Weakening and Contraction for the “;” form of combination can
be stated as follows:

Γ (∆) ` B

Γ (∆;∆′) ` B
Weakening

Γ (∆;∆) ` B

Γ (∆) ` B
Contraction

where notation of the form Γ (∆) indicates a bunch with ∆ appearing as a
subtree. BI accepts Weakening and Contraction for “;” but not for “,”.
Our main concern in this paper is with how this bunch-based approach to

the structural rules impacts the meanings of function types. That is, the two
implications should evidently correspond to function types A−∗ B and A→ B;
but for what kinds of functions?

1.1 From Doubly Closed Categories to αλ

To see how the αλ-calculus arises semantically, consider that an introduction
rule for a function type typically corresponds to an adjunction. That is, a typing
rule

Γ, x : A `M : B

Γ ` λx .M : A⇒ B

corresponds to an isomorphism of maps of the corresponding shape in a closed
category

Γ ⊗ A −→ B
Γ −→ (A⇒ B)

.

Now, suppose that we have a doubly closed category , i.e., a single category
equipped with two monoidal closed structures instead of only one:

Γ ∧A −→ B
Γ −→ (A→ B)

Γ ∗A −→ B
Γ −→ (A−∗ B)

.

To match this situation, we extend the syntax of typing contexts with an addi-
tional combining operation, semi-colon, which allows us to formulate introduc-
tion rules corresponding to the two adjunctions:

Γ ; x : A `M : B

Γ ` αx .M : A→ B

Γ, x : A `M : B

Γ ` λx .M : A−∗ B
.

This leads directly to the use of bunches for typing contexts. The resulting calcu-
lus is named after its binders: α for the αdditive binder, and λ for multiplicative,
or λinear, binder.
The language we consider admits Weakening and Contraction for “;” but

not for “,”, and both forms of combination will be commutative. But the same
scheme can be used for other combinations, such as for non-symmetric monoidal
structures, and even more than two.
The αλ-calculus contains simply-typed λ-calculus and multiplicative, intu-

itionistic linear λ-calculus as subsystems. Various forms of linear λ-calculus also
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contain the two subsystems [1,5,24,3], but αλ’s approach is rather different.
Where linear logic uses a modality “!” (or sometimes distinct zones in contexts)
to control access to the structurals, in αλ access is governed by the two means of
combination. The difference can be stated crisply in terms of categorical models.
In models of linear logic two closed categories are involved, where one is often
presented as a Kleisli category [5,4,3]. For instance, in the original coherence
space model there are indeed two function types, but −◦ is closed structure in
the category of linear maps, while the additive →, which can be represented as
!A−◦B, is closed for the category of stable maps. In contrast, in a doubly closed
category the two closed structures must reside in one and the same category.
(Again, we refer to [18] for a detailed account of the relation to linear logic.)
Categorical semantics makes the formal difference ofBI’s, and αλ’s, approach

to the structural rules very clear, but the point of view on function types it offers
is very abstract. We can investigate the implications of these structural prop-
erties further, and more concretely, by considering “resource interpretations” of
the types.

1.2 The Sharing Interpretation

The sharing reading of the αλ-calculus has two main sources of inspiration. One
is Girard’s vivid depiction of linear logic as “resource sensitive” [10,11]. The key
point, for us, is the focus on the significance of controlling Contraction; this has
been explained in linear logic with the number-of-uses reading, where a linear
function f : A−◦B is one that uses its argument exactly once.
The other main source is Reynolds’s syntactic control of interference [21],

which is based on a novel reading of the affine λ-calculus. We extrapolate from
this reading to arrive at what we call the sharing interpretation of αλ.
The background idea for the sharing interpretation is of functional program-

ming data such as functions, pairs, etc, but with an additional, intensional, no-
tion of resources that computational entities are allowed to access. The reading
of function types is as follows.

A−∗ B: functions that have access to disjoint resources from their arguments.
A→ B: functions that have access to the same resources as their arguments.

The bare statement of the interpretation is so direct that, at first glance, it
may seem as if it must amount to the same thing as resource interpretations
for other systems that control the structural rules. For, if we think of a con-
text, roughly, as corresponding to a collection of resources, then use of separate
contexts in an elimination rule for a multiplicative implication −∗ directly ex-
presses the disjointness mentioned in the informal interpretation, and the use of
a common context in a rule for the additive corresponds to the sameness.

Γ ` A−∗ B ∆ ` A
Γ,∆ ` B

Γ ` A→ B Γ ` A
Γ ` B

However, there is an important point to notice: the reading places no constraint
on how many times a −∗ -typed function uses its argument, it just cannot be
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applied to arguments accessing the same resources. In fact, we will even show
in Section 2 that the αλ-calculus allows multiplicative functions that use their
arguments many times, or not at all. This exemplifies the interactions between
multiplicatives and additives permitted by the sharing interpretation. More gen-
erally, and speaking figuratively, we would suggest that this bunch-based control
over structural rules can be understood as being about who has access to what,
rather than how often a piece of data is used.
Strictly speaking, the sharing interpretation as stated above is for the linear

version of the αλ-calculus. The reading for the affine variant, which admits
Weakening for the multiplicative combination “,”, is obtained by changing the
interpretation of the additive function type.

A−∗ B: functions that don’t share resources with their arguments.
A→ B: functions that may share resources with their arguments.

The use of “may” here indicates that an additive function might share resources
with its argument, but it does not have to. In the affine language this will be
reflected in the fact that functions of type A→ B can be converted to functions
of type A−∗ B.

1.3 Syntactic Control of Interference

The affine interpretation just given is derived directly from syntactic control
of interference and Idealized Algol, two imperative languages due to Reynolds
[21,22]. The key difference between functions in the two languages is that in
Idealized Algol a function is allowed to interfere, by use of common storage,
with its argument, while in syntactic control it is not. One might even say that
the answer to the question of what kind of functions correspond to bunched
implications preceded (in the affine case) the question.
In fact, our original interest in a calculus like αλ stemmed from an observation

about a specific model that had been used for the two languages separately.

“The semantic model presented here posesses two kinds of exponen-
tial, one for the monoidal closed structure, and another, adjoint to ×
for cartesian closed structure. This raises the question of whether in-
terference control and uncontrolled Algol can coexist harmoniously in
one system . . . An interesting point to note is that here the two kinds
of closed structure coexist in the same category, so there is no need to
pass to a separate category, such as a Kleisli category, to interpret the
intuitionistic (i.e., Algol’s) function type. [13]”

In Sections 5 and 6 we show how the affine variant of the αλ-calculus does
indeed give rise to the requested enveloping language. There we give a brief
introduction to syntactic control, emphasizing the unusual nature of its sharing
interpretation. We also discuss limitations which motivate the question of an
enveloping language containing both it and Idealized Algol.
The linear sharing interpretation will not be developed in detail in this pre-

liminary paper, beyond a simple model in Section 3 intended to illustrate the
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basic ideas. At a later time we plan to show how the linear αλ-calculus can also
be used to control interference, but where banishing Weakening leads to addi-
tional positive properties that enable the dynamic extent of resources such as
pointers to be controlled.

2 The αλ-calculus

The definition of the αλ-calculus is motivated by models as follows.

Definition 1. A (symmetric) doubly closed category, or dcc in short, is a cat-
egory equipped with two symmetric monoidal closed structures (I, ∗, −∗ ) and
(1,∧,!). A dcc is called cartesian if one of the monoidal structures, say (1,∧),
is cartesian, affine if it is cartesian and the two units 1 and I are isomorphic,
and bicartesian if it is cartesian and has finite coproducts.

Models of the version of αλ here are given using cartesian dcc’s. Full BI, which
includes additive disjunction, uses bicartesian dcc’s.

2.1 The Basic System

Types

A ::= ρ primitive types
| A ∗A multiplicative product
| A ∧A additive product
| A−∗ A multiplicative exponent
| A→ A additive exponent

(We do not include types for the units of the products here; but these, and the
additive disjunction of BI, pose no substantial difficulties for our purposes.)

Bunches

Γ ::= x : A identifier assumption
| I multiplicative unit
| Γ, Γ multiplicative combination
| 1 additive unit
| Γ ;Γ additive combination

The essence of the two forms of combination is that “;” admits Weakening and
Contraction, whereas “,” does not. Bunches are subject to the restriction that no
identifier may occur twice in the tree. This restriction determines implicit side
conditions on some of the rules below. We write Γ (∆) to indicate a bunch in
which ∆ appears as a subtree, and Γ (∆′) for the similar tree where ∆′ replaces
∆. i(Γ ) is the list of identifiers encountered one after the other in an inorder
traversal of the tree Γ . Γ ∼= ∆ indicates that Γ and ∆ are isomorphic as trees;
i.e., one can be obtained from the other by a suitable renaming of identifiers.
Isomorphism is used in the formulation of Contraction below.
We won’t try to come up with a more compact representation of bunches us-

ing, say, sets or sequences instead of binary operators; the real point of bunches
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is to let us get the α- and λ-abstractions right. We use an equivalence on trees
instead of worrying about representation.

Coherent Equivalence: Γ ≡ Γ ′.
≡ is the smallest equivalence relation on bunches satisfying

1 Commutative monoid equations for 1 and ;
2 Commutative monoid equations for I and ,
3 Congruence: if ∆ ≡ ∆′ then Γ (∆) ≡ Γ (∆′)

Note that “;” and “,” do not distribute over one another.

Typing Judgements

These are of the form
Γ `M : A

where the terms M are defined in the following rules.

Identity and Structure

x : A ` x : A
Id

Γ `M : A
∆ `M : A

≡ (where ∆ ≡ Γ )

Γ (∆) `M : A

Γ (∆;∆′) `M : A
W

Γ (∆;∆′) `M : A

Γ (∆) `M [i(∆)/i(∆′)] : A
C (where ∆ ∼= ∆′)

Additives

Γ `M : A ∆ ` N : B
Γ ;∆ ` 〈M,N〉 : A ∧B

∧I
Γ `M : A1 ∧A2
Γ ` πiM : Ai

∧E (where i is 1 or 2)

Γ ; x : A `M : B

Γ ` αx .M : A→ B
→ I

Γ `M : A→ B ∆ ` N : A
Γ ;∆ `MN : B

→ E

Multiplicatives

Γ `M : A ∆ ` N : B
Γ,∆ `M ∗N : A ∗B

∗I
Γ (x : A, y : B) ` N : C ∆ `M : A ∗B

Γ (∆) ` let (x, y) =M inN : C
∗E

Γ, x : A `M : B

Γ ` λx .M : A−∗ B
−∗ I

Γ `M : A−∗ B ∆ ` N : A
Γ,∆ `M@N : B

−∗ E

Equations

(αx .M)N = M [N/x] (αx .Mx) = M (x 6∈ free(M))

(λx .M)@N = M [N/x] (λx .M@x) = M (x 6∈ free(M))

π1〈M,N〉 = M 〈π1M, π2M〉 = M
π2〈M,N〉 = N

(let (x, y) =M1 ∗M2 inN) (let (x, y) =M in x ∗ y) = M
= N [M1/x,N2/y]
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The left and right columns contain β and η laws for each connective. A fuller
treatment of let requires commutative conversions; these and the question of
normalization are considered in [20].
Since “;” admits Weakening and Contraction, we can derive rules where the

additive maintenance of premises is explicit.

Lemma 2. The following are admissible rules.

Γ `M : A→ B Γ ` N : A
Γ `MN : B

Γ `M : A Γ ` N : B
Γ ` 〈M,N〉 : A ∧B

The cut lemma, asserting that substitution preserves well-formedness, is for-
mulated for identifiers appearing arbitrarily deeply in a bunch.

Lemma 3. The following is an admissible rule.

Γ (x : A) `M : B ∆ ` N : A

Γ (∆) `M [N/x] : B

Using this lemma, we obtain the following admissible rules

Γ, x : A `M : B ∆ ` N : A

Γ,∆ `M [N/x] : B

Γ ; x : A `M : B Γ ` N : A

Γ `M [N/x] : B

Γ (x : A, y : B) `M : C ∆ ` N : A ∆′ ` N ′ : B

Γ (∆,∆′) `M [N/x,N ′/y] : B

where the top right rule uses Contraction together with cut.

Lemma 4. β reduction preserves typing.
(where reductions are obtained by reading the equations left to right)

2.2 The Affine Variant

The affine variant extends the basic calculus as follows.

Affine Coherent Equivalence adds

4 I ≡ 1

to Coherent Equivalence.

Convertability of “,” to “;”

Γ (∆;∆′) `M : A

Γ (∆,∆′) `M : A
Conv

Equations. There are additional equations for projections for ∗.

(let (x, y) =M ∗N in x) = M (let (x, y) =M ∗N in y) = N

Lemma 5. Weakening for “,” is admissible in the affine variant.

Γ (∆) `M : A

Γ (∆,∆′) `M : A
W,
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2.3 Trivial Examples

Given a judgement x : A ` x : A we cannot immediately use an introduction
rule to type an identity function of type A−∗ A or A→ A, because to apply an
introduction rule for a function type we must have a context of the form Γ, x : A
or Γ ; x : A. So we need to use coherent equivalence first.

x : A ` x : A
1; x : A ` x : A

1 ` αx . x : A! A

x : A ` x : A
I, x : A ` x : A

I ` λx . x : A−∗ A

Using coherent equivalence we can also mimic the isomorphisms

[1, A! B] ∼= [A,B] ∼= [I, A−∗ B]

of hom sets in a dcc.

x : A `M : B
1; x : A `M : B

1 ` αx .M : A! B

x : A `M : B
I, x : A `M : B

I ` λx .M : A−∗ B

1 `M : A! B x : A ` x : A
1; x : A `Mx : B

x : A `Mx : B

I `M : A−∗ B x : A ` x : A
I, x : A `M@x : B

x : A `M@x : B

A→ B and A−∗ B are not convertable to one another in general, but in the
affine variant we can go from the former to the latter.

f : A→ B ` f : A! B

f : A→ B, x : A ` f : A! B
W,

x′ : A ` x′ : A
f ′ : A→ B, x′ : A ` x′ : A

W,

(f : A→ B, x : A) ; (f ′ : A→ B, x′ : A) ` fx′ : B
→ E

f : A→ B, x : A ` fx : B
C

f : A→ B ` λx. fx : A−∗ B
−∗ I

2.4 Unusual Examples

In the αλ-calculus we can have a multiplicative function that uses its argument
many times. For example, in the following, a variable abstracted using λ, the
multiplicative abstraction, appears multiple times in the body of the term.

...
x; f ` f x : A→ B

...
x; f ` x : A

x : A; f : A→ A→ B ` (f x)x : A→ B
C,→ E

x : A ` αf . (f x)x : ((A→ A→ B)→ B)
→ I

I, x : A ` αf . (f x)x : ((A→ A→ B)→ B)
≡

I ` λx . αf . (f x)x : A−∗ ((A→ A→ B)→ B)
−∗ I
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Here, in the key, top-pictured, step we use the admissible rule for → elimination
(or equivalently we use → E followed by Contraction, with suitable renaming of
premises).
This term seems unusual, or wrong, if one thinks of a number-of-uses read-

ing. But it is justified by the sharing interpretation. To see why, consider that
the subterm f x is of type A → B. According to the sharing interpretation, it
is allowed to share with its argument, in this case x, which is why (f x)x is
reasonable. On the other hand, the sharing interpretation would not support an
application (f@x)@x where f had type A−∗ A−∗ B.
Similarly, we can have a multiplicative function that doesn’t use its argument

at all.

y : B ` y : B

x : A; y : B ` y : B
W

x : A ` (αy . y) : B! B
! I

I, x : A ` (αy . y) : B! B
≡

I ` λx . (αy. y) : A−∗ (B! B)
−∗ I

It is instructive to compare the corresponding types in linear type theory.
For the first example, the type would be A−◦ !(!A−◦ !A−◦B)−◦B. In trying to
derive a term we could λ-abstract on x : A and function parameter f . But then,
to apply (the dereliction of) f to x, we would need to convert x to something of
type !A, and we cannot do a conversion from A to !A in general. Similarly, for
the type A−◦ !B−◦B we can abstract on x : A and y : !B, but we cannot throw
x away.
These examples serve to illustrate that the idea that a multiplicative function

uses its argument exactly once does not directly carry over to αλ.

3 Two Models

In this section we give two simple models, which express some aspects of the
informal sharing interpretation.

The definition of the αλ-calculus is close enough to its models – it was, in
fact, extracted from them – that the interpretation of (derivations of) typing
judgements should be evident. We concentrate on models themselves here. (A
thorough account of the relation between syntax and semantics, including co-
herence and a completeness result, may be found in [20].)

3.1 A Linear Model

Let B be the category of finite sets and bijections. The functor category SetB

will be used as a model of the αλ-calculus.

We think of B here as a category of possible worlds, where each world X
determines a finite collection of resources. For a functor A and element a ∈ AX,
we regard a as a computational entity of type A that has access to X.
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The structure of the additives is determined pointwise; on objects it is

1X = {∗}
(A ∧B)X = AX × BX
(A→ B)X = AX ⇒ BX.

Here, ⇒ is function space in Set, and × is cartesian product. The exponent
A→ B in a functor category is usually represented as

(A→ B)X = SetB[B[X, –] ∧A,B]

but in the special case that all morphisms of B are isomorphisms this is equivalent
to the pointwise representation.
Notice how the pointwise definition corresponds closely to the informal read-

ing of! in the sharing interpretation, where an additive function and its argu-
ment access the same resources. The additive function type has a strongly local
character, where the application of a function stays located at a given world.
The multiplicative function type, in contrast, explicitly refers to other worlds,

which are set apart from X through the use of +.

(A−∗ B)X = SetB[A(–), B(X + –)]

Here, + is the evident functor on B given by disjoint union of sets. The absence of
X in A(–) mirrors the informal description of multiplicative functions as disjoint
from their arguments. An element p ∈ (A−∗ B)X accepts a world Y and element
a ∈ AY as arguments, and produces p[Y ]a ∈ B(X+Y ). The “resources” for p are
X, while those for a are Y , and these are separate in the result type by virtue
of their positions in the combined world X + Y .
We give an example to illustrate the sharing aspect. Consider the inclusion

functor L : B −→ Set. For each finite set X, we think of LX = X as a set
of names, or locations. Let N be the constant functor delivering the natural
numbers, and define

S = L→ (1 ∨ (N ∧ L))

where ∨ is the coproduct of functors (which is defined pointwise). Because of
the pointwise definition of → we have that SX = X ⇒ {∗} + (N × X). We
regard an element s ∈ SX as a representation of a portion of a computer store,
where each x ∈ X is a pointer to a linked list (possibly with loops).
Now consider any function f ∈ ((S ∧ L) → ((S ∧ L)−∗ S))X. f accepts

(s, x) ∈ SX ×X and (s′, y) ∈ SY × Y , for finite set Y , as arguments, and pro-
duces a state in S(X +Y ) as a final result. From the point of view of S(X +Y ),
there is no overlap between x and y, or between the other pointers in the list
pointed to by x and those pointed to by y. Thus, we can view f as a procedure
that accepts two linked lists as arguments, with the proviso that the two input
lists are defined using disjoint collections of pointers. This kind of proviso is
often required in the statement of correctness of an algorithm that, say, removes
the elements of one list that appear in the other.
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On the other hand, consider the type L → (L−∗ (S → S)). A function of
this type would accept two pointers to linked lists as arguments, and the two
pointer arguments would again have to be distinct, but now they could point to
lists that overlap in the store.
No particular practical significance is claimed for this example; it is offered

just as a concrete illustration of how −∗ and → can express sharing properties.
But in a future paper we plan to show how a type system based on the linear
αλ-calculus can be used to control pointer aliasing in an imperative language.
Returning to the definition of the model, the multiplicative unit is I where

I({}) = {∗}, and I(X) = {} for all other X. We refer to Section 4 for the
definition of ∗ (a concrete representation of it is given below). However, even
prior to definition it is useful to observe that a multi-map characterization of
maps out of A ∗ B is forced by the definition of −∗ . That is, if we are to have
the isomorphism SetB[A ∗ B,C] ∼= SetB[A,B−∗ C], then we must obtain the
following [7].

Maps p : A ∗ B −→ C out of a tensor are in bijection with families of
functions

p[X][Y ] : AX ×BY −→ C(X + Y ) ,

natural in X and Y .

The idea in terms of sharing is that the components of ∗ are assigned different
resources (this is in line with the form of semantics proposed by Reynolds for
syntactic control of interference [15]).

Proposition 6. SetB with this data is a cartesian dcc.

Let us reconsider the first example from Section 2.4 in light of this model.
The judgement

I ` λx . αf . (f x)x : A−∗ ((A→ A→ B)→ B)

determines an element p ∈ A−∗ ((A → A→ B) → B){} (where we indulge in a
confusion between types and objects in SetB). It accepts a worldX and a ∈ AX,
and produces (using the isomorphism {}+X ∼= X) a function p[X]a ∈ ((A →
A → B) → B)X. By the pointwise definition of →, this is a function of type
(AX ⇒ AX ⇒ BX) ⇒ BX in Set, and it is the expected function that maps
f to (fa)a.

Remark 7 A concrete representation of the multiplicative product can be given
as follows. If n and m are natural numbers let [n|m] denote the set {n, ..., m−1}
and let |X| denote the size of a finite set X. Then

(A ∗B)X ∼= {〈n,m, a ∈ A[0|n], b ∈ B[n|m]〉 | n+m = |X|}.

Remark 8 It is important to see that there is no hidden Weakening or Con-
traction for “,” lurking in the examples of terms that use their arguments two
or zero times. In fact, we can see that these rules are absent in SetB in a very
strong sense; there are not even any candidate maps of the required types to
model them, let alone maps with the proper properties.
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To model Contraction we would need maps of shape A −→ A ∗A. But there
are no maps L −→ L ∗ L, where L is the inclusion from B to Set. To see why,
given a ∈ L{a} we would have to produce an element in (L ∗L){a}, but this set
is empty. For, the representation of ∗ just given implies that an element would
have to be of the form 〈0, 1, b ∈ L{}, b′ ∈ L{0}〉 or 〈1, 0, b ∈ L{0}, b′ ∈ L{}〉, but
there are no such elements as L{} is empty.
To model Weakening, we would need maps A −→ I, for all A. But there are

no maps 1 −→ I.

3.2 An Affine Model

Let I denote the category of finite sets and injective functions. The functor
category SetI is cartesian closed, with finite products defined pointwise. The
additive function type can be given a special representation, using the fact that
any morphism in I factors into an injection X → X+Y into the left component
of a disjoint union, followed by an isomorphism:

(A→ B)(X) = SetI [A(X + –), B(X + –)].

This accurately reflects the informal reading from Section 1.2, in that the pres-
ence of X in the argument type A(X+–) indicates how a function p ∈ (A→ B)X
may share access to X with its argument.

The multiplicative function type once again expresses disjointness of a func-
tion from its argument:

(A−∗ B)X = SetI [A,B(X + –)]

where + is the functor on I given by disjoint union of finite sets.
In Section 2.3 we showed how to convert→ to −∗ in the affine αλ-calculus. In

this model, the conversion takes a natural transformationA(X+–) −→ B(X+–)
and composes on the left with the map A −→ A(X + –) that sends a ∈ AY to
A(inr)a ∈ A(X+Y ), where inr is the right injection. Here, an additive function
in world X is applied to an argument a ∈ AY that doesn’t happen to depend
on X.

Once again we refer to the following section for ∗, and simply state

Proposition 9. SetI is an affine dcc.

We can try to use the inclusion functor L : I −→ Set as a variant on the
functor used to illustrate the linear sharing interpretation, but it has something
of a different character in the affine model. It would not be as reasonable to think
of s ∈ (L → (1 ∨ (N ∧ L)))X as a state, because s would have to accept other
worlds Y , and potentially y ∈ LY , as arguments. So the development above, for
the linear interpretation, does not carry through well to the affine case. However,
a more thorough account of the sharing aspect of the affine model is given in
Sections 5 and 6, where we study study syntactic control of interference.
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Remark 10 When working with pullback preserving functors (which we always
will), a concrete description of ∗ is possible. The basic intuition is that we can
define the support of any computational value, as the smallest collection of re-
sources upon which it depends. For a ∈ AX define supp(a) to be the smallest
subset Y ⊆ X such that a ∈ range(Y ↪→ X)). Pullback preservation is enough to
guarantee existence of such supports [12]. Then, for pullback preserving functors

(A ∗B)X ∼= {〈a, b〉 ∈ AX ×BX | supp(a) ∩ supp(b) = {}}.

Remark 11 There is no functor ! : SetI ! SetI admitting an isomorphism
!A−∗ B ∼= A! B. To see why, consider the constant functor 2 which delivers
the two element set {t, f}. Then

(A−∗ 2)X = SetI [A, 2(X + –)] = SetI[A, 2]

is independent of X, and so A−∗ 2 is a constant functor. On the other hand,
(A! 2)X = SetI [A(X + –), 2] depends on X, and is not necessarily (isomor-
phic to) a constant functor. For instance, if L is the inclusion functor from I
into Set, then (L! 2){} has two elements, corresponding to the two constant
functions into {t, f}. On the other hand, (L ! 2){a, b} has elements that are
not in the range of (L ! 2)(f : {} ↪→ {a, b}). One such maps a to t and b
to f (and all other inputs to, say, f). Therefore, no matter what “!” we try to
pick, !L−∗ 2 will be a constant functor, while L! 2 is not, so they cannot be
isomorphic. This indicates that a dcc is not simply a model of linear logic in
disguise.

4 Day’s Construction

The material in the previous section can be regarded as two worked examples,
of specific instances of a general construction due to Brian Day [7]. He shows
that any (small) monoidal category (C, ∗, I) induces a monoidal closed structure

on SetC
op

, and that when (C, ∗, I) is symmetric monoidal so is SetC
op

. This,

combined with the standard fact that SetC
op

is bicartesian closed, yields a bi-
cartesian dcc.
We have already seen −∗ : given functors A and B,

(A−∗ B)Z = SetC
op

[A,B(Z ∗ –)].

The formula for the tensor product is written using a coend:

(A ∗B)Z =

Z X,Y
AX × BY × C[Z,X ∗ Y ].

It is sometimes possible to give an explicit description of ∗ without using coends,
as we did in remarks in the previous section. The unit I of the monoidal structure
is C[–, I]. The formulas for (A ∗ B)Z and (A−∗ B)Z are both contravariant in
Z, giving the morphism parts of the functors.
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Although the models given in the last section are instances of this struc-
ture, their connection to the sharing interpretation does not fall out from it.
Put another way, not all instances of Day’s construction would be consistent
with the informal sharing reading, such as SetC

op

where the tensor in C admits
Contraction. We wonder if there are abstract properties of C, together with an
accompanying analysis, that could provide an axiomatic understanding of the
essence of the “resource” aspect of αλ.
Besides giving us a host of models, Day’s construction enables us to make

remarks about full and faithful embeddings. Faithfulness is the semantic coun-
terpart of a syntactic conservativity result, while fullness says that adding such
structure does not cause any new maps to added, when we focus on just ccc or
smcc types being embedded.
We can embed a ccc in a dcc in a trivial way, by regarding it as a dcc in which

the two closed structures coincide. This implies the conservativity of the equality
on αλ-terms given by cartesian dcc’s over that for simply-typed λ-calculus. For
smcc’s we refer to a result of [8], which says that the Yoneda embedding takes
symmetric monoidal closed structure on a small category C to that structure
just described on SetC

op

.
These embeddings raise the question of a “purely functional” understanding

of αλ. For example, we could formulate a model consisting of (certain, [19,14])
functors from the category of coherence spaces and linear functions to a category
of cpo’s (with bottom) and continuous functions. This gives us a model of αλ
which, when restricted to multiplicative types, agrees with the coherence space
model of linear logic. But for terms that mix multiplicatives and additives there
would be strange behaviour, from the point of view of coherence spaces, as the
examples from Section 2.4 show. So, although it is possible to define such a
model, the proper meaning to attach to it is not clear.

5 Interference Control and Affine λ-calculus

In this and the next section we develop the affine model from Section 3.2, and
show how the αλ-calculus can be used to extend syntactic control of interference
(SCI). We begin with an introduction to SCI, focusing on the sharing interpre-
tation for it, and properties desired of an extension.
The central statement of imperative programming is the assignment x := e,

which overwrites the contents of a cell, or location, denoted by x. Imperative
languages give rise to the phenomenon of interference [21], where executing one
statement can affect another when they share access to the same cells. In par-
ticular, there can be covert interference, where seemingly unrelated statements,
such as x := y and z := w, can affect one another; this can happen when the
identifiers x and z are aliases (denote the same cell).
Contraction is a source of aliasing in imperative programming. In

((λyλz . · · ·y := 2 · · · if z = 3 then · · ·)x)x
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if x denotes a cell c, then that same cell will be passed to both x and y. A result
of this is that, in the body of the λ-expression, the statement y := 2 will set
the contents of c to 2. This, in turn, will affect the truth of the condition z = 3,
because that condition checks the contents of cell c, to see if it is 3.
To enable this passing of c to both y and z we have to have Contraction,

either explicitly or as an admissible rule, in order to get two occurrences of x in
an application (Mx)x. SCI rejects Contraction by using affine λ-calculus as its
type system.

5.1 Basic SCI

We work with a version of SCI whose types are as follows.

ρ ::= exp | cell | comm primitive types
θ ::= ρ | θ ∧ θ′ | θ−∗ θ′ types

The primitive type exp is the type of natural number-valued expressions, comm
is the type of commands, and cell is the type of storage cells, or locations.
We have used −∗ to emphasize that functions in SCI are multiplicative.

Affine λ-calculus

x : θ ` x : θ
Id

Γ `M : θ
∆ `M : θ

Ex (where ∆ is a permutation of Γ )

Γ `M : θ′

Γ, x : θ `M : θ′
W

Γ, x : θ `M : θ′

Γ ` λx : θ .M : θ−∗ θ′
−∗ I

Γ `M : θ−∗ θ′ ∆ ` N : θ
Γ,∆ `MN : θ′

−∗ E

Γ `M : θ Γ ` N : θ′

Γ ` 〈M,N〉 : θ ∧ θ′
∧I

Γ `M : θ1 ∧ θ2
Γ ` πiM : θi

∧E (where i is 1 or 2)

A typing context Γ here is a list of assumptions x : θ pairing identifiers with
types, with the proviso that no identifier appears twice.
Selected SCI-Specific Rules

Γ ` N : exp

Γ ` succ N : exp

Γ ` N : exp

Γ ` pred N : exp

Γ ` 0 : exp

Γ ` N1 : exp Γ ` Ni : comm , i = 2, 3

Γ ` if N1 = 0 then N2 else N3 : comm

x : θ `M : θ
` recx .M : θ

Γ, x : cell `M : cell

Γ ` newx.M : comm

Γ ` skip : comm
Γ `M : comm Γ ` N : comm

Γ `M ;N : comm

Γ ` M : cell
Γ ` !M : exp

Γ `M : cell Γ ` N : exp

Γ `M := N : comm
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Of these constructs, !M is the operation that reads the contents of a cell, and
new allocates a fresh cell (which is put on the runtime stack).

5.2 The Sharing Interpretation of SCI

We saw above how eliminating Contraction could rule out one instance of alias-
ing. More generally, the absence of aliasing is subsumed under the

Disjointness Policy: distinct identifiers never interfere.

The SCI sharing interpretation of types is as follows.

A−∗ B: functions that don’t interfere with their arguments.
A ∧B: pairs that may interfere with one another.

If we substitute “share resources” for interfere, then the reading of −∗ is just
the one we gave for the affine case in Section 1.2.

It is important to realize how this is an unusual reading of the affine λ-
calculus. Often, the idea in the affine calculus is that a function uses its argument
at most once, so that for instance in a function of type A ∧ B−∗ C either the
A or the B component may be used, but not both. But according to SCI’s
reading, it is perfectly reasonable for a function p of such a type to use either
or both components of a pair 〈a, b〉 supplied to it as an argument, and either of
these elements could be used many times. The only constraint is that p doesn’t
interfere with 〈a, b〉.

For example, in SCI we can write a function

(λc : comm ∧ comm . π1c ; π2c ; π1c) : comm∧ comm→ comm

that uses the first component of a pair twice and the second component once.

The sharing reading also helps to understand the typing of if. In the number-
of-uses reading, in ifN1 = 0 thenN2 elseN3 one would expect to use one context
for N1, and a separate context for N2 and N3. But the conditional essentially
corresponds to a constant of type exp ∧ comm ∧ comm−∗ comm in SCI and
there is no inconsistency if all the Ni’s share the same context. And in imperative
programming this sharing is often wanted, so that information can pass from the
condition into the branches.

Now the affine calculus certainly does not force the sharing reading. But
it is consistent with it. The pure affine calculus is actually too small for this
“many uses” aspect to be seen; the additional features of SCI are where it comes
out. The pure αλ-calculus, in contrast, already admits multiplicative functions
that use their arguments many times, as we saw in Section 2.4. This is why αλ
is consistent with the sharing reading but not, as far as we are aware, with a
straightforward adaptation of the number-of-uses reading.
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5.3 A Model

We can describe a model of SCI using the category I of finite sets and injections
from Section 3.2. To cope with recursion, we use PredomI in place of SetI ,
where Predom is the category of predomains (ω-complete posets and continu-
ous maps). The definition of the dcc structure is as in Section 3.2, with small
adjustments to account for order.

For X a finite set we define

[[comm]]X = SX ⇒ SX⊥

[[exp]]X = SX ⇒ N⊥

[[cell]]X = X⊥

Here, SX = X ⇒ N is the set of states at world X, and N is the set of natural
numbers. The action of each primitive type on morphisms f in I is defined by
renaming cells according to f , and ignoring cells not in the range of f .

Recursion is interpreted as follows. If [[M ]] : [[A]] −→ [[A]], then we require a
map [[recx.M ]] : 1 −→ A. The definition is that [[recx.M ]]X∗ is the least fixed
point of the function [[M ]]X : AX ⇒ AX. For existence, this definition requires
the observation that each [[A]]X has a least element, and for naturality that all
maps [[A]]f : AX → AY are strict as well as continuous [19].

We will not give the detailed semantics of other terms, but we comment
on the sense in which the semantics of −∗ faithfully reflects the sharing in-
terpretation. Consider the type cell−∗ cell−∗ comm. Semantically, an element
p ∈ [[cell−∗ cell−∗ comm]]{} accepts

two worlds Y and Z,
cells c ∈ Y⊥ and e ∈ Z⊥

and produces (using {}+ Y + Z ∼= Y + Z)

p[Y ]c[Z]e : S(Y + Z)⇒ S(Y + Z)⊥

It is evident from this that the arguments c and e cannot be aliases, as (presuming
neither is ⊥) they live in disjoint portions of the store at world Y + Z.

This model of SCI uses the multiplicatives −∗ , I, and ∗ (which is used to
interpret typing contexts), along with the additive ∧. However, the model also
contains the additive function type →, which can separately be used to model
Idealized Algol, a language based on the simply-typed λ-calculus [22,16]. This
observation leads to the question of whether there is a semantically natural
enveloping language, that contains both SCI and Idealized Algol.

Before describing how the αλ-calculus can be used to answer this question,
we discuss why we might want to do so.
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5.4 Limitations

There are two specific cases when the disjointness policy of SCI appears overly
restrictive [21,23]. First, notice that the rule for recursion in SCI is restricted
so that recx .M is a closed term. The reason for this restriction is that, if an
assignment to a free identifier y were to occur, as in (recx. · · · y := e · · ·x · · ·),
then y would interfere with x, violating the disjointness policy. The problem can
also be seen with a fixed-point operator Y: an unwinding YF � F (YF ) would
violate the requirement of affine typing that the free identifiers of a function and
argument be disjoint, unless F is closed.
The second limitation is jumps. To see the difficulty, consider a label decla-

ration block escape x in M . This declares a new label which, when jumped to
from withinM , results in a transfer of control to the end of the block. From the
point of view of continuation semantics, it binds x to the current continuation,
which is a function from states to final answers that describes computation that
will take place after the block is finished. This means that, if the computation
associated with the current continuation changes any storage variable then x
will interfere with that storage variable. So, in (escape x in M); z := 4 the
identifiers z and x interfere, if z occurs within M . Thus, from the point of view
of continuation semantics, the escape statement violates the requirement that
distinct identifiers never interfere (unless we put rather draconian conditions on
identifiers appearing in or following an escape block).
A solution is to relax the disjointness requirement of SCI by using the αλ-

calculus. A bunch Γ,∆ will indicate that identifiers appearing in Γ do not inter-
fere with any identifiers in ∆, while the combination Γ ;∆ will allow interference
to occur. Then, when a recursively defined x has an assignment to y in its body,
the typing rule for recursion must ensure that x and y are separated by “;”
during the typing of the body, indicating that interference might occur . We will
not give the solution for jumps in this preliminary paper, but the idea is simi-
lar: when typing an escape block we require a declared label to sit in additive
combination with other identifiers appearing freely in its body.

6 An Enveloping Language

The enveloping language, SCI+, uses the affine αλ-calculus as its type system.
The primitive types are the same as those given for SCI in Section 5.1, as are
all of the language-specific rules, with the exception of recursion.
The SCI+ rule for recursion allows for free identifiers, as long as they are in

additive combination with x.

Γ ; x : θ `M : θ

Γ ` recx .M : θ
SCI+ rec

The sense in which SCI+ allows detection of interference is that, whenever
we see a sequence αxλy or λx λy, we know that x and y don’t interfere. So,
non-interference can be inferred (in a fail-safe manner) from a simple inspection
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of a context. The one difference is that in Basic SCI this determination is context
free. It is context sensitive in SCI+ because when we see αxαy or λxαy we don’t
know if x and y interfere or not.

Thus, the combination of additive and multiplicative features using bunches
gives rise to a flexible form of interference control, where it is possible to switch
between interference and non-interference. It allows programs that violate the
disjointness policy of SCI to be accepted in a local context, but then embedded
in larger contexts where the policy remains in effect. An example of this is given
at the end of the section.

6.1 Mappings

Idealized Algol is similar to SCI, except that it has a more general rule for recur-
sion, and it uses the full simply-typed λ-calculus as its type system. Formally,
define IA to be the language in Section 5.1, with the addition of the two rules

Γ, x : θ′, y : θ′ `M : θ

Γ, y : θ′ `M [y/x] : θ
IAC

Γ, x : θ `M : θ

Γ ` recx .M : θ
IA rec

and with the symbol → replacing −∗ everywhere.

Proposition 12. 1. SCI+ has IA as a sublanguage. That is, if

x1 : A1, ..., xn : An `M : B

in IA then

x1 : A1; ...; xn : An `M
? : B

in SCI+, where (·)? maps λ to α, and everything else (inductively) to itself.
2. SCI+ has SCI as a sublanguage. That is, if

x1 : A1, ..., xn : An ` B

in SCI then

x1 : A1, ..., xn : An `M
◦ : B

where (·)◦ maps MN to M◦@N◦ and everything else (inductively) to itself.

Most rules translate directly; the only exceptions are the SCI rule for recursion
and the IA rule for new. SCI+ has the SCI recursion as a special case, using
Γ ≡ 1 and a coherent equivalence. The IA version of new translates to

Γ ; x : cell `M : comm

Γ ` newx .M : comm

We can derive this at once using the SCI+ rule for new and the Conv rule of
affine αλ.
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6.2 Semantics

The category described in Section 5.3 can be used to interpret the types and
the αλ typing rules, and semantic valuations for all the SCI+-specific terms can
follow the standard route taken in functor category semantics [16,19,22]. We just
indicate the treatment of recursion. If [[M ]] : [[Γ ]]× [[A]] −→ [[A]], then we require
a map [[recx.M ]] : [[Γ ]]−→ [[A]]. The definition is that [[recx.M ]]Xu is the least
fixed point of f : [[A]]X ⇒ [[A]]X, where f = λa . [[M ]]X〈u, a〉. This definition is
tantamount to giving a fixed-point combinator of type (A→ A)→ A, using the
additive function type.
The presence of u is the difference from the SCI case. If we were to have

attempted to parameterize the definition there, we would have had to contend
with [[Γ ]]∗[[A]] instead of [[Γ ]]×[[A]]. Then, for a fixed u, we could not have consid-
ered arbitrary a ∈ AX as arguments, because of the disjointness requirement of
∗. Furthermore, an explicit attempt to “iterate from ⊥” to define the recursion
would run into iterates that interfere with u which, again because of ∗, would
disable the use of [[M ]] to iterate further.
Using this model, it is possible to show a sense in which IA and SCI are

semantic sublanguages of SCI+, adding to Proposition 12.

