


Twenty Lectures on Algorithmic

Game Theory
Computer science and economics have engaged in a lively interaction over the
past 15 years, resulting in the new field of algorithmic game theory. Many
problems central to modern computer science, ranging from resource allocation in
large networks to online advertising, involve interactions between multiple self-
interested parties. Economics and game theory offer a host of useful models and
definitions to reason about such problems. The flow of ideas also travels in the
other direction, and concepts from computer science are increasingly important in
economics.

This book grew out of the author’s Stanford course on algorithmic game
theory, and aims to give students and other newcomers a quick and accessible
introduction to many of the most important concepts in the field. The book also
includes case studies on online advertising, wireless spectrum auctions, kidney
exchange, and network management.

Tim Roughgarden is an Associate Professor of Computer Science at Stanford
University. For his research in algorithmic game theory, he has been awarded the
ACM Grace Murray Hopper A ward, the Presidential Early Career Award for
Scientists and Engineers (PECASE), the Kalai Prize in Game Theory and
Computer Science, the Social Choice and Welfare Prize, the Mathematical
Programming Society’s Tucker Prize, and the EATCS-SIGACT Gödel Prize. He
wrote the book Selfish Routing and the Price of Anarchy (2005) and coedited
the book Algorithmic Game Theory (2007).



Twenty Lectures

on Algorithmic Game Theory

Tim Roughgarden
Stanford University, California



University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi − 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107172661

10.1017/9781316779309

© Tim Roughgarden 2016

This publication is in copyright. Subject to statutory exception and to the
provisions of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United States of America

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Names: Roughgarden, Tim.

Title: Twenty lectures on algorithmic game theory / Tim Roughgarden,
Stanford University, California.

Description: Cambridge: Cambridge University Press, 2016. | Includes
bibliographical references and index.

Identifiers: LCCN 2016028351 | ISBN 9781107172661 (hardback: alk. paper)
Subjects: LCSH: Game theory. | Algorithms.

Classification: LCC QA269. R68 2016 | DDC 519.3-dc23
LC record available at https://lccn.loc.gov/2016028351

ISBN 978-1-107-17266-1 Hardback
ISBN 978-1-316-62479-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party Internet Web sites referred to in this

publication and does not guarantee that any content on such Web sites is, or will
remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781107172661
https://lccn.loc.gov/2016028351


To Emma



Contents
Preface

1 Introduction and Examples
1.1 The Science of Rule-Making
1.2 When Is Selfish Behavior Near-Optimal?
1.3 Can Strategic Players Learn an Equilibrium?
Notes
Exercises
Problems

2 Mechanism Design Basics
2.1 Single-Item Auctions
2.2 Sealed-Bid Auctions
2.3 First-Price Auctions
2.4 Second-Price Auctions and Dominant Strategies
2.5 Ideal Auctions
2.6 Case Study: Sponsored Search Auctions
Notes
Exercises
Problems

3 Myerson’s Lemma
3.1 Single-Parameter Environments
3.2 Allocation and Payment Rules
3.3 Statement of Myerson’s Lemma
*3.4 Proof of Myerson’s Lemma
3.5 Applying the Payment Formula
Notes
Exercises
Problems

4 Algorithmic Mechanism Design
4.1 Knapsack Auctions
4.2 Algorithmic Mechanism Design
4.3 The Revelation Principle
Notes
Exercises



Problems

5 Revenue-Maximizing Auctions
5.1 The Challenge of Revenue Maximization
5.2 Characterization of Optimal DSIC Mechanisms
5.3 Case Study: Reserve Prices in Sponsored Search
*5.4 Proof of Lemma 5.1
Notes
Exercises
Problems

6 Simple Near-Optimal Auctions
6.1 Optimal Auctions Can Be Complex
6.2 The Prophet Inequality
6.3 Simple Single-Item Auctions
6.4 Prior-Independent Mechanisms
Notes
Exercises
Problems

7 Multi-Parameter Mechanism Design
7.1 General Mechanism Design Environments
7.2 The VCG Mechanism
7.3 Practical Considerations
Notes
Exercises
Problems

8 Spectrum Auctions
8.1 Indirect Mechanisms
8.2 Selling Items Separately
8.3 Case Study: Simultaneous Ascending Auctions
8.4 Package Bidding
8.5 Case Study: The 2016 FCC Incentive Auction
Notes
Exercises
Problems

9 Mechanism Design with Payment Constraints
9.1 Budget Constraints
9.2 The Uniform-Price Multi-Unit Auction
*9.3 The Clinching Auction
9.4 Mechanism Design without Money
Notes



Exercises
Problems

10 Kidney Exchange and Stable Matching
10.1 Case Study: Kidney Exchange
10.2 Stable Matching
*10.3 Further Properties
Notes
Exercises
Problems

11 Selfish Routing and the Price of Anarchy
11.1 Selfish Routing: Examples
11.2 Main Result: Informal Statement
11.3 Main Result: Formal Statement
11.4 Technical Preliminaries
*11.5 Proof of Theorem 11.2
Notes
Exercises
Problems

12 Over-Provisioning and Atomic Selfish Routing
12.1 Case Study: Network Over-Provisioning
12.2 A Resource Augmentation Bound
*12.3 Proof of Theorem 12.1
12.4 Atomic Selfish Routing
*12.5 Proof of Theorem 12.3
Notes
Exercises
Problems

13 Equilibria: Definitions, Examples, and Existence
13.1 A Hierarchy of Equilibrium Concepts
13.2 Existence of Pure Nash Equilibria
13.3 Potential Games
Notes
Exercises
Problems

14 Robust Price-of-Anarchy Bounds in Smooth Games
*14.1 A Recipe for POA Bounds
*14.2 A Location Game
*14.3 Smooth Games
*14.4 Robust POA Bounds in Smooth Games



Notes
Exercises
Problems

15 Best-Case and Strong Nash Equilibria
15.1 Network Cost-Sharing Games
15.2 The Price of Stability
15.3 The POA of Strong Nash Equilibria
*15.4 Proof of Theorem 15.3
Notes
Exercises
Problems

16 Best-Response Dynamics
16.1 Best-Response Dynamics in Potential Games
16.2 Approximate PNE in Selfish Routing Games
*16.3 Proof of Theorem 16.3
*16.4 Low-Cost Outcomes in Smooth Potential Games
Notes
Exercises
Problems

17 No-Regret Dynamics
17.1 Online Decision Making
17.2 The Multiplicative Weights Algorithm
17.3 Proof of Theorem 17.6
*17.4 No Regret and Coarse Correlated Equilibria
Notes
Exercises
Problems

18 Swap Regret and the Minimax Theorem
18.1 Swap Regret and Correlated Equilibria
*18.2 Proof of Theorem 18.5
18.3 The Minimax Theorem for Zero-Sum Games
*18.4 Proof of Theorem 18.7
Notes
Exercises
Problems

19 Pure Nash Equilibria and -Completeness

19.1 When Are Equilibrium Concepts Tractable?
19.2 Local Search Problems
19.3 Computing a PNE of a Congestion Game



Notes
Exercises
Problems

20 Mixed Nash Equilibria and -Completeness

20.1 Computing a MNE of a Bimatrix Game
20.2 Total  Search Problems ( )
*20.3 : A Syntactic Subclass of 
*20.4 A Canonical  Problem: Sperner’s Lemma
*20.5 MNE and 
20.6 Discussion
Notes
Exercises
Problems

The Top 10 List

Hints to Selected Exercises and Problems

Bibliography

Index



Preface
Computer science and economics have engaged in a lively interaction over the
past 15 years, resulting in a new field called algorithmic game theory or
alternatively economics and computation. Many problems central to modern
computer science, ranging from resource allocation in large networks to online
advertising, fundamentally involve interactions between multiple self-interested
parties. Economics and game theory offer a host of useful models and definitions
to reason about such problems. The flow of ideas also travels in the other
direction, as recent research in computer science complements the traditional
economic literature in several ways. For example, computer science offers a
focus on and a language to discuss computational complexity; has popularized the
widespread use of approximation bounds to reason about models where exact
solutions are unrealistic or unknowable; and proposes several alternatives to
Bayesian or average-case analysis that encourage robust solutions to economic
design problems.

This book grew out of my lecture notes for my course “Algorithmic Game
Theory,” which I taught at Stanford five times between 2004 and 2013. The
course aims to give students a quick and accessible introduction to many of the
most important concepts in the field, with representative models and results
chosen to illustrate broader themes. This book has the same goal, and I have
stayed close to the structure and spirit of my classroom lectures. Brevity
necessitates omitting several important topics, including Bayesian mechanism
design, compact game representations, computational social choice, contest
design, cooperative game theory, incentives in cryptocurrencies and networked
systems, market equilibria, prediction markets, privacy, reputation systems, and
social computing. Many of these areas are covered in the books by Brandt et al.
(2016), Hartline (2016), Nisan et al. (2007), Parkes and Seuken (2016), Shoham
and Leyton-Brown (2009), and Vojnović (2016).

Reading the first paragraph of every lecture provides a quick sense of the
book’s narrative, and the “top 10 list” on pages 299–300 summarizes the key
results in the book. In addition, each lecture includes an “Upshot” section that
highlights its main points. After the introductory lecture, the book is loosely
organized into three parts. Lectures 2–10 cover several aspects of “mechanism
design”—the science of rule-making—including case studies in online advertising,
wireless spectrum auctions, and kidney exchange. Lectures 11–15 outline the
theory of the “price of anarchy”—approximation guarantees for equilibria of
games found “in the wild,” such as large networks with competing users.



Lectures 16–20 describe positive and negative results for the computation of
equilibria, both by distributed learning algorithms and by computationally efficient
centralized algorithms. The second and third parts can be read independently of
the first part. The third part depends only on Lecture 13, with the exceptions that
Sections 16.2–16.3 depend on Section 12.4 and Section 16.4 on Lecture 14. The
starred sections are the more technical ones, and they can be omitted on a first
reading.

I assume that the reader has a certain amount of mathematical maturity, and
Lectures 4, 19, and 20 assume familiarity with polynomial-time algorithms and
NP-completeness. I assume no background in game theory or economics, nor can
this book substitute for a traditional book on these subjects. At Stanford, the
course is attended by advanced undergraduates, masters students, and first-year
PhD students from many different fields, including computer science, economics,
electrical engineering, operations research, and mathematics.

Every lecture concludes with brief bibliographic notes, exercises, and problems.
Most of the exercises fill in or reinforce the lecture material. The problems are
more difficult, and often take the reader step-by-step through recent research
results. Hints to exercises and problems that are marked with an “(H)” appear at
the end of the book.

Videos of my classroom lectures in the most recent (2013) offering of the
course have been uploaded to YouTube and can be accessed through my home
page (www.timroughgarden.org). Lecture notes and videos on several other
topics in theoretical computer science are also available there.

I am grateful to all of the Stanford students who took my course, which has
benefited from their many excellent questions and comments. I am especially
indebted to my teaching assistants: Peerapong Dhangwatnotai, Kostas Kollias,
Okke Schrijvers, Mukund Sundarara-jan, and Sergei Vassilvitskii. Kostas and
Okke helped prepare several of the figures in this book. I thank Yannai
Gonczarowski, Warut Suk-sompong, and Inbal Talgam-Cohen for particularly
detailed feedback on an earlier draft of this book, and Lauren Cowles, Michal
Feldman, Vasilis Gkatzelis, Weiwei Jiang, Yishay Mansour, Michael Ostrovsky,
Shay Palachy, and Rakesh Vohra for many helpful comments. The cover art is by
Max Greenleaf Miller. The writing of this book was supported in part by NSF
awards CCF-1215965 and CCF-1524062.

I always appreciate suggestions and corrections from readers.

Stanford University
Stanford, California          

Tim Roughgarden
June 2016

http://www.timroughgarden.org


Lecture 1

Introduction and Examples

This book has three parts, each with its own overarching goal. Lectures 2–10
develop tools for designing systems with strategic participants that have good
performance guarantees. The goal of Lectures 11–15 is to understand when
selfish behavior is largely benign. Lectures 16–20 study if and how strategic
players reach an equilibrium of a game. The three sections of this lecture offer
motivating examples for the three parts of the book.

1.1 The Science of Rule-Making
We begin with a cautionary tale. In 2012, the Olympics were held in London. One
of the biggest scandals of the event concerned, of all sports, women’s badminton.
The scandal did not involve any failed drug tests, but rather a failed tournament
design that did not carefully consider incentives.

The tournament design used is familiar from World Cup soccer. There are four
groups (A, B, C, D) of four teams each. The tournament has two phases. In the
first “round-robin” phase, each team plays the other three teams in its group, and
does not play teams in other groups. The top two teams from each group advance
to the second phase, while the bottom two teams from each group are eliminated.
In the second phase, the remaining eight teams play a standard “knockout”
tournament. There are four quarterfinals, with the losers eliminated, followed by
two semifinals, with the losers playing an extra match to decide the bronze medal.
The winner of the final gets the gold medal, the loser the silver.

The incentives of participants and of the Olympic Committee and fans are not
necessarily aligned in such a tournament. What does a team want? To get as
prestigious a medal as possible. What does the Olympic Committee want? They
didn’t seem to think carefully about this question, but in hindsight it is clear that
they wanted every team to try their best to win every match. Why would a team
ever want to lose a match? Indeed, in the knockout phase of the tournament,
where losing leads to instant elimination, it is clear that winning is always better
than losing.

To understand the incentive issues, we need to explain how the eight winners
from the round-robin phase are paired up in the quarterfinals (Figure 1.1). The
team with the best record from group A plays the second-best team from group C



in the first quarterfinal, and similarly with the best team from group C and the
second-best team from group A in the third quarterfinal. The top two teams from
groups B and D are paired up analogously in the second and fourth quarterfinals.
The dominoes started to fall when, on the last day of round-robin competition,
there was a shocking upset: the Danish team of Pedersen and Juhl (PJ) beat the
Chinese team of Tian and Zhao (TZ), and as a result PJ won group D with TZ
coming in second. Both teams advanced to the knockout stage of the tournament.

Figure 1.1: The women’s badminton tournament at the 2012 Olympics. Both
WY and JK preferred to play TZ in as late a round as possible.

The first controversial match involved another team from China, Wang and Yu
(WY), and the South Korean team of Jung and Kim (JK). Both teams had a 2-0
record in group A play. Thus, both were headed for the knockout stage, with the
winner and loser of this match the top and second-best team from the group,
respectively. Here was the issue: the group A winner would likely meet the
fearsome TZ team in the semifinals of the knockout stage, where a loss means a
bronze medal at best, while the second-best team in group A would not face TZ
until the final, with a silver medal guaranteed. Both the WY and JK teams found
the difference between these two scenarios significant enough to try to
deliberately lose the match!1 This unappealing spectacle led to scandal, derision,
and, ultimately, the disqualification of the WY and JK teams.2 Two group C
teams, one from Indonesia and a second team from South Korea, were
disqualified for similar reasons.

The point is that, in systems with strategic participants, the rules matter.
Poorly designed systems suffer from unexpected and undesirable results. The



burden lies on the system designer to anticipate strategic behavior, not on the
participants to behave against their own interests. We can’t blame the badminton
players for optimizing their own medal placement.

There is a well-developed science of rule-making, the field of mechanism
design. The goal in this field is to design rules so that strategic behavior by
participants leads to a desirable outcome. Killer applications of mechanism design
that we discuss in detail include Internet search auctions, wireless spectrum
auctions, the matching of medical residents to hospitals, and kidney exchanges.

Lectures 2–10 cover some of the basics of the traditional economic approach
to mechanism design, along with several complementary contributions from
computer science that focus on computational efficiency, approximate optimality,
and robust guarantees.

1.2 When Is Selfish Behavior Near-Optimal?

1.2.1 Braess’s Paradox
Sometimes you don’t have the luxury of designing the rules of a game from
scratch, and instead want to understand a game that occurs “in the wild.” For a
motivating example, consider Braess’s paradox (Figure 1.2). There is an origin o,
a destination d, and a fixed number of drivers commuting from o to d. For the
moment, assume that there are two non-interfering routes from o to d, each
comprising one long wide road and one short narrow road (Figure 1.2(a)). The
travel time on a long wide road is one hour, no matter how much traffic uses it,
while the travel time in hours on a short narrow road equals the fraction of traffic
that uses it. This is indicated in Figure 1.2(a) by the edge labels “c(x) = 1” and
“c(x) = x,” respectively. The combined travel time in hours of the two edges in
one of these routes is 1 + x, where x is the fraction of the traffic that uses the
route. Since the routes are identical, traffic should split evenly between them. In
this case, all drivers arrive at d an hour and a half after their departure from o.



Figure 1.2: Braess’s paradox. Each edge is labeled with a function that
describes the travel time as a function of the fraction of the traffic that uses
the edge. After the addition of the (v, w) edge, the price of anarchy is 4/3.

Suppose we try to improve commute times by installing a teleportation device
that allows drivers to travel instantly from v to w (Figure 1.2(b)). How will the
drivers react?

We cannot expect the previous traffic pattern to persist in the new network.
The travel time along the new route o → v → w → d is never worse than that
along the two original paths, and it is strictly less whenever some traffic fails to
use it. We therefore expect all drivers to deviate to the new route. Because of the
ensuing heavy congestion on the edges (o, v) and (w, d), all of these drivers now
experience two hours of travel time from o to d. Braess’s paradox thus shows
that the intuitively helpful action of adding a new superfast link can negatively
impact all of the traffic!

Braess’s paradox also demonstrates that selfish routing does not minimize the
commute time of drivers—in the network with the tele-portation device, an
altruistic dictator could assign routes to traffic to improve everyone’s commute
time by 25%. We define the price of anarchy (POA) as the ratio between the
system performance with strategic players and the best-possible system
performance. For the network in Figure 1.2(b), the POA is .

The POA is close to 1 under reasonable conditions in a remarkably wide range
of application domains, including network routing, scheduling, resource allocation,
and auctions. In such cases, selfish behavior leads to a near-optimal outcome. For
example, Lecture 12 proves that modest over-provisioning of network capacity
guarantees that the POA of selfish routing is close to 1.

1.2.2 Strings and Springs
Braess’s paradox is not just about traffic networks. For example, it has an analog
in mechanical networks of strings and springs. In the device pictured in Figure
1.3, one end of a spring is attached to a fixed support and the other end to a
string. A second identical spring is hung from the free end of the string and
carries a heavy weight. Finally, strings are connected, with a tiny bit of slack,
from the support to the upper end of the second spring and from the lower end of
the first spring to the weight. Assuming that the springs are ideally elastic, the
stretched length of a spring is a linear function of the force applied to it. We can
therefore view the network of strings and springs as a traffic network, where
force corresponds to traffic and physical distance corresponds to travel time.



Figure 1.3: Strings and springs. Severing a taut string lifts a heavy weight.

With a suitable choice of string and spring lengths and spring constants, the
equilibrium position of this mechanical network is described by Figure 1.3(a).
Perhaps unbelievably, severing the taut string causes the weight to rise, as shown
in Figure 1.3(b)! To explain this curiosity, note that the two springs are initially
connected in series, so each bears the full weight and is stretched out to a certain
length. After cutting the taut string, the two springs carry the weight in parallel.
Each spring now carries only half of the weight, and accordingly is stretched to
only half of its previous length. The rise in the weight is the same as the decrease
in the commute time achieved by removing the teleporter from the network in
Figure 1.2(b) to obtain the network in Figure 1.2(a).



1.3 Can Strategic Players Learn an Equilibrium?
Some games are easy to play. For example, in the second network of Braess’s
paradox (Figure 1.2(b)), using the teleporter is a no-brainer—it is the best route,
no matter what other drivers do.

In most games, however, the best action to play depends on what the other
players do. Rock-Paper-Scissors, rendered below in “bimatrix” form, is a
canonical example.

Rock Paper Scissors
Rock 0, 0 −1, 1 1, −1
Paper 1, −1 0, 0 −1, 1
Scissors −1, 1 1, −1 0, 0

One player chooses a row and the other a column. The numbers in the
corresponding matrix entry are the payoffs for the row and column player,
respectively. More generally, a two-player game is specified by a finite strategy
set for each player, and a payoff to each player for every pair of strategies that
the players might choose.

Informally, an equilibrium is a steady state of a system where each participant,
assuming everything else stays the same, wants to remain as is. There is certainly
no “deterministic equilibrium” in the Rock-Paper-Scissors game: whatever the
current state, at least one player can benefit from a unilateral deviation. For
example, the outcome (Rock, Paper) cannot be an equilibrium, since the row
player wants to switch and play Scissors.

When playing Rock-Paper-Scissors, it appears as if your opponent is
randomizing over her three strategies. Such a probability distribution over
strategies is called a mixed strategy. If both players randomize uniformly in Rock-
Paper-Scissors, then neither player can increase her expected payoff via a
unilateral deviation (all such deviations yield an expected payoff of zero). A pair
of probability distributions with this property is a (mixed-strategy) Nash
equilibrium.

Remarkably, allowing randomization, every game has at least one Nash
equilibrium.

Theorem 1.1 (Nash’s Theorem) Every finite two-player game has a Nash
equilibrium.

Nash’s theorem holds more generally in games with any finite number of players
(Lecture 20).

Can a Nash equilibrium be computed efficiently, either by an algorithm or by
strategic players themselves? In zero-sum games like Rock-Paper-Scissors,
where the payoff pair in each entry sums to zero, this can be done via linear



programming or, if a small amount of error can be tolerated, via simple iterative
learning algorithms (Lecture 18). These algorithmic results give credence to the
Nash equilibrium concept as a good prediction of behavior in zero-sum games.

In non-zero-sum two-player games, however, recent results indicate that there
is no computationally efficient algorithm for computing a Nash equilibrium
(Lecture 20). Interestingly, the standard argument for computational intractability,
“ -hardness,” does not seem to apply to the problem. In this sense, the
problem of computing a Nash equilibrium of a two-player game is a rare example
of a natural problem exhibiting intermediate computational difficulty.

Many interpretations of an equilibrium concept involve someone— the
participants or a designer—determining an equilibrium. If all parties are boundedly
rational, then an equilibrium can be interpreted as a credible prediction only if it
can be computed with reasonable effort. Computational intractability thus casts
doubt on the predictive power of an equilibrium concept. Intractability is certainly
not the first stone to be thrown at the Nash equilibrium concept. For example,
games can have multiple Nash equilibria, and this non-uniqueness diminishes the
predictive power of the concept. Nonetheless, the intractability critique is an
important one, and it is most naturally formalized using concepts from computer
science. It also provides novel motivation for studying computationally tractable
equilibrium concepts such as correlated and coarse correlated equilibria (Lectures
13, 17, and 18).



The Upshot

 The women’s badminton scandal at the 2012 Olympics was caused by
a misalignment of the goal of the teams and that of the Olympic
Committee.
 The burden lies on the system designer to anticipate strategic behavior,
not on the participants to behave against their own interests.
 Braess’s paradox shows that adding a superfast link to a network can
negatively impact all of the traffic. Analogously cutting a taut string in a
network of strings and springs can cause a heavy weight to rise.
 The price of anarchy (POA) is the ratio between the system
performance with strategic players and the best-possible system
performance. When the POA is close to 1, selfish behavior is largely
benign.
 A game is specified by a set of players, a strategy set for each player,
and a payoff to each player in each outcome.
 In a Nash equilibrium, no player can increase her expected payoff by a
unilateral deviation. Nash’s theorem states that every finite game has
at least one Nash equilibrium in mixed (i.e., randomized) strategies.
 The problem of computing a Nash equilibrium of a two-player game is
a rare example of a natural problem exhibiting intermediate
computational difficulty.

Notes
Hartline and Kleinberg (2012) relate the 2012 Olympic women’s badminton
scandal to mechanism design. Braess’s paradox is from Braess (1968), and the
strings and springs interpretation is from Cohen and Horowitz (1991). There are
several physical demonstrations of Braess’s paradox on YouTube. See
Roughgarden (2006) and the references therein for numerous generalizations of
Braess’s paradox. Koutsoupias and Papadimitriou (1999) define the price of
anarchy. Theorem 1.1 is from Nash (1950). The idea that markets implicitly
compute a solution to a significant computational problem goes back at least to
Adam Smith’s “invisible hand” (Smith, 1776). Rabin (1957) is an early discussion
of the conflict between bounded rationality and certain game-theoretic equilibrium
concepts.

Exercises



Exercise 1.1 Give at least two suggestions for how to modify the Olympic
badminton tournament format to reduce or eliminate the incentive for a team to
intentionally lose a match.

Exercise 1.2 Watch the scene from the movie A Beautiful Mind that purports to
explain what a Nash equilibrium is. (It’s easy to find on YouTube.) The scenario
described is most easily modeled as a game with four players (the men), each
with the same five actions (the women). Explain why the solution proposed by the
John Nash character is not a Nash equilibrium.

Exercise 1.3 Prove that there is a unique (mixed-strategy) Nash equilibrium in
the Rock-Paper-Scissors game.

Problems
Problem 1.1 Identify a real-world system in which the goals of some of the
participants and the designer are fundamentally misaligned, leading to
manipulative behavior by the participants. A “system” could be, for example, a
Web site, a competition, or a political process. Propose how to improve the
system to mitigate the incentive problems. Your answer should include:

(a) A description of the system, detailed enough that you can express clearly
the incentive problems and your solutions for them.

(b) Anecdotal or demonstrated evidence that participants are gaming the
system in undesirable ways.

(c) A convincing argument why your proposed changes would reduce or
eliminate the strategic behavior that you identified.

Problem 1.2 Can you produce a better video demonstration of Braess’s paradox
than those currently on YouTube? Possible dimensions for improvement include
the magnitude of the weight’s rise, production values, and dramatic content.

1 In hindsight, it seems justified that the teams feared the Chinese team TZ far
more than the Danish team PJ: PJ were knocked out in the quarterfinals, while
TZ won the gold medal.

2 If you’re having trouble imagining what a badminton match looks like when
both teams are trying to lose, by all means track down the video on YouTube.



Lecture 2

Mechanism Design Basics

With this lecture we begin our formal study of mechanism design, the science of
rule-making. This lecture introduces an important and canonical example of a
mechanism design problem, the design of single-item auctions, and develops some
mechanism design basics in this relatively simple setting. Later lectures extend the
lessons learned to more complex applications.

Section 2.1 defines a model of single-item auctions, including the quasilinear
utility model for bidders. After quickly formalizing sealed-bid auctions in Section
2.2 and mentioning first-price auctions in Section 2.3, in Section 2.4 we introduce
second-price (a.k.a. Vickrey) auctions and establish their basic properties. Section
2.5 formalizes what we want in an auction: strong incentive guarantees, strong
performance guarantees, and computational efficiency. Section 2.6 presents a
case study on sponsored search auctions for selling online advertising, a “killer
application” of auction theory.

2.1 Single-Item Auctions
We start our discussion of mechanism design with single-item auctions. Recall
our overarching goal in this part of the course.

Course Goal 1 Understand how to design systems with strategic participants
that have good performance guarantees.

Consider a seller with a single item, such as a slightly antiquated smartphone.
This is the setup in a typical eBay auction, for example. There is some number n
of (strategic!) bidders who are potentially interested in buying the item.

We want to reason about bidder behavior in various auction formats. To do this,
we need a model of what a bidder wants. The first key assumption is that each
bidder i has a nonnegative valuation vi—her maximum willingness-to-pay for the
item being sold. Thus bidder i wants to acquire the item as cheaply as possible,
provided the selling price is at most vi. Another important assumption is that this
valuation is private, meaning it is unknown to the seller and to the other bidders.

Our bidder utility model, called the quasilinear utility model, is the following.
If a bidder i loses an auction, her utility is 0. If the bidder wins at a price p, her
utility is vi − p. This is arguably the simplest natural utility model, and it is the one



we focus on in these lectures.

2.2 Sealed-Bid Auctions
For the most part, we focus on a simple class of auction formats: sealed-bid
auctions. Here’s what happens:

1. Each bidder i privately communicates a bid bi to the seller—in a sealed
envelope, if you like.

2. The seller decides who gets the item (if anyone).
3. The seller decides on a selling price.

There is an obvious way to implement the second step—give the item to the
highest bidder. This is the only selection rule that we consider in this lecture.1

There are multiple reasonable ways to implement the third step, and the choice
of implementation significantly affects bidder behavior. For example, suppose we
try to be altruistic and charge the winning bidder nothing. This idea backfires
badly, with the auction devolving into a game of “who can name the highest
number?”

2.3 First-Price Auctions
In a first-price auction, the winning bidder pays her bid. Such auctions are
common in practice.

First-price auctions are hard to reason about. First, as a participant, it’s hard to
figure out how to bid. Second, as a seller or auction designer, it’s hard to predict
what will happen. To drive this point home, imagine participating in the following
first-price auction. Your valuation (in dollars) for the item for sale is the number of
your birth month plus the day of your birth. Thus, your valuation is somewhere
between 2 (for January 1) and 43 (for December 31). Suppose there is exactly
one other bidder (drawn at random from the world) whose valuation is determined
in the same way. What bid would you submit to maximize your expected utility?
Would it help to know your opponent’s birthday? Would your answer change if
you knew there were two other bidders in the auction rather than one?2

2.4 Second-Price Auctions and Dominant Strategies
We now focus on a different single-item auction, also common in practice, which
is much easier to reason about. What happens when you win an eBay auction? If
you bid $100 and win, do you pay $100? Not necessarily: eBay uses a “proxy
bidder” that increases your bid on your behalf until your maximum bid is reached,



or until you are the highest bidder, whichever comes first. For example, if the
highest other bid is only $90, then you only pay $90 (plus a small increment) rather
than your maximum bid of $100. If you win an eBay auction, the sale price is
essentially the highest other bid—the second highest overall.

A second-price or Vickrey auction is a sealed-bid auction in which the highest
bidder wins and pays a price equal to the second-highest bid. To state the most
important property of second-price auctions, we define a dominant strategy as a
strategy (i.e., a bid) that is guaranteed to maximize a bidder’s utility, no matter
what the other bidders do.

Proposition 2.1 (Incentives in Second-Price Auctions) In a second-price
auction, every bidder i has a dominant strategy: set the bid bi equal to her
private valuation vi.

Proposition 2.1 implies that second-price auctions are particularly easy to
participate in. When selecting a bid, a bidder doesn’t need to reason about the
other bidders in any way—how many there are, what their valuations are,
whether or not they bid truthfully, etc. This is completely different from a first-
price auction, where it never makes sense to bid one’s valuation—this guarantees
zero utility—and the optimal amount to underbid depends on the bids of the other
bidders.