6.3 An Example

We give an example (with sugar) that violates the disjointness policy of SCI: the
Towers of Hanoi program, where disks are moved between pegs.

moveone : exp→ exp→ comm
` recmovemany . αk a b c : exp

if k > 0 then
movemany(k − 1, a, c, b);
moveone(a, b);
movemany(k − 1, c, b, a)

: exp→ exp→ exp→ exp→ comm

The procedure moveone can work by printing a message to the screen, or by
recording a move in a global data structure. The point is that moveone and
movemany interfere in the body of the procedure.
To type this using the rule for recursion the crucial point is that, during the

typing of the body, we turn interference control off by using the bunch

moveone : exp→ exp→ comm
; movemany : exp→ exp→ exp → exp→ comm

which indicates thatmoveone andmovemany might interfere. But more globally
we can turn interference control back on. For instance, in

moveone : exp→ exp→ comm , c : comm
` ((recmovemany . · · ·)7 1 2 3) ; c : comm
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we will know that the two sequentially-composed commands don’t interfere.
They could, therefore, be permuted without affecting the final result, or even
run in parallel.
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Abstract. This paper establishes a Curry-Howard isomorphism for com-
pilation and program execution by showing the following facts. (1) The
set of A-normal forms, which is often used as an intermediate language
for compilation, corresponds to a subsystem of Kleene’s contraction-free
variant of Gentzen’s intuitionistic sequent calculus. (2) Compiling the
lambda terms to the set of A-normal forms corresponds to proof trans-
formation from the natural deduction to the sequent calculus followed
by proof normalization. (3) Execution of an A-normal form corresponds
to a special proof reduction in the sequent calculus. Different from cut
elimination, this process eliminates left rules by converting them to cuts
of proofs corresponding to closed values. The evaluation of an entire
program is the process of inductively applying this process followed by
constructing data structures.

1 Introduction

Curry-Howard isomorphism [3,11] is one of most influential concepts in design
and analysis of programming languages. It reveals the exact correspondence be-
tween the typed lambda calculus and the natural deduction proof system: typing
derivations correspond to proofs and β reduction corresponds to proof normaliza-
tion. This notion is, however, not entirely appropriate for an actual programming
language because of the apparent mismatch between β reduction and language
implementation. In actual programming languages (except for some interpreted
languages) a program is not β reduced but instead is compiled to a low-level
code and then executed by an (abstract) machine. Because of this mismatch,
the profound correspondence between β reduction and proof normalization does
not have much significance in language implementation. If Curry-Howard iso-
morphism is extended to implementation process, then research on compilation
and implementation would be greatly benefited through high-level logical analy-
sis made available by the extended isomorphism. This would be particularly
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useful for recent active researches on types in compilation where compilation is
directed by typing derivation. The goal of this paper is to establish a Curry-
Howard isomorphism for compilation and program execution.

There are several formalisms for compilation and program execution. Here we
base our development on the work by Flanagan et. al. [6] for a call-by-value func-
tional language using an intermediate language called A-normal forms, which is
equivalent to the language obtained from CPS terms by “un-CPS” transforma-
tion [5,19] that eliminates continuation. In this formalism, compilation is mod-
eled by transformation from lambda terms into A-normal forms, and program
execution is defined by an abstract machine for A-normal forms. As forcefully
argued by Flanagan et al, compiling into A-normal forms can be regarded as
“the essence” of compiling a functional language, and the execution model for
A-normal forms closely reflects an actual implementation of a functional lan-
guage using environments. They give a simple linear time compilation algorithm
and demonstrate that it can be used as a basis for an efficient practical com-
piler through their experimentation. Because of these facts, we also believe that
compiling with A-normal forms can serve as an realistic model for efficient im-
plementation of functional languages.

Our specific goal is therefore to develop logical foundations for compiling
the lambda terms to the set of A-normal forms and for evaluation of A-normal
forms. We achieve this goal by establishing the following facts.

1. A logic that corresponds to a language for mechanical execution in a conven-
tional computer system is a Gentzen-style sequent calculus, which represents
finer notion of computation than the natural deduction system. Instead of
performing general substitution, it decomposes a computation on a data type
into smaller structures by the corresponding left rule. In particular, Kleene’s
[13] contraction-free sequent calculus, denoted here by GK, serves as a logic
for an implementation language. The set of A-normal forms is identified with
a subsystem GKA whose proofs are those of GK in a certain normal form.

2. A compilation algorithm from lambda terms to A-normal forms in the style of
[6] corresponds to the composition of a proof transformation from the natural
deduction system (denoted here byN ) to GK and a proof normalization from
GK to GKA.

3. Execution of an A-normal form corresponds to a special proof reduction
process in GKA. Different from cut elimination, this process eliminates left
rules by converting them to cuts of proofs corresponding to closed values.
The evaluation of an entire program is the process of inductively applying
this process followed by constructing data structures. This process exactly
corresponds to execution of a program using environments.

These results establish a Curry-Howard isomorphism for compilation and pro-
gram execution. The summary of the correspondence is shown in Fig. 1.

Intuitively, an A-normal compiler performs two types of transformations: (1)
it identifies all the redexes by naming the intermediate results of reductions,
and (2) it flattens and linearizes redexes by extending the scope of intermediate
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Fig. 1. Curry-Howard isomorphism for compilation and program execution

bindings. As a simple example, consider the source term (f (g x)). The first type
of transformation converts this term into the following:

app (f (app (g x) is z in z)) is w in w

where app (x M) is y in N is our syntax in GK for applying function x to M
and naming the result as y in N . This is exactly the transformation of a natural
deduction proof to a sequent calculus proof. The second type of transformation
converts this into the following A-normal form:

app (g x) is z in (app (f z) is w in w)

This process is the proof normalization from GK to GKA. Execution of an A-
normal form is also tightly modeled in GKA: an operational semantics of A-
normal forms exactly corresponds to a proof reduction in GKA.
We believe that those logical correspondences worked out in this paper will

contribute to design, analysis and optimization of compilation in a higher-order
functional language. As an example of one of such benefits, A-normal compilation
of [6] is immediately extended to products and sums by using the corresponding
logical principles, as seen in this paper.
Related work. Before giving the technical development, we compare the

results presented in this paper with related works. The use of a Gentzen-style
sequent calculus as a model of computation is not new. Abramsky [1] has given
a term calculus for linear logic. Breaze-Tannen et. al. [2] have given a typed
pattern calculus where the underlying logic is a sequent calculus. In [4,10] a
sequent calculus is regarded as a model of computation. In particular, Herbelin
[10] has argued that a sequent calculus can be a basis for computation and
presented a term calculus. Based on a similar observation, Ogata [16] has shown
that the term calculus presented in [4] corresponds to CPS terms under Griffin’s
[9] interpretation of CPS terms. In a tutorial article, Gallier [7] has given a
term calculus for a Gentzen sequent calculus and suggested that a Gentzen-style
sequent calculus represents finer notion of computation than β reduction. In
general perspective, all those term calculi have the similarity to ours in the sense
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that they represent refined notion of computation, and they have been source
of inspiration of the present paper. However, to the author’s knowledgement,
the connection to compilation and execution of compiled code has not been
investigated.
In establishing this connection in the present paper, we use a well known re-

sult stating that any natural deduction proof can be transformed into a proof in
the sequent calculus. Zucker [21] and Pottinger [17] conducted extensive studies
on the relationship between the two proof systems. As we will show, however,
this relationship alone does not provide the desired interpretation for compilation
and program execution, and significant new results are needed to extend Curry-
Howard isomorphism to them. In the existing works on Gentzen’s sequent calcu-
lus and computation, the advocated thesis is that “cut elimination corresponds
to computation.” Our analysis shows, however, that this commonly believed
thesis does not apply to actual implementation of a (call-by-value) functional
language. In the usual cut elimination, cut rule is inductively moved upward to
smaller proofs. A somewhat surprising result of our work is that program eval-
uation in conventional implementation pushes cut downwards, and corresponds
a quite difference proof normalization process.
Paper Organization. Section 2 defines the typed lambda calculus. Sec-

tion 3 defines GK, GKA, and a proof normalization from GK to GKA. Section 4
shows that a compilation algorithm from lambda terms to A-normal forms is the
combination of a proof transformation from the natural deduction to GK and
a proof normalization from GK to GKA. Section 5 shows that the operational
semantics of A-normal forms is a proof reduction in GKA. Section 6 concludes
the paper.
Limitations of space make it difficult to cover the technical development fully;

the author intends to present a more detailed description elsewhere.
Acknowledgments. The author would like to thank Yasuhiko Minamide

and Ichiro Ogata for useful discussions on A-normal forms and sequent calculi.
He also thanks Susumu Nishimura for helpful comments on a draft of this paper.

2 Typed Lambda Calculus

To make the relationship to logic explicit, we use the following logical notations
for types (ranger over by τ ):

τ ::= b | τ⊃τ | τ∧τ | τ∨τ

where b stands for a given set of atomic types. A type assignment Γ is a function
from a finite set of variables to types. We write {x1 : τ1, . . . , xn : τn} for the
function that maps each xi to τi (1 ≤ i ≤ n). If f is a function, we write
f, x : τ for the function f ′ such that dom(f ′) = dom(f) ∪ {x} and f ′(x) = τ ,
f ′(y) = f(y) if y 6= x. The set of terms is given by the following syntax:

M ::= cb | x | λx : τ.M | M M | (M,M) | M.1 | M.2 |
in1(M : τ ) | in2(M : τ ) | case M of x.M, x.M
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cb stands for atomic constants of type b. x stands for a given set of variables.M.1
and M.2 are first and second projection, respectively. in1(M : τ ), in2(M : τ )
are left and right injection to a variant, respectively. The type annotations in
λx : τ.M , in1(M : τ ), and in2(M : τ ) are necessary to achieve the uniqueness
of typing derivation (uniqueness of a term representation of a proof). In what
follows, however, we make those type annotations implicit.

(axiom) Γ � cb : b (taut) Γ, x : τ � x : τ (⊃:I)
Γ, x : τ1 �M : τ1
Γ � λx : τ.M : τ1⊃τ2

(⊃:E)
Γ �M1 : τ1⊃τ2 Γ �M2 : τ1

Γ �M1 M2 : τ2
(∧:I)

Γ �M1 : τ1 Γ �M2 : τ2
Γ � (M1,M2) : τ1∧τ2

(∧:Ei)
Γ �M : τ1∧τ2
Γ �M.i : τi

i ∈ {1, 2} (∨:Ii)
Γ �M : τi

Γ � ini(M : τ1∨τ2) : τ1∨τ2
i ∈ {1, 2}

(∨:E)
Γ �M1 : τ1∨τ2 Γ, x : τ1 �M2 : τ3 Γ, y : τ2 �M3 : τ3

Γ � case M1 of x.M2, y.M3 : τ3

Fig. 2. Typed Lambda Calculus with Products and Sums

The proof system for the typed lambda terms is given in Fig. 2. The following
properties are well known as Curry-Howard isomorphism.

– If we erase M from Γ �M : τ and replace Γ with the multi-set obtained
by erasing the variables, then we obtain the natural deduction system [18]
(with additional axioms for atomic propositions), which is denoted here
by N .

– If ` Γ �M : τ then the term M uniquely represents a proof of ` Γ �M : τ
in N .

– The β reduction on lambda terms corresponds to proof normalization in N .

We write N ` Γ �M : τ if Γ �M : τ is provable in this proof system. Our aim
is to extend this logical correspondence to compilation and program execution
using a Gentzen-style sequent calculus.

3 Intuitionistic Sequent Calculus : GK

We choose a contraction-free variant of the Gentzen’s intuitionistic sequent calcu-
lus due to Kleene [13, Ch.XV,§80], which is particularly suitable for establishing
the exact correspondence between program execution and proof reduction.

The set of types is the same as that of N . The set of terms is given by the
following syntax.

M ::= cb | x | λx.M | app (x M) is y in M | (M,M) | proj x on (y, z) in M
| in1(M) | in2(M) | case x of y.M, z.M | let x =M in M
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We have explained app (x M1) is y in M2. proj x on (y, z) in M binds y
to the first component of x, and binds z to the second component of x in M .
case x of y.M1, z.M2 performs case analysis on x and if it is of the form in1(v)
then binds x to v in M1 otherwise x is of the form in2(v) and it binds z to v in
M2. The proof system is given in Fig. 3.

(axiom) Γ � cb : b (taut) Γ, x : τ � x : τ (⊃:R)
Γ, x : τ1 �M : τ2
Γ � λx.M : τ1⊃τ2

(⊃:L)
Γ, x : τ1⊃τ2 �M1 : τ1 Γ, x : τ1⊃τ2, y : τ2 �M2 : τ3

Γ, x : τ1⊃τ2 � app (x M1) is y in M2 : τ3

(∧:R)
Γ �M1 : τ1 Γ �M2 : τ2
Γ � (M1,M2) : τ1∧τ2

(∨:Ri)
Γ �M : τ2

Γ � ini(M) : τ1∨τ2
(i ∈ {1, 2})

(∧:L)
Γ, x : τ1∧τ2, y : τ1, z : τ2 �M : τ3

Γ, x : τ1∧τ2 � proj x on (y, z) in M : τ3

(∨:L)
Γ, x : τ1∨τ2, y : τ1 �M1 : τ3 Γ, x : τ1∨τ2, z : τ2 �M2 : τ3

Γ, x : τ1∨τ2 � case x of y.M1, z.M2 : τ3

(cut)
Γ �M1 : τ1 Γ, x : τ1 �M2 : τ2
Γ � let x = M1 in M2 : τ2

Fig. 3. Gentzen-style Intuitionistic Sequent Calculus GK

For our calculus, the notion of bound and free variables are defined on both
terms and proofs, and we can show that α-equivalence hold in this calculus. In
the following development, we assume the “bound variable convention”, i.e. all
bound variables are distinct and are different from any free variables. It should
be noted, however, that α equivalence is not entirely obvious for sequent calculi.
For example, if we adopt the Gentzen’s original proof system where each left
rule introduces a new assumption, then some extra machinery will be needed to
obtain α equivalence.

3.1 A-Normal Forms and Proof Normalization

We define a subsystem GKA of GK whose proofs correspond to the set of A-
normal forms. We say that a premise is an argument premise if it is a premise of
one of right rules except (⊃:R), or it is the left premise of (⊃:L) or (cut). GKA
is obtained from GK by distinguishing those proofs that correspond to “values”,
and restricting argument premises to be value proofs. The set of values (ranged
over by V ) and the set of A-normal forms are given as follows.

V ::= cb | x | λx.M | (V, V ) | in1(V ) | in2(V )

M ::= V | app (x V ) is y in M | proj x on (y, z) in M |

case x of y.M, z.M | let x = V in M
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The proof system GKA is given in Fig. 4, where the use of a meta variable V
indicates that it must be a value.

Values.

(axiom) Γ � cb : b (taut) Γ, x : τ � x : τ (∧:R)
Γ � V1 : τ1 Γ � V2 : τ2
Γ � (V1, V2) : τ1∧τ2

(∨:Ri)
Γ � V : τi

Γ � ini(V ) : τ1∨τ2
(i ∈ {1, 2}) (⊃:R)

Γ, x : τ1 �M : τ2
Γ � λx.M : τ1⊃τ2

General A-normal forms

(⊃:L)
Γ, x : τ1⊃τ2 � V : τ1 Γ, x : τ1⊃τ2, y : τ2 �M : τ3

Γ, x : τ1⊃τ2 � app (x V ) is y in M : τ3

(∧:L)
Γ, x : τ1∧τ2, y : τ1, z : τ2 �M : τ3

Γ, x : τ1∧τ2 � proj x on (y, z) in M : τ3

(∨:L)
Γ, x : τ1∨τ2, y : τ1 �M1 : τ3 Γ, x : τ1∨τ2, z : τ2 �M2 : τ3

Γ, x : τ1∨τ2 � case x of y.M1, z.M2 : τ3

(cut)
Γ � V : τ1 Γ, x : τ1 �M : τ2
Γ � let x = V in M : τ2

Fig. 4. Proof system GKA for A-normal forms

We define the set S of proof transformations from GK to GKA. Each trans-
formation pushes a cut rule or a left rule appearing in an argument premise
downward. For each of {(cut), (⊃:L), (∧:L), (∨:L)} there are 6 transformation
rules corresponding to the 6 different argument premises.
The sets of transformations for {(⊃:L), (∧:L), (cut)} are similar to one an-

other. Here we only show the two cases where (cut) appears in an argument
premise as follows:

∆1
(Γ �M1 : τ1)

∆2
(Γ, x : τ1 �M2 : τ2)

Γ � let x = M1 in M2 : τ2
(cut)

∆3

Γ �M3 : τ3

Γ � (let x = M1 in M2,M3) : τ2∧τ3
(∧:R)

=⇒
∆1

(Γ �M1 : τ1)

∆2
(Γ, x : τ1 �M2 : τ2)

∆3 + {x : τ1}
(Γ, x : τ1 �M3 : τ3)

Γ, x : τ1 � (M2,M3) : τ2∧τ3
(∧:R)

Γ � let x =M1 in (M2,M3) : τ2∧τ3
(cut)

∆1
(Γ �M1 : τ1)

∆2
(Γ, x : τ1 �M2 : τ2)

Γ � let x =M1 in M2 : τ2
(cut) ∆3

(Γ, y : τ2 �M3 : τ3)

Γ � let y = (let x = M1 in M2) in M3 : τ3
(cut)

=⇒
∆1

(Γ �M1 : τ1)

∆2
(Γ, x : τ1 �M2 : τ2)

∆3 + {x : τ1}
(Γ, x : τ1, y : τ2 �M3 : τ3)

Γ, x : τ1 � let y = M2 in M3 : τ3
(cut)

Γ � let x =M1 in let y = M2 in M3 : τ3
(cut)
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where
∆

(Γ �M : τ) is a proof of the sequent Γ �M : τ , and ∆+ {x : τ} is the

proof obtained from the proof ∆ by adding {x : τ} to the assumption of each
sequent in ∆.
If we project the set S of proof transformations on untyped term structures,

then they become the following set of reduction rules.

C[app (x M1) is y in M2] =⇒ app (x M1) is y in C[M2]

C[proj z on (w,v) in M1] =⇒ proj z on (w, v) in C[M1]

C[let x = M1 in M2] =⇒ let x =M1 in C[M2]

C[case x of y.M1, z.M2] =⇒ case x of y.C[M1], z.C[M2]

where C[ ] denotes any one of the following contexts:

C[ ] ::= ([ ],M) | (M, [ ]) | in1([ ]) | in2([ ]) | app (x [ ]) is y in M | let x = [ ] in M

This set of rules can be regarded as a “one-step version” of some of A-reductions
defined in [6]. (The other A-reduction rules corresponds to proof transformation
from N to GK for function application. )
Next we consider transformations for (∨:L). The structures of the transfor-

mations are similar to the previous cases except that part of derivation is copied.
Suppose (∨:L) appears in an argument premise of a rule R. There are two types
of transformations depending on whether R is a right rule or not. Here we only
show the case where where (∨:L) appears in the left argument premise of (∧:R).

∆1 ∆2

Γ, x : τ1∨τ2 � case x of y.M1, z.M2 : τ3
(∨:L)

∆3

Γ, x : τ1∨τ2 � ((case x of y.M1, z.M2), M3) : τ3∧τ4
(∧:R)

=⇒

∆1 ∆3 + {y : τ1}

Γ, x : τ1∨τ2, y : τ1 � (M1,M3) : τ3∧τ4
(∧:R)

∆2 ∆3 + {z : τ2}

Γ, x : τ1∨τ2, z : τ2 � (M2,M3) : τ3∧τ4
(∧:R)

Γ, x : τ1∨τ2 � case x of y.(M1,M3), z.(M2,M3) : τ3∧τ4
(∨:L)

In this rule, the derivation ∆3 is duplicated. The same phenomenon occurs in
the transformation of a conditional statement in [6]. It is not hard to modify the
rule for (∨ : L) to avoid copying a part of derivation by introducing additional
assumption for holding the intermediate result of the case analysis.
We write

S ` Γ �M
∗
=⇒ M ′ : τ

if the proof of Γ � M : τ can be transformed to that of Γ � M ′ : τ by
repeated application of some of the transformation rules S. Since each rule in
S is a valid proof transformation, it is immediate that if GK ` Γ �M : τ and
S ` Γ �M

∗
=⇒ M ′ : τ then GK ` Γ �M ′ : τ . Moreover, we have the following.

Theorem 1. If GK ` Γ�M : τ then there is someM ′ such that S ` Γ�M
∗
=⇒

M ′ : τ and GKA ` Γ �M ′ : τ

This is proved by a routine induction on derivation of M . By these results, A-
normal forms can be regarded as a form of normal proofs in GK identified by
the subsystem GKA.
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This transformation is the first half of the proof normalization that corre-
sponds to the computation of a program in a conventional implementation. A
distinguishing property of this normalization process is that cuts are moved
downwards in the compound proofs of products and sums, which is the oppo-
site of the usual cut elimination procedure. As we shall show later, program
execution does not corresponds to cut elimination either.
Our choice of the contraction-free variant of GK is suitable for the nor-

malization transformation. If we adopted the original Gentzen’s sequent cal-
culus, then additional machinery would have been needed. To see the diffi-
culty, consider the term (proj z on (x, y) in (x, y), z). This is provable in
the Gentzen’s sequent calculus, but the corresponding proof of A-normal form
proj z on (x, y) in ((x, y), z) is not directly provable in the subsystem corre-
sponding to the Gentzen’s sequent calculus.

4 A-Normal Compilation as Proof Transformation

Our first main result is that the compilation from the set of typed lambda terms
into the set of A-normal forms is characterized as the combination of a proof
transformation from N to GK and a proof normalization from GK to GKA.
We first state the well known result in proof theory.

Theorem 2 ([8,18,21,17]). There is an algorithm, denoted here by NG, that
transforms any N proof to a GK proof.

The main idea behind NG is to decompose an elimination rule into the combi-
nation of a left rule and a cut rule. Since this result will be used in the following
development, we include some important cases of the algorithm NG in Fig. 5.
By combining Theorem 1 and Theorem 2, we have the following.

Corollary 3. Every proof in N is transformed to a proof in GKA.

Moreover, compiling a lambda term to an A-normal form is exactly this trans-
formation, which we prove below.
Flanagan et. al. [6] have given a linear time compilation algorithm from

lambda terms to A-normal forms in Scheme using the two-level programming
technique for CPS algorithms by Danvy and Fillinski [5]. To establish the desired
result, it is essential to reason about the meta-level language as well. For this
purpose, we re-state their algorithm using a simply typed first-order language
for manipulating sequent proofs. To define the language, we extend the proof
system with proof variables (ranged over by X) typed with a logical sequent
Γ � τ . We also extend the set of terms with the same set of variables. We use σ
as a meta variable ranging over logical sequent Γ � τ regarded as a type. Let Ω
be a set of type assignment for proof variables, which is a mapping from a finite
set of proof variables to types (logical sequents), and write {X1 : σ, . . . , Xn : σn}
for a type assignment that assigns σi to Xi. Let GK(Ω) be the proof system
obtained from GK by adding Γ � X : τ as an axiom for each X : Γ � τ in Ω,
and also by adding the set of variables appearing in Ω as new term variables.
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NG

( Π1
(Γ �M1 : (τ1⊃τ2))

Π2
(Γ �M2 : τ1)

Γ �M1 M2 : τ2
⊃:E

)

=
NG(Π1)

(Γ �M 0
1 : τ1⊃τ2)

NG(Π2) + {x : τ1⊃τ2}

(Γ, x : τ1⊃τ2 �M 0
2 : τ1) Γ, x : τ1⊃τ2, y : τ2 � y : τ2

(taut)

Γ, x : τ1⊃τ2 � app (x M 0
2) is y in y : τ2

(⊃:L)

Γ � let x = M 0
1 in app (x M

0
2) is y in y : τ2

(cut)

NG

( Π1
(Γ �M : τ1∧τ2)

Γ �M.i : τi
∧:Ei

)

=
NG(Π1)

(Γ �M 0 : τ1∧τ2)

Γ, y : τ1∧τ2, x1 : τ1, x2 : τ2 � xi : τi
(taut)

Γ, y : τ1∧τ2 � proj y on (x1, x2) in xi : τi
(∧:L)

Γ � let y = M 0 in proj y on (x1, x2) in xi : τi
(cut)

(i ∈ {1, 2})

NG

( Π1
(Γ �M1 : τ1∨τ2)

Π2
(Γ, x1 : τ1 �M2 : τ2)

Π3
(Γ, x2 : τ2 �M3 : τ2)

Γ � case M1 of x1.M1, x2.M2 : τ2
(∨:E)

)

=
NG(Π1)

(Γ �M 0
1 : τ1∨τ2)

NG(Π2) + {y : τ1∨τ2}

(Γ, y : τ1∨τ2, x1 : τ1 �M 0
2 : τ2)

NG(Π3) + {y : τ1∨τ2}

(Γ, y : τ1∨τ2, x2 : τ2 �M 0
3 : τ3)

Γ, y : τ1∨τ2 � case y of x1.M
0
2, x2.M

0
3 : τ3

(∨:L)

Γ � let y = M 0
1 in case y of x1.M

0
2, x2.M

0
3 : τ3

(cut)

Fig. 5. Some of Proof Translation Rules form N to GK

We write GK(Ω) ` Γ �M : τ if Γ �M : τ is provable in GK(Ω). If ∆1 is a
proof containing an axiom for X of type σ and ∆2 is a proof of type σ then we
write [∆2/X]∆1 for the proof obtained from ∆1 by replacing each occurrence of
axiom for X with ∆2 and the variable occurrences of X in the terms of ∆1 by
M2. The following substitution property holds.

Proposition 4. 1. If ∆1 is a proof of σ1 in GK(Ω,X : σ2) and ∆2 is a proof
of σ2 in GK(Ω) then [∆2/X]∆1 is a proof of σ1 in GK(Ω).

2. If GK(Ω,X : (Γ2 � τ2)) ` Γ1 �M1 : τ1 and GK(Ω) ` Γ2 �M2 : τ2 then
GK(Ω) ` Γ1 � [M2/X]M1 : τ1.

The set of typings of the first-order language (whose terms are ranged over
by D) is defined by the following rules to derive a typing of the form Ω ` D : σ
denoting the fact that D is a well typed term under Ω.

– Ω ` D : (Γ � τ ) if GK(Ω) ` Γ �D : τ .
– Ω ` δX : σ1.D : σ1 → σ if Ω,X : σ1 ` D : σ2.
– Ω ` D1 �D2 : σ if Ω ` D1 : σ1 → σ and Ω ` D2 : σ1.

The reduction relation on this language is defined by the following rule

(δX : σ1.D1)�D2 −→ [D2/X]D1
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In the following we omit the type annotation in δX : σ1.D if it does not cause
any confusion.
It is easily seen that the reduction is confluent and terminating. We regard

terms of this language as those modulo the equality induced by this reduction
relation. Also, X in δX.D is a bound variable, and we regard terms module
bound variable renaming. From this and Proposition 4, the following properties
are immediate.

Proposition 5. 1. If Ω ` D : σ then D determines a proof of σ in GK(Ω).
2. If Ω ` D : σ1 → σ2 then D is a term of the form δX : σ1.D′ such that
Ω,X : σ1 ` D

′ : σ2.

We can therefore regard a typed term D such that Ω ` D : (Γ � τ1)→ (Γ ′� τ2)
as a “context,” i.e. a proof of Γ ′ � τ2 in GK(Ω) containing a “hole” to be filled
with a proof of Γ � τ1 in GK(Ω).

Suppose Ω ` D : σ. We write S(Ω) ` D
∗
=⇒ D′ : σ if the proof determined

by D is reduced to the one determined by D′ in GK(Ω) using the set S of proof
reduction rules defined earlier. Suppose Ω ` D : (Γ � τ1) → (Γ ′ � τ2). We also

write S(Ω) ` D
∗
=⇒ D′ : σ1 → σ2 if D = δX : σ1.D0, D

′ = δX : σ1.D1 and

S(Ω,X : σ1) ` D0
∗
=⇒ D1 : σ2.

The following two lemmas can then be shown by the properties of proofs in
GK using Proposition 5.

Lemma 6. If Ω ` D : (Γ1 � τ1) → (Γ2 � τ2), x 6∈ dom(Γ1) ∪ dom(Γ2) and
Ω ⊆ Ω′ then Ω′ ` D : (Γ1, x : τ3 � τ1)→ (Γ2, x : τ3 � τ2).

Lemma 7. If S(Ω) ` D1
∗
=⇒ D′1 : σ → σ

′ and Ω ` D2
∗
=⇒ D′2 : σ then

S(Ω) ` D1 �D2
∗
=⇒ D′1 �D

′
2 : σ

′.

Using this first-order language, A-normal translation algorithm is given as a
function [[ ]] that takes a terms D such that Ω ` D : Γ1 � τ1 and a function
term k such that Ω ` k : (Γ1 � τ1)→ (Γ2 � τ2), and return a term D′ such that
Ω ` D′ : Γ2�τ2. For the notational reason, we give the algorithm as an algorithm
to transformation untyped terms in Fig. 6. (Note that the first-order language
does not contain variables of function type; k used in this definition is a meta
variable denoting a term of the form δX.D.) It is straightforward to construct the
complete algorithm from this description. This algorithm, when regarded as one
on untyped lambda terms, is a generalization of the A-normalization algorithm
given in [6].
Under these preparations, we can now establish the following desired result.

Theorem 8. If N ` Γ �M : τ1 and Ω ` k : (Γ ′ � τ1) → (Γ � τ2) such that

Γ ⊆ Γ ′ then Ω ` [[M ]]k : Γ � τ2 and S(Ω) ` k �NG(M)
∗
=⇒ [[M ]]k : (Γ � τ2).

As a special case of Theorem 8 where k is δX.X, we have the following.

Corollary 9. If N ` Γ �M : τ then GKA ` Γ � [[M ]]δX.X : τ and S `

Γ �NG(M)
∗
=⇒ [[M ]]δX.X : τ .

This establishes that A-normal compilation corresponds to proof transformation.
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[[cb]]k = k � cb

[[x]]k = k � x

[[λx.M ]]k = k � (λx.[[M ]](δX.X))

[[(M N)]]k = [[M ]](δX.[[N ]](δY.let x = X in app (x Y ) is z in k � z))

[[(M,N)]]k = [[M ]](δX.[[N ]](δY.k� (X,Y )))

[[M.i]]k = [[M ]](δX.let x = X in proj x on (x1, x2) in k � xi)

[[ini(M)]]k = [[M ]](δX.k� ini(X))

[[case M λx.N, λy.L]]k = [[M ]](δX.(let z = X in case z of x.[[N ]]k,y.[[L]]k))

Fig. 6. A-normal compilation algorithm [[ ]]

5 Program Execution as Proof Reduction

Wemove to the second half of our Curry-Howard isomorphism and establish that
the execution of the compiled program by an abstract machine corresponds to
proof reduction process in GKA. For the set of A-normal forms, Flanagan et.al.
[6] have defined an abstract machine called CaEK. Here we define an equivalent
operational semantics in the style of natural semantics [12], which makes the
correspondence to logic more evident. The set of runtime values (ranged over
by r) is given by the following syntax:

r ::= cb | cls(E, λx.M) | (r, r) | in1(r) | in2(r)

cls(E, λx.M) is a closure representing a function, where E is a runtime environ-
ment which is a mapping form a finite set of variables to runtime values. Fig. 7
define the operational semantic as a set of rules to derive the relation E `M ⇓ r
indicating the fact that M is evaluated to r under E.

Computation Rules:

E(x) = cls(E1, λz.M1) γ(E, V ) = r1 E1, z : r1 ` M1 ⇓ r2 E, y : r2 `M ⇓ r
E ` app (x V ) is y in M ⇓ r

E(x) = (r1, r2) E, y : r1, z : r2 `M ⇓ r
E ` proj x on (y, z) in M ⇓ r

E(x) = in1(r1) E, y : r1 `M1 ⇓ r
E ` case x of y.M1, z.M2 ⇓ r

E(x) = in2(r1) E, z : r1 ` M2 ⇓ r
E ` case x of y.M1, z.M2 ⇓ r

γ(E, V ) = r1 E, x : r1 `M ⇓ r
E ` let x = V in M ⇓ r

Value Construction rules:

γ(E, cb) = cb γ(E, x) = E(x) γ(E, λx.M) = cls(E, λx.M)
γ(E, (V1, V2)) = (γ(E, V1), γ(E, V2)) γ(E, ini(V )) = ini(γ(E, V ))

Fig. 7. Operational semantics for A-normal forms
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Lambda Derivations

(⊃:R)
Γ, x : τ1 �M : τ1
Γ �λ λx.M : τ1⊃τ2

(cut)
Γ �v M1 : τ1 Γ, x : τ1 �λM2 : τ2
Γ �λ let x = M1 in r2 : τ2

Value derivations

(axiom) Γ �v c
b : b (closure)

Γ �λM : τ FV (M) = ∅
Γ �v M : τ

(∧:R)
Γ �v M1 : τ1 Γ �v M2 : τ2
Γ �v (M1,M2) : τ1∧τ2

(∨:Ri)
Γ �v M : τi

Γ �v ini(M) : τ1∨τ2

Fig. 8. Runtime Value Derivations

We show that this operational semantics corresponds to proof reduction in
GKA. We first define a restriction of GKA in Fig. 8 that corresponds to a set of
runtime values defined above. In this system, a judgment of the form Γ�vM : τ
corresponds to a runtime value, and one of the form Γ �λM : τ is an auxiliary
judgment used to derive a closure. If Γ �v M : τ is derivable, then one of M is
of the form

let x1 =M1 in . . . let xn =Mn in λx.M

By the definition of the restricted proof system, each Mi is closed, and the
order of the cuts is irrelevant. We can therefore consider the series of cuts as a
mapping from variables to closed terms of the form {x1 = M1, . . . , xn = Mn}
and consider the term modulo the equivalence induced by reordering of cuts and
write let {x1 =M1, . . . , xn =Mn} in λx.M . Let E be a mapping from variables
to closed terms. We write E : Γ if dom(E) = dom(Γ ) and for each x ∈ dom(E),
∅�v E(x) : Γ (x) is provable. If E : Γ , then the sequence of cuts corresponding
to E is abbreviated as follows.

E : Γ1 Γ2;Γ1 �M : τ2
Γ2 � let E in M : τ2

cut*

Under this interpretation, if Γ �vM : τ is provable by the proof rules in Fig. 8
then M is isomorphic to some runtime value r defined above, and therefore the
typing rules can be regarded as a type system of runtime values. In what follows,
we identify runtime values with the corresponding terms and write Γ �v r : τ if
a term corresponding to r is derivable.
Our plan now is to interpret the evaluation relation E ` M ⇓ r as a proof

reduction that transforms the proof represented by let E in M to the one
represented by r. The second major result of this paper is to establish that this
is indeed the case, as shown in the following.

Theorem 10. There is an algorithm taking a proof of ∅ � let E in M : τ ,
producing a runtime value r and a proof of ∅� r : τ .

Proof (Outline). This is proved by defining a proof reduction algorithm, denoted
as ∅ � let E in M ⇓ r : τ , and showing its correctness. Due to the space
limitation, we can only explain the main idea behind the proof.
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The proof reduction algorithm first transforms a proof (represented by a
term) of the form let E in M to a proof of the form let E′ in V . This is
done by inductively applying the algorithm to each argument proof to obtain
a runtime value proof, and converting left rules in M to cuts of those runtime
value proofs. The algorithm then converts let E′ in V to a runtime value proof.
The correctness of the algorithm is shown using the idea of logical relation and
reducibility [20]. We first define a family of predicates P (τ ) indexed by types.
r ∈ P (τ ) if one of the following holds.

– if τ ≡ b then r ≡ cb.
– if τ ≡ τ1⊃τ2 then r ≡ let E in λx.M such that ∀r1 ∈ P (τ1).∃r2.∅�let E{x :
r1}M in ⇓ r2 : τ2 and r2 ∈ P (τ2).

– if τ ≡ τ1∧τ2 then r ≡ (r1, r2) such that r1 ∈ P (τ1) and r2 ∈ P (τ2).
– if τ ≡ τ1∨τ2 then either r ≡ in1(r1) such that r1 ∈ P (τ1), or in2(r1) such
that r1 ∈ P (τ2).

We then show the following property

if Γ �v M : τ and for each x ∈ dom(E), E(x) ∈ P (Γ (x)) then ∅ �
let E in M ⇓ r : τ for some r such that r ∈ P (τ )

by induction on the derivation of M . ut

This proof reduction algorithm, when projected on untyped terms, is the the
operational semantics for A-normal forms given in Fig. 7. We have:

∅� let E in M ⇓ r : τ

⇐⇒ there is some Γ such that E : Γ , Γ �M : τ , and E `M ⇓ r

A distinguishing characteristic of the algorithm is that it is not based on the
usual cut elimination procedure. Instead of inductively eliminating cuts, it con-
verts left rules and cut rules to those cuts whose proofs correspond to runtime
values and keeps them until the final result is obtained. This process reveals the
correspondence: cut rule corresponds to building (extending) a runtime environ-
ment, and left rule corresponds to computation on a data constructor.

6 Conclusions
We have developed a logical foundation for compilation and program execution
by showing that compilation of lambda terms to A-normal forms corresponds
to a proof transformation from the natural deduction system to a Gentzen-style
sequent calculus followed by a proof normalization in the sequent calculus, and
that evaluation of an A-normal form corresponds to a special proof reduction
process in the sequent calculus. These results extend Curry-Howard isomor-
phism to compilation and program execution. There are a number of topics that
merit further investigation. An interesting topic is to extend the formalism to
second-order logic. Such extension wold provide a logical basis for type in compi-
lation paradigm where a second-order type system is used to optimize programs.
A-normal forms also appear to be related to various other computational inter-
pretation of lambda calculi. In particular, it would be beneficial to compare
the logical correspondence we have worked out with Moggi’s [15] computational
lambda calculus and Kobayashi’s work on modal logic [14].
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Abstract. We present a system of natural deduction and associated
term calculus for intuitionistic non-commutative linear logic (INCLL)
as a conservative extension of intuitionistic linear logic. We prove sub-
ject reduction and the existence of canonical forms in the implicational
fragment.

1 Introduction

Intuitionistic logic captures pure functional computation in a logical way, as can
be seen from the Curry-Howard isomorphism between constructive proofs and
functional programs. However, there are many structural properties of programs
that are not captured within the intuitionistic framework, such as resource usage,
computational complexity, and sequentiality.
Intuitionistic linear logic [Gir87,Abr93,Bar97] can be thought of as a refine-

ment of intuitionistic logic in which resource consumption properties of functions
can be expressed internally. Here, we refine it further to allow the expression of
sequencing of computations. We achieve this by controlling the use of the struc-
tural rule of exchange to arrive at intuitionistic non-commutative linear logic
(INCLL). Much research in non-commutative linear logic has been focused on
simply removing the exchange rule from the underlying logic and only allowing
exchange to be used in tandem with other structural rules on modal formulas.
As an alternative we propose a system which distinguishes among unrestricted,
linear, and ordered hypotheses.
Our presentation of INCLL is in the form of natural deduction with proof

terms, thereby departing from previous formulations based on the sequent calcu-
lus [BG91,Abr90,Rue97]. This establishes the connection to functional computa-
tion by an extension of the Curry-Howard isomorphism. INCLL is a conservative
extension of dual intuitionistic linear logic [Bar97] which means that we strictly
increase its expressive power.
We have several motivating applications for this logic, although space does

not permit their detailed analysis in this paper. One direct application is a
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logical explanation for ordering properties of terms in continuation-passing style
investigated by Danvy and the second author in [DP95]. The ordering inherent
in non-commutative function arguments can be used to internalize stackability
properties of program evaluation in a fragment of INCLL, which is large enough
to capture the case of terms resulting from the standard CPS transformation.
Furthermore, our system integrates the Lambek calculus [Lam58] into a func-

tional framework which also permits ordinary and linear functions in a consistent
manner. With the coexistence of linear and ordered functions, we can logically
describe more natural language phenomena than with either one by itself; for
example, pied-piping and unbounded filler-gap dependencies [Par89,Hod94]. Re-
lated approaches to similar problems from computational linguistics are pursued,
for example, by Kurtonina and Moortgat [KM96].
We show that our calculus permits canonical (that is, long βη-normal) forms,

which means that it is a candidate for a foundation of a logical framework and
logic programming language along the lines of Lolli [HM94] and linear LF [CP96].
In related work on a sequent calculus formulation of INCLL [PP99], we have
developed an efficient proof search mechanism suitable for logic programming
and applied it to algorithms for natural language parsing, sorting, and execution
of abstract machines [PP98].
We begin in Section 2 by introducing the implicational fragment of INCLL

which is characterized by four implications: intuitionistic (→), linear (−◦), left
ordered (�), and right ordered (�). From a functional point of view, this cor-
responds to having four different types of functions—those which have no re-
strictions placed upon the use of their arguments; those which must use all
their arguments once in any order; and those which which must use all of their
arguments once in a specified order. We prove that this fragment satisfies sub-
ject reduction thereby validating the introduction and elimination rules. Strong
normalization and the Church-Rosser property also hold, but are elided in this
extended abstract.
In Section 3 we prove that every well-typed term has an equivalent canoni-

cal form, which is important for applications to logic programming and logical
frameworks. The proof of this property employs logical relations and we develop
the necessary machinery of substitutions. Then we introduce further logical con-
nectives in Section 4 which include a modal operator for mobility (¡) and the
usual connectives of linear logic. While subject reduction continues to hold, the
existence of commutative conversions destroys the canonical form property.

2 The Implicational Fragment

We define intuitionistic non-commutative linear logic (INCLL) via a judgment

Γ ;∆;Ω ` M : A

where Γ is a context of unrestricted hypotheses (allowing exchange, weakening,
and contraction), ∆ is a context of linear hypotheses (allowing only exchange),
Ω is a context of ordered hypotheses, M is a proof term, and A is a formula.
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Associativity is assumed implicitly for all three contexts. In general, we use
“formula” and “type” interchangeably, which is justified by the Curry-Howard
isomorphism.
If we reflect the three kinds of hypotheses as connectives in the language of

types, we obtain the familiar intuitionistic (→) and linear (−◦) implications, and
two forms of ordered implication, depending on whether hypotheses are taken
from the left (�) or the right (�) end of the ordered context. In the Lambek
calculus [Lam58], the left ordered implication A� B is written as A\B, while
the right ordered implication A�B is written as B/A.

Types A ::= P atomic types
| A1→ A2 intuitionistic implication
| A1 −◦ A2 linear implication
| A1� A2 ordered right implication
| A1� A2 ordered left implication

Proof terms are drawn from a λ-calculus in the style of Church, that is, each
valid term has a unique type, which seems essential for the logical framework
applications we have in mind. We distinguish between intuitionistic (x), linear
(y), and ordered (z) variables and write v if a variable might be declared in any
of the three contexts.

Terms M ::= x | y | z variables
| λx:A. M |M1M2 intuitionistic functions (A→ B)

| λ̂y:A. M | M1ˆM2 linear functions (A−◦ B)

| λ
>

z:A. M |M1
>

M2 right ordered functions (A� B)
| λ

<

z:A. M |M1
<

M2 left ordered functions (A�B)

Contexts Γ ,∆, and Ω are simply lists of assumptions, v:A, where all variables
v are distinct but of the same category (intuitionistic, linear, or ordered). We
use “·” to stand for the empty context, but we often omit it at the beginning of
a context. We allow bound variables to be renamed tacitly.
In order to describe the inference rules, we need some auxiliary operations on

contexts, context concatenation Ω,Ω′ and context merge ∆./∆′. Concatenation
preserves the order of the assumptions, while the non-deterministic merge allows
any interleaving of assumptions.
When viewing a natural deduction bottom-up, we think of context concate-

nation Ω1, Ω2 as ordered context split and context merge ∆1 ./ ∆2 as context
split. Both of these are non-deterministic when read in this way, that is, there
may be many ways to split a context Ω = Ω1, Ω2 or ∆ = ∆1 ./ ∆2.
We now present the introduction and elimination rules for each implicational

connective in turn. Other connectives are treated in Section 4. Generally, we use
Γ , ∆ and Ω to stand for contexts declaring intuitionistic, linear, and ordered
variables, respectively.

Intuitionistic Functions A→B. Since neither the linear nor the ordered context
admit weakening, the rule for unrestricted variables requires them to be empty.
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In the introduction rule, new variables are added at the right of Γ , but they
could just as well be added on the left since the intuitionistic context admits
exchange (see Lemma 1). In the elimination rule we cannot allow the derivation
of the minor premise to depend on linear or ordered assumptions, since the use
of A in the proof of A→ B is unrestricted and subject reduction would fail.
The intuitionistic context must be the same in both premises, which indicates
that the rules are biased towards a bottom-up reading, where we distribute the
hypotheses Γ to both premises, relying on the validity of contraction for the
intuitionistic context.

ivar
(Γ1, x:A, Γ2); ·; · ` x : A

(Γ, x:A);∆;Ω `M : B
→I

Γ ;∆;Ω ` λx:A. M : A→ B

Γ ;∆;Ω `M : A→ B Γ ; ·; · ` N : A
→E

Γ ;∆;Ω `M N : B

Linear Functions A −◦ B. The rules for linear functions exhibit the new phe-
nomenon that the linear contexts from the premises of the elimination rules are
interleaved to form the linear context of the conclusion, which expresses the
linearity condition concisely.

lvar
Γ ; y:A; · ` y : A

Γ ; (∆, y:A);Ω `M : B
−◦I

Γ ;∆;Ω ` λ̂y:A. M : A−◦B

Γ ;∆1;Ω `M : A−◦ B Γ ;∆2; · ` N : A
−◦E

Γ ; (∆1 ./ ∆2);Ω `MˆN : B

Ordered Variables. Ordered variables must be the only ones in the hypothesis
rule, which expresses that ordered variables must also be linear. In other words,
order is seen as a further restriction on linearity, rather than as an independent
property (which is also conceivable).

ovar
Γ ; ·; z:A ` z : A

Right Ordered Functions A�B. In the introduction rule for right ordered func-
tions the variable z must be new (by our general convention that variables in
context are unique) and appear at the right end of the ordered context. In the
matching elimination rule, the ordered contexts of the premises are concatenated
in order to form the ordered context of the conclusion. The linear context is still
interleaving, so as not to violate linearity.

Γ ;∆; (Ω, z:A) `M : B
�I

Γ ;∆;Ω ` λ
>

z:A. M : A� B

Γ ;∆1;Ω1 `M : A�B Γ ;∆2;Ω2 ` N : A
�E

Γ ; (∆1 ./ ∆2); (Ω1, Ω2) `M
>

N : B
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Left Ordered Functions A� B. The rules for left ordered implication are sym-
metric to right ordered implication: the assumption z:A appears at the left end of
the ordered context in the introduction rule, and the contexts are concatenated
in reverse order in the elimination rule. The fact that these rules are consistent
is demonstrated by the subject reduction theorem 1.

Γ ;∆; (z:A,Ω) `M : B
�I

Γ ;∆;Ω ` λ
<

z:A. M : A� B

Γ ;∆2;Ω2 `M : A�B Γ ;∆1;Ω1 ` N : A
�E

Γ ; (∆1 ./∆2); (Ω1, Ω2) `M
<

N : B

To give more intuition to our formulation, we now reconsider the rules as
they would be used in the bottom-up construction of a proof.

In the three variable rules ivar, lvar, and ovar, the linear and ordered con-
texts must either be empty or contain only the subject variable, while the intu-
itionistic context is unrestricted. This forces linear and ordered assumptions to
appear at least once in a term.

In the −◦E, �E, and �E rules, the linear context is split into two disjoint
parts (when reading from the bottom up), which means that each assumption
can be used at most once. In the →E rules, all linear assumptions propagate to
the left premise. These observations together show that each linear variable is
used at most once. Since it is also used at least once by the observation made
about the variable rules, linear assumptions occur exactly once.

In the �E rule, the ordered context is split in an order-preserving way,
with the leftmost assumptions Ω1 going to the left premise and the rightmost
assumptionsΩ2 going to the right premise. The converse applies to the�E rule.
In the −◦E and →E rules the whole ordered context Ω goes to the left premise.
These observations, together with the observation on the variable rules, show
that ordered assumptions occur exactly once and in the order they were made.

As we will see, the emptiness restrictions on the linear and ordered contexts
in the −◦E and →E rules are necessary to guarantee subject reduction. The
reduction rules are simply β-reduction for all three kinds of functions. We will
later also consider η-expansion.

Reduction Rules.

(λx:A. M)N =⇒ [N/x]M (λ̂y:A. M )̂ N =⇒ [N/y]M

(λ
>

z:A. M)
>

N =⇒ [N/z]M (λ
<

z:A. M)
<

N =⇒ [N/z]M

In order to prove subject reduction we proceed to establish the expected
structural properties for contexts and substitution lemmas.
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Lemma 1 (Structural Properties).

1. If (Γ1, x:A, x
′:A′, Γ2);∆;Ω `M : B then (Γ1, x′:A′, x:A, Γ2);∆;Ω `M : B.

2. If (Γ1, Γ2);∆;Ω `M : B then (Γ1, x:A, Γ2);∆;Ω `M : B.
3. If (Γ1, x:A, x

′:A, Γ2);∆;Ω `M : B then (Γ1, x:A, Γ2);∆;Ω ` [x/x′]M : B.
4. If Γ ; (∆1, y:A, y

′:A′, ∆2);Ω `M :B then Γ ; (∆1, y′:A′, y:A,∆2);Ω `M :B.

Proof: By induction on the structure of the given derivations. 2

Lemma 2 (Substitution Properties).

1. If (Γ1, x:A, Γ2);∆;Ω `M : B and Γ1; ·; · ` N : A
then (Γ1, Γ2);∆;Ω ` [N/x]M : B.

2. If Γ ; (∆1, y:A,∆2);Ω `M : B and Γ ;∆′; · ` N : A
then Γ ; (∆1, ∆

′, ∆2);Ω ` [N/y]M : B.

3. If Γ ;∆; (Ω1, z:A,Ω2) `M : B and Γ ;∆′;Ω′ ` N : A
then Γ ; (∆ ./ ∆′); (Ω1, Ω

′, Ω2) ` [N/z]M : B.

Proof: By induction over the structure of the given typing derivation forM in
each case, using Lemma 1. 2

Subject reduction now follows immediately.

Theorem 1 (Subject Reduction).
If M =⇒M ′ and Γ ;∆;Ω `M : A then Γ ;∆;Ω `M ′ : A.

Proof: For each reduction, we apply inversion to the given typing derivation
and then use the substitution lemma 2 to obtain the typing derivation for the
conclusion. 2

Subject reduction demonstrates that an introduction rule immediately fol-
lowed by an elimination rule for the same connective can be reduced. This is
a form of a local soundness theorem expressing that the elimination rules are
not too strong. The corresponding global soundness property states that every
derivation can be normalized entirely. This is easy to establish via a standard
forgetful interpretation into the simply-typed λ-calculus. The normal form is
also unique, which is a direct consequence of confluence. We will not formally
state these theorems here, since they are besides the main interest of this paper.
The proof of confluence is also completely standard (either developing a theory
of residuals or using the Tait/Martin-Löf method of parallel reduction).
Local soundness (expressed as subject reduction) guarantees that, for each

connective, the elimination rules are not too strong. To check that they are not
too weak, we need to show that there is a way to apply elimination rules so that
the original judgment can be recovered by introduction rules. This property
of local completeness is expressed on proof terms as subject expansion, where
“expansion” refers to η-expansion.
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Theorem 2 (Subject Expansion).

1. If Γ ;∆;Ω `M : A→ B then Γ ;∆;Ω ` λx:A. M x : A→B.
2. If Γ ;∆;Ω `M : A −◦B then Γ ;∆;Ω ` λ̂y:A. Mˆy : A−◦B.
3. If Γ ;∆;Ω `M : A� B then Γ ;∆;Ω ` λ>z:A. M >

z : A� B.
4. If Γ ;∆;Ω `M : A�B then Γ ;∆;Ω ` λ<z:A. M<

z : A�B.

Proof: By a direct derivation in each case, using weakening (lemma 1(2))
in part 1. 2

A corresponding global property is the existence of long normal forms. This
is the subject of the next section.

3 Canonical Forms

The existence of canonical (or long βη-normal) forms is critical in logical frame-
work applications of our calculus, since it is the canonical forms which are in
bijective correspondence with the objects to be represented. This property is
inherited both from the logical framework LF [HHP93] and its linear refinement
LLF [CP96]. For the intuitionistic case, both syntactic and semantic proofs exist
(see, for example, [Gha97]). Here we pursue a proof by logical relations, whose
development also sheds light on the nature of substitutions in our calculus.
We first formalize the property that a term can be converted to canonical

form via a deductive system which can easily be related to the usual notion of
long βη-normal form. This deductive system can also be read as an algorithm
for converting a term to canonical form.
We then prove that any well-typed term can indeed be converted to canonical

form. Our proof will be an argument by Kripke logical relations (also called Tait’s
method) consisting of two parts: (1) IfM is a well-typed term of type A then M
is in the logical relation represented by A, and (2) if M is in the logical relation
represented by A then there is some canonical term N convertible to M . Our
reduction strategy is based on weak head reduction defined below.

β→
(λx:A. M)N

whr
−→ [N/x]M

M
whr
−→ M ′

whr→
M N

whr
−→ M ′N

β−◦

(λ̂y:A. M )̂ N
whr
−→ [N/y]M

M
whr
−→ M ′

whr−◦
MˆN

whr
−→ M ′̂ N

β�
(λ
<

z:A. M)
<

N
whr
−→ [N/z]M

M
whr
−→ M ′

whr�
M

<

N
whr
−→ M ′

<

N

β�
(λ
>

z:A. M)
>

N
whr
−→ [N/z]M

M
whr
−→ M ′

whr�
M

>

N
whr
−→ M ′

>

N
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Intuitively, canonical terms are atomic terms of atomic type or λ-abstractions
of canonical terms. Atomic terms are variables or applications of atomic terms
to canonical terms. This is formalized in the judgments Γ ;∆;Ω `M ⇑ M ′ : A,
which denotes that M has canonical form M ′ at type A, and Γ ;∆;Ω ` M ↓
M ′ : A, which denotes that M has atomic form M ′ at type A.

Atomic Types.

Γ ;∆;Ω `M ↓M ′ : P
coercion

Γ ;∆;Ω `M ⇑M ′ : P

M
whr
−→ M ′ Γ ;∆;Ω `M ′ ⇑M ′′ : P

reduction
Γ ;∆;Ω `M ⇑M ′′ : P

Intuitionistic Functions.

ivar
(Γ1, x:A, Γ2); ·; · ` x ↓ x : A

(Γ, x:A);∆;Ω `M x ⇑M ′ : B
→I

Γ ;∆;Ω `M ⇑ λx:A. M ′ : A→B

Γ ;∆;Ω `M ↓M ′ : A→B Γ ; ·; · ` N ⇑ N ′ : A
→E

Γ ;∆;Ω `MN ↓M ′N ′ : B

Linear Functions.

lvar
Γ ; y:A; · ` y ↓ y : A

Γ ; (∆, y:A);Ω `Mˆy ⇑M ′ : B
−◦I

Γ ;∆;Ω `M ⇑ λ̂y:A. M ′ : A−◦ B

Γ ;∆;Ω `M ↓ M ′ : A−◦B Γ ;∆A; · ` N ⇑ N ′ : A
−◦E

Γ ; (∆ ./∆A);Ω `MˆN ↓M
′ˆN ′ : B

Ordered Functions.

ovar
Γ ; ·; z:A ` z ↓ z : A

Γ ;∆; (Ω, z:A) `M
>

z ⇑M ′ : B
�I

Γ ;∆;Ω `M ⇑ λ
>

z:A. M ′ : A� B

Γ ;∆;Ω `M ↓M ′ : A�B Γ ;∆A;ΩA ` N ⇑ N ′ : A
�E

Γ ; (∆ ./ ∆A); (Ω,ΩA) `M
>

N ↓M ′
>

N ′ : B

Γ ;∆; (z:A,Ω) `M
<

z ⇑M ′ : B
�I

Γ ;∆;Ω `M ⇑ λ
<

z:A. M ′ : A�B

Γ ;∆;Ω `M ↓ M ′ : A�B Γ ;∆A;ΩA ` N ⇑ N ′ : A
�E

Γ ; (∆./ ∆A); (ΩA, Ω) `M
<

N ↓M ′
<

N ′ : B
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We remark that the expected structural properties of the intuitionistic and
linear contexts also hold for this system. Furthermore, if Γ ;∆;Ω `M ⇑M ′ : A
then Γ ;∆;Ω ` M ′ : A and M ′ is in long βη-normal form. These properties
follow by immediate structural inductions.
The following unary Kripke logical relation is the crux of our argument. It

is defined by induction on the type A. Note how the structural properties of
intuitionistic, linear, and ordered contexts are captured in this definition.

Γ ;∆;Ω `M ∈ [[P ]] iff Γ ;Ω;∆ `M ⇑ N : P for some N .

Γ ;∆;Ω `M ∈ [[A1→ A2]] iff for all ΓN and N ,
if Γ, ΓN ; ·; · ` N ∈ [[A1]] then Γ, ΓN ;Ω;∆ `M N ∈ [[A2]].

Γ ;∆;Ω `M ∈ [[A1 −◦A2]] iff for all ∆N and N ,

if Γ ;∆N; · ` N ∈ [[A1]] then Γ ;∆./ ∆N ;Ω `MˆN ∈ [[A2]].

Γ ;∆;Ω `M ∈ [[A1� A2]] iff for all ∆N , ΩN and N ,
if Γ ;∆N;ΩN ` N ∈ [[A1]] then Γ ;∆./ ∆N ;Ω,ΩN `M

>

N ∈ [[A2]].

Γ ;∆;Ω `M ∈ [[A1�A2]] iff for all ∆N , ΩN and N ,
if Γ ;∆N;ΩN ` N ∈ [[A1]] then Γ ;∆./ ∆N ;ΩN , Ω `M

<

N ∈ [[A2]].

We can now formally state and prove the second part of our proof— that
well-typed terms in the logical relation at all types have canonical forms. We
can prove this only simultaneously with the reverse statement for terms with an
atomic form.

Lemma 3 (Logical Relations and Canonical Forms).

1. If Γ ;∆;Ω `M ∈ [[A]] then Γ ;∆;Ω `M ⇑ N : A for some N .
2. If Γ ;∆;Ω `M ↓ N : A then Γ ;∆;Ω `M ∈ [[A]].

Proof: By induction on A using structural properties of contexts. 2

Lemma 4 (Closure Under Head Expansion).

If M
whr
−→ M ′ and Γ ;∆;Ω `M ′ ∈ [[A]] then Γ ;∆;Ω `M ∈ [[A]].

Proof: By induction on A making use of lemma 3. 2

In order to show Γ ;∆;Ω ` M : A implies Γ ;∆;Ω ` M ∈ [[A]], we need to
explicitly manipulate substitutions. We shall define a substitution to be a triple,
(γ; δ;ω), where each component is a list of term/variable pairs.

(γ; δ;ω) = (·; ·; ·) | (γ,M/x; δ;ω) | (γ; δ,M/y;ω) | (γ; δ;ω,M/z)

We assume no variable is defined more than once in (γ; δ;ω) and we write
(γ; δ;ω)(v) = M if M/v occurs in (γ; δ;ω). We define well-typed substitutions
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with the judgment Γ ′;∆′;Ω′ ` (γ; δ;ω) : Γ ;∆;Ω which means that γ; δ;ω supply
appropriate terms for the variables declared in Γ ;∆;Ω, respectively.

Γ ′;∆′;Ω′ ` (·; ·; ·) : ·; ·; ·

Γ ′;∆′;Ω′ ` (γ; δ;ω) : Γ ;∆;Ω Γ ′; ·; · `M : A

Γ ′;∆′;Ω′ ` (γ,M/x; δ;ω) : Γ, x:A;∆;Ω

Γ ′;∆′1;Ω
′ ` (γ; δ;ω) : Γ ;∆;Ω Γ ′;∆′2; · `M : A

Γ ′;∆′1 ./∆
′
2;Ω

′ ` (γ; δ,M/y;ω) : Γ ;∆, y:A;Ω

Γ ′;∆′1;Ω
′
1 ` (γ; δ;ω) : Γ ;∆;Ω Γ ′;∆′2;Ω

′
2 `M : A

Γ ′;∆′1 ./ ∆
′
2;Ω

′
1, Ω

′
2 ` (γ; δ;ω,M/z) : Γ ;∆;Ω, z:A

Note the restrictions which prohibit, for example, that the substitution term
for a linear variable depends on an ordered variable. Such a dependence would
falsify Theorem 5.

When computing the result of applying a substitution to a term, we would
like to maintain the invariant that the substitution matches the contexts in
which the term is well-formed. This means we have to split the substitution
at applications. Thus, we define the application of a substitution to a term as
follows:

[(γ; δ;ω)]v = (γ; δ;ω)(v)

[(γ; δ;ω)](λx:A. M) = λx:A. [(γ, x/x; δ;ω)]M

[(γ; δ;ω)](MN) = ([(γ; δ;ω)]M)([γ; ·; ·]N)

[(γ; δ;ω)](λ̂y:A. M) = λ̂y:A. [(γ; δ, y/y;ω)]M

[(γ; δ1 ./ δ2;ω)](MˆN) = ([(γ; δ1;ω)]M )̂ ([γ; δ2; ·]N)

[(γ; δ;ω)](λ
>

z:A. M) = λ
>

z:A. [(γ; δ;ω, z/z)]M

[(γ; δ1 ./ δ2;ω1, ω2)](M
>

N) = ([(γ; δ1 ;ω1)]M)
>

([γ; δ2;ω2]N)

[(γ; δ;ω)](λ
<

z:A. M) = λ
<

z:A. [(γ; δ; z/z, ω)]M

[(γ; δ1 ./ δ2;ω2, ω1)](M
<

N) = ([(γ; δ1 ;ω1)]M)
<

([γ; δ2;ω2]N)

At first glance the substitution splitting may seem non-deterministic. However,
the proper split can be easily determined from the typing derivation of the term
we substitute into. Since typing derivations are unique, there is no ambiguity.
We rely on this in the proof of the fundamental theorem of logical relations
(Lemma 7).

Lemma 5 (Typing and Substitutions). If Γ ;∆;Ω `M : A and Γ ′;∆′;Ω′ `
(γ; δ;ω) : Γ ;∆;Ω then Γ ′;∆′;Ω′ ` [(γ; δ;ω)]M : A.

Proof: By induction on the structure of the derivation of Γ ;∆;Ω `M : A. 2
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Substitutions compose in the obvious way, although we do not investigate
properties of substitutions further here. We write idΓ ;∆;Ω for the identity sub-
stitution on the variables declared in Γ , ∆, and Ω. We define logical relations
on substitutions by induction on the structure of contexts.

Γ ′; ·; · ` · ∈ [[·; ·; ·]]

Γ ′;∆′;Ω′ ` (γ,M/x; δ;ω) ∈ [[Γ, x:A;∆;Ω]] iff
Γ ′;∆′;Ω′ ` (γ; δ;ω) ∈ [[Γ ;∆;Ω]] and Γ ′; ·; · `M ∈ [[A]]

Γ ′;∆′1 ./ ∆
′
2;Ω

′ ` (γ; δ,M/y; δ;ω) ∈ [[Γ ;∆, y:A;Ω]] iff
Γ ′;∆′1;Ω

′ ` (γ; δ;ω) ∈ [[Γ ;∆;Ω]] and Γ ′;∆′2; · `M ∈ [[A]]

Γ ′;∆′1 ./ ∆
′
2;Ω

′
1Ω
′
2 ` (γ; δ;ω,M/z) ∈ [[Γ ;∆;Ω, z:A]] iff

Γ ′;∆′1;Ω
′
1 ` (γ; δ;ω) ∈ [[Γ ;∆;Ω]] and Γ ′;∆′2;Ω

′
2 `M ∈ [[A]]

Lemma 6 (Identity). Γ ;∆;Ω ` idΓ ;∆;Ω ∈ [[Γ ;∆;Ω]]

Proof: Immediate by definition and lemma 3. 2

Lemma 7 (Typing and Logical Relations). If Γ ;∆;Ω ` M : A then for
any Γ ′;∆′;Ω′ ` (γ; δ;ω) ∈ [[Γ ;∆;Ω]] we have Γ ′;∆′;Ω′ ` [(γ; δ;ω)]M ∈ [[A]].

Proof: By induction on the structure of the given derivation using lemma 4. 2

Theorem 3 (Canonical Forms).
If Γ ;∆;Ω `M : A then for some N , Γ ;∆;Ω `M ⇑ N : A.

Proof: Immediate from lemmas 7, 3, and 6. 2

4 Other Logical Connectives

Before considering the other standard connectives from linear logic, we note
further structural properties.

Theorem 4 (Demotion).

1. If Γ ; (∆1, y:A,∆2);Ω `M : B then (Γ, x:A); (∆1, ∆2);Ω ` [x/y]M : B.
2. If Γ ;∆; (Ω1, z:A,Ω2) `M : B then Γ ; (∆, y:A); (Ω1, Ω2) ` [y/z]M : B.

Proof: In both cases by induction on the structure of the given derivation. 2

When considering the typing rules for the new connectives, we shall take care
that the preceding property continues to hold. The subject reduction and strong
normalization theorems also continue to hold, with straightforward extensions
of the proofs mentioned in Section 2.
Some of the new connectives, namely an ordered conjunction (•), multiplica-

tive unit (1), disjunction (⊕), falsehood (0), mobility (¡) and exponential (!)
introduce commutative conversions into the proof term calculus. Unique canon-
ical forms no longer exist, even though each connective remains locally sound
and complete. This means that these connectives must be ruled out or restricted
in logic programming or logical frameworks applications of INCLL. Fortunately,
this does not seem to be a serious drawback in practice [PP98].
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Ordered Conjunction A •B.

Γ ;∆1;Ω1 `M :A Γ ;∆2;Ω2 ` N :B
•I

Γ ; (∆1 ./ ∆2); (Ω1, Ω2) `M •N : A •B

Γ ;∆2;Ω2 `M : A •B Γ ;∆1; (Ω1, z:A, z
′:B,Ω3) ` N : C

•E
Γ ; (∆1 ./ ∆2); (Ω1, Ω2, Ω3) ` let z • z

′ =M in N : C

We have the following reduction rule:

let z • z′ =M •M ′ in N =⇒ [M/z,M ′/z′]N

Multiplicative Unit 1. This is the right and left unit element for the ordered
conjunction connective. We have 1�C iff C iff 1�C, and A • 1 iff A iff 1 •A.
The introduction rule shows why there is only one multiplicative unit.

1I
Γ ; ·; · ` ? : 1

Γ ;∆2;Ω2 `M : 1 Γ ;∆1; (Ω1, Ω3) ` N : C
1E

Γ ; (∆1 ./ ∆2); (Ω1, Ω2, Ω3) ` let ? =M in N : C

We have the following reduction rule:

let ? = ? in N =⇒ N

Additive Conjunction A & B. This is additive on both the linear and ordered
contexts, in order to preserve Theorem 4.

Γ ;∆;Ω `M : A Γ ;∆;Ω ` N : B
&I

Γ ;∆;Ω ` 〈M,N〉 : A &B

Γ ;∆;Ω `M : A& B
&E1

Γ ;∆;Ω ` fstM : A

Γ ;∆;Ω `M : A& B
&E2

Γ ;∆;Ω ` sndM : B

We have the following reduction rules:

fst 〈M,N〉 =⇒ M
snd 〈M,N〉 =⇒ N

Additive Unit >. Because it is additive, the left and right units for & coincide.

>I
Γ ;∆;Ω ` 〈 〉 : >

Since there is no elimination rule, there are no reductions for the additive unit.
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Disjunction ⊕. The disjunction is additive and therefore does not split into left
and right versions.

Γ ;∆;Ω `M : A
⊕I1

Γ ;∆;Ω ` inlBM : A⊕ B

Γ ;∆;Ω `M : B
⊕I2

Γ ;∆;Ω ` inrAM : A⊕ B

Γ ;∆2;Ω2 `M : A⊕ B
Γ ;∆1; (Ω1, z:A,Ω3) ` N : C
Γ ;∆1; (Ω1, z

′:B,Ω3) ` N ′ : C
⊕E

Γ ; (∆1 ./∆2); (Ω1, Ω2, Ω3) ` caseM of inl z ⇒ N | inr z
′ ⇒ N ′ : C

We have the following reduction rules:

case inlBM of inl z ⇒ N | inr z′ ⇒ N ′ =⇒ [M/z]N
case inrAM ′ of inl z ⇒ N | inr z′ ⇒ N ′ =⇒ [M ′/z′]N ′

Additive Falsehood 0. This is the unit for disjunction.

Γ ;∆2;Ω2 `M : 0
0E

Γ ; (∆1 ./ ∆2); (Ω1, Ω2, Ω3) ` abort
CM : C

Since there is no introduction rule for 0, there are no new reductions.

Linear Exponential !A.

Γ ; ·; · `M : A
!I

Γ ; ·; · ` !M : !A

Γ ;∆2;Ω2 `M : !A (Γ, x:A);∆1; (Ω1, Ω3) ` N : C
!E

Γ ; (∆1 ./ ∆2); (Ω1, Ω2, Ω3) ` let !x =M in N : C

We have the following reduction rule:

let !x = !M in N =⇒ [M/x]N

Mobility Modal ¡A. We may also consider a modality not present in linear logic
which allows an ordered hypothesis to be used out of order. In analogy with !,
we wish to have ¡A�B ≡ ¡A� B ≡ A−◦B.

Γ ;∆; · `M : A
¡I

Γ ;∆; · ` ¡M : ¡A

Γ ;∆2;Ω2 `M : ¡A Γ ; (∆1, y:A); (Ω1, Ω3) ` N : C
¡E

Γ ; (∆1 ./∆2); (Ω1, Ω2, Ω3) ` let ¡y =M in N : C

We have the following reduction rule:

let ¡y = ¡M in N =⇒ [M/y]N
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5 Conclusion and Future Work

We have presented a natural deduction version of intuitionistic non-commutative
linear logic which conservatively extends intuitionistic linear logic. We have
shown that the proof term calculus satisfies subject reduction and strong normal-
ization, and that canonical forms exist for the implicational fragment. In [PP99]
we present a sequent calculus for INCLL, prove cut-elimination and show that
it closely corresponds to the natural deduction system presented here.

Applications lie in the areas of logical frameworks, functional programming,
logic programming, and natural language processing. These applications are
sketched in the introduction and are the subject of current research. At present,
for example, we have shown that the ordering properties of functional programs
which result from CPS conversion discovered by Danvy [Dan94] can be cap-
tured completely internally in the INCLL term calculus. We have also shown
that uniform derivations are sound and complete with respect to our calculus,
which means that the implicational fragment of INCLL can be considered an ab-
stract logic programming language [MNPS91]. A prototype implementation using
advanced resource management strategies analogous to Lolli [Hod94] has been
used for the concise expression of various algorithms for sorting, natural language
parsing, and the execution of abstract machines. The systems and examples may
be found in [PP98].

We have also given an operational semantics to an extension of the functional
core presented here and are investigating the connection between stackability of
intermediate values and ordered function arguments.
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Abstract. The second-order lambda calculus allows an elegant formal-
isation of abstract data types (ADT’s) using existential types. Plotkin
and Abadi’s logic for parametricity [PA93] then provides the useful proof
principle of simulation for ADT’s, which can be used to show equivalence
of data representations. However, we show that this logic is not sufficient
for reasoning about specifications of ADT’s, and we present an exten-
sion of the logic that does provide the proof principles for ADT’s that
we want.

1 Introduction

The second-order lambda calculus allows an elegant formalisation of abstract
data types (ADT’s), as shown in [MP88], using existential types. This descrip-
tion of ADT’s provides a useful basis to investigate properties of ADT’s. In
particular, it has been successfully used to investigate a notion of equivalence of
implementations of ADT’s. [Mit91] considers a semantic notion of equivalence
of data representations, which suggests a method for proving the equivalence of
data representations, namely by showing that there exists a simulation relation
between the representations. We will refer to this proof principle as simulation.
Plotkin and Abadi’s logic for parametricity [PA93] is a logic for reasoning about
the second order lambda calculus (system F). It formalises the notion of para-
metricity, and for the existential types this logic does indeed provide the proof
principle of simulation envisaged in [Mit91].

Unfortunately, it turns out that this proof principle of simulation for existen-
tial types is not enough for reasoning about specifications of ADT’s, in particular
specifications that use equality. We propose an extension of the logic of [PA93]
(with axioms stating the existence of quotients, to be precise) that does provide
all the proof principles one would like for reasoning about ADT’s. The same PER
model used in [PA93] as a semantics for their logic immediately justifies these
additional axioms. (Indeed, in the PER model all types are “quotient types”.)

The remainder of this introduction discusses one of the proof principles we
want for ADT’s. It is a very natural one, that immediately arises whenever an

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 310–324, 1999.
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implementation of an ADT allows different concrete representations of the same
abstract value. This example will be treated in more detail later in Section 4.

Suppose we implement an ADT for bags using lists to represents bags. Then
there will be many different lists that represent the same bag: any two lists that
are permutations represent the same bag. As a consequence, there are different
notions of equality in play: equality of lists, equality of bags, and the relation
∼perm on lists that relates lists representing the same bag (i.e. that are per-
mutations). A programmer implementing an ADT has to be aware of the fact
that there are these different notions of equality. But a programmer using an
ADT should only have to deal with equality of bags, and not have to know any-
thing about an underlying relation ∼perm on lists. Indeed, this is precisely the
abstraction that an abstract data type is supposed to provide. A consequence of
all is that the programmer implementing an ADT and the programmer using
an ADT may want to use a slightly different specification: the former in terms
of the relation ∼perm on the concrete data type of lists, the latter in terms of
equality on the abstract data type of bags. For instance, the programmer using
the ADT might require that

∀m, n : Nat, s : Bag. add(m, add(n, s)) = add(n, add(m, s)) (i)

and to meet this specification, the programmer implementing the ADT must
ensure that

∀m, n : Nat, s : List. cons(m, cons(n, s)) ∼perm cons(n, cons(m, s)) (ii)

if add is implemented as cons. In a logic for reasoning with (specifications of)
ADT’s we should be able to relate statements such as (i) and (ii). In particular,
here one would want to be able to prove that (ii) implies (i). We will refer to a
proof principle that would allow us to deduce (i) from (ii) as abstraction.

The logic for parametricity of [PA93] does not quite provide this proof princi-
ple of abstraction for arbitrary ADT’s and specifications. But extending the logic
with axioms stating the existence of quotients solves this problem: we will show
that then the proof principle of abstraction can be obtained from the proof prin-
ciple of simulation, which is provided by the logic for parametricity of [PA93].
(For this particular example, we would want the existence of lists quotiented
by ∼perm.)

The organisation of this paper is as follows. Section 2 defines our notation for
the second-order lambda calculus and gives a quick recap on how existential types
can be used for ADT’s. Section 3 discusses the logic for parametricity of [Tak97],
which is a slightly different formulation of the logic as first introduced in [PA93];
in particular, we discuss the proof principle of simulation for proving equivalence
of data representations that this logic provides. Section 4 then considers a simple
example of a specification of an ADT for bags and illustrates the problem with
reasoning about ADT’s hinted at above. Section 5 then present our extension of
the logic that does provide the power we want.
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2 The second-order lambda calculus

We first give the definition of the second-order lambda calculus, and then illus-
trate how the existential types can be used for ADT’s.
The terms t and types T of the second-order lambda calculus are given by

t ::= x | λx:T . t | tt | (t, t) | t.i | λX. t | tT | pack 〈T, t〉 to T | open t as 〈T, t〉 in t

T ::= X | T × T | T → T | ∀X. T | ∃X. T

Here x ranges over term-variables, X over type-variables. Free and bound vari-
ables are defined as usual. Terms and types equal up to the names of bound
variables and permutation of fields are identified.
We use the following convention for our meta-variables: x, y, z range over

term variables, X, Y, Z range over type variables, a, b, c, f range over terms (or
programs), A,B, C range over types.
We include products and existentials as primitives here because they play an

important role later, but of course they can be regarded as syntactic sugar for
their usual encodings. (In fact, we will not even need the universal types in this
paper.) Later on we will also use some base types, namely a type Nat of natural
numbers and a type List of lists of natural numbers. These can be encoded in
the usual way, too.
The typing rules for judgements of the form Γ ` t : T , where Γ is a sequence

of declarations x1 : T1, . . . , xn : Tn, are

Γ, x : A, Γ ′ ` x : A

Γ, x : A ` b : B

Γ ` λx:A. b : A→ B

Γ ` f : A→ B Γ ` a : A

Γ ` fa : B

Γ ` a1 : A1 Γ ` a2 : A2

Γ ` (a1, a2) : A1 × A2

Γ ` a : A1 ×A2

Γ ` a.i : Ai
i = 1, 2

Γ ` b : B

Γ ` λX. b : ∀X. B
X not free in Γ

Γ ` f : ∀X. B

Γ ` fA : B[A/X]

Γ ` c : A[C/X]

Γ ` (pack 〈C, c〉 to ∃X. A) : ∃X. A
X not free in Γ

Γ, x : A ` b : B Γ ` s : ∃X. A

Γ ` (open s as 〈X, x〉 in b) : B
X not free in B or Γ

The reduction rules are (λx:A. b)a �β b[a/x], (λX. a)A �β a[A/X],
(a1, a2).i �β ai, and open (pack 〈C, c〉 to ∃X. A) as 〈X, x〉 in b �β b[C/X, c/x].

Notation. The notation for pairs is extended to n-tuples, which are simply
nested pairs. E.g. we write A×B×C for A× (B×C) and (a, b, c) for (a, (b, c)).
We typically omit the second type parameter of pack, writing pack 〈C, a〉 for
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(pack 〈C, a〉 to ∃X. A), whenever this type is clear from the context. Finally, we
will sometimes use a “pattern-matching” style notation for tuples, e.g. writing
λ(y, z):A× B. c instead of λx:A×B. c[x.1/y, x.2/z].

Abstract Data Types as Existential Types

Existential types allow an elegant formalisation of abstract data types (ADT’s),
as shown in [MP88]. This formalisation provides a clean separation between
using an ADT on the one hand and implementing an ADT on the other hand.
Moreover, as is often the case with descriptions of notions from programming
languages in terms of typed lambda calculus, this formalisation provides a more
powerful notion than exists in most existing programming languages: existential
types provide implementations of ADT’s as “first-class citizens”, i.e. as values
that can be passed as parameters to functions or returned as results like any
other value. This also means that we can talk about equality of implementations
of ADT’s just like we can talk about equality of other values. (This will be useful
later, in Section 3, when we consider proof rules for ADT’s.)
The remainder of this section briefly explains the use of existential types for

ADT’s (for a more extensive discussion see [MP88]), and introduces our running
example of bags.

Our running example will be an ADT of bags, which provides a type Bag
with three operations: the operation of adding an element to a bag, an operation
to inspect how often a given element occurs in a bag, and the empty bag:

empty : Bag,
add : Nat×Bag→ Bag,
card : Nat×Bag→ Nat.

Tupling the three operations yields

(empty, add, card) : Bag × (Nat×Bag→ Bag)× (Nat× Bag→ Nat),

so the signature of the ADT can be given as

BagSig(X) =̂ X × (Nat×X → X) × (Nat×X → Nat).

The existential type BagImp, BagImp =̂ ∃X.BagSig(X), can be used as type of
implementations of the ADT of bags, as we will now explain.
To implement the ADT of bags, we have to come up with some type Rep

which will be used as representations of bags, and a 3-tuple of functions of
type BagSig(Rep) that implement the bag-operations for this representation.
An obvious way to represent bags is to use lists. In this case empty can be
implemented as the empty list nil : List, add as the operation cons : Nat×List→
List on lists, and card as a function count : Nat × List → List that counts how
often a given natural number occurs in a given list of natural numbers. These
three operations have the right types, since

(nil, cons, count) : BagSig(List).
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The introduction rule for existential types can be used to construct an element
of type BagImp from the type List and the triple (nil, cons, count):

imp1 =̂ (pack 〈List, (nil, cons, count)〉 to BagImp) : BagImp.

Now suppose we want to define some program b that uses the ADT of bags.
Then in b we want to use the abstract operations empty, add, and card, and b
has to be well-typed under the assumption that these three abstract operations
have their correct types:

empty : Bag, add : Nat× Bag→ Bag, card : Nat× Bag→ Nat ` b : B

Here Bag is a type variable. The elimination rule for existential types tells us
how to combine this program b with the implementation imp1 : BagImp defined
above:

open imp1 as 〈Bag, (empty, add, card)〉 in b : B

It is easy to verify that this program behaves as expected:

open imp1 as 〈Bag, (empty, add, card)〉 in b
�β
b[List/Bag, nil/empty, cons/add, count/card].

So the concrete representation List gets substituted for the abstract type Bag,
and the concrete implementations of the operations on List’s get substituted for
the abstract operations on Bag’s.
The typing rules play a crucial role in hiding the concrete implementation of

the ADT (using List’s) from the main program b. It is not possible to apply list
operations to bags in b, because this would not be well-typed. The program b
has to be typed under the assumptions that

empty : Bag, add : Nat ×Bag→ Bag, card : Nat ×Bag→ Nat,

where Bag is a type variable.

3 The logic for parametricity

Plotkin and Ababi’s logic for parametric polymorphism [PA93] is a logic for
reasoning about the second-order lambda calculus that exploits the notion of
parametricity. We will use the somewhat different presentation of the logic given
by Takeuti [Tak97].
We only describe the fragment of the logic that is of interest to us. This

makes the description much simpler and this paper much easier to digest. (In
particular, Definition 3 only deals with the type constructors → and ×, not ∀
and ∃ – which are more complex – and considers the parametricity property
only for existential types ∃X. T where T is a “first-order” signature built using
× and →. The small price we pay for this is that we can only consider ADT’s
with such signatures, but this covers most examples.)