Proof of Proposition 2.1: Fix an arbitrary bidder i, valuation vi, and the bids b−i
of the other bidders. Here b−i means the vector b of all bids, but with the ith
component removed.3 We need to show that bidder i’s utility is maximized by
setting bi = vi.

Let B = maxj≠i bj denote the highest bid by some other bidder. What’s special
about a second-price auction is that, even though there are an infinite number of
bids that i could make, only two distinct outcomes can result. If bi < B, then i
loses and receives utility 0. If bi ≥ B, then i wins at price B and receives utility vi

− B.4

We conclude by considering two cases. First, if vi < B, the maximum utility that
bidder i can obtain is max{0, vi − B} = 0, and it achieves this by bidding truthfully
(and losing). Second, if vi ≥ B, the maximum utility that bidder i can obtain is
max{0, vi − B}= vi − B, and it achieves this by bidding truthfully (and winning). 

Another important property is that a truthful bidder—meaning one that bids her
true valuation—never regrets participating in a second-price auction.

Proposition 2.2 (Nonnegative Utility) In a second-price auction, every
truthful bidder is guaranteed nonnegative utility.

Proof: Losers receive utility 0. If a bidder i is the winner, then her utility is vi − p,
where p is the second-highest bid. Since i is the winner (and hence the highest



bidder) and bid her true valuation, p ≤ vi and hence vi − p ≥ 0. 

Exercises 2.1–2.5 ask you to explore further properties of and variations on
second-price auctions. For example, truthful bidding is the unique dominant
strategy for a bidder in a second-price auction.

2.5 Ideal Auctions
Second-price single-item auctions are “ideal” in that they enjoy three quite
different and desirable properties. We formalize the first of these in the following
definition.

Definition 2.3 (Dominant-Strategy Incentive Compatible) An auction is
dominant-strategy incentive compatible (DSIC) if truthful bidding is always a
dominant strategy for every bidder and if truthful bidders always obtain
nonnegative utility.5

Define the social welfare of an outcome of a single-item auction by

where xi is 1 if i wins and 0 if i loses. Because there is only one item, we have
the feasibility constraint that . Thus, the social welfare is just

the valuation of the winner, or 0 if there is no winner.6 An auction is welfare
maximizing if, when bids are truthful, the auction outcome has the maximum
possible social welfare. The next theorem follows from Proposition 2.1,
Proposition 2.2, and the definition of second-price auctions.

Theorem 2.4 (Second-Price Auctions Are Ideal) A second-price single-
item auction satisfies the following:

(1) [strong incentive guarantees] It is a DSIC auction.
(2) [strong performance guarantees] It is welfare maximizing.
(3) [computational efficiency] It can implemented in time polynomial

(indeed, linear) in the size of the input, meaning the number of bits
necessary to represent the numbers v1, …, vn.

All three properties are important. From a bidder’s perspective, the DSIC
property makes it particularly easy to choose a bid, and levels the playing field
between sophisticated and unsophisticated bidders. From the perspective of the
seller or auction designer, the DSIC property makes it much easier to reason
about the auction’s outcome. Note that any prediction of an auction’s outcome
has to be predicated on assumptions about how bidders behave. In a DSIC



auction, the only assumption is that a bidder with an obvious dominant strategy
will play it. Behavioral assumptions don’t get much weaker than that.7

The DSIC property is great when you can get it, but we also want more. For
example, an auction that gives the item away for free to a random bidder is DSIC,
but it makes no effort to identify which bidders actually want the item. The
welfare maximization property states something rather amazing: even though the
bidder valuations are a priori unknown to the seller, the auction nevertheless
identifies the bidder with the highest valuation! (Provided bids are truthful, a
reasonable assumption in light of the DSIC property.) That is, a second-price
auction solves the social welfare maximization problem as well as if all of the
bidders’ valuations were known in advance.

Computational efficiency is important because, to have potential practical utility,
an auction should run in a reasonable amount of time. For example, auctions for
online advertising, like those in Section 2.6, generally need to run in real time.

Section 2.6 and Lectures 3–4 strive for ideal auctions, in the sense of Theorem
2.4, for applications more complex than single-item auctions.

2.6 Case Study: Sponsored Search Auctions

2.6.1 Background
A Web search results page comprises a list of organic search results— deemed
relevant to your query by an algorithm like PageRank—and a list of sponsored
links, which have been paid for by advertisers. (Go do a Web search now to
remind yourself, preferably on a valuable keyword like “mortgage” or “attorney.”)
Every time you type a search query into a search engine, an auction is run in real
time to decide which advertisers’ links are shown, how these links are arranged
visually, and what the advertisers are charged. It is impossible to overstate how
important such sponsored search auctions have been to the Internet economy.
Here’s one jaw-dropping statistic: around 2006, sponsored search auctions
generated roughly 98% of Google’s revenue. While online advertising is now sold
in many different ways, sponsored search auctions continue to generate tens of
billions of dollars of revenue every year.

2.6.2 The Basic Model of Sponsored Search Auctions
We discuss next a simplistic but useful and influential model of sponsored search
auctions. The items for sale are k “slots” for sponsored links on a search results
page. The bidders are the advertisers who have a standing bid on the keyword
that was searched on. For example, Volvo and Subaru might be bidders on the
keyword “station wagon,” while Nikon and Canon might be bidders on the
keyword “camera.” Such auctions are more complex than single-item auctions in
two ways. First, there are generally multiple items for sale (i.e., k > 1). Second,



these items are not identical. For example, if ads are displayed as an ordered list,
then higher slots in the list are more valuable than lower ones, since people
generally scan the list from top to bottom.

We quantify the difference between different slots using click-through rates
(CTRs). The CTR αj of a slot j represents the probability that the end user clicks
on this slot. Ordering the slots from top to bottom, we make the reasonable
assumption that α1 ≥ α2 ≥ ··· ≥ αk. For simplicity, we also make the unreasonable
assumption that the CTR of a slot is independent of its occupant. Everything we’ll
say about sponsored search auctions extends to the more general and realistic
model in which each advertiser i has a “quality score” βi (the higher the better)
and the CTR of advertiser i in slot j is the product βi αj, (e.g., Exercise 3.4).

We assume that an advertiser is not interested in an impression (i.e., being
displayed on a page) per se, but rather has a private valuation vi for each click on
her link. Hence, the expected value derived by advertiser i from slot j is vj αj.

2.6.3 What We Want
Is there an ideal sponsored search auction? Our desiderata are:

(1) DSIC. That is, truthful bidding should be a dominant strategy, and never
leads to negative utility.

(2) Social welfare maximization. That is, the assignment of bidders to slots
should maximize , where xi now denotes the CTR of the
slot to which i is assigned (or 0 if i is not assigned to a slot). Each slot can
only be assigned to one bidder, and each bidder gets only one slot.

(3) Computational efficiency. The running time should be polynomial (or even
near-linear) in the size of the input v1, …, vn. Remember that zillions of
these auctions need to be run every day!

2.6.4 Our Design Approach
What’s hard about auction design problems is that we have to design jointly two
things: the choice of who wins what, and the choice of who pays what. Even in
single-item auctions, it is not enough to make the “correct” choice to the first
design decision (e.g., giving the item to the highest bidder)—if the payments are
not just right, then strategic participants will game the system.

Happily, in many applications including sponsored search auctions, we can
tackle this two-prong design problem one step at a time.



Step 1: Assume, without justification, that bidders bid truthfully. Then, how
should we assign bidders to slots so that the above properties (2) and (3)
hold?
Step 2: Given our answer to Step 1, how should we set selling prices so
that the above property (1) holds?

If we efficiently solve both of these problems, then we have constructed an
ideal auction. Step 2 ensures the DSIC property, which means that bidders will bid
truthfully (provided each bidder with an obvious dominant strategy plays it). The
hypothesis in Step 1 is then satisfied, so the outcome of the auction is indeed
welfare-maximizing (and computable in polynomial time).

We conclude this lecture by executing Step 1 for sponsored search auctions.
Given truthful bids, how should we assign bidders to slots to maximize the social
welfare? Exercise 2.8 asks you to prove that the natural greedy algorithm is
optimal (and computationally efficient): for i = 1, 2, …, k, assign the ith highest
bidder to the ith best slot.

Can we implement Step 2? Is there an analog of the second-price rule—sale
prices that render truthful bidding a dominant strategy for every bidder? The next
lecture gives an affirmative answer via Myerson’s lemma, a powerful tool in
mechanism design.



The Upshot

 In a single-item auction there is one seller with one item and multiple
bidders with private valuations. Single-item auction design is a simple
but canonical example of mechanism design.
 An auction is DSIC if truthful bidding is a dominant strategy and if
truthful bidders always obtain nonnegative utility.
 An auction is welfare maximizing if, assuming truthful bids, the auction
outcome always has the maximum possible social welfare.
 Second-price auctions are “ideal” in that they are DSIC, welfare
maximizing, and can be implemented in polynomial time.
 Sponsored search auctions are a huge component of the Internet
economy. Such auctions are more complex than single-item auctions
because there are multiple slots for sale, and these slots vary in quality.
 A general two-step approach to designing ideal auctions is to first
assume truthful bids and understand how to allocate items to maximize
the social welfare, and second to design selling prices that turn truthful
bidding into a dominant strategy.

Notes
The concept of dominant-strategy incentive-compatibility is articulated in Hurwicz
(1972). Theorem 2.4 is from Vickrey (1961), the paper that effectively founded
the field of auction theory. The model of sponsored search presented in Section
2.6 is due independently to Edelman et al. (2007) and Varian (2007). The former
paper contains the mentioned jaw-dropping statistic. Problem 2.1 is closely related
to the secretary problem of Dynkin (1963); see also Hajiaghayi et al. (2004).

The 2007 Nobel Prize citation (Nobel Prize Committee, 2007) presents a
historical overview of the development of mechanism design theory in the 1970s
and 1980s. Modern introductions to the field include Börgers (2015), Diamantaras
et al. (2009), and chapter 23 of Mas-Colell et al. (1995). Krishna (2010) is a good
introduction to auction theory.

Exercises
Exercise 2.1 Consider a single-item auction with at least three bidders. Prove
that awarding the item to the highest bidder, at a price equal to the third-highest
bid, yields an auction that is not DSIC.



Exercise 2.2 Prove that for every false bid bi ≠ vi by a bidder in a second-price
auction, there exist bids b−i by the other bidders such that i’s utility when bidding
bi is strictly less than when bidding vi.

Exercise 2.3 Suppose there are k identical copies of an item and n > k bidders.
Suppose also that each bidder can receive at most one item. What is the analog of
the second-price auction? Prove that your auction is DSIC.

Exercise 2.4 Consider a seller that incurs a cost of c > 0 for selling her item—
either because she has a value of c for retaining the item or because she would
need to produce the item at a cost of c. The social welfare is now defined as the
valuation of the winning buyer (if any) minus the cost incurred by the seller (if
any). How would you modify the second-price auction so that it remains DSIC
and welfare maximizing? Argue that your auction is budget-balanced, meaning
that whenever the seller sells the item, her revenue is at least her cost c.

Exercise 2.5 Suppose you want to hire a contractor to perform some task, like
remodeling a house. Each contractor has a cost for performing the task, which a
priori is known only to the contractor. Give an analog of a second-price auction in
which contractors report their costs and the auction chooses a contractor and a
payment. Truthful reporting should be a dominant strategy in your auction and,
assuming truthful bids, your auction should select the contractor with the smallest
cost. The payment to the winner should be at least her reported cost, and losers
should be paid nothing.

[Auctions of this type are called procurement or reverse auctions.]

Exercise 2.6 Compare and contrast an eBay auction with a sealed-bid second-
price auction. (Read up on eBay auctions if you don’t already know how they
work.) Should you bid differently in the two auctions? State explicitly your
assumptions about how bidders behave.

Exercise 2.7 You’ve probably seen—in the movies, at least—the call-and-
response format of open ascending single-item auctions, where an auctioneer
asks for takers at successively higher prices. Such an auction ends when no one
accepts the currently proposed price, the winner (if any) is the bidder who
accepted the previously proposed price, and this previous price is the final sale
price.

Compare and contrast open ascending auctions with sealed-bid second-price
auctions. Do bidders have dominant strategies in open ascending auctions?

Exercise 2.8 Recall the sponsored search setting of Section 2.6, in which bidder
i has a valuation vi per click. There are k slots with click-through rates (CTRs) α1
≥ α2 ≥ ··· ≥ αk. The social welfare of an assignment of bidders to slots is 

, where xi equals the CTR of the slot to which i is assigned (or 0 if
bidder i is not assigned to any slot).



Prove that the social welfare is maximized by assigning the bidder with the ith
highest valuation to the ith best slot for i = 1, 2, …, k.

Problems
Problem 2.1 This problem considers online single-item auctions, where bidders
arrive one-by-one. Assume that the number n of bidders is known, and that bidder
i has a private valuation vi. We consider auctions of the following form.

Online Single-Item Auction

For each bidder arrival i = 1, 2, …, n:

if the item has not been sold in a previous iteration, formulate a price pi
and then accept a bid bi from bidder i

if pi ≤ bi, then the item is sold to bidder i at the price pi; otherwise,
bidder i departs and the item remains unsold

(a) Prove that an auction of this form is DSIC.
(b) Assume that bidders bid truthfully. Prove that if the valuations of the

bidders and the order in which they arrive are arbitrary, then for every
constant c > 0 independent of n, there is no deterministic online auction
that always achieves social welfare at least c times the highest valuation.

(c) (H) Assume that bidders bid truthfully. Prove that there is a constant c >
0, independent of n, and a deterministic online auction with the following
guarantee: for every unordered set of n bidder valuations, if the bidders
arrive in a uniformly random order, then the expected welfare of the
auction’s outcome is at least c times the highest valuation.

Problem 2.2 Suppose a subset S of the bidders in a second-price single-item
auction decide to collude, meaning that they submit their bids in a coordinated way
to maximize the sum of their utilities. Assume that bidders outside of S bid
truthfully. Prove necessary and sufficient conditions on the set S such that the
bidders of S can increase their combined utility via non-truthful bidding.

Problem 2.3 We proved that second-price auctions are DSIC under the
assumption that every bidder’s utility function is quasilinear, with the utility of a
bidder with valuation vi winning the item at price p given by vi − p. Identify
significantly weaker assumptions on bidders’ utility functions under which truthful
bidding remains a dominant strategy for every bidder.



1 When we study revenue maximization in Lectures 5 and 6, we’ll see why
other winner selection rules are important.

2 For more on the theory of first-price auctions, see Problem 5.3.

3 This may be wonky notation, but it’s good to get used to it.

4 We’re assuming here that ties are broken in favor of bidder i. You should
check that Proposition 2.1 holds no matter how ties are broken.

5 The condition that truthful bidders obtain nonnegative utility is traditionally
considered a separate requirement, called individual rationality or
voluntary participation. To minimize terminology in these lectures, we fold
this constraint into the DSIC condition, unless otherwise noted.

6 The sale price does not appear in the definition of the social welfare of an
outcome. We think of the seller as an agent whose utility is the revenue she
earns; her utility then cancels out the utility lost by the auction winner from
paying for the item.

7 Non-DSIC auctions are also important; see Section 4.3 for a detailed
discussion.



Lecture 3

Myerson’s Lemma

Last lecture advocated a two-step approach to the design of auctions that are
DSIC, welfare maximizing, and computationally efficient (Section 2.6.4). The first
step assumes truthful bids and identifies how to allocate items to bidders to
maximize the social welfare. For instance, in sponsored search auctions, this step
is implemented by assigning the ith highest bidder to the ith best slot. The second
step derives the appropriate selling prices, to render truthful bidding a dominant
strategy. This lecture states and proves Myerson’s lemma, a powerful and
general tool for implementing this second step. This lemma applies to sponsored
search auctions as a special case, and Lectures 4 and 5 provide further
applications.

Section 3.1 introduces single-parameter environments, a convenient
generalization of the mechanism design problems introduced in Lecture 2. Section
3.2 rephrases the three steps of sealed-bid auctions (Section 2.2) in terms of
allocation and payment rules. Section 3.3 defines two properties of allocation
rules, implementability and monotonicity, and states and interprets Myerson’s
lemma. Section 3.4 gives a proof sketch of Myerson’s lemma; it can be skipped
on a first reading. Myerson’s lemma includes a formula for payments in DSIC
mechanisms, and Section 3.5 applies this formula to sponsored search auctions.

3.1 Single-Parameter Environments
A good level of abstraction at which to state Myerson’s lemma is single-
parameter environments. Such an environment has some number n of agents.
Each agent i has a private nonnegative valuation vi, her value “per unit of stuff”
that she acquires. Finally, there is a feasible set X. Each element of X is a
nonnegative n-vector (x1, x2, …, xn), where xi denotes the “amount of stuff”
given to agent i.

Example 3.1 (Single-Item Auction) In a single-item auction (Section 2.1), X is
the set of 0-1 vectors that have at most one 1—that is, .

Example 3.2 (k-Unit Auction) With k identical items and the constraint that
each bidder gets at most one (Exercise 2.3), the feasible set is the set of 0-1
vectors that satisfy .



Example 3.3 (Sponsored Search Auction) In a sponsored search auction
(Section 2.6), X is the set of n-vectors corresponding to assignments of bidders to
slots, where each slot is assigned to at most one bidder and each bidder is
assigned to at most one slot. If bidder i is assigned to slot j, then the component xi
equals the click-through rate αj of her slot.

Example 3.4 (Public Project) Deciding whether or not to build a public project
that can be used by all, such as a new bridge, can be modeled by the set X = {(0,
0,…, 0), (1, 1,…, 1)}.

Example 3.4 shows that single-parameter environments are general enough to
capture applications different from auctions. At this level of generality, we refer
to agents rather than bidders. We sometimes use the term reports instead of
bids. A mechanism is a general procedure for making a decision when agents
have private information (like valuations), whereas an auction is a mechanism
specifically for the exchange of goods and money. See also Table 3.1.

Table 3.1: Correspondence of terms in auctions and mechanisms.
An auction is the special case of a mechanism that is designed for
the exchange of goods and money.

auction mechanism
bidder agent

bid report
valuation valuation

3.2 Allocation and Payment Rules
Recall that a sealed-bid auction has to make two choices: who wins and who pays
what. These two decisions are formalized via an allocation rule and a payment
rule, respectively. Here are the three steps:

1. Collect bids b = (b1, …, bn) from all agents. The vector b is called the
bid vector or bid profile.

2. [allocation rule] Choose a feasible allocation 
as a function of the bids.

3. [payment rule] Choose payments  as a function of
the bids.

Procedures of this type are called direct-revelation mechanisms, because in the



first step agents are asked to reveal directly their private valuations. An example
of an indirect mechanism is an iterative ascending auction (cf., Exercise 2.7).

With our quasilinear utility model, in a mechanism with allocation and payment
rules x and p, respectively, agent i receives utility

when the bid profile is b.
We focus on payment rules that satisfy

(3.1)

for every agent i and bid profile b. The constraint that pi(b) ≥ 0 is equivalent to
prohibiting the seller from paying the agents. The constraint that pi(b) ≤ bi · xi(b)
ensures that a truthful agent receives nonnegative utility (do you see why?).1

3.3 Statement of Myerson’s Lemma
Next are two important definitions. Both articulate a property of allocation rules.

Definition 3.5 (Implementable Allocation Rule) An allocation rule x for a
single-parameter environment is implementable if there is a payment rule p such
that the direct-revelation mechanism (x, p) is DSIC.

That is, the implementable allocation rules are those that extend to DSIC
mechanisms. Equivalently, the projection of DSIC mechanisms onto their
allocation rules is the set of implementable rules. If our aim is to design a DSIC
mechanism, we must confine ourselves to implementable allocation rules—they
form our “design space.” In this terminology, we can rephrase the cliffhanger
from the end of Lecture 2 as: is the welfare-maximizing allocation rule for
sponsored search auctions, which assigns the ith highest bidder to the ith best slot,
implementable?

For instance, consider a single-item auction (Example 3.1). Is the allocation
rule that awards the item to the highest bidder implementable? Sure—we’ve
already constructed a payment rule, the second-price rule, that renders it DSIC.
What about the allocation rule that awards the item to the second-highest
bidder? Here, the answer is not clear: we haven’t seen a payment rule that
extends it to a DSIC mechanism, but it also seems tricky to argue that no
payment rule could conceivably work.

Definition 3.6 (Monotone Allocation Rule) An allocation rule x for a single-
parameter environment is monotone if for every agent i and bids b−i by the other
agents, the allocation xi(z, b−i) to i is nondecreasing in her bid z.

That is, in a monotone allocation rule, bidding higher can only get you more stuff.



For example, the single-item auction allocation rule that awards the item to the
highest bidder is monotone: if you’re the winner and you raise your bid (keeping
other bids fixed), you continue to win. By contrast, awarding the item to the
second-highest bidder is a non-monotone allocation rule: if you’re the winner and
you raise your bid high enough, you lose.

The welfare-maximizing allocation rule for sponsored search auctions
(Example 3.3), with the ith highest bidder awarded the ith best slot, is monotone.
When a bidder raises her bid, her position in the sorted order of bids can only
increase, and this can only increase the click-through rate of her assigned slot.

We state Myerson’s lemma in three parts; each is conceptually interesting and
useful in later applications.

Theorem 3.7 (Myerson’s Lemma) Fix a single-parameter environment.

(a) An allocation rule x is implementable if and only if it is monotone.
(b) If x is monotone, then there is a unique payment rule for which the

direct-revelation mechanism (x, p) is DSIC and pi(b) = 0 whenever bi
= 0.

(c) The payment rule in (b) is given by an explicit formula.2

Myerson’s lemma is the foundation on which we’ll build most of our
mechanism design theory. Part (a) states that Definitions 3.5 and 3.6 define
exactly the same class of allocation rules. This equivalence is incredibly powerful:
Definition 3.5 describes our design goal but is unwieldy to work with and verify,
while Definition 3.6 is far more “operational.” Usually, it’s not difficult to check
whether or not an allocation rule is monotone. Part (b) states that when an
allocation rule is implementable, there is no ambiguity in how to assign payments
to achieve the DSIC property-there is only one way to do it. Moreover, there is a
relatively simple and explicit formula for this payment rule (part (c)), a property
we apply to sponsored search auctions in Section 3.5 and to revenue-maximizing
auction design in Lectures 5-6.

*3.4 Proof of Myerson’s Lemma (Theorem 3.7)
Fix a single-parameter environment and consider an allocation rule x, which may
or may not be monotone. Suppose there is a payment rule p such that (x, p) is a
DSIC mechanism—what could p look like? The plan of the proof is to use the
stringent DSIC constraint to whittle the possibilities for p down to a single
candidate. We establish all three parts of the theorem in one fell swoop.

Recall the DSIC condition: for every agent i, every possible private valuation
vi, every set of bids b−i by the other agents, it must be that i’s utility is maximized
by bidding truthfully. For now, fix i and b−i arbitrarily. As shorthand, write x(z) and



p(z) for the allocation xi(z, b−i) and payment pi(z, b−i) of i when she bids z,
respectively. Figure 3.1 gives two examples of a possible allocation curve,
meaning the graph of such an x as a function of z.

Figure 3.1: Examples of allocation curves x(·).

We invoke the DSIC constraint via a simple but clever swapping trick. Suppose
(x, p) is DSIC, and consider any 0 ≤ y < z. Because agent i might well have
private valuation z and is free to submit the false bid y, DSIC demands that

(3.2)

Similarly, since agent i might well have the private valuation y and could submit
the false bid z, (x, p) must satisfy

(3.3)

Myerson’s lemma is, in effect, trying to solve for the payment rule p given the
allocation rule x. Rearranging inequalities (3.2) and (3.3) yields the following
“payment difference sandwich,” bounding p(y) − p(z) from below and above:

(3.4)

The payment difference sandwich already implies that every implementable
allocation rule is monotone (Exercise 3.1). Thus, we can assume for the rest of
the proof that x is monotone.

Next, consider the case where x is a piecewise constant function, as in Figure
3.1. The graph of x is flat except for a finite number of “jumps.” In (3.4), fix z
and let y tend to z from above. Taking the limit y ↓ z from above in (3.4), the left-



and right-hand sides become 0 if there is no jump in x at z. If there is a jump of
magnitude h at z, then the left-and right-hand sides both tend to z · h. This implies
the following constraint on p, for every z:

Combining this with the initial condition p(0) = 0, we’ve derived the following
payment formula, for every agent i, bids b−i by other agents, and bid bi by i:

(3.5)

where z1, …, zℓ are the breakpoints of the allocation function xi (·, b−i) in the
range [0, bi].

A similar argument applies when x is a monotone function that is not piecewise
constant. For instance, suppose that x is differentiable.3 Dividing the payment
difference sandwich (3.4) by y − z and taking the limit as y ↓ z yields the
constraint

Combining this with the condition p(0) = 0 yields the payment formula

(3.6)

for every agent i, bid bi, and bids b−i by the other agents.

We reiterate that these payment formulas give the only possible payment rule
that has a chance of extending the given allocation rule x into a DSIC
mechanism. Thus, for every allocation rule x, there is at most one payment rule p
such that (x, p) is DSIC (cf., part (b) of Theorem 3.7). But the proof is not
complete: we still have to check that this payment rule works provided x is
monotone! Indeed, we already know that even this payment rule cannot extend a
non-monotone allocation rule to a DSIC mechanism.

We give a proof by picture that, if x is a monotone and piece-wise constant
allocation rule and p is defined by (3.5), then (x, p) is a DSIC mechanism. The
same argument works more generally for monotone allocation rules that are not
piecewise constant, with payments defined as in (3.6). This will complete the
proof of all three parts of Myerson’s lemma.

Figures 3.2(a)–(i) depict the utility of an agent when she bids truthfully,
overbids, and underbids, respectively. The allocation curve x(z) and the private
valuation v of the agent is the same in all three cases. Recall that the agent’s



utility when she bids b is v · x(b) − p(b). We depict the first term v · x(b) as a
shaded rectangle of width v and height x(b) (Figures 3.2(a)–(c)). Using the
formula (3.5), we see that the payment p(b) can be represented as the shaded
area to the left of the allocation curve in the range [0, b] (Figures 3.2(d)–(f)). The
agent’s utility is the difference between these two terms (Figures 3.2(g)–(i)).
When the agent bids truthfully, her utility is precisely the area under the allocation
curve in the range [0, v] (Figure 3.2(g)). When the agent overbids, her utility is
this same area, minus the area above the allocation curve in the range [v, b]
(Figure 3.2(h)). When the agent underbids, her utility is a subset of the area under
the allocation curve in the range [0, v] (Figure 3.2(i)). Since the agent’s utility is
the largest in the first case, the proof is complete.

Figure 3.2: Proof by picture that the payment rule in (3.5), coupled with the
given monotone and piecewise constant allocation rule, yields a DSIC
mechanism. The three columns consider the cases of truthful bidding,
overbidding, and underbidding, respectively. The three rows show the welfare
v ·x(b), the payment p(b), and the utility v · x(b) − p(b), respectively. In (h),
the solid region represents positive utility and the lined region represents
negative utility.



3.5 Applying the Payment Formula
The explicit payment rule given by Myerson’s lemma (Theorem 3.7(c)) is easy to
understand and apply in many applications. For starters, consider a single-item
auction (Example 3.1) with the allocation rule that allocates the item to the highest
bidder. Fixing a bidder i and bids b−i by the others, the function xi (z, b−i) is 0 up
to B = maxj≠i bj and 1 thereafter. Myerson’s payment formula for such piecewise
constant functions, derived in Section 3.4 as equation (3.5), is

where z1, …, zℓ. are the breakpoints of the allocation function xi(·, b−i) in the
range [0, bi]. For the highest-bidder single-item allocation rule, this is either 0 (if bi
< B) or, if bi > B, there is a single breakpoint (a jump of 1 at B) and the payment
is pi(bi, b−i) = B. Thus, Myerson’s lemma regenerates the second-price payment
rule as a special case.

Next, consider a sponsored search auction (Example 3.3), with k slots with
click-through rates α1 ≥ α2 ≥ ··· ≥ αk. Let x(b) be the allocation rule that assigns
the ith highest bidder to the ith best slot, for i = 1, 2, …, k. This rule is monotone
and, assuming truthful bids, welfare maximizing (Exercise 2.8). Myerson’s
payment formula then gives the unique payment rule p such that (x, p) is DSIC.
To describe it, consider a bid profile b, and re-index the bidders so that b1 ≥ b2 ≥
··· ≥ bn. First focus on the highest bidder and imagine increasing her bid from 0 to
b1, holding the other bids fixed. The allocation x1(z, b‒1) increases from 0 to α1 as
z increases from 0 to b1, with a jump of α j − αj+1 at the point where z becomes
the jth highest bid in the profile (z, b−1), namely bj+1. In general, Myerson’s
payment formula gives the payment

(3.7)

for the ith highest bidder (where αk+1 = 0).

Our sponsored search model assumes that bidders don’t care about
impressions (i.e., having their link shown), except inasmuch as it leads to a click.
This motivates charging bidders per click rather than per impression. The per-
click payment for the bidder i in slot i is simply that in (3.7), scaled by :

(3.8)



Thus, when a bidder’s link is clicked, she pays a suitable convex combination of
the lower bids.

By historical accident, the sponsored search auctions used by search engines
are based on the “generalized second-price (GSP)” auction, which is a simpler
version of the DSIC auction above. The GSP allocation rule also assigns the ith
highest bidder to the ith best slot, but its payment rule charges this bidder a per-
click payment equal to the (i + 1)th highest bid. For a fixed set of bids, these per-
click payments are generally higher than those in (3.8). Myerson’s lemma asserts
that the payment rule in (3.8) is the unique one that, when coupled with the GSP
allocation rule, yields a DSIC mechanism. We can immediately conclude that the
GSP auction is not DSIC. It still has a number of nice properties, however, and is
equivalent to the DSIC auction in certain senses. Problem 3.1 explores this point
in detail.

The Upshot

 In a single-parameter environment, every agent has a private valuation
per “unit of stuff,” and a feasible set defines how much “stuff” can be
jointly allocated to the agents. Examples include single-item auctions,
sponsored search auctions, and public projects.
 The allocation rule of a direct-revelation mechanism specifies, as a
function of agents’ bids, who gets what. The payment rule of such a
mechanism specifies, as a function of agents’ bids, who pays what.
 An allocation rule is implementable if there exists a payment rule that
extends it to a DSIC mechanism.
 An allocation rule is monotone if bidding higher can only increase the
amount of stuff allocated to an agent, holding other agents’ bids fixed.
 Myerson’s lemma states that an allocation rule is implementable if and
only if it is monotone. In this case, the corresponding payment rule is
unique (assuming that bidding 0 results in paying 0).
 There is an explicit formula, given in (3.5) and (3.6), for the payment
rule that extends a monotone allocation rule to a DSIC mechanism.
 Myerson’s payment formula yields an elegant payment rule (3.8) for
the payments-per-click in an ideal sponsored search auction.