Takeuti defines the logic for parametricity in two stages: first a base logic L
which provides the standard logical connectives and their rules, and then a logic
Par which extends L with axioms expressing parametricity.
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3.1 The base logic L

L is a second-order predicate logic over the second-order lambda calculus, i.e.
it provides predicates on the types of the second-order lambda calculus. L is a
typed logic, with predicates – and also propositions – having types. The type of
propositions is denoted by ∗p. Predicates can be viewed as functions that return
propositions, so T → ∗p is the type of predicates over type T . Relations are
binary predicates, so T → T → ∗p is the type of binary predicates – or relations
– on T . So the types of propositions and predicates are given by

IP ::= ∗p | T → IP.

The propositions and predicates are given by

P ::= P ⇒ Q | ∀x:T . P | ∀X. P | ∀P :IP . Q | λx:T . P | P t.

The first four constructions provide ways to built propositions: namely implica-
tion P ⇒ Q, and three kinds of universal quantification, universal quantifica-
tion over all elements of a type ∀x:T . P , universal quantification over all types
∀X. P , and (second-order) universal quantification over propositions and predi-
cates ∀P :IP .Q. The last two constructs allow the definition of predicates λx:T . P
and the application of predicates to terms P t.
Judgements in the logic L are of the form Γ,∆ ` P where Γ is a sequence

of declarations x1 : T1, . . . , xn : Tn as before, ∆ is a sequence of assumptions
P1, . . . , Pm, and P is a proposition. We have the standard structural rules, and
the standard elimination and introduction for the logical connective ⇒ and the
quantifiers ∀ (for details see [Tak97]).

The second-order universal quantification over propositions and predicates
enables the definition of the logical connectives ∨, ∧ and ∃ in the usual way. It
also enables Leibniz’ equality for datatypes T to be defined in the standard way:

Definition 1 (Leibniz’ equality). For any type T , Leibniz’ equality of type
T , =T : T → T → ∗p, is defined by

=T =̂ λx, y:T . ∀P :(T → ∗p). (Px)⇒ (Py).

The subscript of =T will sometimes be omitted when it is clear from the context.
Leibniz’ equality will be written infix. Other relations will sometimes also be
written infix, and sometimes “postfix”, i.e. (t1, t2) ∈ P for P t1t2. ut

Remark 1. For readers familiar with Pure Type Systems (PTS’s) [Bar92], we
note that the logic L of Takeuti can be concisely described as a PTS, namely
the PTS (S,A,R) with S = {∗s,2s, ∗p,2p}, A = {(∗s : 2s) , (∗p : 2p)} and

R = { (2s, ∗s), (∗s, ∗s),
(∗s,2p),

(2s, ∗p), (∗s, ∗p), (2p, ∗p), (∗p, ∗p)}
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Here ∗s is the type of all datatypes, just like ∗p is the type of all propositions.
The fact that L is a PTS is the main reason why we chose Takeuti’s presentation
of the logic rather than Plotkin & Abadi’s; it enabled us to verify some examples
using the theorem prover Yarrow [Zwa97] which implements arbitrary PTS’s.
L is a subsystem of the logicλωL introduced in [Pol94] as a logic for reasoning

about the higher-order typed lambda calculus (system Fω). λωL includes a few
more PTS rules, so that it includes the higher-order rather than the second
order lambda calculus as “programming language” and allows more powerful
abstractions in the logic (such as polymorphic predicates). ut

3.2 The logic for parametricity

The logic Par extends L with an axiom for every type T which states that
all elements of T satisfy a certain parametricity property. Since we are only
interested in certain properties of existential types in Par – viz. the simulation
principles - we simply introduce these properties as axioms here.
First, the constructions → and × for building types have to be “lifted” to

constructions for building relations on types.

Definition 2. Let R1 and R2 be relations (i.e. binary predicates), with Ri :
Ai → A′i → ∗p. Then the relations R1 → R2 : (A1 → A2) → (A

′
1 → A

′
2) → ∗p

and R1 ×R2 : (A1 ×A2)→ (A′1 ×A
′
2)→ ∗p are defined as follows

f(R1 → R2)f
′ =̂ ∀x : A1, x

′ : A′1. xR1x
′ ⇒ (fx)R2(f

′x′)

f(R1 × R2)f
′ =̂ (f.1)R1(f

′.1)∧ (f.2)R2(f
′.2)

utNow we lift the type expressions A(X) to relations:

Definition 3. Let A(X) be a type expression built using → and × from X and
closed type expressions. We write A(B) for A[B/X].
For any relation ∼: B1 → B2 → ∗p the relation A(∼) : A(B1)→ A(B2)→ ∗p

is defined by induction on the structure of A, as follows:

A(∼) =̂ A1(∼)→ A2(∼) , if A(X) ≡ A1(X) → A2(X)
A(∼) =̂ A1(∼) × A2(∼) , if A(X) ≡ A1(X) ×A2(X)
A(∼) =̂ ∼ , if A(X) ≡ X
A(∼) =̂ =C , otherwise, i.e. A(X) ≡ C and X 6∈ FV (C)

In the right-hand sides → and × denote the construction on relations defined in
Definition 2, and =C is Leibniz’ equality as defined in Definition 1. ut

As an example, consider the interface of the ADT for bags. Suppose ∼ : B1 →
B2 → ∗p. Then BagSig(∼) : BagSig(B1) → BagSig(B2) → ∗p is the following
relation on 3-tuples:

((1, add1, card1), (2, add2, card2)) ∈ BagSig(∼)
⇐⇒

1 ∼ empty2 ∧
∀n : Nat, b1 : B1 , b2 : B2. b1 ∼ b2 ⇒ add1(n, b1) ∼ add2(n, b2) ∧
∀n : Nat, b1 : B1 , b2 : B2. b1 ∼ b2 ⇒ card1(n, b1) =Nat card2(n, b2)
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Definition 4 (Par). The logic Par is the extension of L with the axioms

∀u1, u2:∃X.A(X).
u1 = u2

⇐⇒ (∃X1, X2. ∃x1:A(X1), x2:A(X2). ∃ ∼:X1 → X2 → ∗p.
u1 = pack 〈X1, x1〉 ∧ u2 = pack 〈X2, x2〉 ∧ (x1, x2) ∈ A(∼))

for all type expressions A(X) built using → and × from X and closed type
expressions. ut

This axiom allows us to prove equivalence of different implementations of an
ADT by showing there exists a simulation relation ∼ between them. We will
refer to this proof principle as simulation.

Example: Equality of bag implementations.

We briefly illustrate how we can prove equivalence of different data representa-
tions in Par.
Recall the implementation imp1 : BagImp. Now consider another implemen-

tation of the ADT for bags, where we implement the add-operation not as the
cons-operation on List’s, but as the snoc-operation on List’s, which adds a ele-
ment to the end rather than the front of a list:

imp2 =̂ pack 〈List, (nil, snoc, count)〉 : BagImp.

Intuitively, this should not make any difference, because the order of the list
representing a bag is irrelevant. In Par we can prove imp1 =BagImp imp2,
namely by proving ((nil, cons, count), (nil, snoc, count)) ∈ BagSig(∼perm), where
∼perm: List→ List→ ∗p relates all lists that are permutations.

Of course, imp1 and imp2 use the same datatype to represent bags. But we
can also prove equivalence of implementations that use different representation
types. For example, consider the implementation imp3 below, which represents
bags as functions of type Nat→ Nat:

imp3 =̂ pack 〈Nat→ Nat, (const0, addimp, app)〉 : BagImp

where

const0 = λn:Nat. 0

addimp = λ(n, f):(Nat× (Nat→ Nat)). λm:Nat.

{
1 + (f m) if m = n
f m otherwise

app = λ(n, f):(Nat× (Nat→ Nat)). fn

The principle of simulation can be used to prove imp1 =BagImp imp3, namely

by showing that ((nil, cons, count), (const0, addimp, app)) ∈ BagSig(∼), where
∼: List → (Nat → Nat) → ∗p relates l : List and f : Nat → Nat iff ∀n. fn =
count(n, l).
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4 Insufficiency of Par

We will show that the principle of simulation that Par provides is not sufficient
for reasoning over ADT’s. To illustrate this, we consider a specification for the
ADT of bags.

Naive Specification

A possible specification for the operations empty, add, and card could be:

∀n : Nat. card(n, empty) =Nat 0 ∧
∀m : Nat, s : Bag. card(m, add(m, s)) =Nat 1 + card(m, s) ∧

∀m, n : Nat, s : Bag. m 6=Nat n⇒ card(m, add(n, s)) =Nat card(m, s) ∧
∀m, n : Nat, s : Bag. add(m, add(n, s)) =Bag add(n, add(m, s))

We will consider a simple specification Spec giving only the last conjunct. This
is the most interesting part of the specification, as it uses equality of bags. For
any type Bag and any triple (empty, add, card) : BagSig(Bag) we define

Spec(Bag, (empty, add, card))
=̂ ∀m, n : Nat, s : Bag. add(m, add(n, s)) =Bag add(n, add(m, s)).

Spec can be turned into a predicate on BagImp as follows

Spec∃ : BagImp→ ∗p
=̂ λimp:BagImp. ∃Rep, ops. imp =BagImp pack 〈Rep, ops〉 ∧ Spec(Rep, ops)

Note that here Spec(Rep, ops) uses Leibniz’ equality on type Rep, i.e. =Rep.
Clearly

Spec(Rep, ops) ⇒ Spec∃(pack 〈Rep, ops〉).

(But beware that the reverse implication does not always hold. In fact, this would
be inconsistent with parametricity, following the example given in Remark 3.)

Remark 2. It is tempting to extend the “open as 〈 〉 in ” construction that
we have for programs to predicates, c.f. the inductive types proposed in [CP90].
This so-called “strong” elimination principle is included in Coq [PM93]. It would
mean having the rule

Γ, x : A ` P : ∗p Γ ` s : ∃X. A

Γ ` (open s as 〈X, x〉 in P ) : ∗p
X 6∈ FV(Γ )

With this rule the specification Spec could be turned into a predicate on BagImp
in a much more direct way:

Spec∃(imp) =̂ open imp as 〈Bag, ops〉 in Spec(Bag, ops)

and Spec∃(pack 〈List, (nil, cons, count)〉) would then simply β-reduce to
Spec(List, (nil, cons, count)), so these two propositions would be equivalent. Un-
fortunately, this is inconsistent with parametricity, as shown in Remark 3. ut
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The problem with the naive specification

The specification Spec∃ might be what the user of the ADT wants, but it may
be a problem for the implementor of the ADT to meet this specification. As an
example we take the implementation imp1,

imp1 =̂ pack 〈List, (nil, cons, count)〉 : BagImp,

and consider the following question: Can we prove Spec∃(imp1)?
We could prove Spec∃(imp1) by proving Spec(List, (nil, cons, count)), i.e. by

proving

∀m, n : Nat, s : List. cons(m, cons(n, s)) =List cons(n, cons(m, s)).

But this is clearly not true! Note that the proposition above uses Leibniz’ equality
of lists, =List, since Spec uses Leibniz’ equality. The equality above makes sense
for bags, but not for lists. We could only prove the proposition above for a weaker
notion of equality for lists than =List, e.g. ∼perm.

We now discuss two ways to solve (or avoid) the problem above. Neither of
these is really acceptable, which is why we then propose an extension of the logic
Par to solve the problem in a more satisfactory way.

Solution 1: Finding another implementation

Recall that by the definition of Spec∃

Spec∃(imp1) ⇐⇒ ∃Rep, ops. imp1 =BagImp pack 〈Rep, ops〉 ∧ Spec(Rep, ops).

So we can prove Spec∃(imp1) by finding another implementation pack 〈Rep, ops〉
of the ADT such that imp1 =BagImp pack 〈Rep, ops〉 for which we can prove
Spec(Rep, ops).
It turns out that such an implementation exists, namely the implementation

which represents bags as sorted lists. Let

impsort =̂ pack 〈List, (nil, insert, count)〉,

where insert : Nat × List → List inserts a natural number in a list and returns
the list sorted. For this implementation we can prove it meets Spec, since

∀m, n : Nat, s : List. insert(m, insert(n, s)) =List insert(n, insert(m, s)). (i)

The reason we can prove Spec for this implementation is due to the fact that for
this particular representation – bags are represented as sorted lists – equality of
the concrete representation type, i.e. equality of lists, coincides with equality of
the abstract type, i.e. equality of bags.
Using parametricity we can prove

imp1 =BagImp impsort, (ii)
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namely by showing that ∼perm is a simulation relation between the two imple-
mentations. Now Spec∃(imp1) follows from (i) – i.e. Spec(List, (nil, insert, count))
– and (ii).
There are obvious drawbacks to this way of proving Spec∃(imp1). Firstly,

it is not acceptable that to prove correctness of our original implementation
imp1 we have to come up with a second implementation impsort. Moreover, it
may not always be possible to find a second implementation that does meet the
specification, i.e. for which concrete and abstract equality coincide! For example,
for a generic datatype Bag(X) of bags over an arbitrary type X we would have
a problem; there is no way to extend the implementation using sorted lists of
natural numbers to lists of an arbitrary type, since there is no generic sorting
algorithm for arbitrary types.

Remark 3. We can use impsort to show the inconsistency of the elimination
scheme discussed in Remark 2. If Spec∃ were defined with this scheme, then
Spec∃(pack 〈Rep, ops〉) would be β-equivalent with Spec(Rep, ops), so then

Spec∃(imp1)⇐⇒ Spec(List, (nil, cons, count))
Spec∃(impsort)⇐⇒ Spec(List, (nil, insert, count))

But Spec(List, (nil, cons, count)) is false, (because cons is not “commutative”),
whereas Spec(List, (nil, insert, count)) is true, (because insert is “commutative”).
And by parametricity imp1 = impsort, so Spec

∃(imp1)⇐⇒ Spec∃(impsort), and
we have a contradiction. ut

Solution 2: Using a weaker specification

The best we could prove for imp1 is that

∀m, n : Nat, s : List. cons(m, cons(n, s)) ∼perm cons(n, cons(m, s)).

Note that ∼perm is a bisimulation for the implementation, i.e.

((nil, cons, count), (nil, cons, count)) ∈ BagSig(∼perm), (∗)

since nil ∼perm nil, ∀n : Nat, l, l′ : List. l ∼perm l′ ⇒ cons(n, l) ∼perm cons(n, l′),
and ∀n : Nat, l, l′ : List. l ∼perm l′ ⇒ count(n, l) =Nat count(n, l′). Intuitively,
(∗) says that lists in the relation ∼perm cannot be distinguished using the bag-
operations, so that lists in the relation ∼perm represent the same bag. With this
in mind, one could propose a weaker specification for bags. First, we abstract
the specification Spec over a notion of equality for bags, to get the following
“generic” specification GenSpec:

GenSpec(Bag, (empty, add, card),∼)
=̂ ∀m, n : Nat, s : Bag. add(m, add(n, s)) ∼ add(n, add(m, s)).

(So Spec(Bag, ops) = GenSpec(Bag, ops,=Bag).)
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We can now consider the following weaker specification

WeakSpec(Bag, ops)
=̂ ∃ ∼ : Bag→ Bag→ ∗p.
GenSpec(Bag, ops,∼) ∧ (ops, ops) ∈ BagSig(∼) ∧ Equiv(∼),

where Equiv(∼) says that ∼ is an equivalence relation.
Turning WeakSpec into a predicate WeakSpec∃ on BagImp we get

WeakSpec∃ : BagImp→ ∗p
=̂ λimp:BagImp.
∃Rep, ops. imp =BagImp (pack 〈Rep, ops〉) ∧ WeakSpec(Rep, ops).

The implementor of the ADT will be happy with this weaker specification, as it
is possible to prove WeakSpec∃(imp1), simply by proving
WeakSpec(List, (nil, cons, count)), taking ∼perm for ∼.
The user of the ADT on the other hand will be less happy with WeakSpec∃:

rather than using the standard Leibniz’ equality of bags, the user has to reason
about bags using some bisimulation ∼ as notion of equality for bags. This seems
an unnecessary complication: there is no reason why the user shouldn’t use
Leibniz’ equality instead of ∼. Indeed, this is precisely the abstraction that the
abstract data type is supposed to provide.

5 Our Solution: Extending the logic

Given that the two solutions discussed above are not really satisfactory, we now
consider an extension of the logic Par that provides a satisfactory solution of
the problem.

What we really want is a way to relate the two specifications, WeakSpec∃

and Spec∃, by proving

∀imp : BagImp.WeakSpec∃(imp)⇒ Spec∃(imp). (∗)

Then the implementor of the ADT would only have to establish WeakSpec∃ –
i.e. prove the specification up to some bisimulation∼ – and the user of the ADT
could assume the stronger specification Spec∃ – i.e. assume the specification with
(Leibniz’) equality –. Intuitively the property (∗) seems OK. (Indeed, it is true
in the PER model.)

It turns out that if we have quotient types then (∗) could be proved. Quotient
types are available in some type theories, e.g. Nuprl [Con86], and have been
proposed as extensions of other type theories, see e.g. [Hof95] [BG96].
We will first give the general idea of how quotient types could be used to

prove the property above. Suppose WeakSpec∃(imp), i.e.

GenSpec(Rep, ops,∼) ∧ (ops, ops) ∈ BagSig(∼) ∧ Equiv(∼)
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for some pack 〈Rep, ops〉 =BagImp imp and some ∼. The trick to proving (∗) is
to consider the quotient type Rep/∼, i.e. the type with ∼-equivalence classes of
Rep as elements.

(ops, ops) ∈ BagSig(∼)

says that ops respects ∼-equivalence classes, so ops induces a related function
ops/∼ on ∼-equivalence classes, ops/∼ : BagSig(Rep/∼). And by the principle
of simulation it follows that

pack 〈Rep, ops〉 = pack 〈Rep/∼, ops/∼〉.

The interesting thing about ops/∼ is that is satisfies the specification up to
Leibniz’ equality: it follows from GenSpec(Rep, ops,∼) that

GenSpec(Rep/∼, ops/∼,=Rep/∼),

i.e. Spec(Rep/∼, ops/∼) !
Note that the argument above goes along the lines as indicated in Solution 1.

But the use of quotient types means that the additional work of finding another
implementation of ADT is avoided, as this implementation is constructed as a
quotient. (So we avoid the drawbacks mentioned on page 320.)

We could consider adding quotient types to the syntax of the second-order
lambda calculus. But we do not actually have to do this: it suffices if we add
axioms to the logic stating that quotients exist:

Definition 5 (ParQuot). The logic ParQuot is the extension of Par with
the axioms

∀X. ∀ ∼: X → X → ∗p.
Equiv(∼)⇒
∃Q. ∀opsX : A(X). (opsX, opsX) ∈ A(∼)⇒

∃opsQ:A(Q). isQuot(X, opsX,∼, Q, opsQ)

where

isQuot(X, opsX,∼, Q, opsQ)
=̂ ∃inj:X → Q. ∀r, r′:X. r ∼ r′ ⇐⇒ (inj r) =Q (inj r′) ∧

∀q:Q. ∃r:X. q =Q (inj r) ∧
(opsX, opsQ) ∈ A(λr:X, q:Q. q =Q (inj r))

for all type expressions A(X) built using → and × from X and closed type
expressions. ut

The same PER model used in [PA93] as a semantics for their logic, viz.
[BFSS90], quite trivially justifies these additional axioms. Indeed, in a PER
model all types are “quotient types”!

Theorem 4. In the logic ParQuot it can be proved that

∀imp : BagImp.WeakSpec∃(imp)⇒ Spec∃(imp).
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Proof. Assume that WeakSpec∃(imp) holds. Then there exists a type Rep with
ops : BagSig(Rep) such that

imp =BagImp pack 〈Rep, ops〉

for which GenSpec(Rep, ops,∼) ∧ (ops, ops) ∈ BagSig(∼) ∧ Equiv(∼) for some∼:
Rep→ Rep→ ∗p.
By (ops, ops) ∈ BagSig(∼) and Equiv(∼) there then exists a type Q with

opsQ : BagSig(Q) and inj:Rep→ Q such that

∀r, r′:Rep. r ∼ r′ ⇐⇒ (inj r) =Q (inj r′) (i)

∀q:Q.∃r:Rep. q =Q (inj r) (ii)

(ops, opsQ) ∈ A(λr:Rep, q:Q. q =Q (inj r)) (iii)

It follows from (iii) that pack 〈Q, opsQ〉 =BagImp pack 〈Rep, ops〉. Using the
definition of GenSpec, we can prove

GenSpec(Q, opsQ,=Q) (iv)

using GenSpec(Rep, ops,∼) and (i), (ii), and (iii).
And (iv) is equivalent with Spec(Q, opsQ), and since pack〈Q, opsQ〉 =BagImp

pack 〈Rep, ops〉 =BagImp imp it then follows that Spec∃(imp). ut

Similar theorems can be proved for other ADT’s and other (equational) spec-
ifications: For any other ADT and specification for it, a weak version of the spec-
ification using some relation ∼ (similar to WeakSpec∃) and the strong version
using Leibniz’ equality (similar to Spec∃) can be related in exactly the same way
as in the theorem above.

6 Conclusion

In this paper we have explored the gap between the formal notion of parametric-
ity of [PA93] and the important “folk” reasoning principle about ADT’s, which
we have called abstraction.
Roughly, this principle of abstraction says that elements of the concrete repre-

sentation type of an ADT can be considered equal if they are not distinguishable
using the ADT-operations. For example, if we implement bags as lists, then lists
that are permutations cannot be distinguished using the bag-operations – they
represent the same bag – and can hence be considered equal. To prove that such
an implementation of bags satisfies an equational specification we may therefore
use permutation of lists as the notion of equality. This principle of abstraction
is a well-known reasoning principle for ADT’s.
Parametricity provides the proof principle of simulation for existential types

[Mit91] [PA93]. This is a useful proof principle if existential types are used for
abstract data types: it provides a method to prove that different implementations
of an ADT are equivalent, namely by showing that there exists a simulation
relation between them.



324 Erik Poll and Jan Zwanenburg

However, we have shown that this principle of simulation alone is not enough
to reason about ADT’s, since in general it does not provide the proof principle
of abstraction that we want. This observation is new, as far as we know. How-
ever, extending the logic for parametricity of [PA93] with axioms stating the
existence of quotients is enough to solve this problem. Like the original logic
for parametricity of [PA93] these additional axioms can be justified by a PER
model.
Proofs for the example of the specification for bags have all been verified

using the interactive theorem prover Yarrow [Zwa97]. Indeed, it was only in the
course of formalising specifications for ADT’s in Yarrow that we noticed that
more was needed than just the proof principle of simulation to reason about
specifications of ADT’s.
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P. Martin-Löf and G. Mints, editors, COLOG-88, volume 417 of Lecture Notes
in Computer Science, pages 50–66. Springer, 1990. 318

GM93. M. J. Gordon and T. F. Melham. Introduction to HOL. Cambridge, 1993.
Hof95. Martin Hofmann. A simple model for quotient types. In TLCA’95, volume

902 of Lecture Notes in Computer Science, pages 216–234, 1995. 321
Mit91. John C. Mitchell. On the equivalence of data representations. In Artificial In-

telligence and Mathematical Theory of Computation, pages 305–330. Academic
Press, 1991. 310, 310, 323

MP88. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Trans. on Prog. Lang. and Syst., 10(3):470–502, 1988. 310, 313, 313

PA93. Gordon Plotkin and Martin Abadi. A logic for parametric polymorphism. In
TLCA’93, volume 664 of Lecture Notes in Computer Science, pages 361–375,
1993. 310, 310, 310, 310, 311, 311, 311, 314, 322, 323, 323, 324, 324

PM93. Christine Paulin-Mohring. Inductive definitions in the system Coq. In
TLCA’93, volume 664 of Lecture Notes in Computer Science, pages 328–345.
Springer, 1993. 318

Pol94. Erik Poll. A Programming Logic based on Type Theory. PhD thesis, Technische
Universiteit Eindhoven, 1994. 316

Tak97. Izumi Takeuti. An axiomatic system of parametricity. In TLCA’97, volume
1130 of Lecture Notes in Computer Science, pages 354–372, 1997. 311, 314,
315

Zwa97. Jan Zwanenburg. The proof assistant Yarrow. Submitted for publication. See
also http://www.win.tue.nl/cs/pa/janz/yarrow/, 1997. 316, 324



Characterising Explicit Substitutions which

Preserve Termination

(Extended Abstract)

Eike Ritter ?

School of Computer Science, University of Birmingham
http://www.cs.bham.ac.uk/~exr

Abstract. Contrary to all expectations, the λσ-calculus, the canonical
simply-typed lambda-calculus with explicit substitutions, is not strongly
normalising. This result has led to a proliferation of calculi with explicit
substitutions. This paper shows that the reducibility method provides
a general criterion when a calculus of explicit substitution is strongly
normalising for all untyped lambda-terms that are strongly normalising.
This result is general enough to imply preservation of strong normalisa-
tion of the calculi considered in the literature. We also propose a version
of the λσ-calculus with explicit substitutions which is strongly normal-
ising for strongly normalising λ-terms.

1 Introduction

The essence of the λ-calculus is the β-reduction rule (λx.M)N ; M [N/x]. It
uses substitution, which is a meta-operation and not part of the calculus. This is
unsatisfactory for implementations because the handling of substitutions is the
difficult part and has to be done in several steps and not in one, as the β-rule
might suggest. Take for example environment machines for functional languages
like OCAML, ML or Haskell: an environment is just a list of outstanding sub-
stitutions, and replacing M for x is turned into accessing the component in the
environment corresponding to x. As a consequence the correspondence between
λ-calculus and the implementations becomes highly nontrivial. This complicates
reasoning about implementations significantly.
As a way of making this reasoning easier, Abadi et al. [1] define the λσ-

calculus, which incorporates substitutions explicitly into the calculus. For this
purpose they introduce an extra syntactic category of substitutions, which con-
sists essentially of a list of pairs 〈Mi/xi〉, where xi is a variable andMi a term. To
distinguish the explicit substitution from the meta-operation, we use a different
symbol to denote explicit substitution, e.g. the term M [N/x] in the λ-calculus
becomes M〈N/x〉 in the λσ-calculus. The reduction rules of the λσ-calculus are
the beta-rule, which creates an explicit substitution, and rules for carrying out
substitutions, which formalise the standard inductive definition of substitution.
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Because this change has only turned substitution from an implicit operation
into an explicit one it is natural to expect the meta-theory of the λσ-calculus and
the λ-calculus to coincide. More precisely, one expects the following properties
of the λσ-calculus:

1. it is confluent, possibly even confluent when meta-variables are added (the
meta-variables are useful for applications of explicit substitutions in theorem
proving);

2. the normal forms of terms are normal λ-terms;
3. each reduction step in the λ-calculus gives rise to possibly many reduction
steps in the λσ-calculus and each reduction step in the λσ-calculus corre-
sponds to some number of β-reductions in the λ-term which is obtained by
eliminating explicit substitutions;

4. the λσ-calculus preserves strong normalisation, i.e., any β-strongly normal-
ising λ-term is also a strongly normalising λσ-term.

The last property will be abbreviated by PSN in the sequel, and we will write
also SN for strongly normalising.
Abadi et al. [1] show the confluence without meta-variables and the second

and third property for the λσ-calculus. Curien et al. [5] show that the λσ-calculus
is not confluent if meta-variables are added. (Terms with meta-variables are often
called open terms, and hence confluence a calculus with meta-variables is called
confluence on open terms.) They also introduce additional syntax for special
substitutions in the λσ-calculus. This yields a calculus which is confluent on
open terms, the so-called λσ⇑-calculus.
To everyone’s surprise the fourth property fails spectacularly. Mellies [12]

gives a strongly normalising λ-term which reduces to the identity λx.x but nev-
ertheless admits an infinite reduction sequence in the λσ-calculus as well as in
the λσ⇑-calculus. Typing does not provide a solution: the counterexample is a
well-formed term of the simply-typed λ-calculus.
Fixing this problem and finding a λ-calculus with explicit substitutions that

has all desired meta-theoretic properties turned out to be rather difficult. Mellies’
counterexample enforces severe restrictions on the possible reduction sequences.
Since he presented this example various ways of capturing these restrictions
syntactically have been designed. Firstly, the use of nested substitutions has
been severely limited. This restriction is motivated by the fact that environment
machines can be modelled without nested substitutions. In this way we obtain
PSN because the nested substitutions are the main reason for the failure of PSN.
Examples of this approach are the λx-calculus [4], the λυ-calculus [2] and the λζ-
calculus [13], the last being also confluent on open terms. In the second approach,
composition has been retained but the use of environments (i.e., substitutions
which are lists of terms) has been severely curtailed. Examples of this approach
are a λσ⇑-calculus without environments [7], the λse-calculus [10] and the λxci-
calculus [11]. The second and third calculus are confluent on open terms, and the
first and third preserve strong normalisation. Except from one proof of strong
normalisation for a typed λx-calculus using a mapping of the λx-calculus into
proof nets [6] all other proofs use term rewriting techniques. Recursive path



Characterising Explicit Substitutions which Preserve Termination 327

orderings provide a good way of showing preservation of strong normalisation
for these calculi [3].
This paper pursues a different line of reasoning and uses the reducibility

method to show preservation of strong normalisation. In [15] we used this method
to show that all reduction strategies that first reduce an expression to weak head
normal form and then to a normal form terminate for the typed λσ-calculus. This
paper generalises this argument to give a criterion when a λ-calculus with ex-
plicit substitution preserves strong normalisation. This criterion ensures that all
possible contracta of a β-redex correspond to the stepwise execution of the corre-
sponding implicit substitutions in the λ-calculus. The criterion is a generalisation
of the restriction in [11] which ensures preservation of strong normalisation.
The reducibility method is powerful enough to show that preservation of

strong normalisation follows from this condition. This method is sufficiently
general to be applicable with minor modifications to all the calculi with PSN
mentioned above. The modifications arise from the fact that not all calculi are
subcalculi of the λσ-calculus, and hence the proof has to be suitably adapted.
Because the underlying λ-calculus is untyped, we cannot use the standard

reducibility method, which works only for typed calculi. We use here an adap-
tation of the reducibility method to untyped calculi which replaces induction
over the structure of types by induction over the length of the longest reduction
sequence of a strongly normalising term of the untyped λ-calculus. The standard
structure of a reducibility proof is preserved by this change.
We do not consider meta-variables in this paper as the λσ-calculus is not

confluent on open terms. The criterion can also be stated for the λσ⇑-calculus,
and it should be possible to extend the results of this paper to this calculus
as well.
The paper is structured as follows. In section 2 we review our version of

the λσ-calculus. The core of the paper is section 3, where we define the crite-
rion for preservation of strong normalisation and use the reducibility method to
show that the criterion is valid. In section 4 we present a restriction of the λσ-
calculus which preserves strong normalisation.We finish by showing preservation
of strong normalisation by applying the criterion for all the calculi mentioned
above.

2 A version λσ-calculus with names

In this section we review our version of the λσ-calculus. Abadi et al. [1] use
mainly a version with de Bruijn-numbers but mention also briefly versions with
names without proving all meta-theoretic properties. We use here a version of
the λσ-calculus with names and explicit weakening, which we call λσn-calculus.
The use of names improves the readability significantly, and the weakening is
necessary to state the condition for preservation of strong normalisation. We
present the version with names in this section and relate it in the appendix
to the original presentation with de Bruijn-numbers. The results shown in this
paper hold also for a calculus with de Bruijn-numbers.
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The raw expressions of the (untyped) λσn-calculus are given by the following
grammar:

M ::= x | λx.M | MM | M〈f〉

f ::= weak(X) | M/x · f | f ◦ f

where x is a variable and X is a set of variables. We call expressions of the first
kind terms and expressions of the second kind substitutions. Moreover, we write
Mn/xn · · ·M1/x1 · f forMn/xn · (Mn−1/xn−1 · · · · · (M1/x1 · f) · · ·) and write Id
for weak(∅) whenever convenient. We also write extx(f) for x/x · (f ◦ weak(x))
and weak(X, x) for weak(X ∪ {x}).
We identify terms which are identical up to change of bound variables. We

have three binding operations: λ-abstraction, composition of substitution ◦ and
application of a substitution 〈 〉. In the sequel we will always use Barendregt’s
variable convention: the names of bound and free variables are different for any
expression in any context. In particular, we identify the terms x〈N/x · f〉 and
y〈N/y · f〉. For details see [14,16].
To rule out ill-formed terms like N/x · (M/x · f) we introduce typing judge-

ments Γ ` M :Ω and Γ ` f :∆, where Γ and ∆ are lists of variables with no
variable occurring twice. The idea is that Γ contains the free variables of M and
f , and∆ contains the variables for which the substitution f provides terms to be
substituted for. Because we have an untyped calculus, we use Ω as the universal
type. These judgements are as follows:

(i) On terms:

Γ, x, Γ ′ ` x:Ω
Γ, x `M :Ω
Γ ` λx.M :Ω

Γ `M :Ω Γ ` N :Ω
Γ `MN :Ω

Γ ` f :∆ ∆ `M :Ω
Γ `M〈f〉:Ω

(ii) On substitutions (In the first rule, Γ ′ is the list Γ with all variables in X
deleted, and all variables in X occur also in Γ ):

Γ ` weak(X):Γ ′
Γ ` f :∆ Γ `M :Ω
Γ `M/x · f :∆, x

(if x 6∈ ∆)

Γ ` f :Γ ′ Γ ′ ` g:Γ ′′

Γ ` g ◦ f :Γ ′′

In the sequel we consider only well-formed terms and substitutions.
The syntax of the λσn-calculus is best explained by relating the terms with

explicit substitutions to terms with the usual implicit substitution of the simply-
typed λ-calculus. The basic idea is that a substitution f in the λσn-calculus cor-
responds to a list of termsM = (M1, . . . ,Mn) in the λ-calculus. The operation
〈 〉 in the λσn-calculus models the explicit substitution: a term M〈f〉 in the
λσn-calculus corresponds to a term M [M/x]

1 in the λ-calculus.

1 We write M [M/x] for M [M1/M1, . . . ,Mn/Mn], and will use the vector notation in
a similar way in the future.
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The substitution weak(X) models weakening: The term M〈weak(x)〉 is only
well-formed if x is not free inM . The operation ◦models nesting of substitutions:
the substitution (M/y · Id) ◦ (N/x · Id) corresponds to the substitution operator
[M/y][N/x] in the λ-calculus. We have two kinds of reduction rules: firstly, a β-
reduction rule (λx.M)N ; M〈s/x · Id〉, and secondly rules which formalise the
inductive definition of implicit substitutions. We call the latter rules σ-rules. The
reduction rules are given in Figure 1. We denote by;+ the transitive closure of
the relation ;, and by ;∗ the reflexive and transitive closure of ;.

(λx.M)N ; M〈N/x · Id〉 x〈M/x · f〉; M
y〈M/x · f〉 ; y〈f〉 if x 6= y x〈weak(X)〉; x
(λx.M)〈f〉; λx.M〈extx(f)〉 (MN)〈f〉; (M〈f〉)(N〈f〉)

weak(X)◦(M/x · f) ; M/x· (weak(X)◦f) if x 6∈ X f ◦ Id; f
weak(X,x)◦(M/x · f) ; weak(X) ◦ f Id ◦ f ; f

weak(X) ◦ weak(Y ) ; weak(X,Y ) M〈Id〉 ; M
(M · f) ◦ g ; (M〈g〉) · (f ◦ g) (f ◦ g) ◦ h ; f ◦ (g ◦ h)
M〈f〉〈g〉 ; M〈f ◦ g〉

Fig. 1. Reduction rules for the λσn-calculus

This notion of reduction satisfies all desired properties except preservation
of strong normalisation. The proof of this proposition uses the interpretation
method [9].

Proposition 1. This notion of reduction is ground confluent (i.e., confluent on
expressions without meta-variables), and the normal form of terms are normal
λ-terms. If M ; M ′, then also Me ;∗ M ′e, where M e is the λ-term obtained
by applying all σ-rules and hence executing all explicit substitutions. Moreover, if
the termM reduces toM ′ in the λ-calculus, then M ;+ M ′ in the λσn-calculus.

A substitution in normal form is an environmentM/x · weak(X), where the
terms inM are normal λ-terms.

3 Preservation of Strong Normalisation

Mellies [12] gives a counterexample to preservation of strong normalisation for
the λσ-calculus. This counterexample applies to many λ-calculi with explicit
substitution, in particular to the λσn-calculus used in this paper. It is based on
a nasty interaction between explicit substitution and β-reduction. Mellies gives a
term of the simply-typed λ-calculus which reduces to the identity but which ad-
mits an infinite reduction sequence. He exploits that in the term ((λx.M)〈f〉)N
the term N can interact with the substitution f by the reduction sequence

((λx.M)〈f〉)N ; (λx.M〈extx(f)〉)N ;+ M〈extx(f) ◦ (N/x · Id)〉
;+ M〈N/x · (f ◦ weak(x) ◦ (N/x · Id))〉 (1)
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Although x does not occur in f , Mellies now pushes the substitution weak(x) ◦
(N/x · Id) inside f and manages thereby to create a reduction sequence M ;+

M ′, where M is a proper subterm of M ′. This continuation is counterintuitive:
the variable x does not occur in f , so the only meaningful reduction sequence is
f ◦ weak(x) ◦ (N/x · Id);+ f .

In this section we show that any restriction of the reduction relation for
which the substitution f ◦weak(x)◦ (N/x · Id) is SN if f and N are SN preserves
strong normalisation. We adapt the reducibility method to show this claim,
and give a reduction relation for the λσn-calculus with this property in the
next section. The idea of the reducibility method to show SN for the simply-
typed λ-calculus is to define a subset of λ-terms, the so-called reducible terms,
which are SN and in addition satisfy strong closure properties. Now proving
strong normalisation amounts to showing that every term is reducible. The key
condition is the definition of reducibility for terms of type A→ B: A term M of
type A → B is reducible if for all reducible terms N of type A, the term MN
is reducible of type B. Then one shows by an induction over the structure of
the term M that any term M [N/x] is reducible if all terms in N are reducible
and x is the set of free variables of M . The critical case in this proof is the case
of a λ-abstraction λx.M . One has to show that any term ((λx.M)[N/x])N is
reducible for any reducible term N . It turns out that it is enough to show that
this term reduces to reducible terms only. This is easy to see, as by induction
hypothesis the term M [N/x, N/x] is reducible.

If we transfer this approach to a calculus with explicit substitutions, the de-
finition of reducibility stays unchanged, and one shows by induction over the
structure ofM that for any reducible substitution f the term M〈f〉 is reducible.
Again, the interesting case is the case of a λ-abstraction (λx.M)〈f〉. The re-
duction sequence in (1) is exactly the one which causes this proof to fail: there
is no way to derive reducibility of f ◦ weak(x) ◦ (M/x · Id) from the reducibil-
ity of f and M . This is the only place where the reducibility proof fails. We
show in this paper that the reducibility proof goes through if we require that
f ◦ weak(x) ◦ (M/x · Id) is SN if f and M are.

Because we consider an untyped λ-calculus in this paper, we cannot use an
induction over types as in the standard reducibility proof. The induction over
the type structure is replaced by an induction over νβ(M), where νβ(M) is
the length of the longest β-reduction sequence of the λ-term which is obtained
from M by executing all explicit substitutions. If this λ-term is not strongly
normalising, then set νβ(M) =∞. In the typed case, the reducibility of a term
of function type is tested by applying it to reducible arguments; in the untyped
setting the reducibility of a term is tested by applying it to reducible terms Mi
such that νβ(Mi) is smaller than ν

β(M).

The definition of reducibility has to consider also finite expansions of a term
M and a substitution f by the associativity rules (f ◦ g) ◦ h ; f ◦ (g ◦ h),
M〈g〉〈f〉 ;M〈g ◦ f〉. We call the congruence relation generated by these reduc-
tion rules R. From now on until the end of this section we will consider only the
equivalence classes of terms modulo R. It is easy to see that if this equivalence
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class is SN without these two rules, any term of this equivalence class is SN even
with these rules.
Now we turn to the precise statement and proof of the criterion. To state the

criterion we need to identify all substitutions which could arise as a result of the
reduction sequence (1).

Definition 2. (i) Let f = fn◦fn−1◦· · ·◦fm◦fm−1◦· · ·◦f1 be any substitution
with m ≤ n. We call the substitution fn ◦ · · ·◦ fm+1 ◦ weak(x) ◦ extx(fm) ◦
· · ·◦extx(f1) a λ-extension of f with extension variable x. The special case
m = n denotes the substitution extx(fm) ◦ · · · ◦ extx(f1).

(ii) We call g an i-fold λ-extension of f with extension variables Xi if there
are substitutions f = f0, f1, . . . , fi = g such that fj is an extension of fj−1
with extension variable xj and Xj = Xj−1 ∪ {xj} for all 1 ≤ j ≤ i.