Notes
Myerson’s lemma is from Myerson (1981). The sponsored search payment
formula (3.8) is noted in Aggarwal et al. (2006). Problem 3.1 is due independently
to Edelman et al. (2007) and Varian (2007). Problem 3.2 is related to the “profit
extractors” introduced by Goldberg et al. (2006) and the cost-sharing mechanisms
studied by Moulin and Shenker (2001). Problem 3.3 is a special case of the theory
developed by Moulin and Shenker (2001).

Exercises
Exercise 3.1 Use the “payment difference sandwich” in (3.4) to prove that if an
allocation rule is not monotone, then it is not implementable.

Exercise 3.2 The proof of Myerson’s lemma (Section 3.4) concludes with a
“proof by picture” that coupling a monotone and piecewise constant allocation
rule x with the payment rule defined by (3.5) yields a DSIC mechanism. Where
does the proof-by-picture break down if the piecewise constant allocation rule x is
not monotone?

Exercise 3.3 Give an algebraic proof that coupling a monotone and piecewise
constant allocation rule x with the payment rule defined by (3.5) yields a DSIC
mechanism.

Exercise 3.4 Consider the following extension of the sponsored search setting
described in Section 2.6. Each bidder i now has a publicly known quality βi, in
addition to a private valuation vi per click. As usual, each slot j has a CTR αj, and
α1 ≥ α2 ··· ≥ αk. We assume that if bidder i is placed in slot j, then the probability
of a click is βiαj. Thus bidder i derives value viβi αj from the jth slot.

Describe the welfare-maximizing allocation rule in this generalized sponsored
search setting. Prove that this rule is monotone. Give an explicit formula for the
per-click payment of each bidder that extends this allocation rule to a DSIC
mechanism.

Problems
Problem 3.1 Recall our model of sponsored search auctions (Section 2.6): there
are k slots, the jth slot has a click-through rate (CTR) of αj (nonincreasing in j),
and the utility of bidder i in slot j is αj(vi − pj), where vi is the (private) value-per-
click of the bidder and pj is the price charged per-click in slot j. The Generalized
Second-Price (GSP) auction is defined as follows:



The Generalized Second Price (GSP) Auction

1. Rank advertisers from highest to lowest bid; assume without loss of
generality that b1 ≥ b2 ≥ ··· ≥ bn.

2. For i = 1, 2, …, k, assign the ith bidder to the i slot.
3. For i = 1, 2, …, k, charge the ith bidder a price of bi+1 per click.

The following subproblems show that the GSP auction always has a canonical
equilibrium that is equivalent to the truthful outcome in the corresponding DSIC
sponsored search auction.

(a) Prove that for every k ≥ 2 and sequence α1 ≥ ··· ≥ αk > 0 of CTRs, the
GSP auction is not DSIC.

(b) (H) Fix CTRs for slots and values-per-click for bidders. We can assume
that k = n by adding dummy slots with zero CTR (if k < n) or dummy
bidders with zero value-per-click (if k > n). A bid profile b is an
equilibrium of GSP if no bidder can increase her utility by unilaterally
changing her bid. Verify that this condition translates to the following
inequalities, under our standing assumption that b1 ≥ b2 ≥ ··· ≥ bn: for
every i and higher slot j < i,

and for every lower slot j > i,

(c) A bid profile b with b1 ≥ · · · ≥ bn is envy-free if for every bidder i and
slot j ≠ i,

(3.9)

Verify that every envy-free bid profile is an equilibrium.4

(d) (H) A bid profile is locally envy-free if the inequality (3.9) holds for every
pair of adjacent slots—for every i and j  {i – 1, i + 1}. By definition, an
envy-free bid profile is also locally envy-free. Prove that, for every set of
strictly decreasing CTRs, every locally envy-free bid profile is also envy-
free.

(e) (H) Prove that, for every set of values-per-click and strictly decreasing
CTRs, there is an equilibrium of the GSP auction in which the
assignments of bidders to slots and all payments-per-click equal those in
the truthful outcome of the corresponding DSIC sponsored search



auction.
(f) Prove that the equilibrium in (e) is the lowest-revenue envy-free bid

profile.

Problem 3.2 This problem considers a k-unit auction (Example 3.2) in which the
seller has a specific revenue target R. Consider the following algorithm that, given
bids b as input, determines the winning bidders and their payments.

Revenue Target Auction

initialize a set S to the top k bidders while  there is a bidder i  S with bi <
R/|S| do remove an arbitrary such bidder from S

allocate an item to each bidder of S (if any) at a price of R/|S|

(a) Give an explicit description of the allocation rule of the Revenue Target
Auction, and prove that it is monotone.

(b) (H) Conclude from Myerson’s lemma that the Revenue Target Auction is
a DSIC mechanism.

(c) Prove that whenever the DSIC and welfare-maximizing k-unit auction
(Exercise 2.3) obtains revenue at least R, the Revenue Target Auction
obtains revenue R.

(d) Prove that there exists a valuation profile for which the Revenue Target
Auction obtains revenue R but the DSIC and welfare-maximizing auction
earns revenue less than R.

Problem 3.3 This problem revisits the issue of collusion in auctions; see also
Problem 2.2.

(a) Prove that the Revenue Target Auction in Problem 3.2 is group-
strategyproof, meaning that no coordinated false bids by a subset of
bidders can ever strictly increase the utility of one of its members without
strictly decreasing the utility of some other member.

(b) Is the DSIC and welfare-maximizing k-unit auction group-strategyproof?

1 There are applications where it makes sense to relax one or both of these
restrictions on payments, including those discussed in Exercise 2.5 and



Problem 7.1.

2 See formulas (3.5) and (3.6) for details and Section 3.5 for concrete
examples.

3 With some additional facts from calculus, the proof extends to general
monotone functions. We omit the details.

4 Why “envy-free?” Because if we write pj = bj+1 for the current price-per-
click of slot j, then these inequalities translate to: “every bidder i is as happy
getting her current slot at her current price as she would be getting any other
slot and that slot’s current price.”



Lecture 4

Algorithmic Mechanism Design

This lecture pursues mechanisms that are DSIC, welfare maximizing, and
computationally efficient for single-parameter environments that are more
complex than those in Lectures 2 and 3. These environments are general enough
that the welfare maximization problem is -hard, so we consider allocation
rules that only maximize the social welfare approximately. There are many
techniques for designing such rules, but not all of them yield rules that are
monotone in the sense required by Myerson’s lemma. This lecture also discusses
the revelation principle, the formal justification for our restriction to direct-
revelation mechanisms.

Section 4.1 introduces knapsack auctions, which are conceptually simple
single-parameter environments in which welfare maximization is a
computationally intractable (i.e., -hard) problem. Section 4.2 uses knapsack
auctions to illustrate some representative results in algorithmic mechanism design,
where the goal to design DSIC and polynomial-time mechanisms that guarantee
near-optimal welfare. Section 4.3 presents the revelation principle.

4.1 Knapsack Auctions

4.1.1 Problem Definition
Knapsack auctions are another example of single-parameter environments
(Section 3.1).

Example 4.1 (Knapsack Auction) In a knapsack auction, each bidder i has a
publicly known size wi and a private valuation. The seller has a capacity W. The
feasible set X is defined as the 0-1 vectors (x1, …, xn) such that 

. (As usual, xi = 1 indicates that i is a winning bidder.)

Whenever there is a shared resource with limited capacity, you have a knapsack
problem. For instance, each bidder’s size could represent the duration of a
company’s television ad, the valuation its willingness-to-pay for its ad being shown
during the Super Bowl, and the seller capacity the length of a commercial break.
Other situations that can be modeled with knapsack auctions include bidders who



want files stored on a shared server, data streams sent through a shared
communication channel, or processes to be executed on a shared supercomputer.
A k-unit auction (Example 3.2) corresponds to a knapsack auction with wi = 1 for
all i and W = k.

Let’s try to design an ideal auction using our two-step design paradigm (Section
2.6.4). First, we assume without justification that we receive truthful bids and
decide on our allocation rule. Then we pay the piper and devise a payment rule
that extends the allocation rule to a DSIC mechanism.

4.1.2 Welfare-Maximizing DSIC Knapsack Auctions
Since ideal auctions are supposed to maximize welfare, the answer to the first
step is clear: define the allocation rule by

(4.1)

That is, the allocation rule solves an instance of the knapsack problem1 in which
the item (i.e., bidder) values are the reported bids b1, …, bn, and the item sizes
are the a priori known sizes w1, …, wn. By definition, when bidders bid truthfully,
this allocation rule maximizes the social welfare. This allocation rule is also
monotone in the sense of Definition 3.6; see Exercise 4.1.

4.1.3 Critical Bids
Myerson’s lemma (Theorem 3.7, parts (a) and (b)) guarantees the existence of a
payment rule p such that the mechanism (x, p) is DSIC. This payment rule is
easy to understand. Fix a bidder i and bids b−i by the other bidders. Since the
allocation rule is monotone and assigns 0 or 1 to every bidder, the allocation curve
xi(·, b−i) is 0 until some breakpoint z, at which point it jumps to 1 (Figure 4.1).
Recall the payment formula in (3.5):

where z1, …, zℓ are the breakpoints of the allocation function xi(·, b−i) in the
range [0, bi]. Thus, if i bids less than z, she loses and pays 0. If i bids more than z,
she pays z · (1 − 0) = z. That is, when i wins, she pays her critical bid—the
infimum of the bids she could make and continue to win (holding the other bids b−i
fixed). This is analogous to the familiar payment rule of a single-item second-price
auction.



Figure 4.1: A monotone 0-1 allocation rule.

4.1.4 Intractability of Welfare Maximization
Is the mechanism proposed in Section 4.1.2 ideal in the sense of the second-price
auction (Theorem 2.4)? Recall this means that the mechanism:

(1) is DSIC;
(2) is welfare maximizing, assuming truthful bids; and
(3) runs in time polynomial in the input size, which is the number of bits

needed to represent all of the relevant numbers (bids, sizes, and the
capacity).2

The answer is no. The reason is that the knapsack problem is -hard. This
means that there is no polynomial-time implementation of the allocation rule in
(4.1), unless .3 Thus, properties (2) and (3) are incompatible.

The fact that there is no ideal knapsack auction (assuming )
motivates relaxing at least one of our three goals. But which one? First, note that
relaxing the DSIC condition will not help at all, since it is the second and third
properties that conflict.

One sensible approach, which won’t get much airtime in this course, is to relax
the third constraint. This is particularly attractive for knapsack auctions, since the
allocation rule (4.1) can be implemented in pseudopolynomial time using dynamic
programming.4 More generally in mechanism design, if your instances are small
or structured enough and you have enough time and computing power to
implement optimal welfare maximization, by all means do it. The resulting
allocation rule is monotone and can be extended to a DSIC mechanism (Exercise
4.1).5

For the rest of this lecture, we’ll compromise on the second goal—



begrudgingly accepting near-optimal welfare maximization in exchange for
computational efficiency and without losing DSIC.

4.2 Algorithmic Mechanism Design
Algorithmic mechanism design is one of the first and most well-studied
branches of algorithmic game theory, and this section presents a representative
result from the field.

The dominant paradigm in algorithmic mechanism design is to relax the second
requirement of ideal auctions (welfare maximization) as little as possible, subject
to the first (DSIC) and third (polynomial-time) requirements. For single-parameter
environments, Myerson’s lemma (Theorem 3.7) reduces this task to the design of
a polynomial-time and monotone allocation rule that comes as close as possible to
maximizing the social welfare.

4.2.1 The Best-Case Scenario: DSIC for Free
One reason there has been so much progress in algorithmic mechanism design
over the past 15 years is its strong resemblance to the mature field of
approximation algorithms. The primary goal in approximation algorithms is to
design polynomial-time algorithms for -hard optimization problems that are
as close to optimal as possible. Algorithmic mechanism design has exactly the
same goal, except that the algorithms must additionally obey a monotonicity
constraint. The incentive constraints of the mechanism design goal are neatly
compiled into a relatively intuitive extra constraint on the allocation rule, and so
algorithmic mechanism design reduces to algorithm design in an oddly restricted
“computational model.”

The design space of polynomial-time DSIC mechanisms is only smaller than
that of polynomial-time approximation algorithms. The best-case scenario is that
the extra DSIC (equivalently, monotonicity) constraint causes no additional
welfare loss, beyond the loss we already have to suffer from the polynomial-time
requirement. We’ve been spoiled so far, since exact welfare maximization
automatically yields a monotone allocation rule (see Exercise 4.1). Does an
analogous fact hold for approximate welfare maximization?

4.2.2 Knapsack Auctions Revisited
To explore the preceding question in a concrete setting, let’s return to knapsack
auctions. There are several heuristics for the knapsack problem that have good
worst-case performance guarantees. For example, consider the following
allocation rule, which given bids b chooses a feasible set—a set S of winners with
total size  at most the capacity W—via a simple greedy algorithm.
Since it’s harmless to remove bidders i with wi > W, we can assume that wi ≤ W



for every i.

A Greedy Knapsack Heuristic

1. Sort and re-index the bidders so that

6

2. Pick winners in this order until one doesn’t fit, and then halt.7

3. Return either the solution from the previous step or the highest bidder,
whichever has larger social welfare.8

This greedy algorithm is a -approximation algorithm for the knapsack

problem, meaning that for every instance of the knapsack problem, the algorithm
returns a feasible solution with total value at least  times the maximum possible.

This fact implies the following guarantee.

Theorem 4.2 (Knapsack Approximation Guarantee)
Assuming truthful bids, the social welfare achieved by the greedy allocation
rule is at least 50% of the maximum social welfare.

Proof (sketch): Consider truthful bids v1, …, vn, known sizes w1, …, wn, and a
capacity W. Suppose, as a thought experiment, we make the problem easier by
allowing bidders to be chosen fractionally, with the value prorated accordingly.
For example, if 70% of a bidder with value 10 is chosen, then it contributes 7 to
the welfare. Here is a greedy algorithm for this “fractional knapsack problem:”
sort the bidders as in step (1) above, and pick winners in this order until the entire
capacity is fully used (picking the final winner fractionally, as needed). A
straightforward exchange argument proves that this algorithm maximizes the
welfare over all feasible solutions to the fractional knapsack problem (Exercise
4.4).

In the optimal fractional solution, suppose that the first k bidders in the sorted
order win and that the (k + 1)th bidder fractionally wins. The welfare achieved by
steps (1) and (2) in the greedy allocation rule is exactly the total value of the first
k bidders. The welfare of the solution consisting only the highest bidder is at least
the fractional value of the (k + 1)th bidder. The better of these two solutions is at
least half of the welfare of the optimal fractional solution, and thus at least half
the welfare of an optimal (non-fractional) solution to the original problem. 

The greedy allocation rule above is also monotone (Exercise 4.5). Using
Myerson’s lemma (Theorem 3.7), we can extend it to a DSIC mechanism that



runs in polynomial time and, assuming truthful bids, achieves social welfare at
least 50% of the maximum possible.9

You may have been lulled into complacency, thinking that every reasonable
allocation rule is monotone. The only non-monotone rule that we’ve seen is the
“second-highest bidder wins” rule for single-item auctions (Section 3.3), which we
don’t care about anyways. Consider yourself warned.

Warning

Natural allocation rules are not always monotone.

For example, for every  > 0, there is a (1 − )-approximation algorithm for
the knapsack problem that runs in time polynomial in the input and  “fully

polynomial-time approximation scheme (FPTAS)” (see Problem 4.2). The rule
induced by the standard implementation of this algorithm is not monotone,
although it can be tweaked to restore monotonicity without degrading the
approximation guarantee (again, see Problem 4.2). This is characteristic of work
in algorithmic mechanism design: for an -hard optimization problem of
interest, check if the state-of-the-art approximation algorithm directly leads to a
DSIC mechanism. If not, tweak it or design a new approximation algorithm that
does, hopefully without degrading the approximation guarantee.

4.3 The Revelation Principle

4.3.1 DSIC Revisited
To this point, our mechanism design theory has studied only DSIC mechanisms.
We reiterate that there are good reasons to strive for a DSIC guarantee. First, it
is easy for a participant to figure out what to do in a DSIC mechanism: just play
the obvious dominant strategy and truthfully reveal one’s private information.
Second, the designer can predict the mechanism’s outcome assuming only that
participants play their dominant strategies, a relatively weak behavioral
assumption. Nevertheless, non-DSIC mechanisms like first-price auctions
(Section 2.3) are also important in practice.

Can non-DSIC mechanisms accomplish things that DSIC mechanisms cannot?
To answer this question, we need to tease apart two different conditions that are
conflated in our DSIC definition (Definition 2.3).10



The DSIC Condition

(1) For every valuation profile, the mechanism has a dominant-strategy
equilibrium—an outcome that results from every participant playing a
dominant strategy.

(2) In this dominant-strategy equilibrium, every participant truthfully
reports her private information to the mechanism.

There are mechanisms that satisfy (1) but not (2). To give a silly example,
imagine a single-item auction in which the seller, given bids b, runs a Vickrey
auction on the bids 2b. Every bidder’s dominant strategy is then to bid half her
value.

4.3.2 Justifying Direct Revelation
The revelation principle states that, given requirement (1) in Section 4.3.1,
requirement (2) comes for free.

Theorem 4.3 (Revelation Principle for DSIC Mechanisms) For every
mechanism M in which every participant always has a dominant strategy,
there is an equivalent direct-revelation DSIC mechanism M′.

“Equivalence” in Theorem 4.3 means that, for every valuation profile, the
outcome (e.g., winners of an auction and selling prices) of M′ under direct
revelation is identical to that of M when agents play their dominant strategies.

Proof: The proof uses a simulation argument; see Figure 4.2. By assumption, for
every participant i and private information vi that i might have, i has a dominant
strategy si(vi) in the given mechanism M.



Figure 4.2: Proof of the revelation principle. Construction of the direct-
revelation mechanism M′, given a mechanism M with dominant strategies.

We next construct a mechanism M′, to which participants delegate the
responsibility of playing the appropriate dominant strategy. Precisely, the (direct-
revelation) mechanism M′ accepts bids b1, …, bn from the agents. It submits the
bids s1(b1), …, sn(bn) to the mechanism M and chooses the same outcome that
M does.

Mechanism M′ is DSIC: If a participant i has private information vi, then
submitting a bid other than vi can only result in M′ playing a strategy other than
si(vi) in M, which can only decrease i’s utility. 

The point of Theorem 4.3 is that, at least in principle, if you want to design a
mechanism with dominant strategies, then you might as well design one in which
direct revelation (in auctions, truthful bidding) is a dominant strategy. Thus
truthfulness per se is not important; what makes DSIC mechanism design
difficult is the requirement that a desired outcome is a dominant-strategy
equilibrium.

4.3.3 Beyond Dominant-Strategy Equilibria
Can we obtain better mechanisms by relaxing condition (1) from Section 4.3.1?
An immediate issue with this idea is that, when agents do not have dominant
strategies, we require stronger behavioral assumptions to predict what participants
will do and what the mechanism’s outcome will be. For example, we can consider
a Bayes-Nash equilibrium with respect to a common prior distribution over the
private information of the participants (see Problem 5.3) or a Nash equilibrium in
a full-information model (similar to Problem 3.1). If we’re willing to make such
assumptions, can we do better than with DSIC mechanisms?

The answer is “sometimes, yes.” For this reason, and because non-DSIC
mechanisms are common in practice, it is important to develop mechanism design
theory beyond DSIC mechanisms. Remark 5.5 and Problem 5.3 offer a brief
glimpse of this theory. A rough rule of thumb is that, for sufficiently simple
problems like those we’ve studied up until now, DSIC mechanisms can do
everything that non-DSIC mechanisms can. In more complex problems, however,
weakening the DSIC constraint often allows the designer to achieve performance
guarantees that are provably impossible for DSIC mechanisms. DSIC and non-
DSIC mechanisms are incomparable in such settings—the former enjoy stronger
incentive guarantees, the latter better performance guarantees. Which of these is
more important depends on the details of the application.



The Upshot

 Knapsack auctions model the allocation of a shared resource with
limited capacity. Bidders have private valuations and publicly known
sizes. In a feasible outcome, the total size of the winning bidders is at
most the resource capacity.
 The problem of computing the outcome of a knapsack auction that
maximizes social welfare is -hard. Thus, if , there
are no ideal knapsack auctions.
 The goal in algorithmic mechanism design is to relax the second
requirement of ideal auctions (welfare maximization) as little as
possible, subject to the first (DSIC) and third (polynomial-time)
requirements. In the best-case scenario, there is a polynomial-time
DSIC mechanism with an approximate welfare guarantee matching
that of state-of-the-art polynomial-time approximation algorithms.
 State-of-the-art approximation algorithms for the welfare maximization
problem may or may not induce monotone allocation rules.
 The revelation principle states that, for every mechanism with a
dominant-strategy equilibrium, there is an equivalent mechanism in
which direct revelation is a dominant-strategy equilibrium.
 In many complex mechanism design problems, non-DSIC mechanisms
can achieve performance guarantees that are provably impossible for
DSIC mechanisms.

Notes
The origins of algorithmic mechanism design are in Nisan and Ronen (2001) and
Lehmann et al. (2002); see Nisan (2015) for a recent survey. Single-parameter
environments are studied by Archer and Tardos (2001). Knapsack auctions are
introduced in Mu’Alem and Nisan (2008). The first formulation of the revelation
principle appears in Gibbard (1973). Garey and Johnson (1979) give a good
exposition of -completeness and how to interpret it.

Problem 4.1 is related to Chekuri and Gamzu (2009). The classical FPTAS for
the knapsack problem (Problem 4.2) is due to Ibarra and Kim (1975); see the
books by Vazirani (2001) and Williamson and Shmoys (2010) for detailed
coverage of this and dozens of other state-of-the-art polynomial-time
approximation algorithms. The rest of Problem 4.2 is from Briest et al. (2005).
Problem 4.3 is from Lehmann et al. (2002).



Exercises
Exercise 4.1 Consider an arbitrary single-parameter environment, with feasible
set X. Prove that the welfare-maximizing allocation rule

(4.2)

is monotone in the sense of Definition 3.6.

[Assume that ties are broken in a deterministic and consistent way, such as
lexicographically.]

Exercise 4.2 Continuing the previous exercise, restrict now to feasible sets X
that contain only 0-1 vectors—that is, each bidder either wins or loses. We can
identify each feasible outcome with a “feasible set” of bidders (the winners).
Assume that for every bidder i, there is an outcome in which i does not win.
Myerson’s payment formula (3.5) dictates that a winning bidder pays her “critical
bid”—the infimum of the bids at which she would continue to win.

Prove that, when S* is the set of winning bidders under the allocation rule (4.2)
and i  S*, i’s critical bid equals the difference between (1) the maximum social
welfare of a feasible set that excludes i; and (2) the social welfare 

 of the bidders other than i in the chosen outcome S*.

[In this sense, each winning bidder pays her “externality”—the welfare loss she
imposes on others.]

Exercise 4.3 Continuing the previous exercise, consider a 0-1 single-parameter
environment. Suppose you are given a subroutine that, given bids b, computes the
outcome of the welfare-maximizing allocation rule (4.2).

(a) Explain how to implement a welfare-maximizing DSIC mechanism by
invoking this subroutine n + 1 times, where n is the number of
participants.

(b) Conclude that mechanisms that are ideal in the sense of Theorem 2.4
exist for precisely the families of single-parameter environments in which
the welfare-maximization problem (given b as input, compute (4.2)) can
be solved in polynomial time.

Exercise 4.4 Prove that the greedy algorithm in the proof of Theorem 4.2
always computes an optimal fractional knapsack solution.

Exercise 4.5 Prove that the three-step greedy knapsack auction allocation rule in
Section 4.2.2 is monotone. Does it remain monotone with the two optimizations
discussed in the footnotes?



Exercise 4.6 Consider a variant of a knapsack auction in which we have two
knapsacks, with known capacities W1 and W2. Feasible sets of this single-
parameter environment now correspond to subsets S of bidders that can be
partitioned into sets S1 and S2 satisfying  for j = 1, 2.

Consider the allocation rule that first uses the single-knapsack greedy allocation
rule of Section 4.2.2 to pack the first knapsack, and then uses it again on the
remaining bidders to pack the second knapsack. Does this algorithm define a
monotone allocation rule? Give either a proof of this fact or an explicit
counterexample.

Exercise 4.7 (H) The revelation principle (Theorem 4.3) states that (direct-
revelation) DSIC mechanisms can simulate all other mechanisms with dominant-
strategy equilibria. Critique the revelation principle from a practical perspective.
Name a specific situation where you might prefer a non-direct-revelation
mechanism with a dominant-strategy equilibrium to the corresponding DSIC
mechanism, and explain your reasoning.

Problems
Problem 4.1 Consider a variant of a knapsack auction in which both the
valuation vi and the size wi of each bidder i are private. A mechanism now
receives both bids b and reported sizes a from the bidders. An allocation rule x(b,
a) now specifies the amount of capacity allocated to each bidder, as a function of
the bids and reported sizes. Feasibility dictates that 
for every b and a, where W is the total capacity of the shared resource. We
define the utility of a bidder i as vi − pi(b, a) if she gets her required capacity
(i.e., xi(b, a) ≥ wi) and as − pi(b, a) otherwise. This is not a single-parameter
environment.

Consider the following mechanism. Given bids b and reported sizes a, the
mechanism runs the greedy knapsack auction of Section 4.2.2, taking the reported
sizes a at face value, to obtain a subset of winning bidders and prices p. The
mechanism concludes by awarding each winning bidder capacity equal to her
reported size ai, at a price of pi; losing bidders receive and pay nothing. Is this
mechanism DSIC? Prove it or give an explicit counterexample.

Problem 4.2 Section 4.2.2 gives an allocation rule for knapsack auctions that is
monotone, guarantees at least 50% of the maximum social welfare, and runs in
polynomial time. Can we do better?

We first describe a classical fully polynomial-time approximation scheme
(FPTAS) for the knapsack problem. The input to the problem is item values v1,
…, vn, item sizes w1, …, wn, and a knapsack capacity W. For a user-supplied
parameter  > 0, we consider the following algorithm ; m is a parameter that



will be chosen shortly.

Round each vi up to the nearest multiple of m, call it .
Divide the ’s through by m to obtain integers .
For item values , compute the optimal solution using a
pseudopolynomial-time algorithm.

[You can assume that there exists such an algorithm with running time
polynomial in n and .]

(a) Prove that if we run algorithm  with the parameter m set to 
, then the running time of the algorithm is

polynomial in n and  (independent of the vi’s).

(b) (H) Prove that if we run algorithm  with the parameter m set to 
, then the algorithm outputs a solution with total

value at least 1 −  times the maximum possible.
(c) Prove that if we run algorithm  with the parameter m set to a fixed

constant, independent of the vi’s, then the algorithm yields a monotone
allocation rule.

(d) Prove that if we run algorithm  with the parameter m set as in (a) and
(b), then the algorithm need not yield a monotone allocation rule.

(e) (H) Give a DSIC mechanism for knapsack auctions that, for a user-
specified parameter  and assuming truthful bids, outputs an outcome
with social welfare at least 1 −  times the maximum possible, in time
polynomial in n and .

Problem 4.3 Consider a set M of distinct items. There are n bidders, and each
bidder i has a publicly known subset Ti ⊆ M of items that it wants, and a private
valuation vi for getting them. If bidder i is awarded a set Si of items at a total
price of p, then her utility is vixi − p, where xi is 1 if Si ⊇ Ti and 0 otherwise.
This is a single-parameter environment. Since each item can only be awarded to
one bidder, a subset W of bidders can all receive their desired subsets
simultaneously if and only if if  for each distinct i, j  W.

(a) (H) Prove that the problem of computing a welfare-maximizing feasible
outcome, given the vi’s and Ti’s as input, is -hard.

(b) Here is a greedy algorithm for the social welfare maximization problem,
given bids b from the bidders.



initialize W = θ and X = M
sort and re-index the bidders so that
b1 ≥ b2 ≥ ··· ≥ bn
for i = 1, 2,3, …, n do
  if Ti ⊆ X then
    remove Ti from X and add i to W
return winning bidders W

Does this algorithm define a monotone allocation rule? Prove it or give an
explicit counterexample.

(c) (H) Prove that if all bidders report truthfully and have sets Ti of
cardinality at most d, then the outcome of the allocation rule in (b) has
social welfare at least  times that of the maximum possible.

1 An instance of the knapsack problem is defined by 2n + 1 positive numbers:
item values v1, …, vn, item sizes w1, …, wn, and a knapsack capacity W. The
goal is to compute the subset of items of maximum total value that has total
size at most W.

2 More precisely, the running time of the mechanism on inputs of size s should
be at most csd, where c and d are constants independent of s.

3  and  denote the sets of problems that can be solved in polynomial
time and for which a correct solution can be verified in polynomial time,
respectively.  can only be larger than , and  is an
unproven but widely-accepted hypothesis about computation.

4 That is, if either the bids or the sizes require only a small number of bits to
describe, then the problem can be solved efficiently. See any undergraduate
algorithms textbook for details.

5 Don’t forget that the payments also need to be computed, and this generally
requires solving n more welfare maximization problems (one per agent). See
also Exercise 4.3.

6 Intuitively, what makes a bidder attractive is a high bid and a small size. This
heuristic trades these two properties off by ordering bidders by “bang-per-
buck”—the value contributed per unit of capacity used.



7 Alternatively, continue to follow the sorted order, packing any further bidders
that fit. This modified heuristic is only better than the original.

8 The motivation for this step is that the solution produced by the second step
can be highly suboptimal if there is a very valuable and very large bidder. In
lieu of considering only the highest bidder, this step can also sort the bidders in
nondecreasing bid order and pack them greedily. This modification can only
improve the heuristic.

9 The greedy allocation rule is even better under additional assumptions. For
example, if wi ≤ αW for every bidder i, with , then the
approximation guarantee improves to 1 − α, even if the third step of the
algorithm is omitted.

10 We’ll ignore the “individual rationality” condition in Definition 2.3, which
does not matter for the main points of this section.



Lecture 5

Revenue-Maximizing Auctions

Lectures 2–4 focused on the design of mechanisms that maximize, exactly or
approximately, the social welfare of the outcome. Revenue is generated in such
mechanisms only as a side effect, a necessary evil to incentivize agents to report
truthfully their private information. This lecture studies mechanisms that are
designed to raise as much revenue as possible, and characterizes the expected
revenue-maximizing mechanism with respect to a prior distribution over agents’
valuations.

Section 5.1 explains why reasoning about revenue maximization is harder than
welfare maximization, and introduces Bayesian environments. Section 5.2 is the
heart of this lecture, and it characterizes expected revenue-maximizing
mechanisms as “virtual welfare maximizers.” Section 5.3 describes how this
theory was used to boost sponsored search revenue at Yahoo. Section 5.4 proves
a technical lemma needed for the characterization in Section 5.2.

5.1 The Challenge of Revenue Maximization

5.1.1 Spoiled by Social Welfare Maximization
There are several reasons to begin the study of mechanism design with the
objective of maximizing social welfare. The first reason is that this objective is
relevant to many real-world scenarios. For instance, in government auctions (e.g.,
to sell wireless spectrum; see Lecture 8), the primary objective is welfare
maximization. Revenue is also a consideration in such auctions, but it is usually not
the first-order objective. Also, in competitive markets, a rule of thumb is that a
seller should focus on welfare maximization, since otherwise a competitor will
(thereby stealing their customers).

The second reason to start with social welfare maximization is pedagogical:
social welfare is special. In every single-parameter environment, there is a DSIC
mechanism that, for every profile of private valuations, assuming truthful bids,
computes the welfare-maximizing outcome (cf., Exercise 4.1).1 Such a
mechanism optimizes the social welfare as effectively as if all of the private
information was known in advance—the DSIC constraint is satisfied for free.
This amazingly strong performance guarantee, called an “ex post” guarantee,



cannot generally be achieved for other objective functions.

5.1.2 One Bidder and One Item
The following trivial example is illuminating. Suppose there is one item and only
one bidder, with a private valuation v. With only one bidder, the space of direct-
revelation DSIC auctions is small: they are precisely the posted prices, meaning
take-it-or-leave-it offers.2 With a posted price of r ≥ 0, the auction’s revenue is
either r (if v ≥ r) or 0 (if v < r).

Maximizing social welfare in this setting is trivial: just set r = 0, so that the
auction always awards the item to the bidder for free. This optimal posted price is
independent of v.

Suppose we wanted to maximize revenue. How should we set r? If we
telepathically knew v, we would set r = v. But with v private to the bidder, what
should we do? It is not clear how to reason about this question.

The fundamental issue is that the revenue-maximizing auction varies with the
private valuations. With a single item and bidder, a posted price of 20 will do very
well on inputs where v is 20 or a little larger, and terribly when v is less than 20
(while smaller posted prices will do better). Welfare maximization, for which there
is an input-independent optimal DSIC mechanism, is special indeed.

5.1.3 Bayesian Analysis
To compare the revenue of two different auctions, we require a model to
compare trade-offs across different inputs. The classical approach is to use
average-case or Bayesian analysis. We consider a model comprising the
following ingredients:

A single-parameter environment (Section 3.1). We assume that there is a
constant M such that xi ≤ M for every i and feasible solution (x1, …, xn) 
X.
Independent distributions F1, …, Fn with positive and continuous density
functions f1, …, fn. We assume that the private valuation vi of participant i
is drawn from the distribution Fi.

3 We also assume that the support of
every distribution Fi belongs to [0, vmax] for some vmax < ∞.4

A key assumption is that the mechanism designer knows the distributions F1, …,
Fn.5 The realizations v1, …, vn of agents’ valuations are private, as usual. Since
we focus on DSIC auctions, where agents have dominant strategies, the agents
do not need to know the distributions F1, …, Fn.6

In a Bayesian environment, it is clear how to define the “optimal” mechanism



—it is the one that, among all DSIC mechanisms, has the highest expected
revenue (assuming truthful bids). The expectation is with respect to the given
distribution F1 × F2 × ··· × Fn over valuation profiles.

5.1.4 One Bidder and One Item, Revisited
With our Bayesian model, single-bidder single-item auctions are easy to reason
about. The expected revenue of a posted price r is simply

Given a distribution F, it is usually a simple matter to solve for the best posted
price r. An optimal posted price is called a monopoly price of the distribution F.
Since DSIC mechanisms are posted prices (and distributions thereof), posting a
monopoly price is a revenue-maximizing auction. For instance, if F is the uniform
distribution on [0, 1], so that F(x) = x on [0, 1], then the monopoly price is ,

achieving an expected revenue of .

5.1.5 Multiple Bidders
The plot thickens already with two bidders, where the space of DSIC auctions is
more complicated than the space of posted prices. For example, consider a single-
item auction with two bidders with valuations drawn independently from the
uniform distribution on [0, 1]. We could of course run a second-price auction
(Section 2.4); its expected revenue is the expected value of the smaller bid, which
is  (Exercise 5.1(a)).

We can also supplement a second-price auction with a reserve price,
analogous to the opening bid in an eBay auction. In a second-price auction with
reserve r, the allocation rule awards the item to the highest bidder, unless all bids
are less than r, in which case no one gets the item. The corresponding payment
rule charges the winner (if any) the second-highest bid or r, whichever is larger.
From a revenue standpoint, adding a reserve price r is both good and bad: you
lose revenue when all bids are less than r, but when exactly one bid is above r the
reserve price boosts the revenue. With two bidders with valuations drawn
independently from the uniform distribution on [0, 1], adding a reserve price of 

raises the expected revenue of a second-price auction from  to  (Exercise

5.1(b)). Can we do better? Either by using a different reserve price, or with a
entirely different auction format?

5.2 Characterization of Optimal DSIC Mechanisms



The primary goal of this lecture is to give an explicit description of an optimal (i.e.,
expected revenue-maximizing) DSIC mechanism for every single-parameter
environment and distributions F1, …, Fn.

5.2.1 Preliminaries
We can simplify the problem by applying the revelation principle from last lecture
(Theorem 4.3). Since every DSIC mechanism is equivalent to—and hence has
the same expected revenue as—a direct-revelation DSIC mechanism (x, p), we
can restrict our attention to such mechanisms. We correspondingly assume
truthful bids (i.e., b = v) for the rest of the lecture.

The expected revenue of a DSIC mechanism (x, p) is, by definition,

(5.1)

where the expectation is with respect to the distribution F = F1 × ··· × Fn over
agents’ valuations. It is not clear how to directly maximize the expression (5.1)
over the space of DSIC mechanisms. We next work toward a second formula
for the expected revenue of a mechanism. This alternative formula only
references the allocation rule of a mechanism, and not its payment rule, and for
this reason is far easier to maximize.

5.2.2 Virtual Valuations
The second formula for expected revenue uses the important concept of virtual
valuations. For an agent i with valuation distribution Fi and valuation vi, her
virtual valuation is defined as

(5.2)

The virtual valuation of an agent depends on her own valuation and distribution,
and not on those of the other agents. For example, if Fi is the uniform distribution
on [0, 1], with Fi(z) = z for z  [0, 1], then fi (z) = 1, and 

 on [0, 1]. A virtual valuation is always
at most the corresponding valuation, and it can be negative. See Exercise 5.2 for
more examples.

Virtual valuations play a central role in the design of expected revenue-
maximizing auctions. But what do they mean? One way to interpret the formula



is to think of vi as the maximum revenue obtainable from agent i, and the second
term as the inevitable revenue loss caused by not knowing vi in advance, known
as the information rent. A second interpretation of φi(vi) is as the slope of a
“revenue curve” at vi, where the revenue curve plots the expected revenue
obtained from an agent with valuation drawn from Fi as a function of the
probability of a sale. Problem 5.1 elaborates on this interpretation.

5.2.3 Expected Revenue Equals Expected Virtual
Welfare

The following lemma is the workhorse of our characterization of optimal auctions.
We give the proof, which is really just some calculus, in Section 5.4.

Lemma 5.1 For every single-parameter environment with valuation
distributions F1, …, Fn, every DSIC mechanism (x, p), every agent i, and
every value v–i of the valuations of the other agents,

(5.3)

That is, the expected payment of an agent equals the expected virtual value
earned by the agent. This identity holds only in expectation over vi, and not
pointwise.7

Taking Lemma 5.1 as given, we have the following important result.

Theorem 5.2 (Exp. Revenue Equals Exp. Virtual Welfare)

For every single-parameter environment with valuation distributions F1, …,
Fn and every DSIC mechanism (x, p),

(5.4)

Proof: Taking the expectation, with respect to v−i ∼ F−i, of both sides of (5.3) we
obtain

Applying the linearity of expectation (twice) then gives



as desired. 
The second term in (5.4) is our second formula for the expected revenue of a

mechanism, and we should be pleased with its simplicity. If we replaced the 
’s by vi’s, then we would be left with an old friend: the expected welfare

of the mechanism. For this reason, we refer to  as the
virtual welfare of a mechanism on the valuation profile v. Theorem 5.2 implies
that maximizing expected revenue over the space of DSIC mechanisms reduces
to maximizing expected virtual welfare over the same space.

5.2.4 Maximizing Expected Virtual Welfare
It is shocking that a formula as simple as (5.4) holds. It says that even though we
only care about payments, we can focus on an optimization problem that concerns
only the mechanism’s allocation rule. This second form is far more operational,
and we proceed to determine the mechanisms that maximize it.

How should we choose the allocation rule x to maximize the expected virtual
welfare

(5.5)

We have the freedom of choosing x(v) for each valuation profile v, and have no
control over the input distribution F or the virtual values φi(vi). Thus, the obvious
approach is to maximize pointwise: separately for each v, we choose x(v) to
maximize the virtual welfare  obtained on the input v,
subject to feasibility of the allocation. We call this the virtual welfare-maximizing
allocation rule. This is the same as the welfare-maximizing allocation rule of
(4.1) and (4.2), except with agents’ valuations replaced by their virtual valuations
(5.2).



For example, in a single-item auction, where the feasibility constraint is 
 for every v, the virtual welfare-maximizing rule just

awards the item to the bidder with the highest virtual valuation. Well, not quite:
recall that virtual valuations can be negative—for instance, φi(vi) = 2vi − 1 when
vi is uniformly distributed between 0 and 1—and if every bidder has a negative
virtual valuation, then the virtual welfare is maximized by not awarding the item to
anyone.8

The virtual welfare-maximizing allocation rule maximizes the expected virtual
welfare (5.5) over all allocation rules, monotone or not. The key question is: Is
the virtual welfare-maximizing rule monotone? If so, then by Myerson’s
lemma (Theorem 3.7) it can be extended to a DSIC mechanism, and by Theorem
5.2 this mechanism has the maximum possible expected revenue.

5.2.5 Regular Distributions
Monotonicity of the virtual welfare-maximizing allocation rule depends on the
valuation distributions. The next definition identifies a sufficient condition for
monotonicity.

Definition 5.3 (Regular Distribution) A distribution F is regular if the
corresponding virtual valuation function  is non-decreasing.

If every agent’s valuation is drawn from a regular distribution, then with
consistent tie-breaking, the virtual welfare-maximizing allocation rule is monotone
(Exercise 5.5).

For example, the uniform distribution on [0, 1] is regular because the
corresponding virtual valuation function is 2v − 1. Many other common
distributions are also regular (Exercise 5.3). Irregular distributions include many
multi-modal distributions and distributions with extremely heavy tails.

With regular valuation distributions, we can extend the (monotone) virtual
welfare-maximizing allocation rule to a DSIC mechanism using Myerson’s lemma
(Theorem 3.7). This is an expected revenue-maximizing DSIC mechanism.9



Virtual Welfare Maximizer

Assumption: the valuation distribution Fi of every agent is regular (Definition
5.3).

1. Transform the (truthfully reported) valuation vi of agent i into the
corresponding virtual valuation φi(vi) according to (5.2).

2. Choose the feasible allocation (x1, …, xn) that maximizes the virtual
welfare .10

3. Charge payments according to Myerson’s payment formula (see (3.5)
and (3.6)).11

We call this mechanism the virtual welfare maximizer for the given single-
parameter environment and valuation distributions.

Theorem 5.4 (Virtual Welfare Maximizers Are Optimal)
For every single-parameter environment and regular distributions F1, …, Fn,
the corresponding virtual welfare maximizer is a DSIC mechanism with the
maximum-possible expected revenue.

A stunning implication of Theorem 5.4 is that revenue-maximizing mechanisms
are almost the same as welfare-maximizing mechanisms, and differ only in using
virtual valuations in place of valuations. In this sense, revenue maximization
reduces to welfare maximization.

Remark 5.5 (Bayesian Incentive Compatible Mechanisms) Generalizing the
derivations in Section 3.4 and this section yields a substantially stronger version of
Theorem 5.4: the mechanism identified in the theorem maximizes expected
revenue not only over all DSIC mechanisms but more generally over all
“Bayesian incentive compatible (BIC)” mechanisms. A BIC mechanism for
valuation distributions F1, …, Fn is one in which truthful revelation forms a
Bayes-Nash equilibrium (see Problem 5.3 for a definition). Every DSIC
mechanism is BIC with respect to every choice of F1, …, Fn. Since optimizing
expected revenue over all BIC mechanisms yields a DSIC mechanism, the DSIC
property comes for free. The revelation principle (Theorem 4.3) can be adapted
to BIC mechanisms (Problem 5.4), implying that, under the assumptions of
Theorem 5.4, no Bayes-Nash equilibrium of any mechanism (e.g., first-price
auctions) results in expected revenue larger than that earned by the optimal DSIC
mechanism.



5.2.6 Optimal Single-Item Auctions
Theorem 5.4 gives a satisfying solution to the problem of expected revenue-
maximizing mechanism design, in the form of a relatively explicit and easy-to-
implement optimal mechanism. However, these mechanisms are not easy to
interpret. Do they ever simplify to familiar mechanisms?

Let’s return to single-item auctions. Assume that bidders are i.i.d., meaning
that they have a common valuation distribution F and hence a common virtual
valuation function φ. Assume also that F is strictly regular, meaning that φ is a
strictly increasing function. The virtual-welfare-maximizing mechanism awards
the item to the bidder with the highest nonnegative virtual valuation, if any. Since
all bidders share the same increasing virtual valuation function, the bidder with the
highest virtual valuation is also the bidder with the highest valuation. This
allocation rule is the same as that of a second-price auction with a reserve price
of φ−1(0). By Theorem 3.7(b), the payment rules also coincide. Thus, for any
number of i.i.d. bidders and a strictly regular valuation distribution, eBay (with a
suitable opening bid) is the optimal auction format! Returning to the setting
described at the end of Section 5.1, with all valuations distributed uniformly on [0,
1], the second-price auction with reserve  is optimal. Given the
richness of the DSIC auction design space, it is astonishing that such a simple and
practical auction pops out as the theoretically optimal one.

5.3 Case Study: Reserve Prices in Sponsored Search
So how does all this optimal mechanism design theory get used, anyway? This
section discusses a 2008 field experiment that explored whether or not the lessons
of optimal auction theory could be used to increase sponsored search revenue at
Yahoo.

Recall from Section 2.6 our model of sponsored search auctions. Which such
auction maximizes the expected revenue, at least in theory? If we assume that
bidders’ valuations-per-click are drawn i.i.d. from a regular distribution F with
virtual valuation function φ, then the optimal auction considers only bidders who
bid at least the reserve price φ−1(0), and ranks these bidders by bid (from the best
slot to the worst). See Exercise 5.8.

What had Yahoo been doing, up to 2008? First, they were using relatively low
reserve prices—initially $.01, later $.05, and then $.10. Perhaps more naively,
they were using the same reserve price of $.10 across all keywords, even though
some keywords surely warranted higher reserve prices than did others (e.g.,
“divorce lawyer” versus “pizza”). How would Yahoo’s revenue change if reserve
prices were updated, independently for each keyword, to the theoretically optimal
ones?

In the first step of the field experiment, a lognormal valuation distribution was



fitted to past bidding data for approximately 500,000 different keywords.12 The
qualitative conclusions of the experiment appear to be independent of the details
of this step, such as the particular family of valuation distributions chosen.

In the second step, theoretically optimal reserve prices were computed for
each keyword, assuming that valuations were distributed according to the fitted
distributions. As expected, the optimal reserve price varied significantly across
keywords. There were plenty of keywords with a theoretically optimal reserve
price of $.30 or $.40. Yahoo’s uniform reserve price was much too low, relative to
the advice provided by optimal auction theory, on these keywords.

The obvious experiment is to try out the theoretically optimal (and generally
higher) reserve prices to see how they do. Yahoo’s top brass wanted to be a little
more conservative, though, and set the new reserve prices to be the average of
the old ones ($.10) and the theoretically optimal ones.13 And the change worked:
auction revenues went up several percent (of a very large number). The new
reserve prices were especially effective in markets that are valuable but “thin,”
meaning not very competitive (less than six bidders). Better reserve prices were
credited by Yahoo’s president as the biggest reason for higher search revenue in
Yahoo’s third-quarter report in 2008.

*5.4 Proof of Lemma 5.1
This section sketches a proof of Lemma 5.1, that the expected (over vi ∼ Fi)
revenue obtained from an agent i equals the expected virtual value that she earns.
As a starting point, recall Myerson’s payment formula (3.6)

for the payment made by agent i in a DSIC mechanism with allocation rule x on
the valuation profile v. We derived this equation assuming that the allocation
function xi(z, v−i) is differentiable. By standard advanced calculus, the same
formula holds more generally for an arbitrary monotone function xi(z, v−i),
including piecewise constant functions, for a suitable interpretation of the
derivative  and the corresponding integral. Similarly, all of the
following proof steps, which make use of calculus maneuvers like integration by
parts, can be made fully rigorous for arbitrary bounded monotone functions
without significant difficulty. We leave the details to the interested reader.14

Equation (3.6) states that payments are fully dictated by the allocation rule.
Thus, at least in principle, we can express the expected revenue of an auction
purely in terms of its allocation rule, with no explicit reference to its payment rule.
Will the resulting revenue formula be easier to maximize than the original one? It’s
hard to know without actually doing it, so let’s do it.



Step 1: Fix an agent i. By Myerson’s payment formula, we can write the
expected (over vi ∼ Fi) payment by i for a given value of v−i as

The first equality exploits the independence of agents’ valuations— the fixed
value of v−i has no bearing on the distribution Fi from which vi is drawn.

This step is exactly what we knew was possible in principle— rewriting the
expected payment in terms of the allocation rule. For this to be useful, we need
some simplifications.

Step 2: Whenever you have a double integral (or double sum) that you don’t
know how to interpret, it’s worth reversing the integration order. Reversing the
order of integration in

yields

which simplifies to

suggesting that we’re on the right track.

Step 3: Integration by parts is also worth trying when massaging an integral into
a more interpretable form, especially if there’s an obvious derivative hiding in the
integrand. We again get some encouraging simplifications:



(5.6)

Step 4: We can interpret (5.6) as an expected value, with z drawn from the
distribution Fi. Recalling the definition (5.2) of virtual valuations, this expectation
is . Summarizing, we have

as desired.



The Upshot

 Unlike welfare-maximizing mechanisms, the revenue-maximizing
mechanism for an environment varies with the (private) valuations.
 In the average-case or Bayesian approach to comparing different
mechanisms, each agent’s valuation is drawn independently from a
distribution known to the mechanism designer. The optimal mechanism
is the one with the highest expected revenue with respect to these
distributions.
 The expected revenue of a DSIC mechanism can be expressed purely
in terms of its allocation rule, using the important concept of virtual
valuations (5.2).
 A distribution is regular if the corresponding virtual valuation function is
nondecreasing. Many common distributions are regular.
 With regular valuation distributions, the optimal mechanism is a virtual
welfare maximizer, which for each valuation profile chooses an
outcome with maximum virtual welfare.
 In a single-item auction with bidders’ valuations drawn i.i.d. from a
regular distribution, the optimal auction is a second-price auction with a
reserve price.
 The lessons learned from the theory of optimal mechanism design
were used in 2008 to increase Yahoo’s sponsored search revenue by
several percent.

Notes
The model and main results of this lecture are due to Myerson (1981), as are the
mentioned extensions to irregular valuation distributions and to Bayesian incentive
compatible mechanisms (Remark 5.5). Myerson (1981) also notes the crucial
importance of the independence assumption on agents’ valuations, an observation
that is developed further by Crémer and McLean (1985). With irregular
distributions, the virtual welfare-maximizing allocation rule is not monotone, and it
is necessary to solve for the monotone allocation rule with the maximum expected
virtual welfare. This can be done by “ironing” virtual valuation functions to make
them monotone, while at the same time preserving the virtual welfare of the
mechanisms that matter. See Hartline (2016) for a textbook treatment of these
extensions.

The field experiment with reserve prices in Yahoo sponsored search auctions



(Section 5.3) is reported by Ostrovsky and Schwarz (2009). The revenue curve
interpretation of virtual valuations in Problem 5.1 is due to Bulow and Roberts
(1989). Problem 5.2 is from Azar et al. (2013). Problem 5.3 is closely related to
the property of “revenue equivalence,” identified already in Vickrey (1961); see
Krishna (2010) for an excellent exposition.

Exercises
Exercise 5.1 Consider a single-item auction with two bidders with valuations
drawn independently from the uniform distribution on [0, 1].

(a) Prove that the expected revenue obtained by a second-price auction (with
no reserve) is .

(b) Prove that the expected revenue obtained by a second-price auction with
reserve  is .

Exercise 5.2 Compute the virtual valuation function of the following distributions.

(a) The uniform distribution on [0, a] with a > 0.
(b) The exponential distribution with rate λ > 0 (on [0, ∞)).

(c) The distribution given by  on [0,∞), where c >

0 is some constant.

Exercise 5.3 Which of the distributions in Exercise 5.2 are regular (Definition
5.3)?

Exercise 5.4 A valuation distribution meets the monotone hazard rate (MHR)
condition if its hazard rate  is nondecreasing in vi.

15

(a) Prove that every distribution meeting the MHR condition is regular.
(b) Which of the distributions in Exercise 5.2 satisfy the MHR condition?

Exercise 5.5 Prove that for every single-parameter environment and regular
valuation distributions F1, …, Fn, the virtual-welfare-maximizing allocation rule is
monotone in the sense of Definition 3.6. Assume that ties are broken
lexicographically with respect to some fixed total ordering over the feasible
outcomes.

Exercise 5.6 (H) For the valuation distribution in Exercise 5.2(c), with c = 1,
argue that the expected revenue of an auction does not necessarily equal its



expected virtual welfare. How do you reconcile this observation with Theorem
5.2?

Exercise 5.7 Consider a k-unit auction (Example 3.2) in which bidders’
valuations are drawn i.i.d. from a regular distribution F. Describe an optimal
auction. Which of the following does the reserve price depend on: k, n, or F?

Exercise 5.8 Repeat the previous exercise for sponsored search auctions
(Example 3.3).

Exercise 5.9 Consider a single-parameter environment and regular valuation
distributions F1, …, Fn. For α  [0, 1], call a DSIC mecha-nism an α-
approximate virtual welfare maximizer if it always selects a feasible allocation
with virtual welfare at least α times the maximum possible. Prove that the
expected revenue of an α-approximate virtual welfare maximizer is at least α
times that of an optimal mechanism.

Exercise 5.10 In the sponsored search auction case study in Section 5.3, raising
reserve prices was particularly effective for valuable keywords (typical
valuations-per-click well above the old reserve price of $.10) that had few bidders
(6 or less). Give at least two examples of keywords that you think might have
these properties, and explain your reasoning.

Problems
Problem 5.1 This problem derives an interesting interpretation of a virtual
valuation  and the regularity condition. Consider a

strictly increasing distribution function F with a strictly positive density function f
on the interval [0, vmax], with vmax < +∞.

For a single bidder with valuation drawn from F, for q  [0, 1], define V(q) =
F − 1(1 − q) as the (unique) posted price that yields a probability q of a sale.
Define R(q) = q·V(q) as the expected revenue obtained from a single bidder
when the probability of a sale is q. The function R(q), for q  [0, 1], is the
revenue curve of F. Note that R(0) = R(1) = 0.

(a) What is the revenue curve for the uniform distribution on [0, 1]?
(b) Prove that the slope of the revenue curve at q (i.e., R′ (q)) is precisely

φ(V(q)), where φ is the virtual valuation function for F.
(c) Prove that a distribution is regular if and only if its revenue curve is

concave.

Problem 5.2 (H) Consider a single bidder with valuation drawn from a regular
distribution F that satisfies the assumptions of Problem 5.1. Let p be the median



of F, meaning the value for which . Prove that the price p earns at

least 50% of the expected revenue of the optimal posted price for F.

Problem 5.3 This problem introduces the Bayes-Nash equilibrium concept and
compares the expected revenue earned by first-and second-price single-item
auctions.

First-price auctions have no dominant strategies, and we require a new concept
to reason about them. For this problem, assume that bidders’ valuations are drawn
i.i.d. from a commonly known distribution F. A strategy of a bidder i in a first-
price auction is a predetermined plan for bidding—a function bi(·) that maps her
valuation vi to a bid bi(vi). The semantics are: “when my valuation is vi, I will bid
bi(vi).” We assume that bidders’ strategies are common knowledge, with bidders’
valuations (and hence induced bids) private as usual. A strategy profile b1(·), · · ·,
bn(·) is a Bayes-Nash equilibrium if every bidder always bids optimally given
her information—if for every bidder i and every valuation vi, the bid bi(vi)
maximizes i’s expected utility, where the expectation is with respect to the
distribution over others bids induced by F and b−i.

(a) Suppose F is the uniform distribution on [0, 1]. Verify that setting bi(vi) =
vi(n − 1)/n for every i and vi yields a Bayes-Nash equilibrium.

(b) Prove that the expected revenue of the seller (over v) at this equilibrium
of the first-price auction is exactly the expected revenue of the seller in
the truthful outcome of a second-price auction.

(c) (H) Extend the conclusion in (b) to every continuous and strictly
increasing distribution function F on [0, 1].

Problem 5.4 This problem uses first-price auctions to illustrate the extension of
the revelation principle (Theorem 4.3) to Bayesian incentive compatible
mechanisms (Remark 5.5).

(a) Let F1, …, Fn be valuation distributions and b1, …, bn a Bayes-Nash
equilibrium of a first-price auction, as defined in Problem 5.3. Prove that
there exists a single-item auction M′ such that truthful bidding is a Bayes-
Nash equilibrium and, for every valuation profile v, the truthful outcome
of M′ is identical to the equilibrium outcome of the first-price auction.

(b) A first-price auction is “prior-independent” in that its description makes no
reference to bidders’ valuation distributions. (See also Section 6.4.) Is the
auction M′ in part (a) prior-independent in this sense?



1 This holds even more generally; see Lecture 7.

2 These are the deterministic DSIC auctions. An auction can also randomize
over posted prices, but the point of this example remains the same.

3 The distribution function Fi(z) denotes the probability that a random variable
with distribution Fi has value at most z.

4 The results of this lecture hold more generally if every distribution Fi has
finite expectation.

5 In practice, these distributions are typically derived from data, such as bids in
past auctions.

6 In mechanisms without dominant strategies, such as first-price single-item
auctions, the standard approach is to consider “Bayes-Nash equilibria”; see
Problem 5.3 for details. Bayes-Nash equilibrium analysis assumes a “common
prior,” meaning that all of the agents know the distributions F1, …, Fn.

7 For example, virtual valuations can be negative while payments are always
nonnegative.

8 Recall from the single-bidder example in Section 5.1 that maximizing
expected revenue entails not always selling the item.

9 With additional work, the results of this lecture can be extended to irregular
valuation distributions. See the Notes for details.

10 The simplest way to break ties is lexicographically with respect to some
fixed total ordering over the feasible outcomes.

11 If every xi can only be 0 or 1, then these payments are particularly simple:
every winner pays the infimum of the bids at which she would continue to win,
holding others’ bids fixed.

12 Since Yahoo, like other search engines, uses a non-DSIC auction based on
the GSP auction (Problem 3.1), one cannot expect the bids to be truthful. In
this field experiment, valuations were reversed engineered from bids under the
assumption that bidders are playing the equilibrium that is outcome-equivalent
to the dominant-strategy outcome of the revenue-maximizing DSIC sponsored
search auction (Exercise 5.8).



13 Both in theory and empirically, this more conservative change accounts for
most of the revenue increase. There are usually diminishing returns to revenue
as the reserve price approaches the theoretical optimum, providing flexibility
near the optimal price. The intuition for this principle is that the derivative of
the expected revenue with respect to the reserve price is 0 at the optimal
point.

14 For example, every bounded monotone function is integrable, and is differ-
entiable except at a countable set of points.

15 For intuition behind the MHR condition, consider waiting for a light bulb to
burn out. Given that the bulb hasn’t burned out yet, the probability that it burns
out right now is increasing in the amount of time that has elapsed.



Lecture 6

Simple Near-Optimal Auctions

The preceding lecture identified the expected-revenue-maximizing auction for a
wide range of Bayesian single-parameter environments. When agents’ valuations
are not identically distributed, the optimal mechanism is relatively complex,
requires detailed information about the valuation distributions, and does not
resemble the auction formats used in practice. This lecture pursues approximately
optimal mechanisms that are simpler, more practical, and more robust than the
theoretically optimal mechanism.

Section 6.1 motivates the pursuit of simple near-optimal auctions. Section 6.2
covers a fun result from optimal stopping theory, the “prophet inequality,” and
Section 6.3 uses it to design a simple and provably near-optimal single-item
auction. Section 6.4 introduces prior-independent mechanisms, which are
mechanisms whose description makes no reference to any valuation distributions,
and proves the Bulow-Klemperer theorem, which explains why competition is
more valuable than information.

6.1 Optimal Auctions Can Be Complex
Theorem 5.4 states that, for every single-parameter environment in which agents’
valuations are drawn independently from regular distributions, the corresponding
virtual welfare maximizer maximizes the expected revenue over all DSIC
mechanisms. The allocation rule of this mechanism sets

for each valuation profile v, where

is the virtual valuation corresponding to the distribution Fi.
1

Section 5.2.6 noted that the optimal single-item auction with i.i.d. bidders and a
regular distribution is shockingly simple: it is simply a second-price auction,



augmented with the reserve price φ−1(0). This is a true “killer application” of
auction theory—it gives crisp and practically useful guidance to auction design.

The plot thickens if the problem is a bit more complex. Consider again a single-
item auction, but with bidders’ valuations drawn independently from different
regular distributions. The optimal auction can get weird, and it does not generally
resemble any auctions used in practice (Exercise 6.1). Someone other than the
highest bidder might win, and the payment made by the winner seems impossible
to explain without referencing virtual valuations. This weirdness is inevitable if
you really want every last cent of the maximum-possible expected revenue, with
respect to the exact valuation distributions F1, …, Fn.