(iii) Let fn ◦fn−1 ◦ · · ·◦fm ◦ · · ·◦f1 be any substitution. For any k ≤ m ≤ n and
any termM we call the substitution fn◦· · ·◦fm+1 ◦weak(x)◦extx(fm)◦· · ·◦
extx(fk+1)◦(M/x·Id)◦fk◦· · ·◦f1 a β-extension of f with extension variable
x. We call the termM〈fk◦· · ·◦f1〉 the extending term. The special casem =
n denotes the substitution extx(fm)◦· · ·◦extx(fk+1)◦(M/x·Id)◦fk◦· · ·◦f1.

(iv) We call g a λβ-extension with extension variables X ∪ {x} and extending
term M of f if there exists a β-extension f ′ of f with extension variable
x and extending term M such that g is a k-fold λ-extension of f ′ with
extension variables X.

(v) The term M〈g〉 is called a k-fold λ-(λβ-)extension of M〈f〉 if g is a λ-
(λβ)-extension of f such that the extension variables of g are not free in
M . A 0-fold λβ-extension of M〈f〉 is an i-fold λ-extension of M〈f〉 for
some i.

Now we can state the criterion.

Definition 3. A reduction relation ; on expressions of the λσn-calculus is
called strong normalisation-preserving if the following two conditions
are satisfied:

(i) Let ;o be the reduction relation of Figure 1. If M ;M ′, then also M ;+
o

M ′ and if f ; f ′, then f ;+
o f

′;
(ii) For any substitution f and any λ-extension h of f and any β-extension g

of f with extending term M , g and h are SN if both f and M are.

Note that for any λβ-extension f ′ of f and any variable y 6= x, where x is the
extension variable of the β-extension of f , we have that νβ(y〈f ′〉) = νβ(y〈f〉).
Similarly, any λβ-extension M ′ of M satisfies νβ(M ′) = νβ(M).
Now we can define reducible expressions. The standard definition defines

reducible terms of ground types to be exactly the strongly normalisable terms
and reducible terms of function type to be those terms which when applied
to a reducible term yield a reducible result. As already mentioned, we have to
replace the induction over the structure of types by an induction over νβ(M).
This exploits the fact that νβ(M〈N/x·Id〉) < νβ((λx.M)N). Hence we define not
reducible terms, but reducible terms of grade n with n ≥ 0. We also add closure
properties for preservation of strong normalisation by extending substitutions.
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Definition 4. i Call a sequence of terms N1, . . . , Nm with m ≥ 1 a test-
sequence for M of degree n if Ni ∈ Red(ni) with νβ(MN1 · · ·Nm) − 1 ≤
ni < n for all 1 ≤ i ≤ m.

ii Define the set of reducible terms of degree n for any n ≥ 0, written Red(n),
inductively as follows:
– A term M is an element of Red(0) if νβ(M) = 0 implies that M and
any λ-extension of M are SN.

– M is reducible of degree n > 0 if νβ(M) > n or νβ(M) ≤ n and for
every j-fold extension M ′〈h′〉 with 0 ≤ j < n such that all extending
terms are SN and reducible of degrees n > k1 > · · · > kj ≥ νβ(M ′〈h′〉),
the following conditions are satisfied:
• M ′〈h′〉 is SN;
• For all terms M ′′ and substitutions h such that that M ′〈h′〉 ;∗

(λx.M ′′)〈h〉 and for all test-sequences N1, . . . , Nm for M ′〈h′〉 of de-
gree n such that

νβ(M ′〈h′〉N1 · · ·Nm) ≤ kj
(if j = 0, thenνβ(M ′〈h′〉N1 · · ·Nm) ≤ n),

there exists a term (λx.P )〈f〉 such that firstly (λx.P )〈f〉 ;∗

(λx.M ′′)〈h〉 and secondly, for any λβ-extension

f ′ = extx(fm) ◦ · · · ◦ extx(fk+1) ◦ (N
′/x · Id) ◦ fk ◦ · · · ◦ f1

of f = fm ◦ · · · ◦ fk+1 ◦ fk ◦ · · · ◦ f1 with extending term N1 we have
xi〈f ′〉 ∈ Red(di) and

νβ((P 〈f ′〉)N2 · · ·Nm) ≤ di < n

for all free variables xi of P , and also P 〈f ′〉 ∈ Red(d) with

νβ((P 〈f ′〉)N2 · · ·Nm) ≤ d < n .

The last clause is the appropriate generalisation of the standard reducibility
condition: a term of function type is reducible if it is SN and whenever it reduces
to a λ-abstraction, the result of applying this function to a reducible term is
reducible again.
Note that reducibility of degree n does not imply strong normalisation. This

implication is only guaranteed for terms M with νβ(M) ≤ n. This is the major
difference to the standard reducibility proof. The next lemma states two basic
properties of reducible expressions.

Lemma 5. (i) If M is reducible of degree n and νβ(M) ≤ n, then M is SN.
(ii) Red(n) ⊆ Red(n− 1) for all n > 0.

The next lemma states that reducibility is preserved by extensions of substi-
tutions.

Lemma 6. Let f be a substitution such that f is SN and y〈f〉 ∈ Red(n) for
some variable y.
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(i) If Q ∈ Red(k) with k < n and Q is SN, then for any λβ-extension g of f
with extending term Q and extension variable x both terms x〈g〉 and y〈g〉
are reducible of degree k.

(ii) For any λ-extension g of f, if x〈f〉 is reducible of degree n, so is x〈g〉 for
any variable x.

Proof. (i) Definition 3 implies that g is SN. By definition of reducibility, y〈g〉
is reducible of degree k for any variable y 6= x. For the variable x, consider
any j-fold λβ-extension M of x〈g〉. Now one shows that M is SN if all
j-fold λβ-extensions of Q are SN and that M ;∗ (λz.N)〈h〉 implies that
for some j-fold λβ-extension Q′ of Q, Q′ ;∗ (λz.N)〈h〉. It is then easy to
see that x〈g〉 is reducible.

(ii) Similar argument.

Now we can show that every expression is reducible.

Theorem 7. Consider any λ-term M . Let f be a substitution such that f is
SN and xi〈f〉 is reducible of degree n for all free variables xi of M . Then the
expression M〈f〉 is reducible of degree n as well.

Proof. We use induction over n, and for each n an induction over the structure
of M .

x : Assumption.
λx.M : Let g be a j-fold λβ-extension of f . By Lemma 6, for each free variable
y of λx.M the substitution y〈g′〉 is reducible of degree kj with n > kj ≥
νβ((λx.M)〈g〉), where g′ is the λ-extension obtained by pushing g under the
λ-abstraction. Hence by induction hypothesis, M〈g′〉 is SN, and hence also
(λx.M)〈g〉 is SN.
For the second condition, let g be any j-fold λβ-extension of f . Again by
Lemma 6, for the λβ-extension g′ of g with extending term N1, the term
x〈g′〉 is reducible of degree k with k ≥ νβ((M〈g′〉)N2 · · ·Nm) for all free
variables x of M . Hence by induction hypothesis, M〈g′〉 ∈ Red(k).

MN : If there are no M ′′ and f ′ such that M〈f〉 ;∗ (λx.M ′′)〈f ′〉, the sec-
ond condition is vacuously true, and the first condition holds by induction
hypothesis.
If there are such M ′′ and f ′, then consider any j-fold λβ-extension g of f .
Now consider terms N1 . . . , Nm with m ≥ 0 such that Ni ∈ Red(ni) and
ni ≥ νβ((MN)〈g〉N1 · · ·Nm) for all 1 ≤ i ≤ m . By induction hypothesis,
whenever M〈g〉;∗ (λx.P )〈h〉, then there exists a term (λy.Q)〈h′〉 such that
M〈f〉;∗ (λy.Q)〈h′〉 and (λy.Q)〈h′〉;∗ (λx.P )〈h〉 and for the λβ-extension
h′′ of h′ with extending term N〈g〉, we have νβ((Q〈h′′〉)N1 · · ·Nm) ≤ di < n,
where di is the degree of xi〈h′′〉 for the free variables xi of Q. Hence by
induction hypothesis Q〈h′′〉 ∈ Red(d), where νβ((Q〈h′′〉)N1 · · ·Nm) ≤ d <
n. Now it is easy to see that MN〈g〉 is reducible of degree n.

Preservation of strong normalisation follows now as an easy corollary by applying
the previous theorem to the empty substitution.
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Corolloray 8. Assume ; satisfies the condition of Definition 3. Let M be any
strongly normalising λ-term. Then M is a strongly normalising term of the λσn-
calculus.

Proof. Using Lemma 6, one shows that x〈Id〉 ∈ Red(n) for all n. By the previous
theorem, M〈Id〉 ∈ Red(νβ(M)). Hence by Lemma 5 M is SN.

Note that both the theorem and the corollary do not say anything about
substitutions. The reason is that it is difficult to state the preservation of strong
normalisation for substitutions. For a typed calculus, this proof can be extended
to show that a typed λσn-calculus with this restriction is strongly normalising.
This includes the substitutions. Using Ghani’s techniques [8] we can extend this
proof also to the η-rules.

4 A strong normalisation-preserving restriction of the
λσn-calculus

The previous section gave a condition when a reduction relation on the λσn-
calculus preserves strong normalisation. In this section we give a concrete exam-
ple of such a relation for the λσn-calculus. It suffices to restrict the reduction
rule which carries out nested substitutions, namely

(〈〉 − nat) (M/x · g) ◦ f ;M〈f〉/x · (g ◦ f)

in such a way that weakening operations are carried out as early as possible.
More precisely, the reduction rules are the rules for the λσn-calculus with the
exception of this rule, which is replaced by the two rules

(M/x · g) ◦ ((N/y · f) ◦ h); (M〈N/y · f〉/x · (g ◦ (N/y · f))) ◦ h
(M/x · g) ◦ (N/y · f) ;M〈N/y · f〉/x · (g ◦ (N/y · f))

Note that the explicit weakening makes it possible to formulate these two rules
as unconditional rewrite rules, i.e., without a side condition on free variables as
in [11]. All reduction rules are local in the sense that their applicability can be
decided by inspecting the top of the syntax tree only. This means these rules are
directly suitable for an abstract machine.
To achieve confluence we add the rules

x〈(M/x · g) ◦ f〉;M〈f〉
y〈(M/x · g) ◦ f〉; y〈g ◦ f〉 if x 6= y

weak(X, x) ◦ ((M/x · f) ◦ g); weak(X) ◦ (f ◦ g)
weak(X) ◦ ((M/x · f) ◦ g);M/x · (weak(X) ◦ (f ◦ g)) if x 6∈ X

These rules are derivable in the original calculus but no longer in the restricted
one. We denote this restricted reduction relation by ;p.
If we apply this restriction to the reduction sequence (1) at the beginning of

section 3, we see that with this restriction there is no way that the substitution
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N/x · Id can interact with the substitution f : if f is a substitution M/y · g, then
the reduction sequence

(M/y ·g)◦weak(x)◦(N/x · Id);M〈weak(x)◦(N/x · Id)〉·(g◦weak(x)◦(N/x · Id))

is not allowed. The only possible reduction sequence (apart from reductions
inside M,N and g) is (M/y · g) ◦ weak(x) ◦ (N/x · Id) ;p (M/y · g) ◦ Id which
eliminates any possible interaction.
This restriction is still confluent and refines the β-reduction of the λ-calculus.

Proposition 9. The notion of reduction ;p is ground confluent, and the nor-
mal form of terms are normal λ-terms. If M ;p M

′, then also M e ;∗ M ′e,
where M e is the λ-term obtained by applying all σ-rules and hence executing all
explicit substitutions. Moreover, if the term M reduces to M ′ in the λ-calculus,
then M ;+

p M
′ in the λσn-calculus.

Next we show that this notion of reduction is SN. We use the criterion of
Definition 3. A key step in the proof is the following Lemma, which uses the
restriction of the rule (〈〉-nat) in an essential way.

Lemma 10. If f is SN, so is f ◦ weak(X) for any set X.

Now we can prove the main theorem.

Theorem 11. Let M be any strongly normalising λ-term. ThenM is a strongly
normalising term of the λσn-calculus with respect to the reduction relation ;p.

Proof. By Corollary 8 it suffices to show that any λ-and β-extension of any
substitution f is SN provided f and the extending term are SN. We show here
only the case of the β-extension; the case of the λ-extension is similar. So we
have to show that g ◦ weak(x) ◦ extx(gn) ◦ · · · ◦ extx(g1) ◦ (N/x · Id) ◦ f is SN
provided g◦gn◦· · ·◦g1◦f andN〈f〉 are SN. Now consider the inductively defined
substitutions h0 = (N/x · Id)◦f and hk+1 = x〈hk〉/x · (gk+1◦weak(x)◦hk) which
arise by applying the rules replacing 〈〉-nat to the substitution g ◦ weak(x) ◦
extx(gn)◦ · · ·◦extx(g1)◦ (N/x · Id)◦ f . Lemma 10 shows that it suffices to prove
that x〈hk〉/x · (g ◦ gn ◦ · · · ◦ gk+1 ◦ weak(x) ◦ hk) is SN. For this, we show by
induction over the lexicographically ordered pair (m+ k, ν(f1) + ν(f2) + ν(f3))
that x〈f1〉/x·(f2◦weak(x)◦f3) is SN whenever hm ;∗

p f1, g◦gn◦· · ·◦gk+1 ;
∗
p f2

and hk ;
∗
p f3. The restriction of the rule (〈〉-nat) implies that this substitution

can be reduced in one step only to

– x〈f1〉/x · (f2 ◦ g′k ◦ weak(x) ◦ f
′) with gk ;

∗
p g
′
k and and also hk−1 ;

∗
p f
′;

– x〈f1〉/x · (f2 ◦ weak(x) ◦ f ′) with f3 ;p f
′;

– x〈f1〉/x · (g′ ◦ weak(x) ◦ f3), where f2 ;p g
′;

– x〈f ′〉/x · (f2 ◦ weak(x) ◦ f3) with hm−1 ;∗
p f
′;

– x〈f ′〉/x · (f2 ◦ weak(x) ◦ f3) with f1 ;p f
′.

All these substitutions are SN by induction hypothesis, hence x〈f1〉/x · (f2 ◦
weak(x) ◦ f3) is SN.
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5 Preservation of strong normalisation for other calculi

The criterion in definition 3 also yields the preservation of strong normalisation
for other calculi in the literature, e.g., the λυ-calculus [2], the λζ-calculus [13], a
λσ⇑-calculus without environments [7] and the λxci-calculus [11]. As an example
for the argument, we consider the λx-calculus [4]. This calculus has the raw
expressionsM ::= x | λx.M | MM | M〈x :=M〉 . with no separate syntactic
category of substitutions. The reduction rules are

(λx.M)N ;M〈x := N〉
(λx.M)〈y := N〉; λx.M〈y := N〉
(MN)〈x := P 〉; (M〈x := P 〉)(N〈x := P 〉)
x〈x :=M〉;M
M〈x := N〉;M if x 6∈ FV (M)

For the proof it is convenient to re-introduce this distinction and present the
syntax with two categories, namely terms and substitutions:

M ::= x | λx.M | MM | Mf
f ::= 〈x :=M〉 | f〈x :=M〉

We identify the terms (Mf)g and Mh where f = 〈x1 := M1〉 · · · 〈xn := Mn〉,
g = 〈y1 := N1〉 · · · 〈ym := Nm〉 and h = 〈x1 := M1〉 · · · 〈xn := Mn〉〈y1 :=
N1〉 · · · 〈ym := Nm〉. To state the criterion for preservation of strong normalisa-
tion, we have to analyse the reduction sequence (1) at the beginning of section 3.
This sequence is now ((λx.M)f)N ;+ (λx.Mf)N ; Mf〈x := N〉 Because
there is no rule for composition of substitution it is trivial that f〈x := N〉 is
SN if f and N are. Hence the criterion for PSN is satisfied. An extension of a
substitution f is now a substitution f〈x := M〉, where x does not occur freely
in f , and an extension of Mf is a term Mf〈x := N〉 where x does not occur
freely inM nor f . Now the proof of section 3 goes through. Because a reduction
in the λx-calculus cannot be mapped directly to a sequence of reductions in the
λσn-calculus it does not suffice to check the criterion and then to appeal to PSN
for the λσn-calculus.

6 Conclusions

This paper presents a criterion for the preservation of strong normalisation in
calculi with explicit substitutions. The proof uses a novel adaptation of the re-
ducibility method to the untyped λ-calculus. The criterion can be easily checked
and yields the preservation of strong normalisation of various common calculi
with explicit substitution. This method applies to typed λ-calculi as well, where
the standard reducibility method can be used.
The transfer of the reducibility method to the untyped λ-calculus could show

the way for the transfer of reasoning principles of the typed λ-calculus to the
untyped λ-calculus. In particular it might be possible to transfer logical relations
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to the untyped λ-calculus and replace the induction over the type structure by
a computation induction, i.e., an induction over the number of β-reductions in
a computation.
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Appendix

The relation between the λσ-calculus and the λσn-calculus

This appendix sketches the relation between the λσ-calculus and the
λσn-calculus. names and with de Bruijn-numbers. The raw expressions of the
λσ-calculus are

M ::= n | λM | MM | M〈f〉
f ::= Id | Fst | M · f | f ◦ f

where n is an integer such that n ≥ 1, and the reduction rules are

(λM)N ;M〈N · Id〉 1〈M · f〉 ;M
n+ 1〈M · f〉 ; n〈f〉 n〈Fst〉; n+ 1
(λM)〈f〉 ; λM〈1 · (f ◦ Fst)〉 (MN)〈f〉 ; (M〈f〉)(N〈f〉)
f ◦ Id; f Id ◦ f ; f

Fst ◦ (M · f) ; f M〈Id〉;M
(M · f) ◦ g ; (M〈g〉) · (f ◦ g) (f ◦ g) ◦ h; f ◦ (g ◦ h)
M〈f〉〈g〉 ;M〈f ◦ g〉

The relation between the version with names and the version with de Bruijn-
numbers is investigated in [14]. Here we only give translations between the two
versions and state their properties. The translation from the calculus with names
to the calculus with de-Bruijn numbers depends on a context which lists all free
variables. If Γ is a list xn, . . . x1 which includes all free variables of the expressions
with names M and f , we define expressions with de Bruijn-numbers (Γ,M)dB

and (Γ, f)dB by induction over the structure of M and f . For the definition
of the translation of f we need to determine the list of variables for which f
provides a term to be substituted for.

((xn, . . . , x1), xk)
dB = k

((Γ, λx.M))dB = λ(((Γ, x),M)dB)
((Γ,MN))dB = (Γ,M)dB(Γ,N)dB

(Γ,M〈f〉)dB = (∆,M)dB if (Γ, f)dB = (g,∆)
(Γ, Id)dB = (Id, Γ )

((xn, . . . , x1), weak(X))
dB =




(1 · (g ◦ Fst), (∆, x1) ifx1 6∈ Xand
((xn, . . . , x2),
weak(X))dB = (g,∆)

(g ◦ Fst, ∆) ifx1 ∈ Xand
((xn, . . . , x2),
weak(X \ {x1}))dB = (g,∆)

(Γ, g ◦ f)dB = (h2 ◦ h1, Γ2) if (Γ, f)dB

= (h1, Γ1) and (Γ1, g)
dB = (h2, Γ2)
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The translation in the other direction again depends on an association to
names to the free variables of M and f . Given a context xn, . . . , x1 and an
expression with de Bruijn-numbers, we define an expression with names by

((xn, . . . , x1), k)
N =

{
xk if 1 ≤ k ≤ n
undefined otherwise

(Γ, λM)N = λx.((Γ, x),M)N (if x not contained in Γ )
(Γ,MN)N = (Γ,M)N(Γ,N)N

(Γ,M〈f〉)N = (∆,M)N〈g〉 if (Γ, f)N = (g,∆)
(Γ, Id)N = (Γ, Id)

((Γ, x), Fst)N = (weak(x), Γ )
(Γ,M · f)N = ((Γ,M)N · g, (∆, x)) if x 6∈ ∆ and (Γ, f)N = (g,∆)
(g ◦ f)N = (h2 ◦ h1, Γ2) if (Γ, f)N = (h1, Γ1) and (Γ1, g)N = (h2, Γ2)

If one translates a de-Bruijn-expression into an expression with names and
back, one obtains the same expression. This is not true if one translates an
expression with names into a de Bruijn-expression and back: the reason is that
the substitution weak(x) is more general than the weakening operator Fst in
the de Bruijn-calculus. Both translations preserve reduction. The details are as
follows.

Proposition 12. (i) Let M and f be expressions with names and let Γ be a
context which contains all free variables of M and f. If M ;M ′ and f ;
f ′, then also (Γ,M)dB ;+ (Γ,M ′)dB and g ;+ g′ where (Γ, f)dB = (g,∆)
and (Γ, f ′)dB = (g′, ∆).

(ii) Let M and f be expressions with de Bruijn-numbers and Γ a context such
that (Γ,M)N and (Γ, f)N are defined. Then (Γ, (Γ,M)N)dB = M and if
(Γ, f)N = (g,∆), then (Γ, g)dB = (f,∆).

(iii) Let M and f be expressions with de Bruijn-numbers and let Γ be a context
such that (Γ,M)N and (Γ, f)N are defined. If M ; M ′ and f ; f ′,
then also (Γ,M)N ;+ (Γ,M ′)N and g ;+ g′ where (Γ, f)N = (g,∆) and
(Γ, f ′)N = (g′, ∆).

This proposition shows the close connection between the version with names
and the version with Bruijn-numbers: there is a one-to-one correspondence be-
tween the two calculi except for the generalised weakening operation in the
calculus with names. The proposition also shows that if preservation of strong
normalisation holds in one calculus it holds also in the other calculus.
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Abstract. We introduce λε, a simply typed calculus with environments
as first class values. As well as the usual constructs of λ and applica-
tion, we have e[[a]] which evaluates term a in an environment e. Our
environments are a set of variable-value pairs, but environments can
also be computed by function application and evaluation in some other
environments. The notion of environments here is a generalization of ex-
plicit substitutions and records. We show that the calculus has desirable
properties such as subject reduction, confluence, conservativity over the
simply typed λβ-calculus and strong normalizability.

1 Introduction

In this paper, we solve the problem of designing a pure functional language that
has explicit environments. We understand that a functional language is pure if
(i) it is a conservative extension of the untyped or simply typed λβ-calculus, (ii)
confluent and (iii) strongly normalizing (SN) if the language is typed and has
preservation of strong normalization (PSN) property if the language is untyped.
The conservative extension property guarantees that the language is logically
well-behaved and the confluence property and SN or PSN would guarantee that
the language is computationally well-behaved.
What do we mean by explicit environments? An explicit environment is a set

of variable-value pairs representing a finite function from variables to values

(i) which is equipped with an operation ·[[·]] such that, e[[a]] is the evaluation of
a term a in the environment e, and

(ii) which can be the argument or result of a function. (It is a “first class value”.)

Explicit environments can be regarded as a generalization of explicit substitu-
tions and records:

– An explicit substitution has property (i) above but not (ii).
– A record has property (ii) above but not (i).

Without the purity conditions, there are already several languages with
explicit environments. For example, several versions of the programming lan-
guage Scheme have explicit environments. The Pebble language of Lampson and

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 340–354, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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Burstall [8] also treated explicit environments (bindings). It used dependent
types and no confluence result was obtained. Nishizaki [9,10] also attempted to
treat explicit environments. But, his system does not satisfy the conservative
extension condition because he avoided the problem of defining the set of free
variables for a term of his language. As we will soon see, giving a correct defini-
tion of free variables in a term becomes a difficult problem if the term in question
contains variables whose values are environments. These languages are, however,
exceptional, and in most programming languages, environments are implicit in
the sense that they are used at meta-level as a device for giving formal seman-
tics of these languages or they are used when implementing these languages, but
they do not appear as syntactic entities of these languages.
On the other hand, there are quite a few typed or untyped calculi of explicit

substitutions including [1,2,3,7], and some of these are pure in our sense. How-
ever, to the best of our knowledge, there are no calculi of explicit substitutions
in which substitutions are first class objects. So, we believe that our language is
the first pure language that has substitutions as its first class objects, since as
we explain below we may regard environments as substitutions.
Our use of ‘environment’ derives from LISP which has explicit environments

in our sense. In what follows we will generally just say ‘environment’ for ‘explicit
environment’ where the context makes this clear. A concept closely related to ex-
plicit environment is let declaration (SML) or local definition. In SML, declara-
tions are not first class values, but they do permit some combination operations,
such as ;.
Let us compare these language features, showing notations and their expres-

sivity. When we give the formation rules for our calculus with environments we
can be more precise.

– Explicit environment {a/x, b/y}[[c]]: Evaluate term c in an environment which
binds x to a and y to b.

– Explicit substitution [x := a, y := b]c: Substitute a for x and b for y in term
c.

– Record [x = a, y = b].x: Extract the x field of the record [x = a, y = b]; x is
a field name.

– Let let x = a and y = b in c: Declare local variables x with value a, y with
value b. Use these to evaluate c.

The syntax for these features show that our environments are the most gen-
eral allowing terms for both e and a in e[[a]].

Explicit environment term[[term]]

Explicit substitution [var := term, . . . , var := term]term
Record term.fieldName
Let let declaration in term

In the above table, declaration (d) is defined by the grammar:

d ::= var = term | d; d | d and d | local d in d.
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In section 2, we introduce a typed language λε by introducing typing rules for
terms that will determine the (typable) terms of the language. In section 3, we
give reduction rules of the λε-calculus and prove the subject reduction theorem
for the calculus. In section 4, we prove the confluence of λε and prove that the
λε-calculus is a conservative extension of the simply typed λβ-calculus. In section
5, we prove the strong normalizability of λε. By the results obtained in sections
3-6, we can see that λε provides a language we wanted to design. In section 6, we
give concluding remarks. Due to lack of space, we have omitted some lemmas
and almost all proofs. A full version of this paper with proofs is accessible at
http://www.sato.kuis.kyoto-u.ac.jp/~masahiko/index-e.html.
Acknowledgements We thank Takayasu Ito and Yukiyoshi Kameyama for
helpful comments on earlier versions of the paper.

2 The Type System

In this section we introduce the λε-calculus1 as an extension of the simply typed
λβ-calculus. We assume that we have an infinite set of variables which is a dis-
joint union of an infinite set of bindable variables and an infinite set of unbindable
variables. We will design our syntax in such a way that an unbindable variable
never gets bound. The distinction of these two kinds of variables will become
important only in the proof of strong normalizability of our calculus. So, until
then, the reader may read the paper assuming that all the variables are bindable.
The untyped λε-terms are defined by the following grammar, where z ranges

over variables (bindable or unbindable), x over bindable variables and x1, . . . , xn
(n ≥ 0) are distinct bindable variables.

a, b, e ::= z | λx.b | ba | {a1/x1, . . . , an/xn} | e[[a]].

For each term a we associate a finite set Π(a) of strings over 1, 2, . . . , which
we call positions, as follows. We call this set the position set of a. We use Λ to
denote the empty string and π, σ, τ etc. to denote positions.

1. Π(x) := {Λ}.
2. Π(λx.a) := {Λ} ∪ 1Π(a).
3. Π(ba) := {Λ} ∪ 1Π(b) ∪ 2Π(a).
4. Π({a1/x1, . . . , an/xn}) := {Λ} ∪ 1Π(a1) ∪ · · · ∪ nΠ(an).
5. Π(e[[a]]) := {Λ} ∪ 1Π(e) ∪ 2Π(a).

For each π ∈ Π(a), we associate a term a/π as follows.

1. a/Λ := a.
2. λx.a/1π := a/π.
3. ba/1π := b/π, ba/2π := a/π.
4. {a1/x1, . . . , an/xn}/iπ := ai/π (1 ≤ i ≤ n).
5. e[[a]]/1π := e/π, e[[a]]/2π := a/π.

1 ε is for environment.
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If b ≡ a/π, then we say that b occurs in a at position π. Let π and σ be positions.
We write π ≤ σ if π is an initial substring of σ, that is, σ ≡ ππ′ for some π′. We
write π < σ if π′ 6≡ Λ.
We define types (A,B) and environment types (E) simultaneously as follows,

where K ranges over atomic types and in the definition of E, n ≥ 0, xi must be
bindable variables and xAii must be distinct.

A,B ::= K | E | A⇒ B
E ::= {xA1

1 , . . . , x
An
n }

If E ≡ {xA1
1 , . . . , x

An
n } we say that x

Ai
i (1 ≤ i ≤ n) are in the environment type

E. If a term e has type E by the typing rules we introduce below, then e is an
environment and it is a first-class value of the calculus.
A declaration is an expression of the form xA where x is a variable and A is

a type. A context is a sequence xA1
1 , . . . , x

An
n of declarations. We use Γ,∆ etc.

as meta variables for contexts. As notational conventions, we will write Γ,∆ for
the concatenation of the contexts Γ and ∆. Also, Γ −E will denote the context
obtained from Γ by removing all the elements in E from Γ .
A typing judgment is an expression of the form Γ ` a : A where Γ is a

context, a is a (typed) λε-term and A is a type. We have the following typing
rules that are used to derive typing judgments, where rules whose names end
with ‘I’ (‘E’) introduce (eliminate, respectively) the types mentioned in the rule
names.

xA ` xA : A
(assume)

Γ ` b : B
Γ − {xA} ` λxA.b : A⇒ B

(⇒I)

Γ ` b : A⇒ B ∆ ` a : A
Γ,∆ ` ba : B

(⇒E)

Γ1 ` a1 : A1 · · · Γn ` an : An

Γ1, . . . , Γn ` {a1/x
A1

1 , . . . , an/x
An
n } : {x

A1

1 , . . . , x
An
n }

(envI)

Γ ` e : E ∆ ` a : A
Γ, (∆−E) ` e[[a]] : A

(envE)
.

In (⇒I), x must be a bindable variable. We see by the (envI) rule that the
environment type {xA1

1 , . . . , x
An
n } for n = 0 becomes the unit type {} whose

unique element is the empty environment {}.
A λε-term is canonical if it is of the form λxA.b or {a1/x

A1
1 , . . . , an/x

An
n },

that is, if it is obtained by one of the introduction rules. A λε-term is neutral
if it is not canonical. If Γ ` a : A is derivable and Γ does not contain bindable
variables (that is, all variables in Γ are unbindable variables), then a is said to
be bindable variable free. A λε-term is said to be an environment term if its type
is an environment type.
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An untyped λε-term a′ is said to be typable if we can derive Γ ` a : A for
some Γ , a and A by using the above typing rules and a′ is obtained from a by
erasing all the types in a (that is, by replacing each declaration xA in a by x).
In this case a′ is called the type-free form of a. Henceforth, we will often use the
type-free form of λε-terms for the sake of notational simplicity.

It is easy to see that if Γ ` a : A is derivable, then we can completely recover
the entire derivation tree uniquely by inspecting the typed term a2. In this case,
we write TY(a) (type of a) for A. Note that if e ≡ {a1/x1, . . . , an/xn}, then
TY(e) is {x1, . . . , xn}. We will say that these variables are bound by e.
We can now use TY(e) to tell if a given occurrence of a variable in a term

is free. Consider the expression (λx.fxy)y. There are two free occurrences of y.
We will describe an occurrence by a term with a hole (2) in it, and we say y is
free at (λx.fx2)y and y is free at (λx.fxy)2. The syntax of occurrences is:

α, β, ε ::= 2 | λx.β | βa | bα
| {. . . , ai−1/xi−1, α/xi, ai+1/xi+1, . . .}
| ε[[a]] | e[[α]].

The inductive definition of ‘variable is free at occurrence’ follows the syntax of
terms.

x is free at 2

x is free at β

x is free at λy.β
(if x 6≡ y)

x is free at β

x is free at βa
x is free at α
x is free at bα

x is free at α
x is free at {. . . , ai−1/xi−1, α/xi, ai+1/xi+1, . . .}

x is free at ε
x is free at ε[[a]]

x is free at α
x is free at e[[α]]

(if x 6∈ TY(e))
.

We define FV(a) as the set of variables occurring free in a. It can be easily
verified that if Γ ` a : A is derivable, then Γ , considered as a set, is equal to
FV(a). In particular, a is closed, i.e., FV(a) = ∅, iff ` a : A is derivable.
We can easily define replacement of a variable in an occurrence to get a term,

just textual replacement of the 2.

α-congruence. Let a and b be terms and x, y be bindable variables of the
same type such that y is fresh for a (that is, y is neither free nor bound in a).
Then we will identify λx.a with λy.c where c is obtained from a by replacing each
free occurrence of x by y. Here, the α-congruence means changing the names of
λ bound variables but not those appearing in environment expressions as x in
{a/x}.

2 It is, in general, not possible to recover the typed form when its type-free form is
given. Therefore, even if we write terms in type-free forms, it is only for the sake of
simplicity, and we are in fact dealing with fully decorated typed terms.
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We will write a : A if A ≡ TY(a). An example gives a typing derivation for
the term {y/x}[[x]] ≡ {yA/xA}[[xA]]:

yA ` y : A

yA ` {y/x} : {xA} xA ` x : A

yA ` {y/x}[[x]] : A .

By the above typing, we see that the two occurrences of x in {y/x}[[x]] are both
bound while the only one occurrence of y in this term is free.
The following example reveals the subtle point which is related to the fact

that in the λε-calculus we can pass an environment as an argument to a function.

z{x
A⇒B,yA} ` z : {xA⇒B, yA}

xA⇒B ` x : A⇒ B yA ` y : A

xA⇒B , yA ` xy : B

z{x
A⇒B,yA} ` z[[xy]] : B

` λz.(z[[xy]]) : {xA⇒B, yA} ⇒ B

3 Reduction Rules

In this section we define a reduction relation→λε on λε-terms. Then, in this and
the following sections, we show that →λε enjoys the subject reduction property,
→λε is confluent and strongly normalizing, and the λε-calculus is a conservative
extension of the simply typed λβ-calculus. In this way, we can show that the
λε-calculus solves the problem we posed in section 1.
We first define 7→λε as the union of the two relations 7→λ and 7→ε, where the

relation 7→λ is defined by the following single rule:

(λ) (λx.b)a 7→λ {a/x}[[b]],

and the relation 7→ε is defined by the following 6 conversion rules. These 6 rules
will be called ε-rules. They evaluate expressions of the form e[[a]].

(gc) e[[a]] 7→ε a, if TY(e) ∩ FV(a) = ∅.
(var) {a1/x1, . . . , an/xn}[[xi]] 7→ε ai (1 ≤ i ≤ n).
(abs) e[[λx.b]] 7→ε λx.e[[b]], if x 6∈ TY(e) ∪ FV(e).
(app) e[[ba]] 7→ε e[[b]]e[[a]].
(env) e[[{a1/x1, . . . , an/xn}]] 7→ε {e[[a1]]/x1, . . . , e[[an]]/xn}.
(eval) e[[f [[x]]]] 7→ε e[[f ]][[x]], if x ∈ TY(f).

The garbage collection rule (gc) collects e as a garbage.We can see the correctness
of this rule intuitively, because TY(e)∩FV(a) = ∅means that variables in FV(a)
are not bound by e. The (abs) rule pushes the environment e through the λx
binder. Thanks to the typing information about e, we could precisely state the
condition under which we may push the environment e through the λx binder.
We note that the condition x 6∈ TY(e) ∪ FV(e) can always be met by taking a
suitable α-congruent term.
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We introduced the last rule (eval) to take care of the nested evaluation. It
may seem that one needs a rule which reduces a term of the form e[[f [[a]]]] for any
term a which may or may not be a variable. But, such a rule is not necessary,
since if a is not a variable, then a is either of the form g[[b]], or otherwise we can
reduce f [[a]] by one of the rules (abs), (app) or (env). If a is of the form g[[b]], then
we can repeatedly apply this argument to f [[g[[b]]]]. So, we only need a rule that
reduces e[[f [[x]]]]. Now, if x 6∈ TY(f), then we can convert f [[x]] to x by the (gc)
rule. In this way, we arrived at the rule (eval). Theorem 1 below shows that these
reduction rules comprise a sufficiently rich set of reduction rules. We will discuss
further about our choice of the reduction rules at the end of subsection 5.2.

If π ∈ Π(a) and b is a term which is of the same type as a/π, then aπ [b]
stands for the term which is obtained from a by replacing its subterm a/π at π
with b. Then the reduction relation → is defined by stipulating that a → aπ [b]

if and only if a/π 7→λε b. We write
∗
→ for the reflexive and transitive closure of

the relation →, and
+
→ for the transitive closure of →.

A λε term a is said to be strongly normalizing (SN, for short) if there are no
infinite reduction sequences starting from a.

The following theorem shows that we have a sufficiently rich set of reduction
rules.

Theorem 1 (Closed Normal Term is Canonical). If c : C is closed and
normal, then c is canonical.

Let Γ and Γ ′ be contexts. Then we say that Γ ′ is a subcontext of Γ if each
xA in Γ ′ is also in Γ . In other words, Γ ′ is a subcontext of Γ if the set consisting
of the members of Γ ′ is a subset of the set consisting of the members of Γ . We
will write Γ ′ ⊆ Γ if Γ ′ is a subcontext of Γ .

Our reduction relation →λε enjoys the subject reduction property.

Theorem 2 (Subject Reduction). If Γ ` a : A and a→λε b, then ∆ ` b : A
for some subcontext ∆ of Γ .

This theorem says not only that the type is preserved by reduction, but also
that the reduction never introduces new free variables. Thus, if we start from a
closed term, then we always get closed terms by reductions of the given term.

We conclude this section by giving simple examples of λε programs (i.e.,
closed λε-terms) which show the expressivity of the language. We assume that
we have integer type and the successor function s.

{λf.λx.f(f(x))/double}[[
{double s/add2}[[{double add2/add4}[[add2(add4(0))]]]]

]]
∗
→λε 6.

{λf.λe.{f(e[[x]])/x, f(e[[y]])/y}/pointwise}[[pointwise s {1/x, 2/y}]]
∗
→λε {2/x, 3/y}.
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4 Confluence and Conservativity

In this section, we prove the confluence property of the λε-calculus by combining
Hardin’s interpretation method [5] (which is a standard method used to prove the
confluence of calculi of explicit substitutions [1,2,3,7]) with Takahashi’s parallel
reduction method [11].

Lemma 1. →ε on λε-terms is noetherian and confluent.

A λε-term a is said to be ε-normal if a →ε b holds for no b. By the above
lemma, we see that for any λε-term a there uniquely exist an ε-normal term b
such that a

∗
→ε b. We will write ε(a) for this b. ε-normal terms are characterized

by the following grammar, where u ranges over ε-normal terms and v over ε-
normal terms such that x ∈ TY(v) and which are not canonical, that is, not of
the form {a1/x1, . . . , an/xn}.

u ::= x | λx.u | uu | {u/x, . . ., u/x} | v[[x]]

We now define the parallel reduction relation⇒ on ε-normal λε-terms as follows.

1. x⇒ x.
2. If a⇒ b, then λx.a⇒ λx.b.
3. If a⇒ c and b⇒ d, then (λx.a)b⇒ ε({d/x}[[c]]).
4. If a⇒ c and b⇒ d, then ab⇒ cd.
5. If ai ⇒ bi, then {a1/x1, . . . , an/xn} ⇒ {b1/x1, . . . , bn/xn}.
6. If e⇒ f , then e[[x]]⇒ ε(f [[x]]).

Next, with each ε-normal term a, we associate an ε-normal term a∗ as follows.

1. x∗ := x.
2. (λx.a)∗ := λx.a∗.
3. ((λx.a)b)∗ := ε({b∗/x}[[a∗]]).
4. (ab)∗ := a∗b∗, if a is not an abstraction.
5. {a1/x1, . . . , an/xn}∗ := {a∗1/x1, . . . , a

∗
n/xn}.

6. (e[[x]])∗ := ε(e∗[[x]]).

It is easy to see that a ⇒ a∗ for any ε-normal term a. In this section, we work
only in the λε-calculus. So, we will write a → b (a

∗
→ b) for a→λε b (a

∗
→λε b),

respectively. We have the following key Lemmas 2-5.

Lemma 2. If a⇒ b, then a
∗
→ b.

Lemma 3. If ε(a)⇒ ε(a′) and ε(e) ⇒ ε(e′), then ε(e[[a]])⇒ ε(e′[[a′]]).

Lemma 4. If a→λ a′, then ε(a)⇒ ε(a′).

Lemma 5. ⇒ on ε-normal λε-terms is confluent.

Theorem 3 (Confluence). →λε on λε-terms is confluent.
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Next, we show the conservativity of λε over the simply typed λβ-calculus,
where by the simply typed λβ-calculus, we mean a typed calculus whose typing
rules are (assume), (⇒I) and (⇒E) and whose only reduction rule is (β). We
can state the conservativity theorem as follows.

Theorem 4 (Conservativity). Let a and b be typed λβ-terms. Then a
∗
→β b

if and only if a
∗
→λε b.