Are there simpler and more practical single-item auction formats that are at
least approximately optimal?2

6.2 The Prophet Inequality
Consider the following game with n stages. In stage i, you are offered a
nonnegative prize πi, drawn from a distribution Gi. You are told the distributions
G1, ..., Gn in advance, and these distributions are independent. You are told the
realization πi only at stage i. After seeing πi, you can either accept the prize and
end the game or discard the prize and proceed to the next stage. The decision’s
difficulty stems from the trade-off between the risk of accepting a reasonable
prize early, and then missing out later on a great one, and the risk of having to
settle for a lousy prize in one of the final stages.

The amazing “prophet inequality” offers a simple strategy that performs almost
as well as a fully clairvoyant prophet.

Theorem 6.1 (Prophet Inequality) For every sequence G1, …, Gn of
independent distributions, there is a strategy that guarantees expected
reward at least . Moreover, there is such a threshold
strategy, which accepts prize i if and only if πi is at least some threshold t.

Proof: Let z+ denote max{z, 0}. Consider a threshold strategy with threshold t. It
is difficult to compare directly the expected payoff of this strategy with the
expected payoff of a prophet. Instead, we derive lower and upper bounds,
respectively, on these two quantities that are easy to compare.

Let q(t) denote the probability that the threshold strategy accepts no prize at
all.3 As t increases, the risk q(t) increases but the expected value of an accepted
prize goes up.

What payoff does the t-threshold strategy obtain? With probability q(t), zero,
and with probability 1 − q(t), at least t. Let’s improve our lower bound in the
second case. If exactly one prize i satisfies πi ≥ t, then we should get “extra



credit” of πi − t above and beyond our baseline payoff of t. If at least two prizes
exceed the threshold, say i and j, then things are more complicated: our “extra
credit” is either πi − t or πj − t, according to which corresponds to the earlier
stage. We’ll be lazy and punt on this complication: when two or more prizes
exceed the threshold, we’ll only credit the baseline t to the strategy’s payoff.

Formally, we can bound

from below by

where we use the independence of the Gi’s to factor the two probability terms
and drop the conditioning on the event that πj < t for every j ≠ i. In (6.1), we use
that .

Now we produce an upper bound on the prophet’s expected payoff Eπ[maxiπi]
that is easy to compare to (6.1). The expression Eπ[maxiπi] doesn’t reference the
strategy’s threshold t, so we add and subtract it to derive

(6.2)

Comparing (6.1) and (6.2), we can set t so that , with a 50/50

chance of accepting a prize, and complete the proof.4 

Remark 6.2 (Guarantee with Adversarial Tie-Breaking)



The proof of Theorem 6.1 implies a stronger statement that is useful in the next
section. Our lower bound (6.1) on the revenue of the t-threshold strategy only
credits t units of value when two or more prizes exceed the threshold t. Only the
realizations in which exactly one prize exceeds the threshold contribute to the
second, “extra credit” term in (6.1). For this reason, the guarantee of 

 holds for the strategy even if, whenever there are multiple

prizes above the threshold, it somehow always picks the smallest of these.

6.3 Simple Single-Item Auctions
We now return to our motivating example of a single-item auction with n bidders
with valuations drawn independently from regular distributions F1, …, Fn that
need not be identical. We use the prophet inequality (Theorem 6.1) to design a
relatively simple and near-optimal auction.

The key idea is to define the ith prize as the positive part φi(vi)
+ of bidder i’s

virtual valuation. Gi is then the corresponding distribution induced by Fi; since the
Fi’s are independent, so are the Gi’s. To see an initial connection to the prophet
inequality, we can use Theorem 5.2 to note that the expected revenue of the
optimal auction is

precisely the expected value obtained by a prophet with prizes 
.

Now consider any allocation rule that has the following form.

Virtual Threshold Allocation Rule

1. Choose t such that .5

2. Give the item to a bidder i with φi(vi) ≥ t, if any, breaking ties among
multiple candidate winners arbitrarily.

The prophet inequality, strengthened as in Remark 6.2, immediately implies the
following guarantee for such allocation rules.

Corollary 6.3 (Virtual Threshold Rules Are Near-Optimal) If x is a virtual
threshold allocation rule, then



(6.3)

Because a virtual threshold allocation rule never awards the item to a bidder with
negative virtual valuation, the left-hand side of (6.3) also equals 

.

Here is a specific virtual threshold allocation rule.

Second-Price with Bidder-Specific Reserves

1. Set a reserve price ri = φi
−1(t) for each bidder i, with t defined as for

virtual threshold allocation rules.
2. Give the item to the highest bidder that meets her reserve, if any.

This auction first filters bidders using bidder-specific reserve prices, and then
awards the item to the highest bidder remaining. With regular valuation
distributions, this allocation rule is monotone (Exercise 6.3) and hence can be
extended to a DSIC auction using Myerson’s lemma. The winner’s payment is
then the maximum of her reserve price and the highest bid by another bidder that
meets her reserve price. By Theorem 5.2 and Corollary 6.3, this auction
approximately maximizes the expected revenue over all DSIC auctions.

Theorem 6.4 (Simple Versus Optimal Auctions) For all n ≥ 1 and regular
distributions F1, …, Fn, the expected revenue of a second-price auction with
suitable reserve prices is at least 50% of that of the optimal auction.

The guarantee of 50% can be improved for many distributions, but it is tight in the
worst case, even with only two bidders (see Problem 6.1).

The second-price auction with bidder-specific reserve prices is simpler than the
optimal auction in two senses. First, virtual valuation functions are only used to set
reserve prices. Second, the highest bidder wins, as long as she clears her reserve
price.

An even simpler auction would use a common, or “anonymous,” reserve price
for all bidders. For example, the opening bid in eBay is anonymous.6 See the
Notes for approximation guarantees for single-item auctions with anonymous
reserve prices.

6.4 Prior-Independent Mechanisms



This section explores a different critique of the theory of optimal mechanisms
developed in Lecture 5: the valuation distributions F1, …, Fn were assumed to be
known to the mechanism designer in advance. In some applications, where there
is lots of data and bidders’ preferences are not changing too rapidly, this is a
reasonable assumption. But what if the mechanism designer does not know, or is
not confident about, the valuation distributions? This problem is especially relevant
in thin markets where there is not much data, including sponsored search auctions
for rarely used but potentially valuable keywords (as in Exercise 5.10).

Removing advance knowledge of the valuation distributions might seem to
return us to the single-bidder single-item quandary that motivated the Bayesian
approach (Section 5.1.2). The difference is that we continue to assume that
bidders’ valuations are drawn from distributions; it’s just that these distributions
are unknown to the mechanism designer. That is, we continue to use distributions
in the analysis of mechanisms, but not in their design. The goal is to design a
good prior-independent mechanism, meaning one whose description makes no
reference to a valuation distribution. Examples of prior-independent mechanisms
include second-price single-item auctions, and more generally welfare-maximizing
DSIC mechanisms (as in Exercise 4.1). Non-examples include monopoly prices,
which are a function of the underlying distribution, and more generally virtual
welfare maximizers.

Next is a beautiful result from auction theory: the expected revenue of an
optimal single-item auction is at most that of a second-price auction (with no
reserve price) with one extra bidder.

Theorem 6.5 (Bulow-Klemperer Theorem) Let F be a regular distribution
and n a positive integer. Let p and p* denote the payment rules of the
second-price auction with n + 1 bidders and the optimal auction (for F) with
n bidders, respectively.7 Then

(6.4)

The usual interpretation of the Bulow-Klemperer theorem, which also has
anecdotal support in practice, is that extra competition is more important than
getting the auction format just right. It is better to invest your resources to recruit
more serious participants than to sharpen your knowledge of their preferences.
(Of course, do both if you can!)

The Bulow-Klemperer theorem gives a sense in which the (prior-independent)
second-price auction is simultaneously competitive with an infinite number of
different optimal auctions, ranging over all single-item environments with bidders’
valuations drawn i.i.d. from a regular distribution. Exercise 6.4 shows another
consequence of the theorem: for every such environment and n ≥ 2, the expected



revenue of the second-price auction with n bidders is at least  times that of

an optimal auction (again with n bidders). Problem 6.4 outlines some further
extensions and variations of the Bulow-Klemperer theorem.

Proof of Theorem 6.5: The two sides of (6.4) are tricky to compare directly, so
for the analysis we define a fictitious auction  to facilitate the comparison. This
(n + 1)-bidder single-item DSIC auction works as follows.

The Fictitious Auction 

1. Simulate an optimal n-bidder auction for F on the first n bidders 1, 2, …,
n.

2. If the item was not awarded in the first step, then give the item to bidder
n + 1 for free.

We defined  to possess two properties useful for the analysis. First, its
expected revenue equals that of an optimal auction with n bidders, the right-hand
side of (6.4). Second, it always allocates the item.

We can finish the proof by arguing that the expected revenue of a second-price
auction (with n + 1 bidders) is at least that of . We show the stronger
statement that, when bidders’ valuations are drawn i.i.d. from a regular
distribution, the second-price auction maximizes the expected revenue over all
DSIC auctions that always allocate the item.

We can identify the optimal such auction using the tools developed in Section
5.2. By the equivalence of expected revenue and expected virtual welfare
(Theorem 5.2), it suffices to maximize the latter. The allocation rule with
maximum possible expected virtual welfare subject to always allocating the item
always awards the item to a bidder with the highest virtual valuation, even if this
is negative.

A second-price auction always awards the item to a bidder with the highest
valuation. Since bidders’ valuations are drawn i.i.d. from a regular distribution, all
bidders share the same nondecreasing virtual valuation function φ. Thus, a bidder
with the highest valuation also has the highest virtual valuation. We conclude that
the second-price auction maximizes expected revenue subject to always awarding
the item, and the proof is complete. 



The Upshot

 When bidders’ valuations are drawn from different distributions, the
optimal single-item auction is complex, requires detailed information
about the distributions, and does not resemble the auction formats used
in practice.
 The prophet inequality states that, given a sequence of prizes drawn
from known and independent distributions, there is a threshold strategy
with expected value at least 50% of the expected value of the biggest
prize.
 The prophet inequality implies that a second-price auction with suitably
chosen bidder-specific reserve prices has expected revenue at least
50% of the maximum possible.
 A prior-independent mechanism is one whose description makes no
reference to any valuation distributions. Welfare-maximizing
mechanisms are prior-independent; virtual welfare-maximizing
mechanisms are not.
 The Bulow-Klemperer theorem states that the expected revenue of an
optimal single-item auction is at most that of a second-price auction
with one extra bidder.

Notes
The prophet inequality (Theorem 6.1) is due to Samuel-Cahn (1984). Theorem 6.4
is from Chawla et al. (2007). Approximation guarantees for second-price auctions
with anonymous reserve prices are considered by Hartline and Roughgarden
(2009), and a recent result of Alaei et al. (2015) shows that such an auction can
always extract at least a 1/e ≈ 37% fraction of the optimal expected revenue.
Problem 6.2 also appears in Hartline and Roughgarden (2009). The result in
Problem 6.3 is due to Chawla et al. (2010).

The Bulow-Klemperer theorem (Theorem 6.5) and its extension in Problem
6.4(a) are from Bulow and Klemperer (1996). Our proof follows Kirkegaard
(2006). The consequent approximation guarantee (Exercise 6.4) is observed in
Roughgarden and Sundararajan (2007). The general agenda of designing good
prior-independent mechanisms is articulated in Dhangwatnotai et al. (2015), and
Problem 6.4(b) is a special case of their “single sample” mechanism. Prior-
independent mechanism design can be considered a relaxation of “prior-free”
mechanism design, as developed by Goldberg et al. (2006).

In contrast to the classical optimal auction theory developed in Lecture 5, the



theories of simple near-optimal and prior-independent mechanisms emerged only
over the past 10 years, primarily in the computer science literature. See Hartline
(2016) for a survey of the latest developments.

Exercises
Exercise 6.1 Consider an n-bidder single-item auction, with bidders’ valuations
drawn independently from regular distributions F1, …, Fn.

(a) Give a formula for the winner’s payment in an optimal auction, in terms of
the bidders’ virtual valuation functions.

(b) (H) Show by example that, in an optimal auction, the highest bidder need
not win, even if it has a positive virtual valuation.

(c) Give an intuitive explanation of why the property in (b) might be beneficial
to the expected revenue of an auction.

Exercise 6.2 (H) Extend the prophet inequality (Theorem 6.1) to the case where
there is no threshold t with , where q(t) is the probability that no

prize meets the threshold.

Exercise 6.3 Prove that with regular valuation distributions F1, …, Fn, the
allocation rule of a second-price auction with bidder-specific reserve prices
(Section 6.3) is monotone.

Exercise 6.4 (H) Consider an n-bidder single-item auction, with bidders’
valuations drawn i.i.d. from a regular distribution F. Prove that the expected
revenue of a second-price auction (with no reserve price) is at least  times
that of an optimal auction.

Problems
Problem 6.1 This problem investigates improvements to the prophet inequality
(Theorem 6.1) and its consequences for simple near-optimal auctions (Theorem
6.4).

(a) (H) Show that the factor of  in the prophet inequality cannot be

improved: for every constant , there are distributions G1, …, Gn

such that every strategy, threshold or otherwise, has expected value less
than .

(b) Prove that Theorem 6.4 does not hold with 50% replaced by any larger
constant factor.



(c) Can the factor of  in the prophet inequality be improved for the special
case of i.i.d. distributions, with G1 = G2 = … = Gn?

Problem 6.2 This problem steps through a reasonably general result about simple
and near-optimal mechanisms. Consider a single-parameter environment in which
every feasible outcome is a 0-1 vector, indicating the winning agents (cf.,
Exercise 4.2). Assume that the feasible set is downward-closed, meaning that if
S is a feasible set of winning agents and T ⊆ S, then T is also a feasible set of
winning agents. Finally, assume that the valuation distribution Fi of every agent i
satisfies the monotone hazard rate (MHR) condition (Exercise 5.4), meaning that 

 is nondecreasing in vi.

Let * denote the expected revenue-maximizing DSIC mechanism. Our
protagonist is the following DSIC mechanism .

Welfare Maximization with Monopoly Reserves

1. Let ri be a monopoly price (i.e., in argmaxr ≥ 0{r · (1 − Fi(r))}) for the
distribution Fi.

2. Let S denote the agents i that satisfy vi ≥ ri.
3. Choose winners W ⊆ S to maximize the social welfare:

4. Define payments according to Myerson’s payment formula (3.5).

(a) Let φi denote the virtual valuation function of Fi. Use the MHR condition
to prove that, for every vi ≥ ri, ri + φi(vi) ≥ vi.

(b) (H) Prove that the expected social welfare of  is at least that of 
*.

(c) (H) Prove that the expected revenue of  is at least half of its
expected social welfare.

(d) Conclude that the expected revenue of  is at least half the expected
revenue of the optimal mechanism *.

Problem 6.3 Consider a single consumer who is interested in purchasing at most
one of n non-identical items. Assume that the consumer’s private valuations v1,
…, vn for the n items are drawn from known independent regular distributions F1,



…, Fn. The design space is the set of posted prices, with one price per item.
Faced with prices p1, …, pn, the consumer selects no item if pj > vj for every
item j. Otherwise, she selects the item that maximizes vj − pj, breaking ties
arbitrarily, providing revenue pj to the seller.

(a) Explain why this setting does not correspond to a single-parameter
environment.

(b) (H) Prove that for every F1, …, Fn, the maximum expected revenue
achievable by posted prices is at most that of an optimal single-item
auction with n bidders with valuations drawn independently from the
distributions F1, …, Fn.

(c) (H) Prove that, for every F1, …, Fn, there are posted prices that achieve
expected revenue at least half that of the upper bound identified in (b).

Problem 6.4 This problem considers some variations of the Bulow-Klemperer
theorem (Theorem 6.5). Consider an n-bidder k-unit auction (Example 3.2) with n
≥ k ≥ 1 and with bidders’ valuations drawn i.i.d. from a regular distribution F.

(a) Prove that the expected revenue of the optimal auction for F (Exercise
5.7) is at most that of the DSIC welfare-maximizing auction (Exercise
2.3) with k extra bidders.

(b) (H) Assume that n ≥ k + 1. Prove that the following randomized auction
is DSIC and has expected revenue at least  times that of the optimal

auction.8

A Prior-Independent Auction

1. Choose one bidder j uniformly at random.
2. Let S denote the k highest bidders other than j, and ℓ the next-highest

such bidder. (If n = k = 1, interpret vℓ as 0.)
3. Award an item to every bidder i of S with vi ≥ vj, at a price of max {vj,

v ℓ}.

1Since we only consider DSIC mechanisms, we assume truthful reports (i.e.,
b = v) throughout the lecture.



2 This lecture leaves terms like “simple,” “practical,” and “robust” largely
undefined. This contrasts with our use of approximation in algorithmic
mechanism design (Lecture 4) to escape a different kind of complexity
imposed by full optimality; there, we identified “practical” with “runs in
polynomial time.”

3 Note that discarding the final stage’s prize is clearly suboptimal!

4 If there is no such t because of point masses in the Gi’s, then a minor
extension of the argument yields the same result (Exercise 6.2).

5 See Exercise 6.2 for the case where no such t exists.

6 Some real-world auctions do use bidder-specific reserve prices. For
example, in some sponsored search auctions, “higher-quality” advertisers (as
estimated by the search company) face lower reserve prices than “lower-
quality” advertisers.

7 The latter auction is a second-price auction with reserve price φ−1(0), where
φ is the virtual valuation function of F (Section 5.2.6).

8 A randomized mechanism is DSIC if for every agent i and reports v−i by the
others, truthful reporting maximizes the expected utility of i. The expectation is
over the coin flips of the mechanism.



Lecture 7

Multi-Parameter Mechanism Design

Lectures 2–6 considered only single-parameter mechanism design problems,
where the only private parameter of an agent is her valuation per unit of stuff.
Mechanism design is much more difficult for multi-parameter problems, where
each agent has multiple private parameters. The Vickrey-Clarke-Groves (VCG)
mechanisms provide a sweeping positive result: DSIC welfare maximization is
possible in principle in every multi-parameter environment.

Section 7.1 formally defines general mechanism design environments. Section
7.2 derives the VCG mechanisms and proves that they are DSIC. Section 7.3
discusses the challenges of implementing VCG mechanisms in practice.

7.1 General Mechanism Design Environments
A general multi-parameter mechanism design environment comprises the
following ingredients:

n strategic participants, or “agents”;
a finite set Ω of outcomes;
each agent i has a private nonnegative valuation vi(ω) for each outcome ω

 Ω.

The outcome set Ω is abstract and could be very large. The social welfare of an
outcome ω  Ω is defined as .

Example 7.1 (Single-Item Auction Revisited) In a single-item auction, Ω has
only n + 1 elements, corresponding to the winner of the item (if any). In the
standard single-parameter model of a single-item auction, we assume that the
valuation of a bidder is 0 in all of the n outcomes in which she doesn’t win,
leaving only one unknown parameter per bidder. In the more general multi-
parameter framework, a bidder can have a different valuation for each possible
winner of the auction. For example, in a bidding war over a hot startup, if a bidder
loses, she might prefer that the startup be bought by a company in a different
market, rather than by a direct competitor.

Example 7.2 (Combinatorial Auctions) In a combinatorial auction, there are



multiple indivisible items for sale, and bidders can have complex preferences
between different subsets of items (called bundles). With n bidders and a set M
of m items, the outcomes of Ω correspond to n-vectors (S1, …, Sn), with Si ⊆ M
denoting the bundle allocated to bidder i, and with no item allocated twice. There
are (n + 1)m different outcomes. Each bidder i has a private valuation vi(S) for
each bundle S ⊆ M of items she might get. Thus, each bidder has 2m private
parameters.

Combinatorial auctions are important in practice. For example, dozens of
government spectrum auctions around the world have raised hundreds of billions
of dollars of revenue. In such auctions, typical bidders are telecommunication
companies like Verizon or AT&T, and each item is a license awarding the right to
broadcast on a certain frequency in a given geographic area. Combinatorial
auctions have also been used for other applications such as allocating takeoff and
landing slots at airports.

7.2 The VCG Mechanism
Our next result is a cornerstone of mechanism design theory, and one of the most
sweeping positive results in the field: every multiparameter environment admits a
DSIC welfare-maximizing mechanism.

Theorem 7.3 (Multi-Parameter Welfare Maximization)

In every general mechanism design environment, there is a DSIC welfare-
maximizing mechanism.

Recall the three properties of ideal mechanisms that we singled out in Theorem
2.4, in the context of second-price auctions. Theorem 7.3 asserts the first two
properties (DSIC and welfare maximization) but not the third (computational
efficiency). We already know from Section 4.1.4 that, even in single-parameter
environments, we can’t always have the second and third properties (unless 

). We’ll see that the mechanism identified in Theorem 7.3 is highly
non-ideal in many important applications.

We discuss the main ideas behind Theorem 7.3 before proving it formally.
Designing a (direct-revelation) DSIC mechanism is tricky because the allocation
and payment rules need to be coupled carefully.1 We apply the same two-step
approach that served us so well in single-parameter environments (Section 2.6.4).

The first step is to assume, without justification, that agents truthfully report
their private information, and then figure out which outcome to pick. Since
Theorem 7.3 demands welfare maximization, the only solution is to pick a
welfare-maximizing outcome, using bids as proxies for the unknown valuations.
That is, given reports b1, …, bn, where each report bi is now a vector indexed by
Ω, we define the allocation rule x by



(7.1)

The second step is to define a payment rule that, when coupled with this
allocation rule, yields a DSIC mechanism. Last time we faced this problem
(Section 3.3), for single-parameter environments, we formulated and proved
Myerson’s lemma (Theorem 3.7), which is a general solution to this second step
for all such environments. Myerson’s lemma does not hold beyond single-
parameter environments— with each agent submitting a multidimensional report,
it’s not even clear how to define “monotonicity” of an allocation rule (cf.,
Definition 3.6).2 Similarly, the “critical bid” characterization of DSIC payments
for 0-1 single-parameter problems (Section 4.1.3) does not have an obvious
analog in multi-parameter problems.

The key idea is to generalize an alternative characterization of an agent i’s
payment in a DSIC welfare-maximizing mechanism, as the “externality” caused
by i— the welfare loss inflicted on the other n−1 agents by i’s presence (cf.,
Exercise 4.2). For example, in a single-item auction, the winning bidder inflicts a
welfare loss on the others equal to the second-highest bid (assuming truthful bids),
and this is precisely the payment rule of a second-price auction. “Charging an
agent her externality” remains well defined in general mechanism design
environments, and corresponds to the payment rule

(7.2)

where ω* = x(b) is the outcome chosen in (7.1). Intuitively, these payments force
the agents to “internalize” their externalities, thereby aligning their incentives with
those of a welfare-maximizing decision maker. The payment pi(b) is always at
least 0 (Exercise 7.1).

Definition 7.4 (VCG Mechanism) A mechanism (x, p) with allocation and
payment rules as in (7.1) and (7.2), respectively, is a Vickrey-Clarke-Groves or
VCG mechanism.

For an alternative interpretation of the payments in a VCG mechanism, rewrite
the expression in (7.2) as



(7.3)

We can therefore think of agent i’s payment as her bid minus a “rebate,” equal to
the increase in welfare attributable to i’s presence. For example, in a second-
price auction, the highest bidder pays her bid b1 minus a rebate of b1 − b2 (where
b2 is the second-highest bid), the increase in welfare that the bidder brings to the
table. With nonnegative reports, the rebate in (7.3) is nonnegative (Exercise 7.1).
This implies that pi(b) ≤ bi(ω*) and hence truthful reporting always guarantees
nonnegative utility.

Proof of Theorem 7.3: Fix an arbitrary general mechanism design environment
and let (x, p) denote the corresponding VCG mechanism. By definition, the
mechanism maximizes the social welfare whenever all reports are truthful. To
verify the DSIC condition (Definition 2.3), we need to show that for every agent i
and every set b−i of reports by the other agents, agent i maximizes her quasilinear
utility vi(x(b)) — pi (b) by setting bi = vi.

Fix i and b−i. When the chosen outcome x(b) is ω*, we can use (7.2) to write
i’s utility as

The term (B) is a constant, independent of i’s report bi. Thus, the problem of
maximizing agent i’s utility reduces to the problem of maximizing the first term
(A). As a thought experiment, suppose agent i has the power to choose the
outcome ω* directly, rather than merely influencing the chosen outcome indirectly
via her choice of bid bi. Agent i would, of course, use this extra power to choose
an outcome that maximizes the term (A). If agent i sets bi = vi, then the function
(7.1) that the mechanism maximizes becomes identical to the term (A) that the
agent wants maximized. Thus, truthful reporting coaxes the mechanism to choose
an outcome that maximizes agent i’s utility; no other report can be better. 

7.3 Practical Considerations
Theorem 7.3 shows that, in general multi-parameter environments, DSIC welfare
maximization is always possible in principle. However, there are several major



obstacles to implementing the VCG mechanism in most multi-parameter
environments.3

The first challenge of implementing the VCG mechanism is preference
elicitation, meaning getting the reports b1, …, bn from the agents. For example,
in a combinatorial auction with m items (Example 7.2), each bidder has 2m private
parameters, which is roughly a thousand when m = 10 and a million when m = 20.
No bidder in her right mind would want to figure out or write down so many
numbers, and no seller would want to read them. This critique applies to every
direct-revelation mechanism, not just to the VCG mechanism, for an environment
with a large outcome space.

The second challenge is familiar from algorithmic mechanism design (Lecture
4). Even when the first challenge is not an issue and preference elicitation is easy,
as in single-parameter environments, welfare maximization can be a
computationally intractable problem. This is already the case in (single-parameter)
knapsack auctions (Section 4.1.4), and in more complex settings even
approximate welfare maximization can be computationally intractable.

The third challenge is that, even in applications where the first two challenges
are not relevant, VCG mechanisms can have bad revenue and incentive
properties (despite being DSIC). For instance, consider a combinatorial auction
with two bidders and two items, A and B. The first bidder only wants both items,
so v1(AB) = 1 and is 0 otherwise. The second bidder only wants item A, so v2
(AB) = v2 (A) = 1 and is 0 otherwise. The revenue of the VCG mechanism is 1 in
this example (Exercise 7.2). Now suppose we add a third bidder who only wants
item B, so v3 (AB) = v3 (B) = 1. The maximum welfare jumps to 2, but the VCG
revenue drops to 0 (Exercise 7.2)! The fact that the VCG mechanism has zero
revenue in seemingly competitive environments is a dealbreaker in practice. The
revenue non-monotonicity in this example also leads to numerous incentive
problems, including vulnerability to collusion and false-name bids (Exercises 7.3
and 7.4).

The next lecture discusses how practitioners cope with these challenges in
real-world combinatorial auctions.



The Upshot

 Ina general mechanism design environment, each agent has a private
valuation for each possible outcome. Combinatorial auctions are an
important example in both theory and practice.
 In the VCG mechanism for an environment, the allocation rule selects
an outcome that maximizes the social welfare with respect to agents’
reports. The payment rule charges each agent her externality—the
welfare loss inflicted on the other agents by her presence.
 Every VCG mechanism is DSIC.
 There are several obstacles to implementing VCG mechanisms in
practice, including the difficulty of eliciting a large number of private
parameters, the computational intractability of computing a welfare-
maximizing outcome, and their bad revenue and incentive properties.

Notes
Our definition of VCG mechanisms follows Clarke (1971), generalizing the
second-price single-item auction of Vickrey (1961). Groves (1973) gives a still
more general class of mechanisms, where a bid-independent “pivot term” hi(b‒i)
is added to each agent’s payment, as in Problem 7.1. The equivalence of multi-
parameter implementability and “cycle monotonicity” is due to Rochet (1987); see
Vohra (2011) for a lucid exposition and some applications. Rothkopf et al. (1990)
and Ausubel and Milgrom (2006) detail the many challenges of implementing
VCG mechanisms in practice. Problem 7.1 is due to Holmstrom (1977). Problem
7.3 is from Dobzinski et al. (2010); see Blumrosen and Nisan (2007) for a survey
of further results of this type.

Exercises
Exercise 7.1 Prove that the payment pi(b) charged to an agent i in the VCG
mechanism is at least 0 and at most bi(ω*), where ω* is the outcome chosen by
the mechanism.

Exercise 7.2 Consider a combinatorial auction (Example 7.2) with two items, A
and B, and three bidders. The first bidder has valuation 1 for receiving both items
(i.e., v1(AB) = 1) and 0 otherwise. The second bidder has valuation 1 for item A
(i.e., v2(AB) = v2(A) = 1) and 0 otherwise. The third bidder has valuation 1 for B
and 0 otherwise.



(a) Compute the outcome of the VCG mechanism when only the first two
bidders are present and when all three bidders are present. What can you
conclude?

(b) Can adding an extra bidder ever decrease the revenue of a second-price
single-item auction?

Exercise 7.3 Exhibit a combinatorial auction and bidder valuations such that the
VCG mechanism has the following property: there are two bidders who receive
no items when all bidders bid truthfully, but can both achieve positive utility by
submitting suitable false bids (assuming others bid truthfully). Why doesn’t this
example contradict Theorem 7.3?

Exercise 7.4 Consider a combinatorial auction in which bidders can submit
multiple bids under different names, unbeknownst to the mechanism. The
allocation and payment of a bidder is the union and sum of the allocations and
payments, respectively, assigned to all of her pseudonyms.

(a) Exhibit a combinatorial auction and bidder valuations such that, in the
VCG mechanism, there is a bidder who can earn higher utility by
submitting multiple bids than by bidding truthfully as a single agent
(assuming others bid truthfully).

(b) Can this ever happen in a second-price single-item auction?

Exercise 7.5 (H) A bidder i in a combinatorial auction has a unit-demand
valuation if there exist parameters vi1, …, vim, one per item, such that vi(S) =
maxj S vij for every bundle S of items (and vi(θ) = 0). A bidder with a unit-
demand valuation only wants one item—for instance, a hotel room for a given
night—and only retains her favorite item from a bundle.

Give an implementation of the VCG mechanism in combinatorial auctions with
unit-demand bidder valuations that runs in time polynomial in the number of
bidders and the number of items.

Problems
Problem 7.1 Consider a general mechanism design environment, with outcome
set Ω and n agents. In this problem, we use the term DSIC to refer to the first
condition of Definition 2.3 (truthful reporting is a dominant strategy) and do not
consider the individual rationality condition (truthful bidders receive nonnegative
utility).

(a) Suppose we modify the payments (7.2) of the VCG mechanism by adding
a pivot term hi (b‒i) to each agent i’s payment, where hi (·) is an



arbitrary function of the other agents’ reports. These pivot terms can be
positive or negative, and can result in payments from the mechanism to
the agents. Prove that for every choice of pivot terms, the resulting
mechanism is DSIC.