In order to prove this theorem, we define simple λε-terms as follows. A λε-
term is simple, if its type A is of the following form:

A,B ::=K | A⇒ B

and its untyped form a can by constructed by the following grammar:

a, b ::= x | λx.b | ba | e[[a]]

e, f ::= {a/x} | e[[f ]]

We note that any λβ-term is a simple λε-term. If e[[a]] is a simple λε-term, then
we say that e is a simple environment term.
Before we state Lemma 6 we define a syntactic translation Φ which translates

each simple λε-term to a λβ-term as follows. We also define auxiliary translation
functions Ψ1 and Ψ2 at the same time.

1. Φ(x) ≡ x.
2. Φ(λx.b) ≡ λx.Φ(b).
3. Φ(ba) ≡ Φ(b)Φ(a).
4. Φ(e[[a]]) ≡ Φ(a)[Ψ1(e) := Ψ2(e)].

5. Ψ1({a/x}) ≡ x.
6. Ψ1(e[[f ]]) ≡ Ψ1(f).
7. Ψ2({a/x}) ≡ Φ(a).
8. Ψ2(e[[f ]]) ≡ Ψ2(f)[Ψ1(e) := Ψ2(e)].

Lemma 6. Let a be a simple λs-term. If a →λε b, then b is also simple and
Φ(a)

∗
→β Φ(b).

Proof of Theorem 4. Only if part is trivial and if part follows from Lemma 6 by
noting that Φ is identity on λβ-terms. 2

5 Strong Normalizability

In this section we prove the strong normalizability of the λε-calculus using the
reducibility argument. (See, e.g., [4].) So, for each type A, we define a set [A] of
reducible terms of type A as follows.

1. If a : A and A is atomic or the empty environment type {}, then a ∈ [A] iff
a is SN.

2. If b : A⇒ B, then b ∈ [A⇒ B] iff ba ∈ [B] for all a ∈ [A].
3. If e : E and E is a non-empty environment type, then e ∈ [E] iff e[[xA]] ∈ [A]
for all xA ∈ E.

We can prove the following fundamental proposition as in [4].

Proposition 1.
(CR1) If a ∈ [A], then a is SN.
(CR2) If a ∈ [A] and a→ a′, then a′ ∈ [A].
(CR3) If a : A is neutral and a′ ∈ [A] for all a′ such that a→ a′, then a ∈ [A].
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5.1 Decoration Trees and Decorated Terms

Although we can define reducibility in a standard way, we cannot prove the SN
of λε in a similar way as in the case of simply typed lambda calculus. The reason
is that while substitution is carried out by a single step (β)-rule in the simply
typed lambda calculus, in λε we have to compute the substitution internally by
moving around environments that carry information about substitution. To cope
with this situation, we introduce the notion of a decoration tree which is useful
in keeping track of the movements of the environments during the reduction
steps.
We define decoration tree (δ) and its type (TY(δ)) inductively as follows.

1. If δ1, . . . , δn (n ≥ 0) are decoration trees, then δ ≡ (δ1, . . . , δn) is a decora-
tion tree and TY(δ) := TY(δ1) ∪ · · · ∪ TY(δn).

2. If δ is a decoration tree and e is a bindable variable free environment term,
then (e, δ) is a decoration tree and TY((e, δ)) := TY(e) ∪ TY(δ).

Note that each leaf of a decoration tree is () or a bindable variable free
environment term. A decoration tree is trivial if its leaves are always (). We will
use δ, γ, ρ etc. to denote decoration trees.
Let a and ã be terms of type A and δ be a decoration tree. We define a ternary

relation ‘ã is a decoration of a by δ’ inductively as follows. In the following
definition, δ provides the information about the positions in a which are to be
decorated as well as which environments are used to decorate these positions.
We will write δ : a 7→ ã for this relation.

δ : a 7→ ã
(e, δ) : a 7→ e[[ã]] () : x 7→ x

δ : b 7→ b̃

(δ) : λx.b 7→ λx.b̃
(∗) δ : b 7→ b̃ δ′ : a 7→ ã

(δ, δ′) : ba 7→ b̃ã

δ1 : a1 7→ ã1 · · · δn : an 7→ ãn
(δ1, . . . , δn) : {a1/x1, . . . , an/xn} 7→ {ã1/x1, . . . , ãn/xn}

δ : e 7→ ẽ δ′ : a 7→ ã
(δ, δ′) : e[[a]] 7→ ẽ[[ã]]

(∗∗)

The rule marked by (∗) may be applied only under the condition that x 6∈ TY(δ)
and the rule marked by (∗∗) may be applied only when TY(e) ∩ TY(δ′) = ∅.
If δ : c 7→ a holds, we will call the triple (a, c, δ) a decorated term over c, and

will simply write a for the decorated term, if c and δ can be inferred from the
context.
It is easy to see that if δ : c 7→ a and δ : c 7→ b, then a ≡ b. So, we will write

δ(c) for this a. It is also easy to see that for each term a, there is a unique trivial
δ such that δ : a 7→ a. We will write ιa for this δ.
If e ≡ e1, . . . , en, then we will write (e, δ) for (e1, (e2, · · ·(en, δ) · · ·)) and

e[[a]] for e1[[· · ·en[[a]] · · ·]]. Suppose that δ : c 7→ a. Then δ can be written uniquely
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in the form (e, γ) where γ is of the form (δ1 , . . . , δn) (n ≥ 0). In this case, we
have a ≡ e[[γ(c)]].
Let δ : c 7→ c̃ and π ∈ Π(c̃). We say that π is internal, marginal or external in

δ if it can be seen so by the following inductive clauses. At the same time, we also
define δ/π which is either a decoration tree or a subterm of some environment
term in δ.

1. Λ is internal in (δ1, . . . , δn) (n ≥ 0) and (δ1, . . . , δn)/Λ := (δ1, . . . , δn).
2. Λ is marginal in (e, δ) and (e, δ)/Λ := (e, δ).
3. If π ∈ Π(e), then 1π is external in (e, δ) and (e, δ)/1π := e/π.
4. If π is internal, marginal or external in δ, then 2π is internal, marginal or
external, respectively, in (e, δ) and (e, δ)/2π := δ/π.

5. If π is internal, marginal or external in δi, then iπ is internal, marginal or
external, respectively, in (δ1, . . . , δn) (n ≥ 1) and (δ1, . . . , δn)/iπ := δi/π.

Suppose that δ : c 7→ c̃ and π ∈ Π(c̃). The occurrence of ã/π in ã is said to
be an internal, marginal or external occurrence with respect to δ if π is internal,
marginal or external in δ, respectively. It is easily verified that for any π ∈ Π(c̃),
π is either internal, marginal or external in δ and only one of these is the case.
This classification can be characterized as follows. π is external if δ/π is a λε-
term, π is marginal if δ/π1 is external and π is internal otherwise.
Suppose that δ : c 7→ c̃ and σ is external in δ. Then we can find a unique π

such that π is marginal in δ and π1 ≤ σ. In this case, we say that π is the root
of σ in δ.
Let δ : c 7→ c̃. Then, this decoration naturally induces a mapping from Π(c)

to Π(c̃) as follows. We use δ to denote this mapping. So, for each π ∈ Π(c) we
define δ(π) ∈ Π(c̃) inductively as follows.

1. (δ1, . . . , δn)(Λ) := Λ.
2. (δ1, . . . , δn)(iπ) := iδi(π) (1 ≤ i ≤ n).
3. (e, δ)(π) := 2δ(π).

We can easily check that the image of the mapping δ : Π(c) → Π(c̃) is exactly
the set of internal positions in δ. If π̃ ≡ δ(π), then we write δ−1(π̃) for π.
Let δ : c 7→ c̃, so that c̃ is of the form e[[γ(c)]] where γ ≡ (δ1 , . . . , δn). Then,

for each π ∈ Π(c), we define a decoration tree δ|π as follows. If π ≡ Λ, we put
δ|π := γ. If π ≡ iσ, we put δ|π := δi|σ. We can then see that for each π ∈ Π(c),
we have δ|π : c/π 7→ c̃/π̃ where π̃ ≡ δ(π). We will call c̃/π̃ the image of c/π
under δ.
A decoration tree δ is strongly normalizing (SN) if each environment term e

in δ is SN.

5.2 Orthogonal Decorations

In this subsection we introduce orthogonal decorations and show their funda-
mental properties. We will say that δ : c 7→ c̃ is orthogonal if for each marginal
subterm e[[a]] of c̃, TY(e)∩FV(a) = ∅ holds. Then we have the following propo-
sition which is used in the proof of Proposition 4.
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Proposition 2. If γ : c 7→ c̃ is orthogonal, γ is SN and c ∈ [C], then c̃ ∈ [C].

Discussions on the (eval) rule. Here, we would like to remark that the con-
dition x ∈ TY(f) is essential in proving Proposition 2. Now, let us consider the
following rule:

(eval′) e[[f [[x]]]] 7→ε e[[f ]][[x]], if x 6∈ TY(e) or x ∈ TY(f).

This rule is a semantically correct and more liberal rule than our (eval) rule. So,
we might be tempted to make our calculus more liberal by adopting the (eval′)
rule in place of the (eval) rule. However, if we do so, the calculus will not be
strongly normalizing. In fact, we have the following counter-example to SN due
to Bloo et. al. [3]. Let us put f := {(λx.z)z/x} and e := {f [[z]]/x} where z is an
arbitrary unbindable variable and z and x are of the same type, say, A. Then
we can construct an infinite reduction sequence starting from e[[f ]]. We also note
that both e and f are SN and (e, ιf) : f 7→ e[[f ]] is an orthogonal decoration
since f is bindable variable free. Hence Proposition 2 no longer holds for the
extended calculus. Thus we see that the condition x ∈ TY(f) is indispensable
in our proof of Proposition 2.
Next, consider the rule:

(eval′′) e[[f [[a]]]] 7→ε e[[f ]][[a]], if TY(e) ∩ (FV(a)−TY(f)) = ∅.

This rule is even more liberal than the (eval′) rule, and if we adopt this rule
instead of our (eval) rule, we would still have the confluence and the conserva-
tivity properties, but we would no longer have SN since SN fails for a less liberal
system as we saw above. These are the reasons we have chosen the (eval) rule as
it is now.

5.3 Partial Orders on Decorated Terms

In this subsection, for each term c, we define a partial order �c on decorated
terms over c. These partial orders play an essential role in our proof of SN.
Let δ : c 7→ c̃ be a decoration, and suppose that π ∈ Π(c) is such that c/π is

a variable. Then we define env(c, π, δ) inductively below as a sequence of pairs
of the form 〈e, σ〉 where e is an environment term in δ and σ ∈ Π(c). In the
following definition, if e ≡ 〈e1, σ1〉, . . . , 〈en, σn〉, then ke denotes the sequence
〈e1, kσ1〉, . . . , 〈en, kσn〉.

1. env(x, Λ, ()) := Λ (empty sequence).
2. env(c, kπ, (δ1, . . . , δn)) := kenv(c/k, π, δk) (1 ≤ k ≤ n).
3. env(c, π, (e, δ)) := env(c, π, δ), 〈e, Λ〉.

If δ : c 7→ c̃ and 〈e, σ〉 is in the sequence env(c, π, δ), then we will say that the
variable c/π at π in c is decorated by e at σ in c and at δ(σ) in c̃. We note that,
here, δ(σ) is marginal in δ and c̃/δ(σ) ≡ e[[a]] for some a. If 〈e, σ〉 appears before
〈e′, σ′〉 in env(c, π, δ), then we have σ ≥ σ′ and δ(σ) > δ(σ′). Hence, we see that
env(c, π, δ) gives a sorted sequence of environments decorating c/π where the
environment closest to c/π is the first element of the sequence.
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Here is a simple example. Let δ ≡ (f, ((e, ιy), ιx)). For the decoration δ :
yx 7→ f [[e[[y]][[x]]]], we have env(yx, 1, δ) ≡ 〈e, 1〉, 〈f, Λ〉 and env(yx, 2, δ) ≡ 〈f, Λ〉.
Let e ≡ 〈e1 , σ1〉, . . . , 〈em, σm〉 and e′ ≡ 〈e′1, σ

′
1〉, . . . , 〈e

′
n, σ

′
n〉. We write e ≤ e

′

if (1) m ≤ n and (2) for each k such that 1 ≤ k ≤ m, ek ≡ e′k and σk ≤ σ
′
k

hold. Let a and b be two decorated terms such that γ : c 7→ a and δ : c 7→ b.
We write a �c b if, for each occurrence of a variable x ≡ c/π in c, we have
env(c, π, γ) ≤ env(c, π, δ). It is easy to see that �c determines a partial order
on decorated terms over c and c ≡ (c, c, ιc)�c a holds for any decorated term a
over c.

Proposition 3. If c1 �c c2 and c2 ∈ [C], then c1 ∈ [C].

5.4 Reducibility Theorem

We say that a decoration tree δ is reducible, if each environment term in δ is
reducible. In this subsection, we prove the following theorem as the final result
of our paper.

Theorem 5 (Reducibility). If c : C, (e, ιc) : c 7→ e[[c]] and (e, ιc) is reducible,
then e[[c]] ∈ [C].

We note that by using an empty sequence as e in the theorem, we can con-
clude that any λε-term is reducible and hence SN. We have to show some more
propositions before we can prove the reducibility theorem.

Proposition 4. If δ : xA 7→ e[[x]] and δ is reducible, then e[[x]] ∈ [A].

Proposition 5. If a ∈ [A] and {a/x}[[b]] ∈ [B], then (λx.b)a ∈ [B].

Proposition 6. If a1 ∈ [A1], . . . , an ∈ [An], then
{a1/x1, . . . , an/xn} ∈ [{x

A1
1 , . . . , x

An
n }].

Let c be a term, π1, . . . , πn ∈ Π(c) be such that xi ≡ c/πi (1 ≤ i ≤ n) are
bindable variables free at πi in c and y1, . . . , yn be unbindable variables such
that, for each i (1 ≤ i ≤ n), xi and yi are of the same type. Then we say that
c′ ≡ cπ1,...,πn [y1, . . . , yn] is a variant of c. If, moreover, c

′ is bindable variable
free, then we say that c′ is a bindable variable free variant of c. Note that we
can always find a bindable variable free variant of c for any c.

Proposition 7. If c′ is a variant of c : C, then c ∈ [C] iff c′ ∈ [C].

Now we can prove the reducibility theorem as follows.

Proof. By induction on the size of the derivation of c : C. We write c̃ for e[[c]].
We classify cases according to the last rule applied to derive c : C. We treat only
two cases.
1. (⇒I): In this case, C ≡ A ⇒ B, c ≡ λx.b and c̃ ≡ e[[λx.b]]. Here, by
α-conversion, we may assume that x 6∈ TY(e). We put b̃ := e[[b]]. We first
show that λx.b̃ ∈ [C]. To show this, we take an arbitrary a ∈ [A] and we
let a′ be a bindable variable free variant of a. Then, by Proposition 7, we
have that a′ ∈ [A]. Hence, by Proposition 6, we have γ : b 7→ {a′/x}[[b̃]]
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where γ := ({a′/x}, (e, ιb)) is reducible and bindable variable free. (Note
that ({a/x}, (e, ιb)) may not be bindable variable free since FV(a) may
contain bindable variables. So, we consider a′ in place of a.) So, by IH, we
have {a′/x}[[b̃]] ∈ [B]. Hence by Proposition 5, we have (λx.b̃)a′ ∈ [B]. So, by
Proposition 7, we have (λx.b̃)a ∈ [B]. Therefore, we have λx.b̃ ∈ [C]. Since
c̃�λx.b λx.b̃, we have c̃ ∈ [C] by Proposition 3.

2. (envE): In this case c ≡ e[[a]] where e : E and a : C. We show that e[[e[[a]]]] ∈
[C]. We let e′ be a variant of e such that all free occurrences of bindable
variables in e that are not bound by e are renamed. Then, we see that e[[e′]]
is bindable variable free. Now, consider the decoration: (e, ιe′) : e

′ 7→ e[[e′]].
Since the size of the derivation of e′ : E is equal to the size of the derivation
of e : E, we may appeal to IH for e′. Then, we have e[[e′]] ∈ [E]. So, we have
the decoration: (e, (e[[e′]], ιa)) : a 7→ e[[e[[e′]][[a]]]], where (e, (e[[e′]], ιa)) is
reducible. Hence, by IH for a, we have e[[e[[e′]][[a]]]] ∈ [C]. Next, we consider
the following two decorations.

(e, ((e, ιe′), ιa)) : e
′[[a]] 7→ e[[e[[e′]][[a]]]],

(e, (ιe′ , ιa)) : e
′[[a]] 7→ e[[e′[[a]]]].

From these decorations, we see that e[[e′[[a]]]] �e′[[a]] e[[e[[e
′]][[a]]]]. Hence, by

Proposition 3, we have e[[e′[[a]]]] ∈ [C]. Therefore, by Proposition 7 we have
e[[e[[a]]]] ∈ [C]. 2

6 Conclusion

We have defined a notion of explicit environments which generalizes explicit
substitutions and records, and given a calculus for it which is confluent, SN and
conservative extension of the simply typed λβ-calculus. The calculus we have
presented here is the first such calculus that is conservative over the simply
typed λβ-calculus.
We have shown how definition of free and bound variables can be achieved

by a suitable type system. This is a form of static analysis.
Due to lack of space, we have not been able to explain how our calculus con-

tains records. We only note here that a canonical record [x1 = a1, . . . , xn = an]
may be represented by the environment {a1/x1, . . . , an/xn}, and that accessing
to the x field of a record r may be achieved by r[[x]]. This representation is made
possible owing to the fact that λε is a system with variable names. It is there-
fore critical that our calculus has variables with names, since we insist that an
explicit environment must generalize both a record and a substitution.
There are both named and nameless calculi of explicit substitutions. However,

in the case of explicit environments, we have considered only a named calculus for
the reason we explained above. Thus, viewed as a calculus of explicit substitution,
λε is a named calculus of explicit substitution. We also think it worthwhile
to design a nameless version of λε (although such a calculus would no longer
contain a calculus of records but instead contain a calculus of tuples), since such
a calculus would become a nameless calculus of explicit substitutions that has
substitutions as first class values.
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It seems possible to design an untyped version of our calculus, which is con-
servative over the untyped λβ-calculus and preserves SN. The syntax of such a
system, however, would have to be an extension of the syntax of untyped λε-
terms we have given, since, otherwise, we would not be able to determine free
variables correctly.
Also, there are recently growing interests in the calculi of contexts. Among

these calculi, a typed calculus of context introduced by Hashimoto and Ohori [6]
uses type information to determine the set of free variables for a given term. We
feel that we should be able to design a language which has both environments
and contexts as first class values.
Other future research directions would be to extend the calculus to a calculus

that supports dependent types. We are also considering how to use environments
to mimic assignment in imperative programs and hope to do further work in this
direction.
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Consequences of Jacopini’s Theorem: Consistent

Equalities and Equations

Rick Statman?

1 Introduction

In this note we consider the problem of whether a combinator P can consis-
tently (in most cases with beta conversion) be assumed to satisfy the functional
equation Mx = Nx. Much of the literature in this area concerns easy terms
first discovered by Jacopini. These are combinators P which can consistently be
assumed to be solutions to the equation x = Q for any Q. Here we shall prove
several results which might be viewed as unexpected; although given Jacopini’s
result the unexpected should be expected in this topic in lambda calculus.

We shall construct an identity M = N which is not a beta conversion but
which is consistent with any consistent set of combinator equations. By a sim-
pler construction we shall build a functional equationMx = Nx for which there
is no solution modulo beta conversion but such that for each consistent set S
of combinator equations there exists a combinator P with S U {MP = NP }
consistent. Next we consider the problem of which sets of combinators are “con-
sistency sets” i.e., sets of the form {P :MP = NP is consistent }. Each such
set is closed under beta conversion and pi-zero-one (“co-Visseral” in [5]). We
produce such a co-Visseral set which is not a consistency set, in contrast to
the case for first order arithmetic. Finally, we consider some questions involving
compactness. We give several examples of sets of functional equationsMx = Nx
such that

(∗) for each finite subset there is a combinator which can be consistently assumed
to be a solution

but there is no single combinator which can consistently be assumed to be a
solution of the whole set. However, we show that if the condition (∗) is made
effective then no such examples are possible. This is in contrast to the familiar
event of the effectivization of a classical theorem being false.

2 Preliminaries

We adopt for the most part the notation and terminology of [1]. A combinator
is a closed term. The following are the usual combinators

? Research Supported by NSF CCR-9624681

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 355–364, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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B = λxyz. x(yz)
C∗ = λxy. yz
K = λxy. x
K∗ = λxy. y
Y = λx. (λy. x(yy))(λy. x(yy))
O = λxy. y(xy)
Omega = (λx. xx)(λx. xx)

but we reserve the symbol S for sets of combinators or combinator equations. We
take the simple expediant of identifying the natural numbers with their Curch
numerals. In this way we avoid the quotation device of [1]. In addition, with this
understanding, any uniform sequence of combinators can, up to beta conversion,
be denoted P 0, P 1, . . . , P i, . . . instead of the usual subscript notation. However,
for readability we shall write such a sequence as P [1], P [2], . . . , P [i], . . . . We are
interested in functional equations

U = V

in a single free variable x, which by abstraction can be put in the form

(λx.U)x = (λx.V )x.

Functional equations in more than one free variable can be reduced to one by
pairing. For example, the equation

Mxy = Nxy

can be replaced by

M(zK)(zK∗) = N(zk)(zK∗)

with solutions z = 〈x, y〉 = λa. axy.

Similarly, several equations can be combined into one by pairing. If S is a set
of combinator equations then, by the well known existence of free models ([1]),
M = N is inconsistent with S if and only if S U {M = N} ` K = K∗. Implicit
in Jacopini’s classic paper [3] is the following

Theorem (Jacopini): M = N is inconsistent with S if and only if there exist
combinators P [1], . . . , P [p] such that
S ` K = P [1]M & P [1]N = P [2]M & . . .& P [p]N = K∗.
Another way to state this theorem is to consider the graph whose points

consist of the congruence classes of combinators modulo provable equivalence in
S, and whose undirected edges join points of the form PM to those of the form
PN . Then M = N is inconsistent ⇔ K and K∗ are connected by a path ⇔ the
graph is connected.
Among the congruence classes of combinators modulo equivalence in S are

some which contain no solvable terms such as the class of K − infinity = Y K.
We call the number of these classes the degree of S. For example, Barendregt’s
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H∗ has degree 1 but the empty S (beta conversion) has infinite degree. Below,
we shall observe that S’s of each finite degree exist.
When it comes to functional equations Mx = Nx it is possible that the

equation MA = NA is consistent with beta conversion for a new constant A
but for any combinator L the equation ML = NL is inconsistent with beta
conversion. For example, in [4] we constructed a Plotkin term P such that for
each combinatorM, PM beta converts to P but P does not beta convert toKP .
It is easy to see, by using Mitscheke’s theorem [1] page 401, that the equation

PA = I

with a new constant A, is consistent with beta conversion but clearly it is not
consistent for any combinator in place of A. It is also possible for a given com-
binator to be a consistent solution to each of several functional equations sepa-
rately when the entire collection cannot have a solution. For example, Omega is
a consistent solution to x = K∗ and to x = Y 〈K,K∗〉.

Definition: Suppose S is a set of combinator equations. The functional equation
Mx = Nx is said to be consistently solvable over S if there exists a combinator
P such that S U{MP = NP } is consistent. Such a P is called a consistent
solution over S.

Remark:When S is empty we drop the phrase “over S”.

Definition:The combinator equationM = N is said to be inevitably consistent
if M does not beta convert to N but for any consistent set S of combinator
equations S U {M = N} is consistent. The functional equationMx = Nx is said
to be inevitably consistently solvable if there is no solution in the combinators
modulo beta conversion but for any consistent set S of combinator equations
there exists a combinator P such that S U {MP = NP } is consistent.

Example: Y is a consistent solution to the equations

x = Ox and x = xO

since Y satisfies these equations in the Bohm tree model ([1]) but there is no
solution to these equations modulo beta conversion ( Intrigila, unpublished).

Example (generalization): We say that M is consistently solvable if there
exists N [1] . . .N [n] such that MN [1] . . .N [n] = I is consistent with beta con-
version. For each e construct a combinator P [e] such that

P [e]n =



λx. P [e](n+ 1) if the eth Turing machine

converges on n or
an order zero unsolvable otherwise.

This can be done directly or by the Visser fixed point theorem ([5]). Then P [e]0
is consistently solvable ⇔ the eth Turing Machine is not total.
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3 Inevitably Consistent and Consistently Solvable
Equations

Theorem 1: Suppose that S is a set of combinator equations of finite degree.
Then there exists a functional equation

Pxyz = Qxyz

such that for any combinator equation M = N .
S U {M = N} is inconsistent ⇔ PMNz = QMNz has a solution over S.

Proof: Suppose that S is given of degree n.
Consider the graph described after the statement of Jacopini’s theorem above

and all shortest paths joining the combinator class containing K and the class
containing K∗. Now, for any of these paths, no intermediate point can contain a
solvable combinator P . For if such a P exists it must have a distinct head normal
form from either K or K∗. W.l.o.g. assume it is distinct from K and thus there
exist M [1] . . .M [m] such that KM [1] . . .M [m] conv. K and K∗M [1] . . .M [m]
conv. K∗ conv. PM [1] . . .M [m], and this contradicts the choice of path as being
a shortest one. Thus for p = n+ 3, by Jacopini

S ` K = P [1]M & P [1]N = P [2]M & . . . & P [p]N = K∗

in other words

K = x[1]M, x[1]N = x[2]M, . . . . . . , x[p]N = K∗

has a solution over S.
The following corollary follows from the proof.

Corollary: If S is a set of combinator equations of finite degree then there exists
a functional equation

Pxyz = Qxyz

such thatM = N is inconsistent with some consistent extension of S ⇔ PMNz =
QMNz is consistently solvable over S.

Remark: For the case that S is empty the construction in the proof of Theorem
1 does not work. This is verified in [6].
However, it is still the case that the theorem is true (the best proof comes

from [4]).

Theorem 2: There exist S of every finite degree.
We shall present a proof of this theorem elsewhere; the theorem is not

used below.

Theorem 3: There exists an inevitably consistent combinator equation.
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Proof: For the proof we need to recall a result of [5].
As usual, W [e] is the eth recursively enumerable set. For each RE set S of

natural numbers there exists a combinator H such that if S satisfies

S is not empty
if e belongs to S then W [e] is non-empty
if i and j both belong to S and W [i] intersect W [j] is non-empty then
W [i] =W [j]
if e belongs to S, #M belongs to W [e], and M conv. N then #N belongs to
W [e] then HM conv. HN ⇔ M conv. N or there exists e in S s.t. M and N
both belong to W [e]. In addition, the construction of H is uniform in S i.e.,
there exists a combinator G such that if e is an RE index for S we have Ge
conv. H .
To apply this result consider a fixed enumeration of the finite sequences of

combinators. We let p(i) be the number of combinators in the ith sequence and
we let P [i, j] be the jth combinator in the ith sequence where j is between 1
and p(i). Given combinators N and M we define two RE sets of combinators.

1. {〈〈P [i, 1], . . . , P [i, p(i)]〉, 〈K,P [i, 1]N, . . ., P [i, p(i)]N〉〉 : i = 0, 1, . . .}
2. {〈〈P [i, 1], . . . , P [i, p(i)]〉, 〈P [i, 1]M, . . . , P [i, p(i)]M,K∗〉〉 : i = 0, 1, . . .}

where 〈X[1], . . . , X[n]〉 is the usual sequencing combinator λx. xX[1] . . .X[n].
If these two sets intersect modulo beta conversion (i.e., if their beta conversion
closures intersect) then for some i we have

K conv. P [i, 1]M
P [i, 1]N conv. P [i, 2]M
P [i, 2]N conv. P [i, 3]M
.
.
.
P [i, p(i)]N conv.K∗

and the equation M = N is inconsistent with beta conversion.
Conversely, ifM = N is inconsistent with beta conversion then by Jacopini’s

theorem the two sets intersect modulo beta conversion. Now let k be an RE
index for the beta conversion closure of the first set and let ` be an RE index
for the beta conversion closure of the second set. Apply the above theorem to
S = {k, `} to obtain H . Now the constant F such that F #〈N,M〉 conv. H .
Now let

L = λx. 〈〈P [1, 1], . . . , P [1, p(1)]〉, 〈K,P [1, 1]x, . . . , P [1, p(1)]x〉〉
J = λx. 〈〈P [1, 1], . . . , P [1, p(1)]〉, 〈P [1, 1]x, . . ., P [1, p(1)]x,K∗〉〉.

Then by the fixed point theorem [1] there exists a pair 〈N,M〉 such that

〈N,M〉 conv. 〈F#〈N,M〉(LN), F#〈N,M〉(JM)〉
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We claim that the equation M = N is inevitably consistent.

First suppose that M conv. N . Then H(LN) conv. H(JM) and so by the
above theorem S must fail to satisfy one of the stated conditions. This can
only be that W [k] intersect W [`] is non-empty and thus M = N is inconsistent
with beta conversion. We conclude that M does not beta convert to N . Next
suppose that S is a consistent set of combinator equations such that M = N is
inconsistent with S. By Jacopini’s theorem there exist P [i, 1], . . . , P [i, p(i)] such
that

S ` K = P [i, 1]M
S ` P [i, 1]N = P [i, 2]M
.
.
.
S ` P [i, p(i)]N = K∗

that is

S ` 〈〈P [i, 1], . . . , P [i, p(i)]〉, 〈K,P [i, 1]N, . . ., P [i, p(i)]N〉〉 =
〈〈P [i, 1], . . . , P [i, p(i)]〉, 〈P [i, 1]M, . . ., P [i, p(i)]M,K∗〉〉 and

S ` H〈〈P [i, 1], . . . , P [i, p(i)]〉, 〈K,P [i, 1]N, . . ., P [i, p(i)]N〉〉 =
H〈〈P [i, 1], . . . , P [i, p(i)]〉〈P [i, 1]M, . . .P [i, p(i)]M,K∗〉〉.

However,

S ` H〈〈P [1, 1], . . . , P [1, p(1)]〉, 〈K,P [1, 1]N, . . ., P [1, p(1)N〉〉=
H〈〈[i, 1], . . . , P [i, p(i)]〉〈K,P [i, 1]N, . . ., P [i, p(i)]N〉〉 and

S ` H〈〈P [1, 1], . . . , P [1, p(1)]〉, 〈P [1, 1]M, . . . , P [1, p(1)]M,K∗〉〉 =
H〈〈P [i, 1], . . . , P [i, p(i)]〉〈P [i, 1]M, . . ., P [i, p(i)]M,K∗〉〉 thus

S ` F#〈N,M〉 (LN) = F##〈N,M〉 (JM) and
S `M = N

contradicting the choice of S. Thus M = N is inevitably consistent.

Remark: It can be proved from Mitschke’s theorem ([1]) that any inevitably
consistent equation must contain a universal generator. This is indeed the case
for our example.

The following theorem follows from theorem 3; however, it has a simpler
proof.

Theorem 4: There exist inevitably consistently solvable functional equations.

Proof: We can restate Jacopini’s theorem for the empty S as follows. M = N
is inconsistent with beta conversion ⇔ there exists a combinator P of the form
λa. aP [1] . . .P [p] such that B(C∗K∗)(PM) beta converts to B(PN)(C∗K). Now
by [4] there exists a combinator R such that RP beta converts to R if and only
if P beta converts to the form λa. aP [1] . . .P [p] for combinators P [1], . . . , P [p].
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Thus the equations

(∗) Rx = R, B(C∗K∗)(xM) = B(xN)(C∗K)

have a solution modulo beta conversion if and only ifM = N is inconsistent with
beta conversion. Moreover, if S is a consistent set of combinator equations then
(∗) has a solution over S if M = N is inconsistent with S. Hence the equations

(∗∗) Rx = R, B(C∗K∗)(x(Omega)) = B(xy)(C∗K),

once the two variables are replaced by one variable through pairing, are in-
evitable. For , since Omega is easy there is no solution to the given equa-
tions in beta conversion alone. However, for each S there is an extension with
a solution for either Omega is already inconsistent with each solvable term,
or for one of them, say N , Omega = N is consistent with S. In the exten-
sion S U {Omega = N} then Omega is inconsistent in S U {Omega = N}
is inconsistent with some other solvable M by Bohm’s theorem. In addition, if
N(N [1]) . . .(N [n]) converts to I then set L = Y (λx. xN [1] . . .N [n]M). Then
Omega is inconsistent in S U {Omega = N} with the unsolvable L.

4 Consistency Sets

Clearly if S is RE then the set of consistent solutions to Mx = Nx is a co-
Visseral ([5]) set. It is natural to ask if every co-Visseral set is representable in
this manner as a “consistency set”. By [5] it suffices to consider only co-Visseral
sets of the form {P : P does not beta convert to Q }.

Theorem 5: LetMx = Nx be given. Then there exists a combinator P not beta
convertible to Omega such that either M(Omega) = N(Omega) is consistent or
MP = NP ⇒M(Omega) = N(Omega).

Proof: Suppose that Mx = Nx is given and M(Omega) = N(Omega) is in-
consistent. Then M(Omega) amd N(Omega) have beta eta distinct Bohm trees
([1]) page 504 and page 244). Without loss of generality we may assume that
M(Omega) and N(Omega) are not separable. Thus M(Omega) and N(Omega)
have reducts with equivalent subterms one of which is unsolvable and the other
of which has a head normal form. Symmetrically assume that the unsolvable one
is in a reduct of M . By the Bohm-out technique there exists a possibly open
term X such that

X(Mx) beta converts to

{
no head normal form
λy[1] . . . y[r]. xY [1] . . .Y [s]

X(Nx) beta converts to y.

Clearly we may assume that the second alternative for X(Mx) does not occur.
In addition we can arrange it so that X(Mx) does not occur. In addition, we
can arrange it so that X(Mx) has the property
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X(Mx) either has infinite order or order zero.

By the fixed point theorem there exists a combinator P such that P beta converts
to (λz. z((λy. X(MP ))z))(λz. zz). By the standardization theorem P does not
beta convert to Omega. However, whenever MP = NP we have P = Omega.
This completes the proof.

Corollary: The set {P : P does not beta convert to Omega} is not a consis-
tency set.

5 Finitely Consistently Solvable Sets of Equations

Definition: If S is a set of functional equations then S is said to be (effectively)
finitely consistently solvable if there is a partial (recursive) function f defined
on exactly the finite subsets of S such that if F is a finite subset of S then

{M(f(F )) = N(f(F )) :Mx = Nx in F }

is consistent with beta conversion.

Remark: The effectiveness condition in the definition really has two parts

(a) S is RE

(b) constistent solutions can be computed for finite subsets. Next we show that
neither of these restrictions can be relaxed.

Theorem 6: There exists a finitely consistently solvable set which is not con-
sistently solvable.

Proof:We shall actually build two variations on the same example only one of
which is RE. The RE example goes as follows,

For each combinator M we shall use two “local” variables y and z which
actually depend on M . For each such combinator we take the equations

zx = K, zM = yM, yx = K∗.

Our example consists of all these equations with all the local variables replaces by
one global variable through pairing. Clearly this set is not consistently solvable.
However, for any finite subset corresponding to the combinatorsM [1], . . . ,M [m]
we can find a consistent solution as follows. LetM have a head normal form dis-
tinct from the head normal forms of the solvable members of {M [1], . . . ,M [m]}.
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Let N [1], . . . , N [n] be such that

MN [1] . . .N [n]→→ I,

then for each of the sets

zx = K, zM [i] = yM [i], yx = K∗

we have the solution of M for x and

if M [i] is solvable then there exists a Bohm-out term P such that PM beta
converts to K∗and PM [i] beta converts to K and put P
for y and KK for z.

if M [i] is unsolvable then there exists a fixed point P without head normal
form such that P beta converts to PN [1] . . .N [n]K∗. Put
λx. xN [1] . . .N [n] for y and I for z. This works in the Bohm
tree model where all the unsolvable are equal; in particular
M [i] = P .

Clearly computing the finite consistent solution requires determining the solv-
ability of M [i]. Computing a finite consistent solution can be simplified by pass-
ing to a non-RE example. We keep the above equations for those termsM which
are unsolvable and add the following for terms N in head normal form

yN = K, yx = K∗.

It should be clear how to solve for the variables in any finite subset of these
equations. This completes the construction.

Theorem 7: If S is effectively finitely consistently solvable then S is consistently
solvable.

Proof: Suppose that S is effectively finitely consistently solvable and the func-
tion f is as above. For each finite subset F of S define T (F ) = {Mf(F ) =
Nf(F ) : Mx = Nx belongs to F }. By Visser’s theorem 3.8 ([7]) there exists a
combinator P such that for each finite subset F of S

T (F ) U {P = f(F )} is consistent.

Thus by the compactness theorem the set

{MP = NP :Mx = Nx belongs to S}

is consistent. This completes the proof.
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Abstract. In this paper a strongly normalizing cut-elimination pro-
cedure is presented for classical logic. The procedure adapts the stan-
dard cut transformations, see for example [12]. In particular our cut-
elimination procedure requires no special annotations on formulae. We
design a term calculus for a variant of Kleene’s sequent calculus G3
via the Curry-Howard correspondence and the cut-elimination steps are
given as rewrite rules. In the strong normalization proof we adapt the
symmetric reducibility candidates developed by Barbanera and Berardi.

1 Introduction

Gentzen has shown in his seminal paper [10] that all cuts can be eliminated
from proofs in LK and LJ. Since then many Hauptsätze (cut-elimination theo-
rems) have appeared for various sequent calculus formulations. Most of them,
including Gentzen’s original, provide a cut-elimination procedure which is weakly
normalising, i.e., they employ a particular reduction strategy (for example an
inner-most reduction strategy or the elimination of the cut with the highest
rank). Besides these weakly normalising methods a few strongly normalising
cut-elimination procedures have been developed; for example in [4,5,6,7,13,14].
However, all those methods impose some form of restriction on the reduction
rules to ensure strong normalisation. A common restriction is to not allow a
cut-rule to pass over another cut-rule (exceptions are [6,13]). However this lim-
its, in the intuitionistic case, the correspondence between cut-elimination and
beta-reduction [8,14]. Therefore in this paper we develop a strongly normalising
cut-elimination procedure adapting the standard cut-elimination steps for logi-
cal cuts and allowing commuting cuts to pass over other cuts. (A cut-rule is said
to be a logical cut when both cut-formulae are introduced by axioms or logical
inference rules; otherwise the cut is said to be a commuting cut.) Our method
is closely related to the cut-elimination procedure developed for LKtq [6,15].
However we do not need their colour annotations.
The problem of non-termination of cut-elimination occurs in both intuitionis-

tic logic and classical logic. One example of a non-terminating reduction sequence
in intuitionistic logic is given in [20]; for classical logic [6] and [9] give the fol-
lowing example:

A A A A
A∨A A,A

∨L

A∨A A
ContrR

A A A A
A,A A∧A

∧R

A A∧A
ContrL

A∨A A∧A
Cut

pp. 365–380, 1999.J.-Y. Girard (Ed.): TLCA’99, LNCS 1581,
c© Springer-Verlag Berlin Heidelberg 1999
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where a commuting cut needs to be eliminated. There are two possible reduc-
tions: either the cut can be permuted upwards in the left proof branch or in the
right proof branch. If one is not careful, applying these reductions in alternation
can lead to arbitrary big normal forms and to non-termination. This is reme-
died in [6] by devising a specific protocol for cut-elimination, which depends on
additional information (‘colours’) attached to every cut-formula. For this cut-
elimination procedure strong normalisation and confluence has been proved; the
colours are used to ingeniously map every LKtq-proof to a corresponding proof-
net in linear logic and every cut-elimination step to a series of reductions on
proof-nets (strong normalisation for proof-nets has been proved in [11]).
We shall consider a sequent calculus formulation very similar to Kleene’s G3

[16] and G3c of [18], where the structural rules are completely implicit in the
form of the logical rules. Another feature of our work is that we shall anno-
tate proofs with terms and term rewrite rules will describe the cut-elimination
steps. In our approach no additional information is required to guide the cut-
elimination process. The rest of the paper is organised as follows: §2 contains
various notational conventions and definitions; §3 contains a detailed proof of
strong normalisation for the rewrite system. The proof adapts the technique
of symmetric reducibility candidates [1]; §4 concludes and gives suggestions for
further work.