(b) (H) Suppose agents’ valuations are restricted to lie in the set .
We say that the pivot terms  budget-balance the VCG
mechanism if, for all possible reports b1(·), …, bn(·)  V, the
corresponding VCG payments (including the hi’s) sum to 0.

Prove that there exist pivot terms that budget-balance the VCG
mechanism if and only if the maximum social welfare can be represented
as the sum of bid-independent functions—if and only if we can write

(7.4)

for every b1(·), …, bn(·)  V, where each gi is a function that does not
depend on bi.

(c) Either directly or using part (b), prove that there are no pivot terms that
budget-balance a second-price single-item auction. Conclude that there is
no DSIC single-item auction that maximizes social welfare and is budget-
balanced.

Problem 7.2 Consider a general mechanism design environment, with outcome
set Ω and n agents. Suppose the function  has the form

where c is a publicly known function of the outcome, and where each wi is a
nonnegative, public, agent-specific weight. Such a function is called an affine
maximizer.

Show that for every affine maximizer f and every subset Ω′ ⊆ Ω of the
outcomes, there is a DSIC mechanism that maximizes f over Ω′.

Problem 7.3 Consider a combinatorial auction (Example 7.2) with a set M of m
items, where the valuation function  of each bidder i
satisfies: (i) vi(θ) = 0; (ii) vi(S) ≤ vi(T) whenever S ⊆ T ⊆ M; and (iii) vi(S ∪ T)
≤ vi(S) + vi(T) for all bundles S, T ⊆ M. Such functions are called subadditive.

(a) Call a profile v of subadditive valuations lopsided if there is a social



welfare-maximizing allocation in which at least 50% of the social welfare
is contributed by bidders who are each allocated at least  items.
Prove that if v is lopsided, then there is an allocation that gives all of the
items to a single bidder and has social welfare at least  times the

maximum possible.
(b) (H) Prove that if v is not lopsided, then there is an allocation that gives at

most one item to each bidder and has social welfare at least  times

the maximum possible.
(c) (H) Give a mechanism with the following properties: (1) for some

collection S of bundles, with |S| polynomial in m, each bidder i submits a
bid bi(S) only on the bundles S  S; (2) for every bidder i and bids by the
others, it is a dominant strategy to set bi(S) = vi(S) for all S  S; (3)
assuming truthful bids, the outcome of the mechanism has social welfare
at least  times the maximum possible; (4) the running time of the

mechanism is polynomial in m and the number n of bidders.

1 The statement and proof of the revelation principle (Theorem 4.3) extend
immediately to general mechanism design environments, so we can restrict
attention to direct-revelation mechanisms without loss of generality.

2 There is an analogous characterization of the implementable multi-parameter
allocation rules in terms of “cycle monotonicity”; see the Notes. This is an
elegant result, analogous to the fact that a network with real-valued lengths on
its edges admits well-defined shortest paths if and only if it possesses no
negative cycle. Cycle monotonicity is far more unwieldy than single-parameter
monotonicity, however. Because it is so brutal to verify, cycle monotonicity is
rarely used to argue implementability or to derive DSIC payment rules in
concrete settings.

3 The VCG mechanism can still serve as a useful benchmark for other, more
practical solutions (cf., Lecture 6).



Lecture 8

Spectrum Auctions

This lecture is a case study on the practical implementation of combinatorial
auctions for wireless spectrum, an important and challenging multi-parameter
mechanism design problem. While our sponsored search case studies (Sections
2.6 and 5.3) involve billions of small-stakes auctions, spectrum auction design
concerns a single auction with billions of dollars of potential revenue.

Section 8.1 explains the practical benefits of indirect mechanisms. Section 8.2
discusses the prospects for selling multiple items via separate single-item auctions.
Section 8.3 describes simultaneous ascending auctions, the primary workhorse in
wireless spectrum auctions, while Section 8.4 weighs the pros and cons of
packing bidding. Section 8.5 outlines the cutting edge of spectrum auction design,
the 2016 FCC Incentive Auction.

8.1 Indirect Mechanisms
In a combinatorial auction (Example 7.2) there are n bidders, m items, and each
bidder i’s valuation specifies her value vi(S) for each bundle S of items that she
might receive. In principle, the VCG mechanism provides a DSIC and welfare-
maximizing combinatorial auction (Theorem 7.3). This mechanism is potentially
practical if bidders’ valuations are sufficiently simple (Exercise 7.5), but not
otherwise (Section 7.3). For example, the number of parameters that each bidder
reports in the VCG mechanism, or any other direct-revelation mechanism, grows
exponentially with the number of items m.

The utter absurdity of direct-revelation combinatorial auctions motivates
indirect mechanisms, which learn information about bidders’ preferences only on
a “need-to-know” basis. The canonical indirect auction is the ascending English
auction; see also Exercise 2.7. This auction format is familiar from the movies: an
auctioneer keeps track of the current price and tentative winner, and the auction
stops when only one interested bidder remains.1 Each bidder has a dominant
strategy, which is to stay in the auction as long as the current price is below her
valuation (the bidder might win for positive utility) and to drop out once the
current price reaches her valuation (after which winning can only lead to negative
utility). If all bidders play these strategies, then the outcome of the English auction
is the same as that of a second-price (sealed-bid) auction. The second-price



auction is the result of applying the revelation principle (Theorem 4.3) to the
English auction.

Indirect mechanisms that elicit only a modest amount of information about
bidders’ valuations are unavoidable for all but the simplest combinatorial auction
design problems.2 This entails giving up on both the DSIC guarantee and full
welfare maximization; we will miss these properties, but have no alternative.

8.2 Selling Items Separately
What’s a natural indirect auction format for combinatorial auctions that avoids
eliciting valuations for every possible bundle from each bidder? The simplest
mechanisms to try are those that sell the items separately, using some type of
single-item auction for each. Such a mechanism requires only one bid per bidder
per item, and this is arguably the minimum number imaginable. Before pinning
down the precise single-item auction format, we consider a basic question: could
selling items separately conceivably lead to allocations with high social welfare,
even in principle?

There is a fundamental dichotomy between combinatorial auctions in which
items are substitutes and those in which items can also be complements. The
former are far easier than the latter, in both theory and practice. Roughly
speaking, items are substitutes if they provide diminishing returns—having one
item only makes others less valuable. For two items A and B, for example, the
substitutes condition means that v(AB) ≤ v(A) + v(B). In a spectrum auction
context, two licenses for the same area with equal-sized frequency ranges are
usually substitute items. Theory indicates that selling items separately can work
well when items are (mostly) substitutes. For starters, welfare maximization is a
computationally tractable problem when items are substitutes and the true
valuations are known. Also, the undesirable incentive and revenue properties of
the VCG mechanism (Section 7.3 and Exercises 7.3 and 7.4) evaporate when
items are substitutes, generalizing the reassuring properties of second-price single-
item auctions. But even though substitute items constitute the “easy” case, we’ll
see that it is easy to screw up when trying to sell them separately.

Items are complements if there are synergies between them, so that possessing
one makes others more valuable. With two items A and B, this translates to the
property v(AB) > v(A) + v(B). Complements arise naturally in wireless spectrum
auctions, as some bidders want a collection of licenses that are adjacent, either in
their geographic areas or in their frequency ranges. When items can be
complements, welfare maximization is a computationally intractable problem, even
without incentive constraints (Problem 4.3). We cannot expect a simple auction
format like separate single-item auctions to perform well in these cases.

The items in spectrum auctions, and most real-world combinatorial auctions,
are a mixture of substitutes and complements. If the problem is “mostly



substitutes,” then separate single-item auctions can perform well, if properly
implemented. If not, then more complex auction formats are needed to achieve
allocations with high social welfare (see Section 8.4).

8.3 Case Study: Simultaneous Ascending Auctions

8.3.1 Two Rookie Mistakes
There are numerous ways to organize separate single-item auctions. This section
discusses two design decisions that seem to matter a lot in practice.

Rookie Mistake #1

Hold the single-item auctions sequentially, one at a time.

To see why holding auctions sequentially can be a bad idea, consider the
especially easy case of k-unit auctions (Example 3.2), where the items are
identical and each bidder only wants one of them. There is a simple DSIC and
welfare-maximizing auction in this case (Exercise 2.3). Suppose we instead hold a
sequence of single-item auctions—say, two identical items, sold via back-to-back
second-price auctions. Now imagine that you are a bidder with a very high
valuation—you expect to win any auction that you participate in. What should you
do? First, suppose that every other bidder participates and bids her true valuation
(until she wins an item). If you participate in the first auction, you would win and
pay the second-highest valuation. If you skip it, the bidder with the second-highest
valuation would win the first auction and disappear, leaving you to win the second
auction at a price equal to the third-highest original valuation. Thus,
straightforward bidding is not a dominant strategy in a sequence of second-price
auctions. Intelligent bidding requires reasoning about the likely selling price of
future auctions, and this in turn makes the auctions’ outcomes unpredictable, with
the possibility of low social welfare and revenue.

In March 2000, Switzerland auctioned off three blocks of spectrum via a
sequence of second-price auctions. The first two auctions were for identical
items, 28 MHz blocks, and sold for 121 million and 134 million Swiss francs,
respectively. This is already more price variation than one would like for identical
items. But the kicker was that in the third auction, where a larger 56 MHz block
was being sold, the selling price was only 55 million francs! Some of the bids must
have been far from optimal, and both the welfare and revenue achieved by this
auction are suspect.3

The discussion and history lessons above suggest holding single-item auctions
for multiple items simultaneously rather than sequentially. What single-item
auction format should we choose?



Rookie Mistake #2

Use sealed-bid single-item auctions.

In 1990, the New Zealand government auctioned off essentially identical
licenses for television broadcasting using simultaneous (sealed-bid) second-price
auctions. It is again difficult for bidders to figure out how to bid in such an
auction. Imagine that there are 10 licenses and you want only one of them. How
should you bid? One legitimate strategy is to pick one of the licenses—at random,
say— and go for it. Another strategy is to bid less aggressively on multiple
licenses, hoping that you get one at a bargain price, and that you don’t
inadvertently win extra licenses that you don’t want. The difficulty is trading off
the risk of winning too many licenses with the risk of winning too few.

The challenge of bidding intelligently in simultaneous sealed-bid auctions makes
the auction format prone to outcomes with low welfare and revenue. For
example, suppose there are three bidders and two identical items, and each bidder
wants only one. With simultaneous second-price auctions, if each bidder targets
only one license, one of the licenses is likely to have only one bidder and will be
given away for free (or sold at the reserve price).

The revenue in the 1990 New Zealand auction was only $36 million, a paltry
fraction of the projected $250 million. On one license, the high bid was $100,000
while the second-highest bid (and selling price) was $6! On another, the high bid
was $7 million and the second-highest was $5,000. To add insult to injury, the
winning bids were made available to the public, who could then see just how
much money was left on the table!

8.3.2 The Merits of Simultaneous Ascending Auctions
Simultaneous ascending auctions (SAAs) form the basis of most spectrum
auctions run over the last 20 years. Conceptually, SAAs are like a bunch of
single-item English auctions being run in parallel in the same room, with one
auctioneer per item. More precisely, in each round, each bidder can place a new
bid on any subset of items that it wants, subject to an activity rule. The activity
rule forces all bidders to participate in the auction from the beginning and
contribute to the discovery of appropriate prices. For example, such a rule makes
it impossible for bidders to “snipe,” meaning to enter the auction at last second
and place a winning bid. The details of an activity rule can be complex, but the
gist is to require that the number of items on which a bidder bids only decreases
over time as prices rise. The high bids and bidders are usually visible to all, even
though this can encourage signaling and retaliatory bids (Section 8.3.4). The first
round with no new bids ends the auction.



The primary reason that SAAs work better than sequential or sealed-bid
auctions is price discovery. As a bidder acquires better information about the
likely selling prices of licenses, she can implement mid-course corrections:
abandoning licenses for which competition is fiercer than anticipated, snapping up
unexpected bargains, and rethinking which packages of licenses to assemble. The
format typically resolves the miscoordination problems that plague simultaneous
sealed-bid auctions. For instance, suppose there are two identical items and three
bidders. Every round, some bidder will be losing both auctions. When she jumps
back in, it makes sense to bid for the currently cheaper item, and this keeps the
prices of the two items roughly the same.

Another bonus of the SAA format is that bidders only need to determine their
valuations on a need-to-know basis. We’ve been assuming that valuations are
known to bidders at the beginning of the auction, but in practice, determining the
valuation for a bundle of items can be costly, involving research and expert
advice. In sharp contrast to direct-revelation mechanisms, a bidder can often
navigate an SAA with only coarse estimates for most valuations and precise
estimates for the bundles that matter.

SAAs are thought to have achieved high social welfare and revenue in
numerous spectrum auctions. This belief is not easy to test, since valuations
remain unknown after an auction and bids are incomplete and potentially non-
truthful. There are a number of sanity checks that can be used to argue good
auction performance. First, there should be little or no resale of items after the
auction, and any reselling should take place at a price comparable to the auction’s
selling price. This indicates that speculators did not play a significant role in the
auction. Second, similar items should sell for similar prices (cf., the Swiss and
New Zealand auctions). Third, revenue should meet or exceed projections.
Fourth, there should be evidence of price discovery. For example, prices and
provisional winners at the mid-point of the auction should be highly correlated with
the final selling prices and winners. Finally, the packages assembled by bidders
should be sensible, such as groups of licenses that are adjacent geographically or
in frequency range.

8.3.3 Demand Reduction and the Exposure Problem
SAAs have two big vulnerabilities. The first problem is demand reduction, and
this is relevant even when items are substitutes. Demand reduction occurs when
a bidder asks for fewer items than it really wants, to lower competition and
therefore the prices paid for the items that it gets.

To illustrate, suppose there are two identical items and two bidders. The first
bidder has valuation 10 for one of the items and valuation 20 for both. The second
bidder has valuation 8 for one of the items and does not want both (i.e., her
valuation remains 8 for both). Giving both items to the first bidder maximizes the
welfare, at 20. The VCG mechanism would earn revenue 8 in this example. Now



consider how things play out in an SAA. The second bidder would be happy to
have either item at any price less than 8. Thus, the second bidder drops out only
when both items have price at least 8. If the first bidder stubbornly insists on
winning both items, her utility is 20 − 16 = 4. If, on the other hand, the first bidder
targets just one item, then each of the bidders gets one of the items at a near-zero
price. The first bidder’s utility is then close to 10. In this example, demand
reduction leads to a loss of welfare and revenue, relative to the VCG
mechanism’s outcome. There is ample evidence of demand reduction in many
spectrum auctions.

The second big problem with SAAs is relevant when items can be
complements, as in many spectrum auctions, and is called the exposure problem.
As an example, consider two bidders and two non-identical items. The first bidder
only wants both items—they are complementary items for the bidder—and her
valuation is 100 for them (and 0 otherwise). The second bidder is willing to pay 75
for either item but only wants one item. The VCG mechanism would give both
items to bidder 1, for a welfare of 100, and would generate revenue 75. In an
SAA, the second bidder will not drop out until the price of both items reaches 75.
The first bidder is in a no-win situation: to get both items it would have to pay 150,
more than her value. The scenario of winning only one item for a nontrivial price
could be even worse. On the other hand, if the second bidder’s value for each
item is only 40, then the first bidder should just go for it and outlast the second
bidder. But how can the first bidder know which scenario is closer to the truth?
The exposure problem makes bidding in an SAA difficult for a bidder for whom
items are complements, and it leads to economically inefficient allocations for two
reasons. First, an overly aggressive bidder might acquire unwanted items. Second,
an overly tentative bidder might fail to acquire items for which it has the highest
valuation.

8.3.4 Bid Signaling
Iterative auctions like SAAs offer opportunities for strategic behavior that do not
exist in direct-revelation mechanisms. In early and relatively uncompetitive
spectrum auctions, bidders sometimes used the low-order digits of their bids to
effectively send messages to other bidders. In one example, USWest and
McLeod were battling it out for license #378 in Rochester, Minnesota, with each
repeatedly outbidding the other. Apparently, USWest tired of this bidding war and
switched to a retaliatory strategy, bidding on licenses in other geographical areas
on which McLeod was the standing high bidder and USWest had shown no
interest in previous rounds. McLeod ultimately won back all of these licenses, but
had to pay a higher price due to USWest’s bids. To make sure its message came
through loud and clear, all of USWest’s retaliatory bids were a multiple of 1,000
plus 378—presumably warning McLeod to get the hell out of the market for
Rochester, or else. While this particular type of signaling can be largely eliminated



by forcing all bids to be multiples of a suitably large number, it seems impossible to
design away all opportunities for undesirable strategic behavior.

8.4 Package Bidding
The exposure problem motivates supplementing the basic SAA format with
package bidding, meaning bids on sets of items in addition to individual items.
Package bidding allows a bidder to bid aggressively on a bundle of items without
fear of receiving only a subset of them. There are also scenarios where package
bids can remove the incentive for demand reduction.

There has been much discussion about how to implement package bidding, if at
all, in wireless spectrum auctions. The conservative viewpoint, which dominated
practice until relatively recently, is that package bids add complexity to a quite
functional auction format and might lead to unpredictable outcomes. Limited
forms of package bidding have been incorporated into spectrum auction designs
only over the past 10 years or so, and only outside of the United States.

One design approach is to tack on one extra round after the SAA where
bidders can submit package bids on any subsets of items that they want, subject
to an activity rule. These package bids compete with each other as well as the
winning bids on individual items from the SAA phase of the auction. The final
allocation is determined by a welfare maximization computation, treating bids as
true valuations. The biggest issue with this approach is that computing the final
prices is tricky. The VCG payment rule is not used because of its poor revenue
and incentive properties (Section 7.3 and Exercises 7.2–7.4). A more aggressive
payment rule, which yields an auction that is not DSIC but does have other good
incentive properties, is used instead.

A second approach is to predefine a limited set of allowable package bids
rather than allowing bidders to propose their own. Ideally, the predefined package
bids should be well aligned with what bidders want, yet structured enough to
permit reasonably simple allocation and payment rules. Hierarchical packages
have emerged as a sweet spot for this design approach. For example, an auction
could allow bids on individual licenses, on regional bundles of licenses, and on
nationwide bundles of licenses. The biggest issue with predefined package bids is
that they can do more harm than good when they are poorly matched with
bidders’ goals. For example, imagine a bidder who wants the items {A, B, C, D},
but the available packages are {A, B, E, F} and {C, D, H, I}. What should her
bidding strategy be?

8.5 Case Study: The 2016 FCC Incentive Auction
Wireless spectrum doesn’t grow on trees. At this point, in the United States,
giving someone a new allocation of spectrum generally requires taking it away
from someone else. The U.S. Federal Communications Commission (FCC) is



doing precisely this, using a reverse auction (cf., Exercise 2.5) to free up
spectrum by buying out television (TV) broadcasters and a forward auction to
resell the spectrum to companies that can put it to more valuable use.4

The format of the forward auction is similar to past designs (Sections 8.3 and
8.4). The reverse auction is completely new.

After the reverse auction, the FCC will repack the remaining broadcasters so
that the newly available spectrum is contiguous. For example, they might buy out
a number of TV broadcasters across the nation who were using a UHF channel
between 38 and 51, and reassign all of the other broadcasters using the channels
to lower channels. This would leave the 84 MHz block of spectrum corresponding
to channels 38–51 free to be sold in the forward auction for new uses.

In a very cool development, the reverse auction format can be thought of as a
greedy allocation rule, not unlike the knapsack auction allocation rules described in
Section 4.2. To describe it, we adopt the following model. Each bidder i (a TV
broadcaster) has a private valuation vi for its broadcasting license. If bidder i
loses (that is, is not bought out), then her utility is 0. If bidder i wins (is bought out)
at a price of p, then her utility is p − vi. Thus vi is the “minimum acceptable
offer” for buying out i.5 Letting N denote the set of bidders, a set W ⊆ N of
winning bidders—where “winning” means being bought out—is feasible if the
remaining bidders N \ W can be repacked in the target range (e.g., the channels
below 38).6 For instance, if W = N, then all bidders are bought out and the entire
spectrum is freed up, so W is certainly feasible. When W = θ, no spectrum is
reclaimed, an infeasible outcome. Two TV stations with overlapping geographic
areas cannot be assigned the same or adjacent channels, and checking whether or
not a given set W is feasible is a medium-size -hard problem, closely related
to graph coloring (Figure 8.1). State-of-the-art algorithms, building on satisfiability
(“SAT”) solvers, are used to perform each of these feasibility checks in seconds
or less.



Figure 8.1: Different TV stations with overlapping broadcasting areas must
be assigned different channels (indicated by shades of gray). Checking
whether or not a given subset of stations can be assigned to a given number
of channels without interference is an -hard problem.

We next describe the form of the reverse auction allocation rule, which is a
deferred allocation rule.7

Deferred Allocation Rule

initialize W = N      // initially feasible
while  there is an i  W with W \ {i} feasible do

remove one such i from W // i not bought out halt with winning
bidders W

The allocation rule starts with the trivial feasible set (all bidders), and then
iteratively removes bidders until a minimal feasible set is reached. This is a
“reverse greedy algorithm,” since it removes bidders starting from the entire set.
In contrast, typical (forward) greedy algorithms iteratively add bidders starting
from the empty set (cf., Section 4.2.2).

How should we choose which bidder to remove at each iteration? Natural
ideas include removing the bidder with the highest bid (i.e., the least willing to be



bought out), or the bidder with the highest ratio of bid to market size. A general
way to describe such heuristics is through a scoring function, which assigns a
score to each remaining bidder at each iteration of the auction. The algorithm can
then be implemented by removing the remaining bidder with the highest score,
subject to feasibility.8

One simple scoring function is the identity. The corresponding allocation rule
performs a single pass over the bidders (from the highest to the lowest), removing
a bidder whenever doing so preserves feasibility. For example, for the problem of
hiring at least one contractor, this allocation rule just chooses the lowest bidder.

If the scoring function is increasing in a bidder’s bid and independent of the
bids of the other remaining bidders, then the corresponding deferred allocation
rule is monotone; in the current context of a reverse auction, this means that
bidding lower can only cause a bidder to win (Exercise 8.3). By Myerson’s
lemma (Theorem 3.7), paying each winner her critical bid—the largest bid at
which she would have been bought out—yields a DSIC auction.9 In the simple
case of hiring at least one contractor and the identity scoring function, this auction
is identical to that in Exercise 2.5.

Remarkably, deferred allocation rules lead to mechanisms that have a number
of good incentive properties above and beyond DSIC, and which are not shared
by their forward-greedy cousins (Problem 8.1).



The Upshot

 Direct-revelation mechanisms are out of the question for all but the
smallest combinatorial auctions.
 Indirect mechanisms learn information about bidders’ preferences only
on a need-to-know basis.
 Selling multiple items separately has the potential to work well when
items are substitutes. When items can be complements, selling items
separately can produce outcomes with low social welfare.
 The preferred method in practice of selling items separately is
simultaneous ascending auctions (SAAs).
 SAAs are vulnerable to demand reduction, where a bidder reduces the
number of items requested to depress the final selling prices.
 When items can be complements, SAAs also suffer from the exposure
problem, where a bidder that desires a bundle of items runs the risk of
acquiring only a useless subset of them.
 Package bidding can mitigate the exposure problem but is tricky to
implement.
 The 2016 FCC Incentive Auction is the first to include a reverse
auction, where the government buys back licenses from TV
broadcasters to reclaim spectrum.
 Deferred allocation rules are a rich family of reverse auction allocation
rules with good incentive properties.

Notes
The history and practice of wireless spectrum auctions are discussed in detail by
Cramton (2006) and Milgrom (2004). See also Cramton et al. (2006) and
Klemperer (2004) for much more on the theory and implementation of
combinatorial auctions, and Rassenti et al. (1982) for an early application of
combinatorial auctions to the allocation of airport time slots.

Harstad (2000) demonstrates that bidders are more likely to play their dominant
strategies in an English auction than a sealed-bid second-price auction. Cramton
and Schwartz (2000) detail collusion and bid signaling in early spectrum auctions.
Ausubel and Milgrom (2002) propose using a proxy round to implement package
bids, while Goeree and Holt (2010) advocate predefined hierarchical packages.
The details of the FCC Incentive Auction design are described in a public notice
(Federal Communications Commission, 2015). Milgrom and Segal (2015a, b)



discuss the high-level design decisions in the reverse auction, and also define
deferred allocation rules. Exercise 8.3 and Problems 8.1 and 8.2 are from
Milgrom and Segal (2015a). The algorithms used to implement feasibility checks
are described by Fréchette et al. (2016). Problem 8.3 is from Shapley and Shubik
(1971).

Exercises
Exercise 8.1 (H) The ideal outcome of an SAA (Section 8.3) with item set M =
{1, 2, …, m} is a Walrasian equilibrium, meaning an allocation S1, …, Sn ⊆ M
of bundles to the n bidders and item selling prices p1, …, pm that meet the
following conditions.

Walrasian Equilibrium

1. Every bidder i gets her preferred bundle, given the prices p:

2. Supply equals demand: every item j appears in at most one bundle Si,
and goes unsold only if pj = 0.

Prove that if an allocation (S1, …, Sn) and prices p form a Walrasian equilibrium,
then the allocation has the maximum possible social welfare. (This is a form of
the “first welfare theorem.”)

Exercise 8.2 (H) Prove that, even in combinatorial auctions with only two
bidders and two items, there need not exist a Walrasian equilibrium.

Exercise 8.3 Consider a deferred allocation rule (Section 8.5) in which bidders
are removed according to a scoring function. A scoring function assigns a score
to every remaining bidder in the auction, and in each iteration the allocation rule
removes, among all bidders whose removal does not destroy feasibility, the bidder
with the highest score.

Consider a scoring function that satisfies two properties. First, the score of a
bidder i is independent of the bids of the other remaining bidders. (The score can
depend on i, on i’s bid, on the bids of bidders that have already dropped out, and
on the set of remaining bidders.) Second, holding other bids fixed, the score of a
bidder is increasing in her bid. Prove that the corresponding deferred allocation
rule is monotone: for every bidder i and bids b−i by the other bidders, if i wins



when bidding bi and , then i also wins when bidding .

Problems
Problem 8.1 A direct-revelation mechanism is weakly group-strategyproof if
for every colluding subset C of bidders, every profile b − C of bids of the bidders
outside C, and every profile vC of valuations for C, there is no profile bC of bids
that results in every bidder of C receiving strictly higher utility than with truthful
bids vC.

(a) In the same setting and with the same assumptions as in Exercise 8.3,
prove that the corresponding DSIC mechanism is weakly group-
strategyproof.

(b) Prove that the “forward greedy” DSIC mechanism defined in Problem
4.3 is not weakly group-strategyproof in general.

Problem 8.2 In the same setting and with the same assumptions as in Exercise
8.3, give an ascending implementation of the corresponding DSIC mechanism.
Your ascending implementation should not accept explicit bids. It should proceed
in rounds, and at each round, one of the remaining bidders should be given a take-
it-or-leave-it offer for dropping out. Prove that straightforward bidding—
continuing to the next round if and only if the current offer exceeds her private
valuation—is a dominant strategy for every bidder. Prove that the final outcome,
assuming straightforward bidding, is the same as the truthful outcome in the
direct-revelation DSIC mechanism. For convenience, you can restrict attention to
the case where all valuations and scores are positive integers bounded above by a
known value vmax.

Problem 8.3 (H) Prove that in every combinatorial auction in which every bidder
has a unit-demand valuation (Exercise 7.5), there exists a Walrasian equilibrium.

1 There are a few variants. The movies, and auction houses like Christie’s and
Sotheby’s, use an “open outcry” auction in which bidders can drop out and
return, and can make “jump bids” to aggressively raise the current price.
When doing mathematical analysis, the “Japanese” variant is usually more
convenient: the auction begins at some opening price, which is publicly
displayed and increases at a steady rate. Each bidder either chooses “in” or
“out” at the current price, and once a bidder drops out, she cannot return. The
winner is the last bidder in, and the sale price is the price at which the second-
to-last bidder dropped out.



2 Indirect mechanisms can also be useful in single-parameter settings like
single-item auctions. Empirical studies show that bidders are more likely to
play their dominant strategy in an English auction than in a sealed-bid second-
price auction, where some bidders inexplicably overbid. Second, ascending
auctions leak less valuation information to the seller. In a second-price auction,
the seller learns the highest bid; in an English auction, the seller only learns a
lower bound on the highest bid, namely the final selling price.

3 In addition to the questionable auction format, there were some strategic
mergers of potential bidders before the auction, leading to less competition
than expected.

4 The auction commenced on March 29, 2016 and is ongoing as of this writing.

5 This single-parameter model assumes that each TV station is owned by a
different strategic agent. This assumption is not entirely true in practice, but it
makes the model much easier to reason about.

6 One interesting question is how to set this target. The bigger the target, the
bigger the expenses per unit of spectrum in the reverse auction and the
smaller the revenues per unit of spectrum in the forward auction. The goal is
to set the target as large as possible, subject to a lower bound on the net
revenue obtained.

7 This terminology is inspired by the “deferred acceptance” algorithm for
computing a stable matching (see Section 10.2).

8 The choice of the scoring function in the 2016 FCC Incentive Auction was
guided by several factors, including the welfare achieved by different rules on
synthetic data, and by constraints on how much price discrimination between
bidders was politically feasible.

9 For ease of participation, the actual FCC auction is iterative, not direct-
revelation, and uses descending, bidder-specific prices. In each round, each
bidder only has to decide whether to stay in at her current offer, or to drop out
and retain her license. The offers at the beginning of the auction are high
enough that everyone is happy to participate. For example, for WCBS-TV in
New York, the opening offer is $900 million.



Lecture 9

Mechanism Design with Payment Constraints

Lecture 2 introduced the quasilinear utility model, where each agent acts to
maximize her valuation of the chosen outcome, less the payment she makes. We
placed no restrictions on payments other than the modest conditions that they are
nonnegative and guarantee non-negative utility to truthful bidders. This lecture is
the first to consider mechanism design problems with payment constraints, in
addition to the usual incentive and feasibility constraints.

Section 9.1 extends the quasilinear utility model to accommodate budget
constraints. Section 9.2 studies multi-unit auctions where bidders have budgets,
and proposes an elegant if non-DSIC solution: the uniform-price auction. The
clinching auction, described in Section 9.3, is a more complex auction for the
same problem that is DSIC. Section 9.4 considers mechanism design with no
payments whatsoever, introduces the canonical house allocation problem, and
studies the properties of the Top Trading Cycle algorithm.

9.1 Budget Constraints
In many applications, there are constraints on the payments charged by a
mechanism. Exhibit A is budget constraints, which limit the amount of money
that an agent can pay. Budgets are especially relevant in auctions where an agent
might buy a large number of items. For example, in the sponsored search auctions
(Section 2.6) used in practice, every bidder is asked for her bid-per-click and her
daily budget. Per-item values and overall budgets model well how many people
make decisions in auctions with lots of items, especially when the items are
identical.

The simplest way to incorporate budgets into our utility model is to redefine the
utility of agent i with budget Bi for outcome ω and payment pi as

A natural generalization, which we won’t discuss, is to have a cost function that is
increasing in the budget violation.

We need new auction formats to accommodate budget constraints. For



example, consider the simple case of a single-item auction, where every bidder
has a known budget of 1 and a private valuation. A second-price auction charges
the winner the second-highest bid, which might well be more than her budget.
More generally, no DSIC single-item auction with nonnegative payments
maximizes the social welfare while respecting bidders’ budgets (Problem 9.1).

9.2 The Uniform-Price Multi-Unit Auction

9.2.1 Multi-Unit Auctions
In a multi-unit auction, there are m identical items, and each bidder has a private
valuation vi for each item that she gets. Unlike the k-unit auctions of Example 3.2,
we assume that each bidder wants as many units as possible. Thus bidder i
obtains value k · vi from k items. Such multi-unit auctions are single-parameter
environments (Section 3.1). Finally, each bidder i has a budget Bi that we assume
is public, meaning known to the seller in advance.1

9.2.2 The Uniform-Price Auction
The first multi-unit auction that we consider sells items at the “market-clearing
price,” where “supply equals demand.” The supply is m, the number of items. The
demand of a bidder depends on the selling price, with higher prices resulting in
smaller demands. Formally, we define the demand of bidder i at price p as:

(9.1)

To explain, recall that bidder i has value vi for every item that she gets. If the
price is above vi, then she doesn’t want any (i.e., Di(p) = 0), while if the price is
below vi, she wants as many as she can afford (i.e., 

). When vi = p, the bidder does not care how

many items she gets, as long as her budget is respected. The auction can break
ties arbitrarily and take Di(vi) to be any convenient integer between 0 and min 

, inclusive.

As the price p increases, the demand Di(p) decreases, from Di(0) = m to
Di(∞) = 0. A drop in demand can have two different forms: from an arbitrary
positive integer to 0 (when p exceeds vi), or by a single unit (when 
becomes one smaller).

For a price p different from all bidders’ valuations, we define the aggregate



demand by . In general, we define 
 and 
 as the limits of A(p) from below and

above, respectively.
The uniform-price auction picks the price p that equalizes supply and aggregate

demand, and gives every bidder her demanded number of items at a price of p
each.

The Uniform-Price Auction

1. Let p equalize supply and aggregate demand, meaning A−(p) ≥ m ≥ A+

(p).
2. Award Di(p) items to each bidder i, each at the price p. Define

demands Di(p) for bidders i with vi = p so that all m items are
allocated.

While we describe the uniform-price auction as a direct-revelation auction, it is
straightforward to give an ascending implementation.

9.2.3 The Uniform-Price Auction Is Not DSIC
The good news is that, by the definition (9.1) of the demand Di(p), the uniform-
price auction respects bidders’ budgets. The bad news is that it is not DSIC.
Similarly to simultaneous ascending auctions, it is vulnerable to demand reduction
(Section 8.3.3).

Example 9.1 (Demand Reduction) Suppose there are two items and two
bidders, with B1 = +∞, v1 = 6, and B2 = v2 = 5. If both bidders bid truthfully, then
the aggregate demand A(p) is at least 3 until the price hits 5, at which point D1(5)
= 2 and D2 (5) = 0. The uniform-price auction thus allocates both items to the first
bidder at a price of 5 each, for a utility of 2. If the first bidder falsely bids 3, she
does better. The reason is that the second bidder’s demand then drops to 1 at the
price  (she can no longer afford both), and the auction stops at the price 3, at
which point D1 (3) is defined as 1. The first bidder only gets one item, but the
price is only 3, so her utility is 3, more than with truthful bidding.

Can we modify the uniform-price auction to restore the DSIC guarantee?
Because the auction has a monotone allocation rule, we can replace the uniform
price with the payments dictated by Myerson’s lemma (Theorem 3.7). To obtain a
DSIC multi-unit auction format with still better properties, the next section



modifies both the allocation and payment rules of the uniform-price auction.

*9.3 The Clinching Auction
The clinching auction is a DSIC multi-unit auction for bidders with public
budgets.2 The idea is to sell items piecemeal, at increasing prices. In addition to
the current price p, the auction keeps track of the current supply s (initially m)
and the residual budget  (initially Bi) of each bidder i. The residual demand 

(p) of bidder i at price p ≠ vi is defined with respect to the residual budget
and supply, analogous to (9.1):

(9.2)

Define .

The clinching auction iteratively raises the current price p, and a bidder i
“clinches” some items at the price p whenever they are uncontested, meaning the
sum of others’ residual demands is strictly less than the current supply s.
Different items are sold in different iterations, at different prices. The auction
continues until all of the items have been allocated.



The Clinching Auction

initialize p = 0, s = m, and  for every i while  s > 0 do

increase p to the next-highest value of vi or /k for a positive integer k

let i denote the bidder with the largest residual demand , breaking
ties arbitrarily

while   do

if  then

award one item to bidder i at the price p // this item is “clinched”
decrease  by p and s by 1

recompute the bidder i with the largest residual demand at the price p,
breaking ties arbitrarily

else  if  then

award  items to each bidder j at price p

award any remaining items to the bidder ℓ that satisfies vℓ = p, at a price
of p per item

decrease s to 0

The only relevant prices are those at which the residual demand of some
bidder drops. Every such price p satisfies either p = vi or  for
some bidder i and positive integer k. For simplicity, assume that all expressions of
the form vi and  for integers k that arise in the auction are distinct.

In the inner while loop, there are two cases. In the first case, the aggregate
residual demand exceeds the residual supply, but the aggregate demand of bidders
other than i is less than the supply. In this case, bidder i “clinches” an item at the
current price p, and her budget is updated accordingly. Both the residual supply
and i’s residual demand decrease by 1 unit.

The second case can only occur when the aggregate demand 
 drops by two or more at the price p. Assuming that all

expressions of the form  for integers k are distinct, this can only happen if
p equals the valuation vℓ of some bidder ℓ. In this case, when ℓ’s demand drops to
zero, there is no longer any competition for the remaining s items, so the residual



demands of all of the bidders can be met simultaneously. There may be items
remaining after satisfying all residual demands, in which case they are allocated to
the indifferent bidder ℓ (at price p = vℓ).

Example 9.2 (No Demand Reduction) Let’s revisit Example 9.1: two items
and two bidders, with B1 = +∞, v1 = 6, and B2 = v2 = 5. Suppose both bidders bid
truthfully. In the uniform-price auction (Example 9.1), the first bidder is awarded
both items at a price of 5. In the clinching auction, because the demand D2(p) of
the second bidder drops to 1 once , the first bidder clinches one item at a

price of . The second item is sold to the first bidder at a price of 5, as before.

The first bidder has utility  when she bids truthfully in the clinching auction, and
no false bid can be better (Theorem 9.4).

Exercise 9.1 asks you to prove the following proposition.

Proposition 9.3 (Clinching Auction Is Feasible) The clinching auction
always stops, allocates exactly m items, and charges payments that are at
most bidders’ budgets.

We now turn to the clinching auction’s incentive guarantee.

Theorem 9.4 (Clinching Auction Is DSIC) The clinching auction for
bidders with public budgets is DSIC.

Proof: We could verify that the auction’s allocation rule is monotone and that the
payments conform to Myerson’s payment formula (3.5), but it’s easier to just
verify the DSIC condition directly. So, fix a bidder i and bids b−i by the others.
Since bidder i’s budget is public, she cannot affect the term  of her

residual demand . She can only affect the time at which she is kicked

out of the auction, meaning  forevermore. Every item clinched
by bidder i when p < vi contributes positively to her utility, while every item
clinched when p > vi contributes negatively. Truthful bidding guarantees
nonnegative utility.

First, compare the utility earned by a bid bi < vi to that earned by a truthful bid.
Imagine running the clinching auction twice in parallel, once when i bids bi and
once when i bids vi. By induction on the number of iterations, the execution of the
clinching auction is identical in the two scenarios as the price ascends from 0 to
bi. Thus, by bidding bi, the bidder can only lose out on items that she otherwise
would have clinched (for nonnegative utility) in the price interval [bi, vi].

Similarly, if i bids bi > vi instead of vi, the only change is that she might acquire
some additional items for nonpositive utility in the price interval [vi, bi]. Thus, no
false bid nets i more utility than a truthful one does. 



If budgets are private and the clinching auction is run with reported budgets,
then it is no longer DSIC (Exercise 9.3).

Is the allocation computed by the clinching auction “good” in some sense? (If
only the DSIC condition mattered, then we could give away all the items for free
to a random bidder.) There are several ways to formulate this question; see the
Notes for details.

9.4 Mechanism Design without Money
There are a number of important applications where incentives matter and the use
of money is infeasible or illegal. In these settings, all agents effectively have a
budget of zero. Mechanism design without money is relevant for designing and
understanding methods for voting, organ donation, and school choice. The
designer’s hands are tied without money, even tighter than with budget
constraints. Despite this and strong impossibility results in general settings, some
of mechanism design’s greatest hits are for applications without money.

A representative example is the house allocation problem. There are n
agents, and each initially owns one house. Each agent’s preferences are
represented by a total ordering over the n houses rather than by numerical
valuations. An agent need not prefer her own house over the others. How can we
sensibly reallocate the houses to make the agents better off? One answer is given
by the Top Trading Cycle (TTC) algorithm.

Top Trading Cycle (TTC) Algorithm

initialize N to the set of all agents
     while  N ≠ θ do

form the directed graph G with vertex set N and edge set {(i, ℓ):
i’s favorite house within N is owned by ℓ}

compute the directed cycles C1, …, Ch of G3 
// self-loops count as directed cycles 

// cycles are disjoint

for each edge (i, ℓ) of each cycle C1, …, Ch do reallocate ℓ’s house to
agent i

remove the agents of C1, ..., Ch from N

The following lemma, which follows immediately from the description of the
TTC algorithm, is crucial for understanding the algorithm’s properties.

Lemma 9.5 Let Nk denote the set of agents removed in the kth iteration of



the TTC algorithm. Every agent of Nk receives her favorite house outside of
those owned by N1 ∪ ··· ∪ Nk−1, and the original owner of this house is in
Nk.

Example 9.6 (The TTC Algorithm) Suppose N = {1, 2, 3, 4}, that every agent
prefers agent 1’s house to the other three, and that the second-favorite houses of
agents 2, 3, and 4 are those owned by agents 3, 4, and 2, respectively. (The rest
of the agents’ preferences do not matter for the example.) Figure 9.1(a) depicts
the graph G in the first iteration of the TTC algorithm. There is only one cycle,
the self-loop with agent 1. In the notation of Lemma 9.5, N1 = {1}. Figure 9.1(b)
shows the graph G in the second iteration of the TTC algorithm, after agent 1 and
her house have been removed. All agents now participate in a single cycle, and
each gets her favorite house among those owned by the agents in N2 = {2, 3, 4}.

Figure 9.1: The Top Trading Cycle algorithm (Example 9.6).

When agents’ total orderings are private, we can consider the direct-revelation
mechanism that accepts reported total orderings from the agents and then applies
the TTC algorithm. There is no incentive for agents to misreport their preferences
to this mechanism.

Theorem 9.7 (TTC Is DSIC) The TTC algorithm induces a DSIC
mechanism.

Proof: Fix an agent i and reports by the others Define the sets Nk as in Lemma
9.5, assuming that i reports truthfully. Suppose that i  Nj. The key point is that
no misreport can net agent i a house originally owned by an agent of 

. For in each iteration k = 1, 2, …, j − 1, no agent ℓ  Nk



points to i’s house—otherwise, i would belong to the same directed cycle as ℓ,
and hence to Nk instead of Nj. No agent of Nk points to i’s house in an iteration
prior to k either—if she did, she would still point to i’s house in iteration k. Thus
whatever agent i reports she cannot join any cycle involving the agents of 

. Lemma 9.5 then implies that she has no incentive to
misreport. 

Theorem 9.7 by itself is not impressive For example the mechanism that never
reallocates anything is also DSIC Our next result gives a sense in which the TTC
algorithm is “optimal.”

Consider an assignment of one distinct house to each agent A subset of agents
forms a blocking coalition for this assignment if they can internally reallocate
their original houses to make some member better off while making no member
worse off. For example, in an assignment where an agent i receives a house
worse than her initial house, {i} forms a blocking coalition. A core allocation is
an assignment with no blocking coalitions.

Theorem 9.8 (TTC and Core Allocations) For every house allocation
problem, the allocation computed by the TTC algorithm is the unique core
allocation.

Proof: We first prove that the only possible core allocation is the one computed
by the TTC algorithm. Define the sets Nk as in Lemma 9.5. In the TTC allocation,
every agent of N1 receives her first choice. Thus N1 forms a blocking coalition
for every allocation that differs from the TTC allocation on an agent of N1.
Similarly, in the TTC allocation, all agents of N2 receive their first choice outside
of the houses owned by N1 (Lemma 9.5). Given that every core allocation agrees
with the TTC allocation on the agents of N1, such allocations must also agree on
the agents of N2-otherwise, N2 forms a blocking coalition. Continuing inductively,
we conclude that every allocation that differs from the TTC allocation is not a
core allocation.

To verify that the TTC allocation is a core allocation, consider an arbitrary
subset S of agents and an internal reallocation of the houses owned by S. This
reallocation partitions S into directed cycles. If some such cycle contains agents
from two different Nk’s, then the reallocation gives at least one agent i from a set
Nj a house originally owned by an agent from a set Nℓ with ℓ > j, leaving i worse
off than in the TTC allocation (Lemma 9.5). Similarly, for a cycle contained in Nk,
any agent that doesn’t receive her favorite house from Nk is worse off than in the
TTC allocation. We conclude that if the internal reallocation of the houses of S
differs from the allocation computed by the TTC algorithm, then some agent of S
is worse off. Since S is arbitrary, the TTC allocation has no blocking coalitions
and is a core allocation. 



The Upshot

 In many important mechanism design problems, payments are
restricted or forbidden. Payment constraints make mechanism design
significantly harder.
 With multiple identical items and bidders with budgets, the uniform-
price auction sells all of the items at a common price that equalizes
supply and demand.
 The clinching auction is a more complex auction that sells items
piecemeal at increasing prices. Unlike the uniform-price auction, the
clinching auction is DSIC.
 The Top Trading Cycle (TTC) algorithm is a method for reallocating
objects owned by agents (one per agent) to make the agents as well
off as possible.
 The TTC algorithm leads to a DSIC mechanism and it computes the
unique core allocation.

Notes
The original clinching auction, due to Ausubel (2004), is an ascending
implementation of the VCG mechanism in multi-unit auctions with downward-
sloping valuations and no budgets (see Problem 9.2). The version in this lecture,
with constant valuations-per-item and public budgets, is from Dobzinski et al.
(2012).

There are several ways to argue that the clinching auction is in some sense
near-optimal. The first way is to follow the development of revenue-maximizing
mechanisms (Lecture 5), by positing a distribution over bidders’ valuations and
solving for the DSIC mechanism that maximizes expected social welfare subject
to the given budget constraints. Common budgets are better understood than
general budgets are, and in this case the clinching auction is provably near-optimal
(Devanur et al., 2013). A second approach, explored in Exercise 9.4, is to modify
the social welfare objective function to take budgets into account, replacing 

 by . The clinching auction is provably near-
optimal with respect to this objective function (Dobzinski and Paes Leme, 2014).
The third way is to study Pareto optimality rather than an objective function.4
Dobzinski et al. (2012) prove that the clinching auction is the unique deterministic
DSIC auction that always computes a Pareto-optimal allocation. One caveat is
that some desirable mechanisms, such as the Bayesian-optimal mechanisms
produced by the first approach, need not be Pareto optimal.



Shapley and Scarf (1974) define the house allocation problem, and credit the
TTC algorithm to D. Gale. Theorems 9.7 and 9.8 are from Roth (1982b) and Roth
and Postlewaite (1977), respectively. Single-peaked preferences (Problem 9.3)
are studied by Moulin (1980).

Exercises
Exercise 9.1 Prove Proposition 9.3.

Exercise 9.2 Extend the clinching auction and its analysis to the general case,
where the valuations vi and expressions of the form  for positive integers k
need not be distinct.

Exercise 9.3 (H) Consider a multi-unit auction where bidders have private
valuations per unit and private budgets. Prove that the clinching auction, executed
with reported valuations and reported budgets, is not DSIC.

Exercise 9.4 Consider a single-parameter environment (Section 3.1) in which
each bidder i has a publicly known budget Bi. Consider the allocation rule that,
given bids b, chooses the feasible outcome that maximizes the “truncated
welfare” . Ties between outcomes with equal
truncated welfare are broken arbitrarily but consistently.

(a) Prove that this allocation rule is monotone, and that the corresponding
DSIC mechanism, with payments given by Myerson’s payment formula
(3.5), never charges a bidder more than her budget.

(b) Consider a single-item environment. Argue informally that the auction in
(a) generally results in a “reasonable” outcome.

(c) (H) Consider a multi-unit auction with m identical items, where each
bidder i has a private valuation vi per item. Explain why the truncated
welfare objective function might assign the same value to almost all of the
feasible allocations, and therefore the auction in (a) can easily lead to
“unreasonable” outcomes.

Exercise 9.5 Another mechanism for the house allocation problem, familiar from
the assignment of dorm rooms to college students, is the random serial
dictatorship.5



Random Serial Dictatorship

initialize H to the set of all houses
randomly order the agents 
for i = 1, 2, 3, …, n do

assign the ith agent her favorite house h from among those in H
delete h from H

(a) Does an analog of Theorem 9.7 hold for the random serial dictatorship, no
matter which random ordering is chosen by the mechanism?

(b) Does an analog of Theorem 9.8 hold for the random serial dictatorship, no
matter which random ordering is chosen by the mechanism?

Problems
Problem 9.1 Consider single-item auctions with n bidders with known bidder
budgets.

(a) Give a DSIC auction, possibly randomized, that always uses nonnegative
payments and respects bidders’ budgets and achieves (expected) welfare
at least  times the highest valuation.

(b) (H) Prove that there is a constant c > 0 such that, for arbitrarily large n
and suitable choices of bidders’ budgets, for every DSIC single-item
auction (possibly randomized) with nonnegative payments that always
respects bidders’ budgets, there is a valuation profile on which its
expected welfare is at most c/n times the highest valuation.6

Problem 9.2 In this problem we modify the multi-unit auction setting studied in
lecture in two ways. First, we make the mechanism design problem easier by
assuming that bidders have no budgets. Along a different axis, we make the
problem more general: rather than having a common value vi for every item that
she gets, a bidder i has a private marginal valuation vij for her jth item, given that
she already has j – 1 items. Thus, if i receives k items at a combined price of p,
her utility is . We assume that every bidder i has a

downward-sloping valuation, meaning that successive items offer diminishing
returns: vi1 ≥ vi2 ≥ vi3 ≥ ··· ≥ vim. For simplicity, assume that all of the bidders’
marginal valuations are distinct.



(a) Give a simple greedy algorithm for implementing the allocation rule of the
VCG mechanism. Does your algorithm still work if bidders’ valuations are
not downward-sloping?

(b) Give a simple description of the payment of a bidder in the VCG
mechanism, as a sum of marginal valuations reported by the other
bidders.

(c) Adapt the clinching auction of Section 9.3 to the present setting by
redefining bidders’ demand functions appropriately. Prove that the
allocation and payment rules of your auction are the same as in the VCG
mechanism.

Problem 9.3 Consider a mechanism design problem where the set of outcomes
is the unit interval [0, 1] and each agent i has single-peaked preferences,
meaning that there is an agent-specific “peak” xi  [0, 1] such that i strictly
prefers y to z whenever z < y ≤ x or x ≥ y > z. Thus an agent with single-peaked
preferences wants the chosen outcome to be as close to her peak as possible.7

(a) Is the mechanism that accepts a reported peak from each agent and
outputs the average DSIC?

(b) Is the mechanism that accepts a reported peak from each agent and
outputs the median DSIC? Feel free to assume that the number of agents
is odd.

(c) (H) The two mechanisms above are anonymous, meaning that the
outcome depends only on the unordered set of reported peaks and not on
the identity of who reported which peak. They are also onto, meaning
that for every x  [0, 1] there is a profile of reported preferences such
that x is the outcome of the mechanism. For n agents, can you find more
than n different direct-revelation mechanisms that are deterministic,
DSIC, anonymous, and onto?

1 We’d love to assume that budgets are private and thus also subject to misre-
porting, but private budgets make the mechanism design problem more
difficult, even impossible in some senses (see also Exercise 9.3). Also, the
special case of public budgets guides us to some elegant and potentially useful
auction formats, which is the whole point of the endeavor.

2 Again, we give a direct-revelation description, but there is also a natural
ascending implementation.



3 G has at least one directed cycle, since traversing a sequence of outgoing
edges must eventually repeat a vertex. Because all out-degrees are 1, these
cycles are disjoint.

4 An allocation is Pareto optimal if there’s no way to reassign items and
payments to make some agent (a bidder or the seller) better off without
making another worse off, where the seller’s utility is her revenue.

5 Some prefer the less hostile term random priority mechanism.

6 Randomized DSIC mechanisms are defined in Problem 6.4.



Lecture 10

Kidney Exchange and Stable Matching

This lecture is our last on mechanism design, and it covers some of the greatest
hits of mechanism design without money. Kidney exchanges, the case study
covered in Section 10.1, have been deeply influenced by ideas from mechanism
design over the past ten years. These exchanges enable thousands of successful
kidney transplants every year. Stable matching and the remarkable deferred
acceptance algorithm (Section 10.2) form the basis of modern algorithms for
many assignment problems, including medical residents to hospitals and students
to elementary schools. This algorithm also enjoys some beautiful mathematical
properties and incentive guarantees (Section 10.3).

10.1 Case Study: Kidney Exchange

10.1.1 Background
Many people suffer from kidney failure and need a kidney transplant. In the
United States, more than 100,000 people are on the waiting list for such
transplants. An old idea, used also for other organs, is deceased donors; when
someone dies and is a registered organ donor, their organs can be transplanted
into others. One special feature of kidneys is that a healthy person has two of
them and can survive just fine with only one of them. This creates the possibility
of living organ donors, such as a family member of the patient in need.

Unfortunately, having a living kidney donor is not always enough; sometimes a
patient-donor pair is incompatible, meaning that the donor’s kidney is unlikely to
function well in the patient. Blood and tissue types are the primary culprits for
incompatibilities. For example, a patient with O blood type can only receive a
kidney from a donor with the same blood type, and similarly an AB donor can
only donate to an AB patient.

Suppose patient P1 is incompatible with her donor D1 because they have blood
types A and B, respectively. Suppose P2 and D2 are in the opposite boat, with
blood types B and A, respectively (Figure 10.1). Even though (P1, D1) and (P2,
D2) have probably never met, exchanging donors seems like a pretty good idea,
with P1 receiving her kidney from D2 and P2 from D1. This is called a kidney
exchange.



Figure 10.1: A kidney exchange. (P1, D1) and (P2, D2) form incompatible
donor pairs. P1 receives her kidney from D2 and P2 from D1.

A few kidney exchanges were done, on an ad hoc basis, around the beginning
of this century. These isolated successes made clear the need for a nationwide
kidney exchange, where incompatible patient-donor pairs can register and be
matched with others. How should such an exchange be designed? The goal is to
enable as many matches as possible.

Currently, compensation for organ donation is illegal in the United States, and in
every country except for Iran.1 Kidney exchange is legal, and is naturally
modeled as a mechanism design problem without money.

10.1.2 Applying the TTC Algorithm
Can we model kidney exchange as a house allocation problem (Section 9.4)? The
idea is to treat each patient-donor pair as an agent, with the incompatible living
donor acting as a house. A patient’s total ordering over the donors can be defined
according to the estimated probability of a successful kidney transplant, based on
the blood type, the tissue type, and other factors.

The hope is that the TTC algorithm finds cycles like that in Figure 10.2, where
with patient-donor pairs as in Figure 10.1, each patient points to the other’s donor
as her favorite. Reallocating donors according to this cycle corresponds to the
kidney exchange in Figure 10.1. More generally, the reallocation of donors to
patients suggested by the TTC algorithm can only improve every patient’s
probability of a successful transplant (Theorem 9.8).



Figure 10.2: A good case for the TTC algorithm. Each circle represents an
incompatible patient-donor pair, and each arrow represents a kidney transplant
from the donor in the first pair to the patient in the second pair.

The dealbreaker is that the TTC algorithm may suggest reallocations that use
long cycles, as in Figure 10.3. Why are long cycles a problem? A cycle of length
two (Figure 10.2) already corresponds to four surgeries—two to extract donors’
kidneys, and two to implant them in the patients. Moreover, these four surgeries
must happen simultaneously. Incentives are the reason: in the example in Figure
10.1, if the surgeries for P1 and D2 happen first, then there is a risk that D1 will
renege on her offer to donate her kidney to P2.2 One problem is that P1 unfairly
got a kidney for free. The much more serious problem is that P2 is as sick as
before and, since her donor D2 donated her kidney, P2 can no longer participate
in a kidney exchange. Because of this risk, non-simultaneous surgeries are almost
never used in kidney exchange.3 The constraint of simultaneous surgeries, with
each surgery needing its own operating room and surgical team, motivates
keeping reallocation cycles as short as possible.

Figure 10.3: A bad case for the TTC algorithm.

Another critique of the TTC approach is that modeling a patient’s preferences
as a total ordering over donors is overkill. Patients don’t really care which kidney
they get as long as it is compatible. Binary preferences over donors are therefore
more appropriate.

10.1.3 Applying a Matching Algorithm
The twin goals of binary preferences and short reallocation cycles suggest using
graph matching. A matching of an undirected graph is a subset of edges that



share no endpoints. The relevant graph for kidney exchange has a vertex set V
corresponding to incompatible patient-donor pairs (one vertex per pair), and an
undirected edge between vertices (P1, D1) and (P2, D2) if and only if P1 and D2
are compatible and P2 and D1 are compatible. Thus, the example in Figure 10.1
corresponds to the undirected graph in Figure 10.4. A matching in this graph
corresponds to a collection of pairwise kidney exchanges, each involving four
simultaneous surgeries. Maximizing the number of compatible kidney transplants
corresponds to maximizing the size of a matching.

Figure 10.4: Applying a matching algorithm. Each circle represents an
incompatible patient-donor pair, and each edge represents a pairwise kidney
exchange, meaning transplants from each donor to the patient in the other
pair.

How do incentives come into play? We assume that each patient has a set Ei
of compatible donors belonging to other patient-donor pairs, and can report any
subset Fi ⊆ Ei to a mechanism. Proposed kidney exchanges can be refused by a
patient for any reason, so one way to implement a misreport is to refuse
exchanges in Ei \ Fi. A patient cannot credibly misreport extra donors with whom
she is incompatible. We assume that every patient has binary preferences,
preferring every outcome where she is matched to every outcome where she is
not.

The mechanism design goal is to maximize the number of kidney transplants.
Direct-revelation solutions have the following form.

A Mechanism for Pairwise Kidney Exchange

1. Collect a report Fi from each agent i.
2. Form the graph G = (V, E), where V corresponds to agent-donor pairs

and (i, j)  E if and only if the patients corresponding to i and j report
as compatible the donors corresponding to j and i, respectively.

3. Return a maximum-cardinality matching of the graph G.



Is this mechanism DSIC, in the sense that truthful reporting of the full set Ei is
a dominant strategy for each patient i?4 The answer depends on how ties are
broken between different maximum matchings in the third step. There are two
senses in which the maximum matching of a graph can fail to be unique. First,
different sets of edges can be used to match the same set of vertices (see Figure
10.5). Since a patient does not care whom she is matched to, as long as she is
matched, there is no reason to distinguish between different matchings that match
the same set of vertices. More significantly, different maximum matchings can
match different subsets of vertices. For example, in Figure 10.6, the first vertex is
in every maximum matching, but only one of the other vertices can be included.
How should we choose?

Figure 10.5: Different matchings can match the same set of vertices.



Figure 10.6: Different maximum matchings can match different subsets of
vertices.

One solution is to prioritize the agent-donor pairs before the mechanism begins.
Most hospitals already rely on priority schemes to manage their patients. The
priority of a patient on a waiting list is determined by the length of time she has
been on it, the difficulty of finding a compatible kidney, and other factors.

Precisely, we implement the third step of the mechanism as follows, assuming
that the vertices V = {1, 2, …, n} of G are ordered from highest to lowest priority.

Priority Mechanism for Pairwise Kidney Exchange

initialize M0 to the set of maximum matchings of G 
   for i = 1, 2, …, n do

let Zi denote the matchings in Mi−1 that match vertex i

if Zi = θ then

set Mi = Zi

else if Zi = θ then

set Mi = Mi‒1
    return an arbitrary matching of Mn

That is, in each iteration i, we ask if there is a maximum matching that respects
previous commitments and also matches vertex i. If so, then we additionally
commit to matching i in the final matching. If previous commitments preclude
matching i in a maximum matching, then we skip i and move on to the next
vertex. By induction on i, Mi is a nonempty subset of the maximum matchings of
G. Every matching of Mn matches the same set of vertices—the vertices i for
which Zi is nonempty—so the choice of the matching in the final step is irrelevant.

Exercise 10.1 asks you to prove that the priority mechanism for pairwise
kidney exchange is DSIC.

Theorem 10.1 (Priority Mechanism Is DSIC) In the priority mechanism for
pairwise kidney exchange, for every agent i and reports by the other agents,
no false report Fi ⊂ Ei yields a better outcome for i than the truthful report
Ei.

10.1.4 Incentives for Hospitals
Many patient-donor pairs are reported to national kidney exchanges by hospitals,



rather than by the pairs themselves. The objective of a hospital, to match as many
of its patients as possible, is not perfectly aligned with the societal objective of
matching as many patients overall as possible. The key incentive issues are best
explained through examples.