2 Terms, Judgements, Rewrite Rules and Substitution

The main idea behind the cut-elimination procedure presented in this paper is
to transport one subderivation of a commuting cut to the place(s) where the
cut-formula is introduced. Consider the following proof in G3c:

π1

{
A B⊃C,A•

A,B C,A•

A B⊃C,A
⊃R

A∨A B⊃C,A
∨L

A? D,A A? D,A

A D,A∧A
∧R

A?, E A A?, E A

A,E A∧A
∧R

A,D⊃E A∧A
⊃L

}
π2

A∨A,D⊃E B⊃C,A∧A
Cut

The cut-formula A is neither a main formula in the inference rule ∨L, nor in ⊃L.
Therefore the cut is a commuting cut. In π1 the cut-formula is a main formula
in the axioms marked with a bullet; in π2, respectively, in the axioms marked
with a star. Eliminating the cut in the proof above means to either transport
the derivation π2 to the places marked with a bullet and ‘cut it against’ the
corresponding axioms, or to transport π1 and ‘cut it against’ the axioms marked
with a star. In both cases the derivation being transported is duplicated.
In the remainder of this section we shall annotate proofs, via the Curry-

Howard correspondence, with terms and present a rewrite system for cut-elim-
ination. The raw terms are defined in Figure 1 using names and co-names as
binders. Besides the terms, which are going to be used as annotations for proofs,
there are two other syntactic categories which play an important rle in the
definition of substitution and in the strong normalisation proof. Let M and N
be terms, then (x:B)M and 〈a:B〉N are called named terms and co-named terms,
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Raw Terms: M,N ::= Ax(x, a) Axiom
| Cut(〈a:B〉M, (x:B)N) Cut
| AndR(〈a:B〉M, 〈b:C〉N, c) And-R
| AndiL((x:B)M,y) And-Li (i = 1, 2)
| OriR(〈a:B〉M, b) Or-Ri (i = 1, 2)
| OrL((x:B)M, (y:C)N, z) Or-L
| ImpR((x:B)〈a:C〉M, b) Imp-R
| ImpL(〈a:B〉M, (x:C)N, y) Imp-L

Fig. 1. The grammar for the raw terms where B and C are are types; x, y, z are
taken from a set of names and a, b, c from a set of co-names.

respectively. We use round brackets to signify that a name becomes bound in a
term and angle brackets that a co-name becomes bound in a term. Analogous
to the Church-style formation rules for the λ-calculus, all binders are explicitly
typed (types are defined as normal). However in what follows we will omit these
typings when they are clear from the context. Given a term M , its set of free
names is written as FN(M) and its set of free co-names is written as FC(M)
(similarly for named and co-named terms) – their routine definitions are omitted.
We assume that the three types of terms are equal up to α-conversion and that
a Barendregt-style naming convention holds for names and co-names (see 2.1.13
in [2]). Rewriting a name x to y in M is written as M{x 7→ y} (respectively
M{a 7→ b} for co-names). The routine formalisation of the rewriting operation is
omitted.

In the following we are only concerned with terms which can be well-typed
by the inference system given in Figure 2. The typing judgements are of the form
Γ .M .∆ where Γ is a set of name-type pairs and ∆ is a set of co-name-type
pairs. The reader will see that this system is the term system for a variant of
Kleene’s G3 formulation via the Curry-Howard correspondence. Our ∧L and ∨R
rules differ slightly from the G3 and G3c of [18]: they provide more convenience
in the strong normalisation proof, but the original rules could be used as well
(see Section 4). There are no primitive rules for contraction and weakening: they
are completely implicit in the form of the logical rules. However, special care
needs to be taken with implicit contractions. Consider the proof fragment:

x :B, Γ .M .∆, b :B⊃C, a :C

Γ . ImpR((x)〈a〉M, b) .∆, b :B⊃C
⊃R

(1)

The typing rule introduces the co-name-type pair b : B⊃C in the conclusion.
However it is allowed that this pair can already be present in the premise. On
the other hand, the name-type pair x :B and the co-name-type pair a :C in the
premise are not allowed to be in the conclusion: they become bound in the term.

The following definition corresponds to the traditional notion of what the
main formula of a inference rule is.
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x :B,Γ . Ax(x, a) . ∆,a :B

x :Bi, Γ .M . ∆

y :B1∧B2, Γ . AndiL(
(x)M,y) . ∆

∧Li
Γ .M . ∆,a :B Γ . N .∆, b :C

Γ . AndR(〈a〉M, 〈b〉N, c) .∆, c :B∧C
∧R

x :B, Γ .M . ∆ y :C,Γ . N . ∆

z :B∨C, Γ . OrL((x)M, (y)N, z) . ∆
∨L

Γ .M . ∆,a :Bi

Γ . OriR(〈a〉M,b) . ∆, b :B1∨B2
∨Ri

Γ .M .∆, a :B x :C,Γ .N . ∆

y :B⊃C, Γ . ImpL(〈a〉M, (x)N,y) . ∆
⊃L

x :B, Γ .M . ∆,a :C

Γ . ImpR((x)〈a〉M, b) . ∆, b :B⊃C
⊃R

Γ1 .M .∆1, a :B x :B, Γ2 . N .∆2

Γ1, Γ2 . Cut(〈a〉M, (x)N) . ∆1, ∆2
Cut

Fig. 2. The typing rules for the propositional fragment.

Definition 1.
A term M introduces the name z or co-name c if M is of the form:

for z: Ax(z, c)

AndiL((x)S, z)
OrL((x)S, (y)T , z)
ImpL(〈a〉S, (x)T , z)

for c: Ax(z, c)
AndR(〈a〉S, 〈b〉T , c)
OriR(〈a〉S, c)
ImpR((x)〈a〉S, c)

Recall our example from the beginning of this section where a commuting cut
can be permuted in two different directions. Therefore the rewrite system for our
cut-elimination procedure is defined using two, symmetric forms of substitution,
which are written as P [x := 〈a〉Q] and S[b := (y)T ]. These substitutions are used
when the inference rules directly above the cut do not introduce the cut-formula.
In these cases the cuts can permute, or ‘jump’ directly to the place(s) where the
cut-formula is introduced (i.e., is a main formula). Whenever a substitution ‘hits’
a term where the cut-formula is introduced the substitution ‘expands’ to a cut.
Two examples are as follows:

AndR(〈a〉M, 〈b〉N, c)[c := (x)P ]
def
= Cut(〈c〉AndR(〈a〉M, 〈b〉N, c), (x)P )

Ax(x, a)[x := 〈b〉Q]
def
= Cut(〈b〉Q, (x)Ax(x, a))

In the first term the formula labelled with c is the main formula and in the
second the formula labelled with x is a main formula. So in both cases the
substitution expands to a cut. In the other cases where the name or co-name
that is substituted is not a label for the main formula, then the substitution is
pushed into the subterms or vanishes in case of the axioms. Two examples are
as follows (assume the substitution [σ] is not of the form [z := . . .] or [a := . . .]):

OrL((x)M, (y)N, z)[σ]
def
= OrL((x)M [σ], (y) N [σ], z)

Ax(z, a)[σ]
def
= Ax(z, a)

However, special care needs to be taken for axioms, because they have two main
formulae. For technical reasons in the strong normalisation proof we need the
following property:
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M [x := 〈a〉P ][b := (y)Q] ≡M [b := (y)Q][x := 〈a〉P ] (2)

if b 6∈ FC(〈a〉P ) and x 6∈ FN((y)Q). The nave definition outlined above does

not satisfy this property: in case M is of the form Ax(x, b) we get two different
terms:

Ax(x, b)[x := 〈a〉P ][b := (y)Q]
def
= Cut(〈a〉P, (x)Cut(〈b〉Ax(x, b), (y)Q))

Ax(x, b)[b := (y)Q][x := 〈a〉P ]
def
= Cut(〈b〉Cut(〈a〉P, (x)Ax(x, b)), (y)Q)

Furthermore the nested cuts with an axiom as an immediate subterm could be a
source for non-termination as noted in [6]. Therefore we use a more subtle defin-
ition of substitution and introduce two special clauses to handle the problematic
example above.

Definition 2. Substitution

Cut(〈a〉Ax(x,a), (y)M)[x := 〈b〉P ]
def
= Cut(〈b〉P , (x)M{y 7→x})

Cut(〈a〉M, (x)Ax(x, b))[b := (y)P ]
def
= Cut(〈b〉M{a 7→b}, (y)P )

M [c := (y)P ]
def
= Cut(〈c〉M, (y)P ) if M introduces c

M [y := 〈c〉P ]
def
= Cut(〈c〉P , (y)M ) if M introduces y

otherwise
Ax(x, a)[σ]

def
= Ax(x,a)

Cut(〈a〉M, (x)N)[σ]
def
= Cut(〈a〉 M [σ], (x) N [σ])

AndR(〈a〉M, 〈b〉N, c)[σ]
def
= AndR(〈a〉 M [σ], 〈b〉 N [σ], c)

AndiL((x)M,y)[σ]
def
= AndiL((x)M [σ], y)

OriR(〈a〉M, b)[σ]
def
= OriR(〈a〉 M [σ], b)

OrL((x)M, (y)N, z)[σ]
def
= OrL((x)M [σ], (y) N [σ], z)

ImpR((x)〈a〉M, b)[σ]
def
= ImpR((x)〈a〉M [σ], b)

ImpL(〈a〉M, (x)N, y)[σ]
def
= ImpL(〈a〉 M [σ], (x) N [σ], y)

Recall that we assumed a Barendregt-style naming condition for (co-)names. A
substitution M [a := (x:B)N ] is said to be well-formed, iff Cut(〈a:B〉M, (x:B)N)
is well-typed. In the following we shall consider only well-formed substitutions.

A nave translation of the traditional, logical cut-elimination rules into our
term calculus is, for example, as follows (∧1 case):

Cut(〈c〉AndR(〈a〉M, 〈b〉N, c), (y)And
1
L((x)P , y)) −−→ Cut(〈a〉M, (x)P )

However, there is a problem with this reduction rule. In our sequent calculus, the
structural rules are implicit (see the discussion of proof (1)). This makes the cal-
culus smaller, and more importantly it provides a very convenient way to define
substitution (no explicit contractions are required when a term is duplicated).
Unfortunately, we have to pay a price for this in the logical cut-elimination rules.
Consider the following instance of the redex above:
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Γ1 .M .∆1, c :B∧C, a :B Γ1 .N .∆1, b :C

Γ1 . AndR(〈a〉M, 〈b〉N, c) .∆1, c :B∧C
∧R

x :B,Γ2 . P .∆2

y :B∧C,Γ2 . And
1
L((x)P , y) .∆2

∧L1

Γ1, Γ2 . Cut(〈c〉AndR(〈a〉M, 〈b〉N, c), (y)And
1
L((x)P , y)) .∆1,∆2

Cut

where c : B∧C ∈ FC(M). The nave reduction rule given above would (incor-
rectly!) reduce this proof to the following:

Γ1 .M .∆1, c :B∧C, a :B x :B,Γ2 . P .∆2

Γ1, Γ2 . Cut(〈a〉M, (x)P ) .∆1,∆2, c :B∧C
Cut

Unfortunately c has now become free! In order to obtain a subject reduction
property for the rewrite system we have to include in every logical reduction step
extra substitutions (the main formula of the conclusion could potentially be in
every subterm). These substitutions ensure that no bound (co-)name becomes
free. In effect the logical reduction rules look slightly complicated, but that is
the price we have to pay for the convenience of not having explicit structural
rules. The cut-elimination procedure is defined (in its entirety) as follows:

Definition 3. Cut-Elimination

Logical Cuts (i = 1, 2)

1. Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b), (y)And
i
L((x)N, y))

−−→Cut(〈ai〉Mi[b := (y)And
i
L((x)N, y)], (x)N [y := 〈b〉AndR(〈a1〉M1, 〈a2〉M2, b)])

2. Cut(〈b〉OriR(〈a〉M, b), (y)OrL((x1)N1, (x2)N2, y))
−−→Cut(〈a〉M [b := (y)OrL((x1)N1, (x2)N2, y)], (xi)Ni[y := 〈b〉Or

i
R(〈a〉M, b)])

3. Cut(〈b〉ImpR((x)〈a〉M, b), (z)ImpL(〈c〉N, (y)P , z))
−−→Cut(〈a〉Cut(〈c〉N [z := 〈b〉S], (x)M [b := (z)T ]), (y)P [z := 〈b〉S]) or
−−→Cut(〈c〉N [z := 〈b〉S], (x)Cut(〈a〉M [b := (z)T ], (y)P [z := 〈b〉S]))

where S ≡ ImpR((x)〈a〉M, b) and T ≡ ImpL(〈c〉N, (y)P , z)

4. Cut(〈a〉M, (x)Ax(x, b)) −−→M{a 7→b} if M introduces a

5. Cut(〈a〉Ax(y, a), (x)M) −−→M{x 7→y} if M introduces x

Commuting Steps (otherwise)

6. Cut(〈a〉M, (x)N) −−→M [a := (x)N ] if M does not introduce a or
−−→N [x := 〈a〉M ] if N does not introduce x

There are a few subtleties in the reduction rule for the third case. Firstly, there
are two ways to reduce a cut-rule having an implication as the cut-formula.
Therefore we have included two reductions for this case. Secondly, special care
needs to be taken that there is no clash between bound and free (co-)names. In
the first reduction rule we need to ensure that a is not a free co-name in N ; in
the second rule that x is not free in P . This can always be achieved by renaming
a and x appropriately (they are binders in ImpR((x)〈a〉M, b)). We assume that
the renaming is done implicitly in the cut-elimination procedure.
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The main difference between our rules and the cut-elimination procedure
defined for LKtq is the inclusion of non-determinism. Recall our example from
the beginning of this section where a commuting cut can move in two directions.
Let Cut(〈a〉M, (x)N) be the term annotation for this commuting cut where M
andN are the corresponding term annotations for proofs π1 and π2, respectively.
According to our last rule, this term can reduce to either M [a := (x)N ] or
N [x := 〈a〉M ]. The choice to which term it reduces is not specified (similarly
for the reduction of the logical cut in the third case). In contrast, in LKtq this
choice is completely determined by the colour annotation. In general the colour
annotation reduces the number of normal forms (cut-free proofs) reachable from
a proof containing cuts (see §4 for an example). For the substitution we have
the following lemmas:

Lemma 1.
(i)M [x := 〈a〉Ax(y, a)]−−→+M{x 7→y} orM [x := 〈a〉Ax(y, a)] ≡M

(ii)M [a := (x)Ax(x, b)]−−→+M{a 7→ b} orM [a := (x)Ax(x, b)] ≡M

Proof. Routine induction on the structure of M .

Lemma 2. For any arbitrary substitution [σ]

if M−−→M ′, then M [σ]−−→M ′[σ] or M [σ] ≡M ′[σ]

Proof. Induction on the structure of M . One interesting case is where M [σ] ≡
M ′[σ]; it is as follows:

Case M ≡ Cut(〈a〉Ax(y, a), (x)P ): Let P introduce x, then M−−→M ′ with
M ′ ≡ P {x 7→y}. Let [σ] be [y := 〈c〉Q]. We have:

M [σ] ≡ Cut(〈a〉Ax(y, a), (x)P )[y := 〈c〉Q]
def
= Cut(〈c〉Q, (y)P {x 7→y})

M ′[σ] ≡ P {x 7→y}[y := 〈c〉Q]
def
= Cut(〈c〉Q, (y)P {x 7→y})

3 Proof of Strong Normalisation

We give in this section a detailed proof of strong normalisation for the reduction
system developed in the previous section. To save space only details for the ∧-
fragment are presented, but some pointers are given at the end of this section
for the other connectives. The proof uses the notion of symmetric reducibility
candidates from [1]. The proof proceeds as follows:

1. Define the sets of candidates over types using a fixed point construc-
tion.

2. Prove that candidates are closed under reduction.
3. Show that a named or co-named term in a candidate implies strong
normalisation for the corresponding term.

4. Prove that all terms are strongly normalising.
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The set SN denotes the set of strongly normalising terms. The candidates are
defined only for named and co-named terms. We say that 〈B〉 is the type of
co-named terms of the form 〈a:B〉M ; similarly (B) is the type of named terms
of the form (x:B)M . We define:

1. CT〈B〉 is the set of co-named terms of type 〈B〉,
2. NT(B) is the set of named terms of type (B).

In the following we define for every type 〈B〉 and (B) the candidates, written
as [[〈B〉]] and [[(B)]]; they are subsets of CT〈B〉 and NT(B), respectively. The
definition of the candidates uses set operators for which we define the types as
follows (where the set of all subsets of a given set S will be denoted as P(S)):

andright〈B∧C〉 : P(CT〈B〉) × P(CT〈C〉) × P(NT(B∧C)) → P(CT〈B∧C〉)
andlefti(B1∧B2) : P(NT(Bi)) × P(CT〈B1∧B2〉) → P(NT(B1∧B2))

binding(B) : P(CT〈B〉) → P(NT(B))
binding〈B〉 : P(NT(B)) → P(CT〈B〉)

neg(B) : P(CT〈B〉) → P(NT(B))
neg(B) : P(CT〈B〉) → P(NT(B))

The operators are indexed on types. When defining the set operators we use the
following two sets of named and co-named axioms:

axioms(B)
def
= {(x:B)Ax(y, b) | for all Ax(y, b)} ⊆ NT(B)

axioms〈B〉
def
= {〈a:B〉Ax(y, b) | for all Ax(y, b)} ⊆ CT〈B〉

The set operators andright, andlefti and binding are defined as follows:

andright〈B∧C〉(X, Y, Z)
def
= {〈c:B∧C〉AndR(〈a:B〉M, 〈b:C〉N, c) |

∀ (x:B∧C)P ∈ Z. 〈a〉M [c := (x)P ] ∈ X and 〈b〉 N [c := (x)P ] ∈ Y }

andlefti(B1∧B2)(X, Y )
def
= {(y:B1∧B2)And

i
L((x:Bi)M, y) |

∀ 〈a:B1∧B2〉P ∈ Y. (x)M [y := 〈a〉P ] ∈ X}

binding(B)(X)
def
= {(x:B)M | ∀〈a:B〉P ∈ X. M [x := 〈a:B〉P ] ∈ SN}

binding〈B〉(Y )
def
= {〈a:B〉M | ∀(x:B)P ∈ Y. M [a := (x:B)P ] ∈ SN}

The set operator neg and the candidates [[(B)]] and [[〈B〉]] are defined simulta-
neously over types:

neg〈B〉(X)
def
= axioms〈B〉 ∪ binding〈B〉(X) 〈B〉 atomic
def
= axioms〈C∧D〉 ∪ binding〈C∧D〉(X) ∪ 〈B〉 ≡ 〈C∧D〉
andright〈C∧D〉([[〈C〉]], [[〈D〉]], X)

neg(B)(Y )
def
= axioms(B) ∪ binding(B)(Y ) (B) atomic
def
= axioms(C∧D) ∪ binding(C∧D)(Y ) ∪ (B) ≡ (C∧D)
andleft1(C∧D)([[(C)]], Y ) ∪ andleft

2
(C∧D)([[(D)]], Y )
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For the definition of the candidates we use fixed points of an increasing set
operator. A set operator op is said to be:

increasing, iff S ⊆ S′ ⇒ op(S) ⊆ op(S′), and
decreasing, iff S ⊆ S′ ⇒ op(S) ⊇ op(S′).

The candidates are defined as follows:

[[(B)]]
def
= X0 and [[〈B〉]]

def
= neg〈B〉([[(B)]])

where X0 is the least fixed point of the operator neg(B)◦neg〈B〉.
1

We have that binding〈B〉 and andright〈C∧D〉 (i.e., X 7→
andright〈C∧D〉([[〈C〉]], [[〈D〉]], X)) are decreasing operators. But then neg〈B〉
must be a decreasing operator (similarly neg(B) must be decreasing). If both
neg〈B〉 and neg(B) are decreasing, then the operator neg(B)◦neg〈B〉 is increas-
ing and the least fixed point X0 exists according to Tarski’s fixed point theorem.
For the candidates we have:

[[(B)]] = neg(B)([[〈B〉]]) and [[〈B〉]] = neg〈B〉([[(B)]]).

Since neg is closed under axioms we also have have:

axioms(B) ⊆ [[(B)]] and axioms〈B〉 ⊆ [[〈B〉]]. (3)

Lemma 3.

(i) If 〈a:B〉M ∈ [[〈B〉]] and M−−→M ′ then 〈a:B〉M ′ ∈ [[〈B〉]].
(ii) If (x:B)M ∈ [[(B)]] and M−−→M ′ then (x:B)M ′ ∈ [[(B)]].

Proof. We prove both cases simultaneously by induction on 〈B〉 and (B).

Case 〈B〉 atomic: For (i) we have [[〈B〉]] = neg〈B〉([[(B)]]); therefore 〈a:B〉M ∈
axioms〈B〉 ∪ binding〈B〉([[(B)]]). M cannot be an axiom (because axioms

do not reduce), therefore 〈a:B〉M ∈ binding〈B〉([[(B)]])
def
= {〈a:B〉S | ∀(x:B)T

∈ [[(B)]].S[a := (x:B)T ] ∈ SN}. For 〈a:B〉M we have M [a := (x:B)P ] ∈ SN
for all (x:B)P ∈ [[(B)]] and since M−−→M ′ we know by Lemma 2 that either
M [a := (x)P ]−−→M ′[a := (x)P ] or M [a := (x)P ] ≡ M ′[a := (x)P ]. In both
cases we have M ′[a := (x:B)P ] ∈ SN for all (x:B)P ∈ [[(B)]]. This implies
that 〈a:B〉M ′ ∈ binding〈B〉([[(B)]]) and hence 〈a:B〉M

′ ∈ neg〈B〉([[(B)]]).
Therefore 〈a:B〉M ′ ∈ [[〈B〉]]. Similarly for (ii).

Case 〈B〉 ≡ 〈C∧D〉: 〈a:C∧D〉M is element of [[〈C∧D〉]] =

neg〈C∧D〉([[(C∧D)]])
def
= axioms〈C∧D〉 ∪ binding〈C∧D〉([[(C∧D)]])∪

andright〈C∧D〉([[〈C〉]], [[〈D〉]], [[(D∧C)]]). 〈a:C∧D〉M 6∈ axioms〈C∧D〉,
because axioms do not reduce. Therefore we have that 〈a:C∧D〉M ∈
andright〈C∧D〉([[〈C〉]], [[〈D〉]], [[(C∧D)]]) or that 〈a:C∧D〉M ∈
binding〈C∧D〉([[(C∧D)]]). In the second case we reason as in the atomic case.
In the first case we know that 〈a〉M is of the form

1 In all rigour we also have to assume that the candidates are closed under α-
conversion.
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〈c:C∧D〉AndR(〈d〉S, 〈e〉T , c) and 〈a〉M ′ ≡ 〈c:C∧D〉AndR(〈d〉S′, 〈e〉T ′, c) where
either S−−→S′ and T ≡ T ′ or S ≡ S′ and T−−→T ′. Assume the for-
mer case (the other case being similar). We have that 〈d:C〉S[c := (x)P ] ∈
[[〈C〉]] for all (x:C∧D)P ∈ [[(C∧D)]]. Since S−−→S′ we know by Lemma 2
that either S[c := (x)P ] ≡ S′[c := (x)P ] or S[c := (x)P ]−−→S′[c := (x)P ].
In both cases (in the second by IH) we can infer that 〈d〉S′[c := (x)P ] ∈
[[(C)]] for all (x:C∧D)P ∈ [[(C∧D)]]. Therefore we know that 〈a:C∧D〉M ′

must be in andright〈C∧D〉([[〈C〉]], [[〈D〉]], [[(C∧D)]]) and we can conclude
that 〈a:C∧D〉M ′ ∈ [[〈C∧D〉]]. Similarly for (ii).

Lemma 4.

(i) If 〈a:B〉M ∈ [[〈B〉]], then M ∈ SN .
(ii) If (x:B)M ∈ [[(B)]], then M ∈ SN .

Proof. Simultaneous induction on the types 〈B〉 and (B).

Case 〈B〉 atomic: Since [[〈B〉]] = neg〈B〉([[(B)]]) we have 〈a:B〉M ∈ axioms〈B〉 or
〈a:B〉M ∈ binding〈B〉([[(B)]]). In the first case M is an axiom and therefore
strongly normalising. In the second case we know thatM [a := (x:B)P ] ∈ SN
for all (x:B)P ∈ [[(B)]]. By (3) we have (x:B)Ax(x, a) ∈ [[(B)]] and therefore
M [a := (x)Ax(x, a)] ∈ SN . Furthermore we know by Lemma 2 that either
M [a := (x)Ax(x, a)] ≡ M or M [a := (x)Ax(x, a)]−−→+M . Therefore M ∈
SN . Similarly for (ii).

Case 〈B〉 ≡ 〈C∧D〉: By [[〈C∧D〉]] = neg〈C∧D〉([[(C∧D)]]) we have that:

〈a:C∧D〉M ∈ axioms〈C∧D〉 ∪ binding〈C∧D〉([[(C∧D)]]) ∪
andright〈C∧D〉([[〈C〉]], [[〈D〉]], [[(C∧D)]])

If 〈a:C∧D〉M is element of the first two sets we reason
as in the atomic case. Left to show is that M ∈ SN if 〈a〉M ∈
andright〈C∧D〉([[〈C〉]], [[〈D〉]], [[(C∧D)]]). In this case 〈a〉M is
of the form 〈c〉AndR(〈d〉S, 〈e〉T , c) where 〈d〉S[c := (x)P ] ∈ [[〈C〉]] and
〈e〉T [c := (x)P ] ∈ [[〈D〉]] for all (x :C∧D)P ∈ [[(C∧D)]]. By (3) we know that
(x:C∧D)Ax(x, c) ∈ [[(C∧D)]] and we have 〈d〉S[c := (x)Ax(x, c)] ∈
[[〈C〉]] and 〈e〉T [c := (x)Ax(x, c)] ∈ [[〈D〉]]. By IH we can infer that S[c :=
(x)Ax(x, c)] ∈ SN and T [c := (x)Ax(x, c)] ∈ SN . From Lemma 1 we can
infer that S[c := (x)Ax(x, c)] ≡ S or S[c := (x)Ax(x, c)]−−→+S. In both cases
we know that S ∈ SN (similarly T ∈ SN). But then AndR(〈d〉S, 〈e〉T , c)
must be strongly normalising too. Similarly for (ii).

Lemma 5. If M,N ∈ SN and 〈a:B〉M ∈ [[〈B〉]], (x:B)N ∈ [[(B)]]
then Cut(〈a:B〉M, (x:B)N) ∈ SN .

Proof. We assign to each term of the form Cut(〈a:B〉M, (x:B)N) a lexicograph-
ically ordered induction value of the form (δ, l(M), l(N)) where δ is the degree
of the cut-formula B; l(M) and l(N) are the lengths of the maximal reduction
sequences starting from M and N , respectively. By assumption both l(M) and
l(N) are finite. We prove that all terms to which Cut(〈a〉M, (x)N) reduces are
strongly normalising.
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Inner Reduction: Cut(〈a〉M, (x)N)−−→Cut(〈a〉M ′, (x)N ′) where either M ≡
M ′ and N−−→N ′ or M−−→M ′ and N ≡ N ′. Assume the later case (the
other case being similar). We have to prove that Cut(〈a〉M ′, (x)N) ∈ SN .
From 〈a:B〉M ∈ [[〈B〉]] we can infer by Lemmas 3 and 4 that 〈a:B〉M ′ ∈ [[〈B〉]]
and M ′ ∈ SN . We know that the degree of the cut-formula is in both terms
equal, but l(M ′) < l(M). Therefore we can apply the IH and infer that
Cut(〈a〉M ′, (x)N) ∈ SN .

Commuting Reduction: Cut(〈a〉M, (x)N)−−→M [a := (x)N ]. By assumption
we have 〈a:B〉M ∈ [[〈B〉]] = neg〈B〉([[(B)]]). We know that the commuting re-
duction is only applicable if M does not introduce a; therefore we have that
〈a:C∧D〉M 6∈ andright〈C∧D〉([[〈C〉]], [[〈D〉]], [[(C∧D)]]) (where B ≡ C∧D).
That means that 〈a:B〉M ∈ axioms〈B〉 or 〈a:B〉M ∈
binding〈B〉([[(B)]]). In the first case we have Cut(〈a〉M, (x)N)−−→M [a :=
(x)N ] ≡M (because M is an axiom and does not introduce a);M is strongly
normalising by assumption.
In the second case we have thatM [a := (y:B)P ] ∈ SN for all (y:B)P ∈ [[(B)]].
Set (y:B)P to (x:B)N which is in [[(B)]] by assumption. Symmetric case is
similar.

Case Logical Reduction I: Cut(〈a〉Ax(y, a), (x)N)−−→N{x 7→ y}.
By assumption we know that N ∈ SN . This implies that N{x 7→ y} ∈ SN .
Symmetric case is similar.

Case Logical Reduction II: Cut〈c〉AndR(〈a〉S, 〈b〉T , c), (y)
And1L((x)U, y), where B ≡ C∧D. For more clarity we set 〈c〉M ≡
〈c:C∧D〉AndR(〈a〉S, 〈b〉T , c) and (y)N ≡ (y:C∧D)And

1
L((x)U, y).

Cut(〈c〉AndR(〈a〉S, 〈b〉T , c), (y)And
1
L((x)U, y))

−−→Cut(〈a〉S[c := (y)N ], (x)U [y := 〈c〉M ]).

By assumption we know that 〈c:C∧D〉M ∈ [[〈C∧D〉]] and (y:C∧D)N ∈
[[(C∧D)]]. We have to show that Cut(〈a : C〉S[c := (y)N ], (x : C)U [y :=
〈c〉M ]) ∈ SN . Since 〈c〉M ∈ [[〈C∧D〉]] = neg〈C∧D〉([[(C∧D)]]) and 〈c〉M 6∈
axioms〈C∧D〉 we know that:

〈c:C∧D〉M ∈ binding〈C∧D〉([[(C∧D)]]) or
〈c:C∧D〉M ∈ andright〈C∧D〉([[〈C〉]], [[〈D〉]], [[(C∧D)]]).

Similarly
(y:C∧D)N ∈ binding(C∧D)([[〈C∧D〉]]) or
(y:C∧D)N ∈ andleft1(C∧D)([[(C)]], [[〈C∧D〉]]).

If 〈c:C∧D〉M ∈ binding〈C∧D〉([[(C∧D)]]) we know that M [c := (z)P ] ∈ SN
for all (z:C∧D)P ∈ [[(C∧D)]]. By assumption (y:C∧D)N ∈ [[(C∧D)]] and
therefore M [c := (y)N ] ≡ Cut(〈c〉M, (y)N) ∈ SN . But then we also have
that its reduct Cut(〈a〉S[c := (y)N ], (x)U [y := 〈c〉M ]) ∈ SN . Similarly for
the case (y:C∧D)N ∈ binding(C∧D)([[〈C∧D〉]]). It is left to show strong
normalisation in the case where 〈c : C∧D〉M ∈andright(C∧D)(J〈C〉K,
J〈D〉K, J(C∧D)K) and (y:C∧D)N ∈ andleft1(C∧D)([[(C)]], [[〈C∧D〉]]). We

have 〈a〉 S[c := (y)P ] ∈ [[〈C〉]] and (x) U [y := 〈c〉Q] ∈ [[(C)]] for all terms
(y:C∧D)P ∈ [[(C∧D)]] and 〈c:C∧D〉Q ∈ [[〈C∧D〉]]. By assumption we know



376 C. Urban and G.M. Bierman

that 〈c:C∧D〉M ∈ [[〈C∧D〉]] and (y:C∧D)N ∈ [[(C∧D)]]; set 〈c〉M for 〈c〉Q
and (y)N for (y)P respectively. Therefore we know that 〈a〉 S[c := (y)N ] ∈
[[〈C〉]] and (x) U [y := 〈c〉M ] ∈ [[(C)]]. Furthermore, by Lemma 4 we have
S[c := (y)N ] ∈ SN and U [y := 〈c〉M ] ∈ SN . Because the degree of the
cut-formula decreased we can apply the IH and infer that

Cut(〈a〉S[c := (y)N ], (x)U [y := 〈c〉M ]) ∈ SN.

We have shown that all immediate reducts of Cut(〈a〉M, (x)N) are strongly nor-
malising. Consequently Cut(〈a〉M, (x)N) must be strongly normalising.

It is left to show that all well-typed terms are strongly normalising. To do so,
we shall consider a special class of simultaneous substitutions, which are called
safe. The principal property of safe substitutions [σ1] and [σ2] is that they can
be commuted, i.e. M [σ1][σ2] ≡M [σ2][σ1].
Let σ̂ be a set of substitutions of the form [x := 〈a〉P ] and [b := (y)Q].

Let us call the set of the x’s and b’s the domain of σ̂ (written as dom(σ̂));
the set of named terms (y)Q and co-named terms 〈a〉P is called the co-domain
of σ̂ (written as codom(σ̂)). A safe simultaneous substitution (sss) is a set of
substitutions where no variable clash between the domain and co-domain occurs
(this can always be achieved by appropriate α-conversions, however, we omit a
precise definition).
The next lemma shows that a specific type of simultaneous substitutions is

safe.

Lemma 6. Let σ̂ be of the form:{ ⋃
i=0,...,n

[xi := 〈c〉Ax(xi, c)]

}
∪

{ ⋃
j=0,...,m

[aj := (y)Ax(y, aj)]

}

where the xi’s and ai’s are distinct names and co-names, respectively. Substitu-
tion σ̂ is a sss.

Proof. Induction on the length of σ̂.

Lemma 7. For every term M (not necessarily strongly normalising) and for
every sss σ̂, such that FN(M) ∪ FC(M) ⊆ dom(σ̂) (i.e., σ̂ is a closing
substitution2) and for every (x:B)P ∈ codom(σ̂) (x:B)P ∈ [[(B)]] and every
〈a:C〉Q ∈ codom(σ̂) 〈a:C〉Q ∈ [[〈C〉]], we have Mσ̂ ∈ SN .

Proof. We proceed by induction over the structure of M . We write σ̂, [σ] for the
set σ̂ ∪ [σ] where [σ] 6∈ σ̂.

Case Ax(x, a): We have to prove that: Ax(x, a) σ̂, [x := 〈b〉P ], [a := (y)Q] ∈
SN . By definition of substitution Ax(x, a) σ̂, [x := 〈b〉P ], [a := (y)Q] ≡
Cut(〈b〉P, (y)Q). By assumption 〈b:B〉P ∈ [[〈B〉]] and (y:B)Q ∈ [[(B)]]. By
Lemma 4 we know that P ∈ SN and Q ∈ SN . Therefore we can apply
Lemma 5 and can infer that Cut(〈b〉P, (y)Q) ∈ SN . Therefore
Ax(x, a)σ̂, [x := 〈b〉P ], [a := (y)Q] ∈ SN .

2 All free names and co-names of M are amongst the domain of σ̂.
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Case AndR(〈a〉M, 〈b〉N, c): We prove that AndR(〈a〉M, 〈b〉N, c) σ̂,
[c := (z)R] ∈ SN where (z:B∧C)R is an arbitrary named term in
[[(B∧C)]]. We can infer that AndR(〈a〉M, 〈b〉N, c) σ̂, [c := (z)R] ≡
Cut(〈c〉AndR(〈a〉Mσ̂, 〈b〉Nσ̂, c), (z)R). By IH we know that M σ̂, [c := (x)S],
[a := (y)P ] ∈ SN and N σ̂, [c := (x)S], [b := (v)Q] ∈ SN for arbitrary
(y:B)P ∈ [[〈B〉]], (v:C)Q ∈ [[〈C〉]] and (x:B∧C)S ∈ [[(B∧C)]].
Making appropriate α-conversions we have (Mσ̂)[c := (x)S][a := (y)P ] ∈
SN and (Nσ̂)[c := (x)S][b := (v)Q] ∈ SN . By definition of binding we
have 〈a:B〉 (Mσ̂)[c := (x)S] ∈ [[〈B〉]] and 〈b:C〉(Nσ̂)[c := (x)S] ∈ [[〈C〉]]. Be-
cause (x:B∧C)S is an arbitrary named term in the candidate [[(B∧C)]] we
have by definition of andright〈B∧C〉 that 〈c:B∧C〉AndR(〈a〉Mσ̂, 〈b〉Nσ̂, c) ∈
[[〈B∧C〉]]. Furthermore we know by Lemma 4 that
AndR(〈a〉Mσ̂, 〈b〉Nσ̂, c) ∈ SN .
For (z:B∧C)R ∈ [[(B∧C)]] we have by Lemma 4 that R ∈ SN . We can apply
Lemma 5 and have Cut(〈c〉AndR(〈a〉Mσ̂, 〈b〉Nσ̂, c), (z)R) ∈ SN and therefore
AndR(〈a〉M, 〈b〉N, c) σ̂, [c := (z)R] ∈ SN .

Case AndiL((x)M, y) (i = 1, 2): We have to prove that And
i
L((x)M, y) σ̂, [y :=

〈c〉R] ∈ SN where 〈c:B1∧B2〉R is an arbitrary co-named term in [[〈B1∧B2〉]].
We have AndiL((x)M, y) σ̂, [y := 〈c〉R] ≡ Cut(〈c〉R, (y)AndiL((x)Mσ̂, y)) by
definition of substitution. By IH we know thatM σ̂, [y := 〈a〉S], [x := 〈b〉T ] ∈
SN for arbitrary 〈a:B1∧B2〉S ∈ [[〈B1∧B2〉]], and arbitrary (b:Bi)T ∈ [[〈Bi〉]].
Making appropriate α-conversions we have (Mσ̂)[y := 〈a〉S][x := 〈b〉T ] ∈
SN . By definition of binding we have (x :Bi) (Mσ̂)[y := 〈a〉S] ∈ [[(Bi)]].
Since 〈a:B1∧B2〉S is an arbitrary co-named term in [[〈B1∧B2〉]] we have by
definition of andlefti(B1∧B2) that

(y:B1∧B2)And
i
L((x)Mσ̂, y) ∈ [[(B1∧B2)]].

By Lemma 4 we can infer that AndiL((x)Mσ̂, y) ∈ SN . For (c:B1∧B2)R ∈
[[(B1∧B2)]] we have by Lemma 4 that R ∈ SN . We can apply Lemma 5 and
have Cut(〈c〉R, (y)AndiL((x)Mσ̂, y)) ∈ SN . Therefore And

i
L((x)M, y) σ̂, [y :=

〈c〉R] ∈ SN .
Case Cut(〈a〉M, (x)N):
Subcase I: M is an axiom (case N being an axiom is similar). We have to
show that Cut(〈a〉Ax(x, a), (y)N) [x := 〈b〉S], σ̂ ∈ SN . By definition of substi-
tution Cut(〈a〉Ax(x, a), (y)N) [x := 〈b〉S], σ̂ ≡ Cut(〈b〉S, (x) N{x 7→y}σ̂). By
assumption we know that 〈b:B〉S ∈ [[〈B〉]]; using Lemma 4 we know that
S ∈ SN . By assumption we know that N σ̂, [x := 〈b〉S], [y := 〈b〉S] ∈
SN for arbitrary 〈b:B〉S ∈ [[〈B〉]]. Because σ̂, [x := 〈b〉S], [y := 〈b〉S] is a
safe simultaneous substitution we have (making appropriate α-conversions)
N σ̂, [x := 〈b〉S], [y := 〈b〉S] ≡ (N{y 7→ x}σ̂) [x := 〈b〉S]. By definition of
binding we know that (x:B) N{y 7→x}σ̂ ∈ [[(B)]]. By Lemma 4 we can infer
that N{y 7→ x}σ̂ ∈ SN . Then we can apply Lemma 5 and can show that
Cut(〈b〉S, (x) N{y 7→x}σ̂) ∈ SN . Therefore Cut(〈a〉Ax(x, a), (y)N) σ̂, [x :=
〈b〉S] ∈ SN .
Subcase II: M and N are not axioms. We prove that Cut(〈a〉M, (x)N) σ̂ ∈
SN . By IH we know that M σ̂, [a := (y)S] ∈ SN and N σ̂, [x := 〈b〉T ] ∈ SN
for arbitrary (y:B)S ∈ [[(B)]] and 〈b:B〉T ∈ [[〈B〉]]. Making appropriate α-
conversions we know that (Mσ̂)[a := (y)S] ∈ SN and (Nσ̂)[x := 〈b〉T ] ∈ SN .
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By definition of binding we can infer that 〈a:B〉Mσ̂ ∈ [[〈B〉]] and (x:B) Nσ̂ ∈
[[(B)]]. By Lemma 4 we have thatMσ̂ ∈ SN andNσ̂ ∈ SN . Therefore we can
apply Lemma 5 and infer Cut(〈a〉Mσ̂, (x) Nσ̂) ≡ Cut(〈a〉M, (x)N) σ̂ ∈ SN .

We can now prove our main theorem.

Theorem 1. All well-typed terms are strongly normalising.

Proof. We know by Lemma 7 that for arbitrary well-typed terms M and arbi-
trary safe simultaneous substitution σ̂, we have Mσ̂ ∈ SN . Let σ̂ be the safe
simultaneous substitution from Lemma 6. Using Lemma 1 we can infer that
either Mσ̂−−→+M or Mσ̂ ≡M . From this we have M ∈ SN .

This theorem can be extended to the full classical logic. To save space we
give only the definitions for the set operators with implicational type:

impleft(B⊃C) : P(CT〈B〉) × P(NT(C)) × P(CT〈B⊃C〉) → P(NT(B⊃C))
impright〈B⊃C〉 : P(NT(B)) × P(CT〈C〉) × P(NT(B⊃C)) → P(CT〈B⊃C〉)

impleft(B⊃C)(X,Y, Z)
def
= {(z:B⊃C)ImpL(〈a:B〉M, (x:C)N, z) |

∀ 〈c:B⊃C〉P ∈ Z.〈a〉M [z := 〈c〉P ] ∈ X and (x) N [z := 〈c〉P ] ∈ Y }

impright〈B⊃C〉(X,Y, Z)
def
= {〈b:B⊃C〉ImpR((x:B)〈a:C〉M, b) |

∀ (z:B⊃C)P ∈ Z, ∀ 〈c:B〉S ∈ X.〈a〉 M [z := 〈c〉P ][x := 〈c〉S] ∈ Y and
∀ (z:B⊃C)P ∈ Z, ∀ (y:C)T ∈ Y.(x)M [z := 〈c〉P ][a := (y)T ] ∈ X}

neg〈B⊃C〉(X)
def
= axioms〈B⊃C〉∪ binding〈B⊃C〉(X)∪
impright〈B⊃C〉([[(B)]], [[〈C〉]],X)

neg(B⊃C)(X)
def
= axioms(B⊃C)∪ binding(B⊃C)(X)∪
impleft(B⊃C)([[〈B〉]], [[(C)]],X)

The strong normalisation proof can be easily extended using the definitions
above. The only difficulty arises in Lemma 5 for the cut-elimination reduction
for the connective ⊃. The reduct of such a cut contains two nested cuts. Al-
though the degree of the cut-formula decreases for the outer cut, the IH is not
immediately applicable. In order to apply the induction hypothesis for the outer
cut one has to show for the inner cut that:

〈a〉Cut(〈c〉N [z := 〈b〉ImpR((x)〈a〉M, b)], (x)M [b := (z)ImpL(〈c〉N, (y)P , z)]) ∈ [[〈C〉]]

and

(x)Cut(〈a〉M [b := (z)ImpL(〈c〉N, (y)P , z)], (y)P [z := 〈b〉ImpR((x)〈a〉M, b)]) ∈ [[(B)]]

In the first case (the other being similar) one has to show that:

Cut(〈c〉N [z := 〈b〉ImpR((x)〈a〉M, b)], (x)M [b := (z)ImpL(〈c〉N, (y)P, z)])

[a := (v)T ] ∈ SN.

To infer this it is essential to know that a is not a free name in N and P (re-
quirement of the reduction rule which can always be achieved by renaming a
appropriately).



Strong Normalisation of Cut-Elimination in Classical Logic 379
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Fig. 3. A proof in G3c and a cut-free normalform which is not reachable by a
cut-elimination procedure using colours as in LKtq.

4 Conclusion

In this paper we presented a reduction system for cut-elimination in classical
logic. One feature of the reduction system is to permute a subderivation of a
commuting cut directly to the place(s) where the cut-formula is a main formula.
This is an idea taken from the work in LKtq [6]. However we do not require
their colour annotations on the cut-formulae (in fact no additional information
is required at all). One consequence is that, in general, more normal forms can
be reached from a given proof containing cuts (see Figure 3 for an example).
Because of the fewer constraints on our reduction system strong normalisation
cannot be proved by translating every reduction to a series of reductions in
proof-nets as done for LKtq. The use of a term calculus for sequent derivations
allowed us to use directly proof techniques from the λSym-calculus [1] to prove
strong normalisation. This use of syntax to study proof structures is part of a
on-going research project [3,19].
The result presented in this paper can be extended to the first-order calculus

and can be adapted to LK or free-style LKtq. There are many directions for
further work. For example what is the precise correspondence in the intuition-
istic case between normalisation and our strongly normalising cut-elimination
procedure? For classical logic the correspondence between our cut-elimination
procedure and normalisation in, for example, Parigot’s λµ [17] is another inter-
esting question.
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Abstract. We extend the framework of Pure Type Systems with sub-
typing, as found in . This leads to a concise description of many
existing systems with subtyping, and also to some new interesting sys-
tems. We develop the meta-theory for this framework, including Subject
Reduction and Minimal Typing.
The main problem was how to formulate the rules of the framework in
such a way that we avoid circularities between theory about typing and
theory about subtyping. We solve this problem by a simple but rigorous
design decision: the subtyping rules do not depend on the typing rules.

1 Introduction

The Pure Type Systems (PTSs, see [Bar92]) provide a framework of type sys-
tems, in which many particular systems, such as F , F ω, λP and the Calculus
of Constructions can be concisely expressed and easily compared. Furthermore,
the PTSs also include many new interesting systems.
We introduce a framework of Pure Type Systems with Subtyping (PTS≤s),

which includes a number of PTSs extended with subtyping, e.g. λ→≤ [Car88],
F≤ [CG92], F

ω
≤ [PS94], λP≤ [AC96] and λC≤ [Che97]. This framework also

yields new systems, e.g. the Calculus of Constructions with subtyping.
The main problem is how to define it in such a way that we can develop

the meta-theory. The most straightforward approach seems to be the combina-
tion of the rules of PTSs with subtyping rules found in systems like Fω≤. Some
of these subtyping rules have typing judgments as premises. This is very awk-
ward for the meta-theory, since results about the subtyping judgment cannot be
proved independently of results about the typing judgments: soon one gets cir-
cular dependencies of lemmas about subtyping and lemmas about typing. Each
particular system with subtyping in the literature avoids or solves this problem
by exploiting the particular nature of that system, and none of these solutions
work also for PTS≤s (see section 2.3).
This leads us to consider a reformulation of the definition of the PTS≤s,

where we conform to the following major design decision:

The subtyping rules do not depend on the typing rules.

In other words, we define the subtyping relation on pseudoterms rather than
only on well-typed terms. Now we can develop the theory for subtyping first,
and then proceed to the typing judgment.

J.-Y. Girard (Ed.): TLCA’99, LNCS 1581, pp. 381–396, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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It turns out to be hard to prove some essential properties about the sub-
typing judgment. We solve this by considering an equivalent reformulation of
the subtyping rules, roughly similar to the subtyping algorithms proposed in the
literature. A surprising element in this reformulation is a subtyping rule that
relates terms that are per definition untypable.
Furthermore, the proof of Uniqueness of Typing for ordinary PTSs couldn’t

be easily extended to a proof of Minimal Typing for PTS≤s. We solved this by
proving a weak form of Minimal Typing, and by introducing another form of
reduction.

In section 2 we define the syntax of PTS≤s, and give the typing and subtyp-
ing rules. We also relate to subtyping systems in the literature. Section 3 gives
the meta-theory including Subject Reduction and Minimal Typing. Section 4
gives the conclusions.

2 Syntax and Typing Rules

We specify the syntax of PTS≤s in section 2.1, and the typing and subtyping
rules in section 2.2. Section 2.3 shows how many existing systems with subtyping
can be considered as a PTS≤. Section 2.4 show a number of alternatives and
extensions for our rules.

2.1 Syntax

Three constructs are new in PTS≤s (compared to ordinary PTSs). We have
bounded abstractions λx ≤ a : A. b, bounded quantifications Πx ≤ a : A. B,
and bounded declarations Γ, x≤ a : A. These constructs are important in the
explanation of specifications of PTS≤s.

Definition 1. A specification of a PTS≤ is a 5-tuple (S,A,R,S≤,R≤), with
the following properties:

1. S is a set of symbols called the sorts.
2. A ⊆ S × S, a set of axioms of the form (s :s′).
3. R ⊆ S × S × S, a set of rules of the form (s1, s2, s3).
4. S≤ ⊆ S is a set of subtyping sorts.
5. R≤ ⊆ S≤ × S × S, a set of bounded rules.

We write (s1, s2) for a (bounded) rule, as abbreviation for (s1 , s2, s2). The first
three elements of the tuple serve exactly the same purpose as in PTSs [Bar92].
The subset of sorts S≤ controls on which levels we can introduce subtyping.
We can make a bounded declaration x≤ a : A, which declares variable x as a
subtype of a, if a : A and A : s and s ∈ S≤. Intuitively, in the system λω≤

where S≤ = {2}, we admit Nat≤Int : *, since * :2 and 2 ∈ S
≤, and we admit

CarI≤ VehicleI : * → *, since * → * : 2 and 2 ∈ S
≤, but we do not admit

x≤true : Bool since Bool : * and * 6∈ S
≤.
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Just as R controls which Π-types (quantifications) we can form, R≤ controls
which bounded Π-types (bounded quantifications) we can make, and hence also
which bounded abstractions we can make. For example, in λ2 the rule (2, *) ∈ R
makes the Π-type ΠX : *. X→ X possible, and similarly, in λ2

≤ the bounded rule
(2, *) ∈ R

≤ permits the bounded quantification ΠX≤Int : *. X→ X. Typically,
R≤ is a subset of R.

Definition 2 (Pseudoterms).
The set of pseudoterms T of a PTS≤ λ(S,A,R,S≤,R≤) is defined by

T ::= V | S | (T T ) | (λV :T. T ) | (ΠV :T. T ) |

(λV ≤T : T. T ) | (ΠV ≤T : T. T )

where V is the set of variables.

In a pseudoterm λx≤a : A. b the λ binds occurrences of x in b, and similarly for
Π . The notions of free and bound variables are defined accordingly. As usual,
we write A→ B for Πx :A. B when x 6∈ FV(B).

Definition 3 (Pseudocontexts).
The set of pseudocontexts C of a PTS≤ λ(S,A,R,S≤,R≤) is defined by

– ε ∈ C
– Γ, x :A ∈ C if Γ ∈ C, A ∈ T, x ∈ V is Γ -fresh and x 6∈ FV(A).
– Γ, x≤a : A ∈ C if Γ ∈ C, a, A ∈ T, x ∈ V is Γ -fresh and x 6∈ FV(a)∪FV(A).

Here ε denotes the empty context, and a variable x is called Γ -fresh if x 6∈
{y} ∪ FV(B) for all y :B occurring in Γ , and x 6∈ {y} ∪ FV(b) ∪ FV(B) for all
y≤b : B occurring in Γ .

Definition 4 (Reduction). The β-reduction relation �β ⊆ T × T is
defined by

(λx :A. b) a �β b[x := a]
(λx≤a′ : A. b) a �β b[x := a]

and all the compatibility rules. The relation �>β is the reflexive and transitive
closure of �β, and =β is the reflexive, symmetric and transitive closure of �>β .

2.2 Typing Rules

We have three kinds of judgments: Γ ` ok for Γ is well-formed, Γ ` a : A for
term a has type A in Γ , and Γ ` A ≤ B for A is a subtype of B in Γ .

Definition 5 (Well-formedness of contexts).

(C-empty)
ε ` ok

(C-var)
Γ ` A : s
Γ, x : A ` ok

(C-Bvar)
Γ ` a : A Γ ` A : s s ∈ S≤

Γ, x≤a : A ` ok
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By our definition of pseudocontext, x must be Γ -fresh in rules (C-var) and (C-
Bvar). The (C-Bvar) rule formalizes that the set S≤ controls on which levels we
may introduce subtyping, as explained above. E.g. if S = {*,2}, A = {(* :2)}
and S≤ = {2} the context Γinit ≡ Int : *, Nat≤Int : * is well-formed.

Definition 6 (Unbounded typing rules). These rules are a slight reformu-
lation of the rules for PTSs [Bar92], except for the absence of the conversion
rule.

(axiom)
Γ ` ok (s1 :s2) ∈ A
Γ ` s1 : s2

(var)
Γ ` ok x : A ∈ Γ
Γ ` x : A

(Π-form)
Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` (Πx :A.B) : s3

(Π-intro)
Γ, x : A ` b : B Γ ` (Πx :A. B) : s
Γ ` (λx :A. b) : (Πx :A. B)

(Π-elim)
Γ ` b : (Πx :A.B) Γ ` a : A
Γ ` b a : B[x := a]

Definition 7 (Bounded typing rules).

(subsum)
Γ ` b : B Γ ` B′ : s Γ ` B ≤ B′

Γ ` b : B′

(Bvar)
Γ ` ok x≤a : A ∈ Γ
Γ ` x : A

(BΠ-form)
Γ ` A : s1 Γ, x≤a : A ` B : s2 (s1, s2, s3) ∈ R

≤

Γ ` (Πx≤a : A. B) : s3

(BΠ-intro)
Γ, x≤a : A ` b : B Γ ` (Πx≤a : A. B) : s
Γ ` (λx≤a : A. b) : (Πx≤a : A. B)

(BΠ-elim)
Γ ` b : (Πx≤a : A. B) Γ ` a′ : A Γ ` a′ ≤ a
Γ ` b a′ : B[x := a′]

The (subsum) rule is the usual rule for subtyping, with the additional premise
Γ ` B′ : s. This is necessary to ensure B′ is not an ill-behaved pseudoterm
(recall that subtyping is possible on all pseudo-terms). This rule is similar to
the conversion rule in ordinary PTSs. Instead of demanding B =β B

′ we have
Γ ` B ≤ B′. By looking ahead to the (≤-conv) rule in definition 8, we see that
(subsum) generalizes the conversion rule.
Rules (Bvar) through (BΠ-elim) are the Bounded analogues of rules (var)

through (Π-elim). The rule (BΠ-elim) expresses what a bounded quantification
means; if b has type Πx≤ a : A. B, then it may only be applied to terms a′

which are a subtype of a (and also have type A).
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Definition 8 (Subtyping rules).

(≤-conv)
a =β b
Γ ` a ≤ b

(≤-trans)
Γ ` a ≤ b Γ ` b ≤ c
Γ ` a ≤ c

(≤-var)
x≤a : A ∈ Γ
Γ ` x ≤ a

(≤-Π)
Γ ` A′ ≤ A Γ, x : A′ ` B ≤ B′

Γ ` (Πx :A.B) ≤ (Πx :A′. B′)

(≤-BΠ)
Γ, x≤a : A ` B ≤ B′

Γ ` (Πx≤a : A. B) ≤ (Πx≤a : A. B′)

(≤-λ)
Γ, x : A ` b ≤ b′

Γ ` (λx :A. b) ≤ (λx :A. b′)

(≤-app)
Γ ` b ≤ b′

Γ ` b a ≤ b′ a

No subtyping rule depends on a typing judgment. As a consequence, ≤ is a
relation on pseudo-terms. The rules (≤-conv), (≤-trans), (≤-var), (≤-λ) and (≤-
app) are formulated as usual. Rule (≤-Π) is a general formulation of the usual
subtyping rule for →-types. We can use this rule even if there is no interesting
subtyping on B (or A). E.g. Γinit ` Int→ * ≤ Nat→ *.
Rule (≤-BΠ) is called the kernel-Fun rule, since it appears in Cardelli and

Wegner’s original Fun calculus [CW85]. There are alternatives for this rule, but
(≤-BΠ) has the best meta-theoretical properties [CG92,Pie94,CP94].

2.3 Examples of PTS�s

We show how examples of systems of the λ-cube [Bar92] extended with subtyping
fit in our framework. These systems have S = {*,2}, A = {(* : 2)} and R
consists only of pairs. The systems are extended with subtyping by choosing
S≤ = {2}, and taking for R≤ a subset of rules (2, s2) from R. We do not
repeat these common properties. We also briefly discuss some approaches to the
meta-theories, and why these approaches fail to work for PTS≤s.

The PTS≤ λ→≤ is specified by R = {(*, *)} and R
≤ = ∅. Since 2 ∈ S≤

we can make and use subtyping declarations. The system λ→≤ is the standard
extension of λ→ with subtyping, e.g. defined in [Com95], and is the basis of
[Car88].

The system λ2≤ is specified by R = {(*, *), (2, *)} and R
≤ = {(2, *)}. Since

(2, *) ∈ R
≤, we can make bounded quantifications. The system λ2≤ is equal to

kernel-Fun [CW85], except for their Top type. The subtyping rules for the Top
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type in λ2≤ would be:

(≤-Top)
Γ ` A : *
Γ ` A ≤ Top

We didn’t include Top, since this subtyping rule essentially depends on a typing
judgment. This is incompatible with our approach, where subtyping does not
depend on typing. The absence of Top types in PTS≤s is not as bad as it seems,
since we also have ordinary quantifications. The system F≤ (e.g. [CG92]) is equal
to λ2≤ except for a Top-type and a more liberal (≤-BΠ) rule.

The system λω≤ is specified by R = {(*, *), (2, *), (2,2)}, R
≤ = {(2, *)}.

The difference with λ2≤ is that (2,2) ∈ R, resulting in type-constructors. This
has two effects on subtyping. First, we have bounded quantifications were the
bound is a type-constructor. Second, we have lifted subtyping on type-construc-
tors by rules (≤-app) and (≤-λ). The system λω≤ is equal to Fω≤ [PS94], except
that Fω≤ has a family of Top-types. In [Com95] a further extension of F

ω
≤ is

given. The meta-theory is developped in three stages: first the theory about
typing type-constructors, then about the subtyping judgment and finally about
typing programs. This cannot be done in general for PTS≤s, since typing for
the various categories of terms is mutually dependent. In [PS94] the Minimal
Typing property is proved using the typing algorithm, whereas we prove this
property separately.

The system λω≤
+

is specified by R = {(*, *), (2, *), (2,2)} and R
≤ =

{(2, *), (2,2)}. The difference with λω
≤ is that we have (2,2) ∈ R≤. With

this rule, we can type bounded constructor abstractions, i.e. terms like λX ≤
Int : *. X → X. The system λω

≤+

corresponds with the system Fω≤ defined in
[CG97]. There are two differences. First, we have no Top-types. Second, we do
not have subtyping on these bounded abstractions, because it destroys the prop-
erty we formulated in lemma 5. The meta-theory developed in [CG97] follows a
quite different approach than works mentioned above and our work; by giving
a typed operational semantics they solve the mutual dependence between the
typing and subtyping judgments occurring in Fω≤. We don’t know whether this

approach is applicable to PTS≤s.

The system λP≤ is specified by R = {(*, *), (*,2)} and R
≤ = ∅. The

rule (*,2) ∈ R gives types depending on programs and corresponding type-
constructors, for which lifted subtyping is possible. The system λP≤ as described
in [AC96] is roughly the same as this PTS≤, and typing on programs in both
systems is exactly equivalent. This system is the first calculus discussed here
with mutual dependency between programs and type-constructors. They avoid
circularities between lemmas about typing and lemmas about subtyping by syn-
tactically distinguishing β-reduction on programs and on type-constructors. This
syntactical distinction is impossible in PTS≤s. Just as in [PS94] the Minimal
Typing property is proved using the typing algorithm.

The PTS≤ λC≤ is specified by R = S2 and R≤ = {(2, *), (2,2)}. This is
the Calculus of Constructions [CH88], the most powerful system in the λ-cube,
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extended with subtyping and bounded quantifications. It includes all systems
given above. The system λC≤ hasn’t come up in the literature.
The PTS≤ λC≤

−

is specified by R = S2 and R≤ = ∅. This is the subsystem
of λC≤ where bounded quantifications have been left out. The PTS≤ λC≤

−

is
exactly the same as the system defined in [Che97]. Here, programs and type-
constructors are also mutually dependent, but the typing judgments occurring
in subtyping rules all have the simple form Γ ` A : s. Using this in combination
with the specific rules R of λC≤

−

, enough meta-theory for typing can be proved
before subtyping is examined. This method does not work for PTS≤s, since
terms involved in the subtype relation are not always typable with a sort.

2.4 Alternatives for Rules

In this section we discuss two alternatives for our rules, and why we have rejected
these alternatives. Some other alternatives were given in section 2.3.
The (≤-λ) rule can be generalized, so that Γ ` A′ ≤ A and Γ, x :A′ ` B ≤ B′

imply Γ ` λx :A. B ≤ λx :A′. B′. We have chosen for (≤-λ) because it is simpler
and the generalization does not have any effect in most PTS≤s.
We first considered a more constrained version of the (subsum) rule:

(subsum’)
Γ ` b : B Γ ` B′ : s Γ ` s : s′ s′ ∈ S≤ Γ ` B ≤ B′

Γ ` b : B′

We did so, because we believed the meta-theory would be easier because of the
additional constraints on s. It turned out, however, that the meta-theory was
more difficult, so we rejected this rule.

3 Meta-theory

In this section we develop the meta-theory for PTS≤s. First we establish a
number of properties of the subtyping judgment (section 3.1). We are able to
do so, because subtyping does not depend on typing. Using these properties, we
prove that the Subject Reduction property holds for all PTS≤s (section 3.2).
In functional PTSs (without subtyping), we have that every term has a unique
type (modulo β-conversion). Subtyping destroys this property, but every term
has a so-called minimal type. Section 3.3 shows this for functional PTS≤s. First,
we mention the Church-Rosser property for β-reduction.

Theorem 1. If a =β b then there is a c with a �>β c and b �>β c.

3.1 Properties of Subtyping

Unfortunately, the subtyping rules given in definition 8 are quite intractable; it
is hard to prove properties about them. They are so intractable, because there
is a lot of redundancy in the subtyping rules; there can be several quite different
derivations of the same subtyping judgment. Therefore we introduce a set of
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more restricted rules, equivalent to the set in definition 8, but with only a little
redundancy. This set of restricted rules behaves much better, and in particular
has the following crucial property: a subtype derivation using the restricted
rules does not introduce untypable terms. To be more precise, if the terms in the
conclusion of such a subtyping judgment are typable, then all terms occurring in
the derivation of this judgment are typable. We will only be able to show this at
the end of section 3.2, in lemma 6. The original rules do not have this property.
Two rules are responsible for the intractibility of the set of original rules,

namely (≤-trans) and (≤-app). We discuss for both rules which problems they
cause, and which restricted rules (in definition 10) below replace them.

The (�-trans) rule. As in most systems with subtyping, this rule is the most
responsible for the intractibility of the original subtyping rules, and we have a
similar solution. Recall that (≤-trans) allows deriving Γ ` a ≤ c from Γ ` a ≤ b
and Γ ` b ≤ c.
It can be used at any moment in a derivation, since there are no restrictions

on the form of the conclusions a and c. Even worse, the term b in the premises
cannot be determined from a and c, and even when a and c are typable terms, b
can be a non-typable term. It is essential in two situations. First, using (≤-trans)
and (≤-conv) we can derive Γ ` a ≤ b from Γ ` a′ ≤ b′ whenever a �>β a′ and
b�>β b

′. This use of the (≤-trans) rule is taken over by the more direct (≤-red)
rule (in definition 10). As a side-effect, the (≤-conv) rule can be simplified to
(≤-refl).
Second, the (≤-trans) rule is necessary when the term a is a variable x, and c

is not convertible to a. This use of transitivity is taken over by the (≤-transvar)
rule.
In all other cases, the (≤-trans) rule is not essential, because it can be

“pushed” upwards through the derivation, ending only in one of the situa-
tions sketched above. This property, sometimes called “Transitivity Elimination”
[Com95,Che97], is formally proved in lemma 4.

The (�-app) rule. Another source of intractability is the (≤-app) rule, which
says that Γ ` b a ≤ b′ a is derivable from Γ ` b ≤ b′. It is not apparent that this
rule gives problems, but consider the case when b is an abstraction: instead of
using (≤-app), we could also reduce b a using the (≤-trans) and (≤-conv) rules
(in the same way as above), and proceed from there. If a judgment of this form
holds, it can always be derived without (≤-app). So for this kind of judgments,
we do not need the (≤-app) rule, and we would like to remove it, to have less
redundancy.
However, it is essential in two situations: First, if term b (in judgment b a ≤

b′ a) is a variable. This is catered for by the (≤-transvar) rule given in defini-
tion 10, where (≤-app) is combined with (≤-trans) and (≤-var). Second, if the
term b is a (bounded or unbounded) Π-type. For example we can derive with
(≤-app) that Γinit, B : * ` (Πx :B. Nat) B ≤ (Πx :B. Int) B. The reader might re-
ject this situation by saying that b a is never typable if b is a Π-type. This is
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true, however subtyping is defined on pseudo-terms, rather than (typable) terms,
so we cannot ignore this situation here. This is a consequence of the decision
that the subtyping rules do not depend on typing judgments.
This situation is catered for by the (≤-Πapp) rule below. In the end, when

we have shown Subject Reduction, we will see we do not need (≤-Πapp) rule
after all (lemma 6). This seems to be a contradiction with the statement that (≤-
app) is essential in this situation. But it is not a contradiction: for pseudoterms
the (≤-Πapp) rule is essential, and for typable terms it is redundant. In other
words, the rule is needed only as a catalyst, in order to prove the meta-theory
for subtyping as smooth as possible.
In other situations, the (≤-app) rule is not essential, which is proved in

lemma 3.

Definition 9. A term a is a Π-type if a ≡ Πx :B. C or a ≡ Πx≤b : B. C for
some b, B and C.

Definition 10 (Subtyping rules).

(≤-refl)
Γ ` b ≤ b

(≤-red)
a�>β a

′ b�>β b
′ Γ ` a′ ≤ b′

Γ ` a ≤ b

(≤-transvar)
x≤a : A ∈ Γ Γ ` a c1 c2 . . . cn ≤ b n > 0
Γ ` x c1 c2 . . . cn ≤ b

(≤-Πapp)
Γ ` a ≤ b a is a Π-type b is a Π-type n > 1
Γ ` a c1 c2 . . . cn ≤ b c1 c2 . . . cn

(≤-Π)
Γ ` A′ ≤ A Γ, x : A′ ` B ≤ B′

Γ ` (Πx :A. B) ≤ (Πx :A′. B′)

(≤-BΠ)
Γ, x≤a : A ` B ≤ B′

Γ ` (Πx≤a : A. B) ≤ (Πx≤a : A. B′)

(≤-λ)
Γ, x : A ` b ≤ b′

Γ ` (λx :A. b) ≤ (λx :A. b′)

Convention. From this point onwards, we will always use the subtyp-
ing rules of definition 10. We will refer to the original, liberal rules (defini-
tion 8) using Γ `l a ≤ b. Note that the typing rules use the liberal rules.

Most other works [PS94,AC96,CG97,Che97] also have a set of alternative
typing rules, roughly similar to ours, i.e. with (≤-app) and (≤-trans) replaced
by (≤-transvar). There are two important differences. First, none of the sets of
alternative rules in the literature have the rule (≤-Πapp). Second, the alternative
rules differ considerably in the approach of reduction in subtyping judgments
(our rule (≤-red)).
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In the rest of this section we show some properties of the new subtyping
rules, including some Generation properties, equivalence with the liberal rules,
and the Substitution lemmas. But first we show that subtyping is closed under
β-conversion, i.e. β-converting a term in a subtyping judgment keeps it derivable
(theorem 2). Even the number of interesting steps — i.e. not (≤-red) — in the
derivation for this judgment stays the same.

Convention. We use the letter Υ as meta-variable for derivation trees, because
it resembles a willow.

Definition 11. The NR-height of a subtyping derivation Υ , written as NR-
height(Υ ), is the height of Υ , not counting applications of the (≤-red) rule. NR
stands for “Not counting Reductions”. We write Υ < Υ ′ as shorthand for NR-
height(Υ ) < NR-height(Υ ′), and similarly for ≤.

Definition 12. �β , �>β and =β are extended to contexts in the usual way.

Theorem 2 (≤-Conversion-closed). Suppose Γ =β Γ ′ and a =β a′ and b =β
b′. If Υ derives Γ ` a ≤ b then there is a Υ ′ ≤ Υ such that Υ ′ derives Γ ′ ` a′ ≤ b′.

This property is very important, since it allows us to convert terms in a subtyping
judgment without increasing the NR-height. This makes the NR-height a very
useful induction measure. An example of use of this lemma is in the proof of
lemma 4.
Now we prove Generation properties for subtyping. We mention only

Lemma 1 (≤-Generation).

1. If Γ ` Πx :A1. B1 ≤ Πx :A2. B2 then Γ ` A2 ≤ A1 and Γ, x :A2 ` B1 ≤ B2.
2. If Γ ` (Πx≤a1 : A1. B1) ≤ (Πx≤a2 : A2. B2) then a1 =β a2 and A1 =β A2
and Γ, x≤a1 : A1 ` B1 ≤ B2.

One of the reasons for introducing the restricted subtyping rules is that gen-
eration properties like these are very hard to prove for the original subtyping
rules.
The first Substitution property for subtyping allows us to replace an un-

bounded variable y with any term c. Note that c does not have to be typable.

Lemma 2 (≤-Substitution). If Γ, y : C, Γ ′ ` a ≤ b and Γ, Γ ′[y := c] is a
pseudocontext then Γ, Γ ′[y := c] ` a[y := c] ≤ b[y := c].

The other part of the Substitution property — replacing a bounded variable —
is proved at the end of this section. We use the ≤-Substitution property just
given for showing admissibility of the (≤-app) rule.

Lemma 3 (App-admissible). If Γ ` a ≤ b then Γ ` a c ≤ b c.
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Proof. By induction on the NR-height of the derivation, and by case distinction
to the last derivation rule other than (≤-red). ut

Note that this property depends essentialy on the (≤-Πapp) rule; for an example
see the discussion about the (≤-app) rule at the start of this section.

Lemma 4 (Trans-admissible). If Γ ` a ≤ b and Γ ` b ≤ c then Γ ` a ≤ c.

Proof. By induction on the sum of the NR-heights of the derivations. Consider
in each derivation the last rule other than (≤-red). So we have a�>β a′, b�>β b′,
Γ ` a′ ≤ b′, b �>β b′′, c �>β c′ and Γ ` b′′ ≤ c′, where the last rule in both
derivation is not (≤-red). Now we make a case distinction to the last rule used for
deriving Γ ` a′ ≤ b′. Cases (≤-refl) and (≤-transvar) are straightforward, using
theorem 2 (and the IH for (≤-transvar)). For the other cases, we make case
distinction to the last rule used for deriving Γ ` b′′ ≤ c′. Since b′ =β b′′, it is
easy to see this derivation uses either (≤-refl), then we are done by theorem 2),
or the same rule as for Γ ` a′ ≤ b′, then we finish the proof using theorem 2 and
the IH. ut

Now all liberal rules (definition 8) have been shown to be admissible, so
every subtyping judgment derivable with the liberal rules is also derivable with
the restricted rules.

Theorem 3 (Equivalence). Γ `l a ≤ b⇐⇒ Γ ` a ≤ b.

Proof. Soundness (⇐=) is easy. Completeness (=⇒) follows from the admissibil-
ity lemmas 3 and 4; admissibility of (≤-conv) and (≤-var) is simple. ut

Soundness only holds because the liberal rules do not have typing judgments as
premise. The equivalence allows replacing each premise of the form Γ `l a ≤ b
in typing rules by the premise Γ ` a ≤ b without changing the set of derivable
typing judgments, so we can use properties like lemma 1 when proving properties
about the typing judgment.
Using the admissibility of (≤-trans) and (≤-app), we prove the other Substi-

tution property.

Lemma 5 (≤-Substitution). If Γ ` c ≤ c′ and Γ, y≤c′ : C, Γ ′ ` a ≤ b and
Γ, Γ ′[y := c] is a pseudocontext then Γ, Γ ′[y := c] ` a[y := c] ≤ b[y := c].

The ≤-Substitution properties are essential to prove Subject Reduction, via the
Substitution properties for typing.

3.2 Subject Reduction

The proof of Subject Reduction goes along the same lines as in ordinary PTSs,
and is longer but not more complicated. We first have to prove the usual Sub-
stitution properties, using ≤-Substitution, then prove the Generation and Cor-
rectness of Types lemmas and then proceed to Subject Reduction.



392 Jan Zwanenburg

Theorem 4 (Subject Reduction). If Γ ` a : A and a �β b then Γ ` b : A.

Proof. By strengthening the IH as usual, and by induction on the derivation.
All cases go straightforward by IH, except in the first clauses, when a is a redex.
These cases are proved in a similar way as in [Bar92], now using lemma 1. ut

Subject Reduction has an important consequence on subtyping derivations: the
subtyping rules do not introduce untypable terms. In other words, if the terms
in the conclusion are typable, then all terms in the derivation are typable.

Lemma 6. Suppose Υ derives Γ ` a ≤ b, and Γ ` a : A and Γ ` b : B hold.
Then for all subderivations Υ ′ of Υ , where Υ ′ shows Γ ′ ` c ≤ d for some c and
d, there are C,D such that Γ ′ ` c : C and Γ ′ ` d : D.

This lemma has the following consequence. The (≤-Πapp) rule is not used in
subtyping derivations with typable terms in the conclusion. This follows from
the fact that the conclusion of the (≤-Πapp) rule contains two terms that are
never typable, since the terms consist of an application of a Π-type to one or
more arguments.

3.3 Minimal Typing

For ordinary functional PTSs, we have Uniqueness of Typing, which says that
a term has only one type, modulo β-conversion. We do not have unique types
in PTS≤s, since by the subsumption rule a term can have different types. We
will show that we do have a weaker property, Minimal Typing. This means that
every typable term has a minimal type.

Definition 13. Term a has minimal type A in Γ , notated as Γ m̀ a : A, if
Γ ` a : A and for all B Γ ` a : B =⇒ Γ ` A ≤ B.

Minimal Typing is important for type-checking, since the problem “does term a
have type B” can then be split into the simpler problems “compute a minimal
type A for a” and “is A a subtype of B”.
Minimal Typing holds only for functional PTS≤s:

Definition 14. A PTS≤ λ(S,A,R,S≤,R≤) is functional if

(s :s′) ∈ A and (s :s′′) ∈ A =⇒ s′ ≡ s′′

(s1, s2, s3) ∈ R and (s1 , s2, s′3) ∈ R =⇒ s3 ≡ s′3
(s1, s2, s3) ∈ R≤ and (s1 , s2, s′3) ∈ R

≤ =⇒ s3 ≡ s′3

However, Minimal Typing is not easily proved. A direct proof by induction
on the structure of the term (say a) fails, because of two problems.
First, we sometimes need the induction hypothesis for a type of a, instead

of a subterm. We solve this problem by first proving a property called Weak
Minimal Typing (lemma 8), which is strong enough to replace the IH for the
type of a.
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Second, if a is an application b c, we get by the IH a minimal type B of b.
But we are not interested in B itself, but in B′, the least supertype of B that is
a Π-type; only from B′ we can calculate a minimal type of the application b c.
We obtain this B′ by introducing a new kind of reduction �whβσ (weak head β
σ), which reduces B to B′.

Convention. In this section we consider only functional PTS≤s.

First we show the Weak Minimal Typing property that says that common
types of a term have a (common) lower bound, and then we define �whβσ re-
duction.

Definition 15. Terms a and b have a lower bound in Γ , Γ ` a t b, if there is
a c such that Γ ` c ≤ a and Γ ` c ≤ b.

Lemma 7.

– If Γ ` s1 t s2 then s1 ≡ s2.
– If Γ ` (Πx :A1. B1) t (Πx :A2. B2) then Γ, x :A1 ` B1 tB2.
– If Γ ` (Πx≤a1 : A1. B1)t (Πx≤a2 : A2. B2) then Γ, x≤a1 : A1 ` B1tB2.
– Not Γ ` (Πx :A1. B1) t (Πx≤a2 : A2. B2).
– If Γ ` A t s then Γ ` A ≤ s.

Lemma 8 (Weak Minimal Typing).
If Γ ` a : A and Γ ` a : B then Γ ` A tB.

Proof. By induction on the structure of a. Apply the Generation lemma to
Γ ` a : A and Γ ` a : B. For some cases, we need lemmas 7, 4, 2 and 5. ut

Note that if we read “=β” for “≤”, then “t” is equal to “=β”, and we have
the Uniqueness of Types property. Using Weak Minimal Typing, we prove the
following lemma that relates the types of two terms that are in the subtype
relation. We need also this lemma in the proof of Minimal Typing.

Lemma 9. If Γ ` a ≤ b and Γ ` a : A and Γ ` b : B then Γ ` A tB.

Proof. By induction on the subtyping derivation, using lemmas 7 and 6, and
Weak Minimal Typing. ut

We define �whβσ reduction as the union of �whβ and �whσ, where �whβ is
the usual weak head restriction of �β , and �whσ reduces a term x b1 . . . bn to
c b1 . . . bn if c is the bound of x. This reduction is the weak head restriction of
the so-called Γ -reduction found in [PS94,Che97,CG97].

Definition 16. The relation ` �whβσ is defined as follows:

Γ ` (λx :A. b) a �whβσ b[x := a]
Γ ` (λx≤a′ : A. b) a �whβσ b[x := a]

x≤a : A ∈ Γ =⇒ Γ ` x �whβσ a
Γ ` a �whβσ a′ =⇒ Γ ` a b �whβσ a′ b

Γ ` �>whβσ is the reflexive and transitive closure of Γ ` �whβσ .
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Lemma 10.

– If Γ ` A ≤ s then Γ ` A �>whβσ s.
– If Γ ` A ≤ (Πx :B. C) then Γ ` A �>whβσ (Πx :B′. C ′) and
Γ ` (Πx :B′. C ′) ≤ (Πx :B. C).

– If Γ ` A ≤ (Πx≤b : B. C) then Γ ` A �>whβσ (Πx≤b′ : B′. C ′) and
Γ ` (Πx≤b′ : B′. C ′) ≤ (Πx≤b : B. C).

Theorem 5 (Minimal Typing for functional PTS≤s).
If a is typable in Γ , there is a type M with Γ m̀ a : M .

Proof. By induction on the structure of a. Use the Generation lemma. For every
case we have two parts. First, find an M such that Γ ` a : M . Second, show
that this M is minimal. We sketch the proof of two cases.
If a ≡ b c then Γ ` b : Πx :C.D or Γ ` b : Πx≤c′ : C. D. Assume we are

in the first case, and Γ ` c : C. By IH Γ m̀ b : M1, so Γ `M1 ≤ Πx :C.D.
By lemma 10 Γ ` M1 �>whβσ Πx :C ′. D′ and Γ ` Πx :C ′. D′ ≤ Πx :C.D. A
minimal type of a is now D′[x := c].
If a ≡ λx : C. d then Γ, x :C ` d : D and Γ ` Πx :C.D : s3, which gives

Γ ` C : s1 and Γ, x :C ` D : s2. By IH Γ, x :C m̀ d : M1, so Γ, x :C `M1 ≤ D.
By Correctness of Types Γ, x :C `M1 : s′2, and by lemma 9 Γ, x :C ` s2 t s

′
2

and hence by lemma 7 s2 ≡ s′2. So Γ ` Πx :C.M1 : s3 and we can derive
Γ ` a : Πx :C.M1. It is easy to show that this type is minimal. ut

Finally, each PTS can be seen as a PTS≤ with S≤ and R≤ empty.

Theorem 6. Take the PTS P with specification (S,A,R) and the PTS≤ S
with specification (S,A,R, ∅, ∅). Then Γ P̀ a : A⇐⇒ Γ S̀ a : A.

4 Conclusions

In this paper we defined the framework of Pure Type Systems with Subtyping,
an extension of the PTSs with subtyping, bounded quantification and lifted
subtyping. We do not have subtyping on sorts (e.g. as in [Luo89]), or coercive
subtyping, which means that subtyping between existing types can be defined
with coercions [Bar96]. Many existing type systems with subtyping can be seen
as members of our framework, viz. λ→≤, F≤, F

ω
≤, F

ω
≤, λP≤ and the calculus

of [Che97]. Other members, like λC≤, are new systems which have promising
features, both applicable in programming languages and in theorem proving.
We developed the meta-theory for PTS≤s, including Subject Reduction and

Minimal Typing. In order to prove these properties, we adopted the design de-
cision that the subtyping rules do not depend on the typing rules. This allows
us to develop the meta-theory for the subtyping judgment before the theory of
the typing judgment. However, this decision alone was not sufficient: we had to
give a reformulation of the subtyping rules (definition 10), that behaved better.
In particular, the reformulated rules do not introduce untypable terms: if the
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terms in the conclusion are typable, so are all terms in the premises of the rule
(lemma 6). This property is important in our proof of Minimal Typing.

The decision has two drawbacks. First, ≤ is defined for all pseudoterms in-
stead of only for (typable) terms. Similarly, the meta-theory for the subtyping
judgment is done for pseudoterms. This forced us to introduce a weird rule,
(≤-Πapp), to have equivalence between the original rules and the reformulated
rules on pseudoterms. This rule is weird, since it only relates untypable terms,
but we showed in lemma 6 that (≤-Πapp) is never used in sensible subtyping
derivations. Second, the design decision makes it hard to extend the PTS≤s
with some features, like Top-types or subtyping on bounded operator abstrac-
tions (section 2.3). For many systems, these extensions make little sense and this
drawback has no effect.

A type-checking algorithm and decidability of typing for a range of PTS≤s
is beyond the scope of this paper, but will appear elsewhere [Zwa99].
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