Example 10.2 (Benefits of Full Reporting) Suppose there are two hospitals,
H1 and H2, each with three patient-donor pairs (Figure 10.7). Edges connect
patient-donor pairs that are mutually compatible, as in Section 10.1.3. Each
hospital has a pair of patient-donor pairs that it could match internally, without
bothering to report them to a national exchange. We don’t want the hospitals to
execute these internal matches. If H1 matches 1 and 2 internally and only reports
3 to the exchange, and H2 matches 5 and 6 internally and only reports 4 to the
exchange, then the exchange can’t match 3 and 4 and no further matches are
gained. If H1 and H2 both report their full sets of three patient-donor pairs to the
national exchange, then 1, 2, and 3 can be matched with 4, 5, and 6, respectively,
and all of the patients receive new kidneys. In general, the goal is to incentivize
hospitals to report all of their patient-donor pairs to the exchange, to save as many
lives as possible.

Figure 10.7: Example 10.2. Full reporting by hospitals leads to more
matches.

Example 10.3 (No DSIC Maximum Matching Mechanism) Consider again
two hospitals, now with seven patients (Figure 10.8). Suppose the exchange
always computes a maximum-cardinality matching of the patient-donor pairs that



it knows about. With an odd number of vertices, every matching leaves at least
one patient unmatched. If H1 hides patients 2 and 3 from the exchange while H2
reports truthfully, then H1 guarantees that all of its patients are matched. The
unique maximum matching in the reported graph matches patient 6 with 7 (and 4
with 5), and H1 can match 2 and 3 internally. On the other hand, if H2 hides
patients 5 and 6 while H1 reports truthfully, then all of H2’s patients are matched.
In this case, the unique maximum matching in the reported graph matches patient
1 with 2 and 4 with 3, while H2 can match patients 5 and 6 internally. We
conclude that, no matter which maximum matching the exchange chooses, at least
one of the hospitals has an incentive to withhold patient-donor pairs from the
exchange. Thus, there is irreconcilable tension between the societal and hospital
objectives, and there is no DSIC mechanism that always computes a maximum
matching.

Figure 10.8: Example 10.3. Hospitals can have an incentive to hide patient-
donor pairs.

Duly warned by Example 10.3, current research on mechanism design for
hospital reporting considers relaxed incentive constraints and approximate
optimality.

10.2 Stable Matching
Stable matching is the canonical example of mechanism design without money.
Killer applications of stable matching include assigning medical school graduates



to hospital residencies and students to elementary schools. The following model
and algorithm are directly useful for these and other applications with amazingly
few modifications.

10.2.1 The Model
We consider two finite sets V and W of vertices—the “applicants” and the
“hospitals”—with equal cardinality. Each vertex has a total ordering over the
vertices of the other set. For example, in Figure 10.9, the applicants have a
common ranking of the hospitals, while the hospitals have very different opinions
about the applicants.

Figure 10.9: An instance of stable matching. Each vertex is annotated with
its total ordering over the vertices of the opposite side, with the most
preferred vertex on top.

Let M be a perfect matching of V and W, assigning each vertex to one vertex
from the other set. Vertices v  V and w  W form a blocking pair for M if



they are not matched in M, v prefers w to her match in M, and w prefers v to its
match in M. A blocking pair spells trouble, because the two vertices are tempted
to secede from the process and match with each other. A perfect matching is
stable if it has no blocking pairs.

10.2.2 The Deferred Acceptance Algorithm
We next discuss the elegant deferred acceptance algorithm for computing a stable
matching.

Deferred Acceptance Algorithm

while  there is an unmatched applicant v  V do
v attempts to match with her favorite hospital w who has not rejected her

yet
if w is unmatched then
v and w are tentatively matched
else if w is tentatively matched to v′ then

      w rejects whomever of v, v′ it likes less and is tentatively matched to the
other one all tentative matches are made final

Example 10.4 (The Deferred Acceptance Algorithm)
Consider the instance in Figure 10.9. Suppose in the first iteration we choose the
applicant C, who tries to match with her first choice, D. The hospital D accepts
because it currently has no other offers. If we pick the applicant B in the next
iteration, she also proposes to the hospital D. Since hospital D prefers B to C, it
rejects C in favor of B. If we pick applicant A next, the result is similar: D rejects
B in favor of A. A possible trajectory for the rest of the algorithm is: applicant C
now proposes to her second choice, E; applicant B then also proposes to E,
causing E to reject C in favor of B; and finally, C proposes to her last choice F,
who accepts.

We note several properties of the deferred acceptance algorithm. First, each
applicant systematically goes through her preference list, from top to bottom.
Second, because a hospital only rejects an applicant in favor of a better one, the
applicants to whom it is tentatively matched only improve over the course of the
algorithm. Third, at all times, each applicant is matched to at most one hospital
and each hospital is matched to at most one applicant.

Stable matchings and the deferred acceptance algorithm have an astonishing
number of remarkable properties. Here are the most basic ones.

Theorem 10.5 (Fast Computation of a Stable Matching)



The deferred acceptance algorithm completes with a stable matching after at
most n2 iterations, where n is the number of vertices on each side.

Corollary 10.6 (Existence of a Stable Matching) For every collection of
preference lists for the applicants and hospitals, there exists at least one
stable matching.

Corollary 10.6 is not obvious a priori. For example, there are some simple
variants of the stable matching problem for which a solution is not guaranteed.

Proof of Theorem 10.5: The bound on the number of iterations is easy to prove.
Each applicant works her way down her preference list, never trying to match to
the same hospital twice, resulting in at most n attempted matches per applicant
and n2 overall.

Next, we claim that the deferred acceptance algorithm always completes with
every applicant matched to some hospital (and vice versa). For if not, some
applicant must have been rejected by all n hospitals. An applicant is only rejected
by a hospital in favor of being matched to a better applicant, and once a hospital is
matched to an applicant, it remains matched to some applicant for the remainder
of the algorithm. Thus, all n hospitals must be matched at the end of the
algorithm. But then all n applicants are also matched at the end of the algorithm, a
contradiction.

To prove the stability of the final matching, consider an applicant v and hospital
w that are not matched to each other. This can occur for two different reasons. In
the first case, v never attempted to match to w. Since v worked her way down
her preference list starting from the top, she ends up matched to a hospital she
prefers to w. If v did attempt to match to w at some point in the algorithm, it must
be that w rejected v in favor of an applicant it preferred (either at the time that v
attempted to match to w, or subsequently). Since the sequence of applicants to
whom w is matched only improves over the course of the algorithm, it ends up
matched to an applicant it prefers to v. 

*10.3 Further Properties
The deferred acceptance algorithm is underdetermined, leaving open how the
unmatched applicant is chosen in each iteration. Do all possible choices lead to
the same stable matching? In Figure 10.9 there is only one stable matching, so in
that example the answer is yes. In general, however, there can be more than one
stable matching. In Figure 10.10, the applicants and the hospitals both disagree on
the ranking of the others. In the matching computed by the deferred acceptance
algorithm, both applicants get their first choice, with A and B matched to C and D,
respectively. Giving the hospitals their first choices yields a different stable
matching.



Figure 10.10: There can be multiple stable matchings.

Our next result implies, in particular, that the outcome of the deferred
acceptance algorithm is independent of how the unmatched applicant is chosen in
each iteration. For an applicant v, let h(v) denote the highest-ranked hospital (in
v’s preference list) to which v is matched in any stable matching.

Theorem 10.7 (Applicant-Optimality) The stable matching computed by the
deferred acceptance algorithm matches every applicant v  V to h(v).

Theorem 10.7 implies the existence of an “applicant-optimal” stable matching,
where every applicant simultaneously attains her best-case scenario. A priori,
there is no reason to expect the h(v)’s to be distinct and therefore form a
matching.

Proof of Theorem 10.7: Consider a run of the deferred acceptance algorithm,
and let R denote the set of pairs (v, w) such that w rejected v at some point. Since
each applicant systematically works her way down her preference list, if v is
matched to w at the conclusion of the algorithm, then (v, w′)  R for every w′
that v prefers to w. Thus, the following claim would imply the theorem: for every
(v, w)  R, no stable matching pairs up v and w.

Let Ri denote the pairs (v, w) such that w rejected v at some point in the first i
iterations. We prove by induction on i that no pair in Ri is matched in any stable
matching. Initially, R0 = θ and there is nothing to prove. For the inductive step,
suppose that in the ith iteration of the deferred acceptance algorithm, w rejects v
in favor of v′. This means that one of v, v′ attempted to match to w in this
iteration.

Since v′ systematically worked her way down her preference list, for every w′
that v′ prefers to w, (v′, w′)  Ri−1. By the inductive hypothesis, no stable
matching pairs up v′ with a hospital she prefers to w—in every stable matching, v′
is paired with w or a less preferred hospital. Since w prefers v′ to v, and v′ prefers



w to any other hospital she might be matched to in a stable matching, there is no
stable matching that pairs v with w (otherwise v′, w form a blocking pair). 

Also, the deferred acceptance algorithm outputs the worst-possible stable
matching from the perspective of a hospital (Exercise 10.6).5

Suppose the preference lists of the applicants and hospitals are private. Can
we obtain a DSIC mechanism by asking all vertices to report their preference lists
and running the deferred acceptance algorithm? As Theorem 10.7 might suggest,
the deferred acceptance algorithm is DSIC for the applicants but not for the
hospitals (see Problem 10.1 and Exercise 10.7).

Theorem 10.8 (Incentive Properties) Consider the mechanism that runs
the deferred acceptance algorithm on reported preferences by the applicants
and hospitals.

(a) For every applicant v and reported preferences by the other
applicants and hospitals, v is never strictly better off reporting falsely
than truthfully.

(b) There exists preferences for a hospital w and reports for the other
applicants and hospitals such that w is strictly better off reporting
falsely than truthfully.



The Upshot

 Kidney exchange enables two or more patients with incompatible living
donors to receive kidney transplants from each other’s donors.
 The TTC algorithm can be applied to the kidney exchange problem to
exchange donors to improve everyone’s compatibility, but the algorithm
can result in infeasibly long cycles of exchanges.
 Matching algorithms can be used to restrict to pairwise kidney
exchanges and incentivize patients to accept any donor with whom she
is compatible.
 Hospitals can have an incentive to match incompatible patient-donor
pairs internally rather than reporting them to a national exchange.
 A stable matching pairs applicants and hospitals so that no applicant
and hospital would both be better off by matching to each other.
 The deferred acceptance algorithm computes an applicant-optimal
stable matching.
 The deferred acceptance algorithm leads to a mechanism that is DSIC
for the applicants but not for the hospitals.

Notes
The application of the TTC algorithm to kidney exchange is due to Roth et al.
(2004). Building on the work of Abdulkadiroğlu and Sönmez (1999) on assigning
students to college dorm rooms, Roth et al. (2004) also extend the TTC algorithm
and its incentive guarantee to accommodate both deceased donors (houses
without owners) and patients without a living donor (agents without houses). The
application of graph matching to pairwise kidney exchange is from Roth et al.
(2005). Roth et al. (2007) consider three-way kidney exchanges, with
simultaneous surgeries on three donors and three patients. Three-way exchanges
can significantly increase the number of matched patients, and for this reason are
becoming common. Allowing four-way and larger exchanges does not seem to
lead to significant further improvements. Sack (2012) describes a chain of 30
kidney transplants, triggered by an altruistic living donor. Incentives for hospitals
are studied by Ashlagi et al. (2015).

Gale and Shapley (1962) formalize the stable matching problem, present the
deferred acceptance algorithm, and prove Theorems 10.5 and 10.7. The variant
of the algorithm described here, with the unmatched applicants attempting to
match one-by-one rather than simultaneously, follows Dubins and Freedman



(1981). Incredibly, it was later discovered that essentially the same algorithm had
been used, since the 1950s, to assign medical residents to hospitals (Roth, 1984)!6

Theorem 10.8 is due to Dubins and Freedman (1981) and Roth (1982a). Exercise
10.6 is observed by McVitie and Wilson (1971), and Problem 10.2 is discussed in
Gale and Sotomayor (1985).

Exercises
Exercise 10.1 (H) Prove Theorem 10.1.

Exercise 10.2 Exhibit a tie-breaking rule between maximum-cardinality
matchings such that the corresponding pairwise kidney exchange mechanism is
not DSIC.

Exercise 10.3 Extend Example 10.3 to show that there is no DSIC matching
mechanism that always matches more than half of the maximum-possible number
of patient-donor pairs.

Exercise 10.4 Prove that there exists a constant c > 0 such that, for arbitrarily
large n, the deferred acceptance algorithm can require at least cn2 iterations to
complete.

Exercise 10.5 Suppose each applicant and hospital has a total ordering over the
vertices of the opposite side and also an “outside option.” In other words, vertices
can prefer to go unmatched over some of their potential matches.

(a) Extend the definition of a stable matching to accommodate outside
options.

(b) Extend the deferred acceptance algorithm and Theorem 10.5 to compute
a stable matching in the presence of outside options.

Exercise 10.6 (H) For a hospital w, let l(w) denote the lowest-ranked applicant
(in w’s preference list) to whom w is matched in any stable matching. Prove that,
in the stable matching computed by the deferred acceptance algorithm, each
hospital w  W is matched to l(w).

Exercise 10.7 Exhibit an example that proves Theorem 10.8(b).

Problems
Problem 10.1 (H) Prove Theorem 10.8(a).

Problem 10.2 Consider a hospital in the deferred acceptance algorithm. We say
that one preference list strictly dominates another if the former always leads to
at least as good an outcome as the latter for the hospital (holding the reports of
other applicants and hospitals fixed), and in at least one case leads to a strictly



better outcome. Prove that, for every hospital, every preference list with a
misreported first choice is strictly dominated by a preference list with a truthfully
reported first choice.

1 It is no coincidence that Iran also does not have a waiting list for kidneys.
Will other countries eventually follow suit and permit a monetary market for
kidneys?

2 Just as it is illegal to sell a kidney for money in most countries, it is also illegal
to write a binding contract for a kidney donation.

3 Sequential surgeries are used in a slightly different situation. There are a
handful of altruistic living donors who want to donate a kidney even though
they don’t personally know anyone who needs one. An altruistic living donor
can be the start of a chain of reallocations. Chains as long as 30 have been
implemented, and at this scale surgeries have to be sequential. With a chain
initiated by an altruistic living donor, there is no risk of a patient losing her
living donor before receiving a kidney.

4 With no payments, every agent is automatically guaranteed nonnegative
utility.

5 Modifying the algorithm so that the hospitals initiate matches and the
applicants reject reverses both of these properties.

6 The original implementation was the hospital-optimal version of the deferred
acceptance algorithm, but it was changed to favor the applicants in the 1990s
(Roth and Peranson, 1999).



Lecture 11

Selfish Routing and the Price of Anarchy

This lecture commences the second part of the course. In many settings, there is
no option to design a game from scratch. Unlike all of our carefully crafted DSIC
mechanisms, games “in the wild” generally have no dominant strategies.
Predicting the outcome of such a game requires a notion of “equilibrium.” As the
outcome of self-interested behavior, there is no reason to expect equilibria to be
socially desirable outcomes. Happily, in many interesting models, equilibria are
near-optimal under relatively weak assumptions. This lecture and the next
consider “selfish routing,” a canonical such model.

Section 11.1 uses three examples to provide a gentle introduction to selfish
routing. Sections 11.2 and 11.3 state and interpret the main result of this lecture,
that the worst-case price of anarchy of selfish routing is always realized in
extremely simple networks, and consequently equilibria are near-optimal in
networks without “highly nonlinear” cost functions. After Section 11.4 formally
defines equilibrium flows and explains some of their properties, Section 11.5
proves the main result.

11.1 Selfish Routing: Examples
Before formally defining our model of selfish routing, we develop intuition and
motivate the main results through a sequence of examples.

11.1.1 Braess’s Paradox
Lecture 1 introduced Braess’s paradox (Section 1.2). To recap, one unit of traffic,
perhaps representing rush-hour drivers, leaves an origin o for a destination d. In
the network in Figure 11.1(a), by symmetry, at equilibrium half of the traffic uses
each route and the common travel time is . After installing a teleportation device

that allows drivers to travel instantly from v to w (Figure 11.1(b)), the new route o
→ v → w → d is a dominant strategy for every driver. The common travel time
in this new equilibrium is 2. The minimum-possible travel time in the new network
is , as there is no profitable way to use the teleporter. The price of anarchy

(POA) of this selfish routing network, defined as the ratio between the travel time



in an equilibrium and the minimum-possible average travel time, is .1

Figure 11.1: Braess’s paradox revisited. Edges are labeled with their cost
functions, which describe the travel time of an edge as a function of the
amount x of traffic that uses it. In (b), the price of anarchy is 4/3.

11.1.2 Pigou’s Example
Pigou’s example, shown in Figure 11.2(a), is an even simpler selfish routing
network in which the POA is . Even when the lower edge of this network

carries all of the traffic, it is no worse than the alternative. Thus, the lower edge is
a dominant strategy for every driver, and in equilibrium all drivers use it and
experience travel time 1. An altruistic dictator would minimize the average travel
time by splitting the traffic equally between the two edges. This results in an
average travel time of , showing that the POA in Pigou’s example is 

.



Figure 11.2: Pigou’s example and a nonlinear variant.

11.1.3 Pigou’s Example: A Nonlinear Variant
The POA is  in both Braess’s paradox and Pigou’s example, which is quite

reasonable for completely unregulated behavior. The story is not so rosy in all
networks, however. In the nonlinear variant of Pigou’s example (Figure 11.2(b)),
the cost function of the lower edge is c(x) = xP rather than c(x) = x, where p is
large. The lower edge remains a dominant strategy, and the equilibrium travel time
remains 1. The optimal solution, meanwhile, is now much better. If the traffic is
again equally split between the two edges, then the average travel time tends to 

as p → ∞, with the traffic on the bottom edge arriving at d nearly instantaneously.
Even better is to assign a 1 −  fraction of the traffic to the bottom edge, where 
tends to 0 as p tends to infinity. Then, almost all of the traffic gets to d with travel
time (1 − )p, which is close to 0 when p is sufficiently large, and the  fraction
of martyrs on the upper edge contribute little to the average travel time We
conclude that the POA in the nonlinear variant of Pigou’s example is unbounded
as p → ∞.

11.2 Main Result: Informal Statement
The POA of selfish routing can be large (Section 11.1.3) or small (Sections 11.1.1
and 11.1.2). The goal of this lecture is to provide a thorough understanding of
when the POA of selfish routing is close to 1. Looking at our three examples, we
see that “highly nonlinear” cost functions can prevent a selfish routing network
from having a POA close to 1, while our two examples with linear cost functions
have a small POA. The coolest statement that might be true is that highly
nonlinear cost functions are the only obstacle to a small POA—that every selfish
routing network with not-too-nonlinear cost functions, no matter how complex,
has POA close to 1. The main result of this lecture formulates and proves this
conjecture.



We study the following model. There is a directed graph G = (V, E), with
vertex set V and directed edge set E, with an origin vertex o and a destination
vertex d. There are r units of traffic (or flow) destined for d from o.2 We treat G
as a flow network, in the sense of the classical maximum-and minimum-cost flow
problems. Each edge e of the network has a cost function, describing the travel
time (per unit of traffic) as a function of the amount of traffic using the edge.
Edges do not have explicit capacities. In this lecture and the next, we always
assume that every cost function is nonnegative, continuous, and nondecreasing.
These are very mild assumptions in most relevant applications, like road or
communication networks.

We first state an informal version of this lecture’s main result and explain how
to interpret and use it. We give a formal statement in Section 11.3 and a proof in
Sections 11.4 and 11.5. Importantly, the theorem is parameterized by a set  of
permissible cost functions. This reflects our intuition that the POA of selfish
routing seems to depend on the “degree of nonlinearity” of the network’s cost
functions. The result is already interesting for simple classes  of cost functions,
such as the set {c(x) = ax + b: a, b ≥ 0} of affine functions with nonnegative
coefficients.

Theorem 11.1 (Tight POA Bounds for Selfish Routing)
Among all networks with cost functions in a set , the largest POA is
achieved in a Pigou-like network.

Section 11.3 makes the term “Pigou-like networks” precise. The point of
Theorem 11.1 is that worst-case examples are always simple. The principal
culprit for inefficiency in selfish routing is nonlinear cost functions, not complex
network structure.

For a particular cost function class  of interest, Theorem 11.1 reduces the
problem of computing the worst-case POA to a back-of-the-envelope calculation.
Without Theorem 11.1, one would effectively have to search through all networks
with cost functions in  to find the one with the largest POA. Theorem 11.1
guarantees that the much simpler search through Pigou-like networks is sufficient.

For example, when  is the set of affine cost functions with non-negative
coefficients, Theorem 11.1 implies that Pigou’s example (Section 11.1.2)
maximizes the POA. Thus, the POA is always at most  in selfish routing

networks with such cost functions. When  is the set of polynomials with
nonnegative coefficients and degree at most p, Theorem 11.1 implies that the
worst example is the nonlinear variant of Pigou’s example (Section 11.1.3).
Computing the POA of this worst-case example yields an upper bound on the
POA of every selfish routing network with such cost functions. See Table 11.1 for
several examples, which demonstrate the point that the POA of selfish routing is



large only in networks with “highly nonlinear” cost functions. For example, quartic
functions have been proposed as a reasonable model of road traffic in some
situations, and the worst-case POA with respect to such functions is slightly
larger than 2. Lecture 12 discusses cost functions germane to communication
networks.

Table 11.1: The worst-case POA in selfish routing networks with
cost functions that are polynomials with nonnegative coefficients
and degree at most p.

Description Typical Representative Price of Anarchy
Linear ax + b 4/3

Quadratic ax2 + bx + c

Cubic ax3 + bx2 + cx + d

Quartic ax4 + bx3 + cx2 + dx + e

Degree ≤ p

11.3 Main Result: Formal Statement
To formalize the statement of Theorem 11.1, we need to define the “Pigou-like
networks” for a class  of cost functions. We then formulate a lower bound on
the POA based solely on these trivial instances.

Theorem 11.2 states a matching upper bound on the POA of every selfish routing
network with cost functions in .

Ingredients of a Pigou-Like Network

1. Two vertices, o and d.
2. Two edges from o to d, an “upper” edge and a “lower” edge.
3. A nonnegative traffic rate r.
4. A cost function c(·) on the lower edge.
5. The cost function everywhere equal to c(r) on the upper edge.

See also Figure 11.3. There are two free parameters in the description of a Pigou-



like network, the traffic rate r and the cost function c(·) of the lower edge.

Figure 11.3: A Pigou-like network.

The POA of a Pigou-like network is easy to compute. By construction, the
lower edge is a dominant strategy for all traffic—it is no less attractive than the
alternative (with constant cost c(r)), even when it is fully congested. Thus, in the
equilibrium all traffic travels on the lower edge, and the total travel time is r ·c(r)
—the amount of traffic times the common per-unit travel time experienced by all
of the traffic. We can write the minimum-possible total travel time as

(11.1)

where x is the amount of traffic routed on the lower edge.3 For later convenience,
we allow x to range over all nonnegative reals, not just over [0, r]. Since cost
functions are nondecreasing, this larger range does not change the quantity in
(11.1)—there is always an optimal choice of x in [0, r]. We conclude that the
POA in a Pigou-like network with traffic rate r > 0 and lower edge cost function
c(·) is

Let  be an arbitrary set of nonnegative, continuous, and nondecreasing cost
functions. Define the Pigou bound α( ) as the largest POA in a Pigou-like
network in which the lower edge’s cost function belongs to . Formally,

(11.2)



The first two suprema search over all choices of the two free parameters c  
and r ≥ 0 in a Pigou-like network; the third computes the best-possible outcome in
the chosen Pigou-like network.4

The Pigou bound can be evaluated explicitly for many sets  of interest. For
example, if  is the set of affine (or even concave) non-negative and

nondecreasing functions, then α( ) =  (Exercises 11.1 and 11.2). The

expressions in Table 11.1 are precisely the Pigou bounds for sets of polynomials
with nonnegative coefficients and bounded degree (Exercise 11.3). The Pigou
bound is achieved for these sets of cost functions by the nonlinear variant of
Pigou’s example (Section 11.1.3).

Suppose a set  contains all of the constant functions. Then the Pigou-like
networks that define α( ) use only functions from , and α( ) is a lower bound

on the worst-case POA of selfish routing networks with cost functions in .5

The formal version of Theorem 11.1 is that the Pigou bound α( ) is an upper
bound on the POA of every selfish routing network with cost functions in ,
whether Pigou-like or not.

Theorem 11.2 (Tight POA Bounds for Selfish Routing)

For every set  of cost functions and every selfish routing network with cost
functions in , the POA is at most α( ).

11.4 Technical Preliminaries
Before proving Theorem 11.2, we review some flow network preliminaries. While
notions like flow and equilibria are easy to define in Pigou-like networks, defining
them in general networks requires a little care.

Let G = (V, E) be a selfish routing network, with r units of traffic traveling
from o to d. Let  denote the set of o-d paths of G, which we assume is
nonempty. A flow describes how traffic is split over the o-d paths, and is a
nonnegative vector  with . For example, in

Figure 11.4, half of the traffic takes the zig-zag path o → v → w → d, while the
other half is split equally between the two two-hop paths.



Figure 11.4: Example of a flow, with 25% of the traffic routed on each of
the paths o → v → t and o → w → t, and the remaining 50% on the path o
→ v → w → d.

For an edge e  E and a flow f, we write  for the
amount of traffic that uses a path that includes e. For example, in Figure 11.4, 
, and .

In an equilibrium flow, traffic travels only on the shortest o-d paths, where
“shortest” is defined using the travel times induced by the flow.

Definition 11.3 (Equilibrium Flow) A flow f is an equilibrium if  0 only

when

For example, with cost functions as in Braess’s paradox (Figure 11.1(b)), the flow
in Figure 11.4 is not an equilibrium because the only shortest path is the zig-zag
path, and some of the traffic doesn’t use it.

We denote our objective function, the total travel time incurred by traffic in a
flow f, by C(f). We sometimes call the total travel time the cost of a flow. This
objective function can be computed in two different ways, and both ways are
useful. First, we can define



as the travel time along a path and tally the total travel time path-by-path:

(11.3)

Alternatively, we can tally it edge-by-edge:

(11.4)

Recalling that , a simple reversal of sums verifies

the equivalence of (11.3) and (11.4).

*11.5 Proof of Theorem 11.2
We now prove Theorem 11.2. Fix a selfish routing network G = (V, E) with cost
functions in  and traffic rate r. Let f and f* denote equilibrium and minimum-
cost flows in the network, respectively. The proof has two parts.

The first part of the proof shows that after “freezing” the cost of every edge e
at its equilibrium value ce(fe), the equilibrium flow f is optimal. This makes sense,
since an equilibrium flow routes all traffic on shortest paths with respect to the
edge costs it induces.

Formally, since f is an equilibrium flow, if  0, then  

for all P   (Definition 11.3). In particular, all paths  used by the equilibrium

flow have a common cost , call it L, and cP(f) ≥ L for every path P  

. Thus,

(11.5)

while

(11.6)



Expanding  and reversing the order of summation

as in (11.3)–(11.4), we can write the left-hand sides of (11.5) and (11.6) as sums
over edges and derive

(11.7)

and

(11.8)

Subtracting (11.7) from (11.8) yields

(11.9)

The inequality (11.9) is stating something very intuitive: since the equilibrium flow
f routes all traffic on shortest paths, no other flow f* can be better if we keep all
edge costs fixed at .

The second part of the proof quantifies the extent to which the optimal flow f*
can be better than f. The rough idea is to show that, edge by edge, the gap in
costs between f and f* is no worse than the Pigou bound. This statement only
holds up to an error term for each edge, but we can control the sum of the error
terms using the inequality (11.9) from the first part of the proof.

Formally, for each edge e  E, instantiate the right-hand side of the Pigou
bound (11.2) using ce for c, fe for r, and  for x. Since α( ) is the supremum
over all possible choices of c, r, and x, we have

The definition of the Pigou bound accommodates both the cases  < fe and 
≥ fe. Rearranging,

(11.10)

Summing (11.10) over all edges e  E gives



Thus the POA C(f)/C(f*) is at most α( ), and the proof of Theorem 11.2 is
complete.

The Upshot

 In an equilibrium flow of a selfish routing network, all traffic travels
from the origin to the destination on shortest paths.

 The price of anarchy (POA) of a selfish routing network is the ratio
between the total travel time in an equilibrium flow and the minimum-
possible total travel time.

 The POA is  in Braess’s paradox and Pigou’s example, and is

unbounded in the nonlinear variant of Pigou’s example.

 The POA of a selfish routing network is large only if it has “highly
nonlinear” cost functions.

 The Pigou bound for a set  of edge cost functions is the largest POA
arising in a two-vertex, two-edge network with one cost function in 
and one constant cost function.

 The Pigou bound for  is an upper bound on the POA of every selfish
routing network with cost functions in .

Notes
Additional background on flow networks is in, for example, Cook et al. (1998).
Pigou’s example is described qualitatively by Pigou (1920). Selfish routing in
general networks is proposed and studied in Wardrop (1952) and Beckmann et al.
(1956). Braess’s paradox is from Braess (1968). The price of anarchy of selfish
routing is first considered in Roughgarden and Tardos (2002), who also proved
that the POA is at most  in every (multicommodity) network with affine cost



functions. Theorem 11.2 is due to Roughgarden (2003) and Correa et al. (2004).
Sheffi (1985) discusses the use of quartic cost functions for modeling road traffic.
Problem 11.3 is from Roughgarden (2006). Roughgarden (2005) contains much
more material on the price of anarchy of selfish routing.

Exercises
Exercise 11.1 (H) Prove that if  is the set of cost functions of the form c(x) =

ax + b with a, b ≥ 0, then the Pigou bound α( ) is .

Exercise 11.2 (H) Prove that if  is the set of nonnegative, nonde-creasing, and

concave cost functions, then α( ) = .

Exercise 11.3 For a positive integer p, let  denote the set of polynomials with

nonnegative coefficients and degree at most p: 
.

(a) Prove that the Pigou bound of the singleton set {xp} is increasing in p.

(b) Prove that the Pigou bound of the set {axi: a ≥ 0, i  {0, 1, 2 …, p}} is
the same as that of the set {xp}.

(c) (H) Prove that Pigou bound of  is the same as that of the set {xp}.

Exercise 11.4 Let  be a set of nonnegative, continuous, and nondecreasing
cost functions.

(a) (H) Prove that if  includes functions c with c(0) = β for all β > 0, then
there are selfish routing networks with cost functions in  and POA
arbitrarily close to the Pigou bound α( ).

(b) (H) Prove that if  includes a function c with c(0) > 0, then there are
selfish routing networks with cost functions in  and POA arbitrarily
close to the Pigou bound α( ).

Exercise 11.5 Consider a multicommodity network G = (V, E), where for each
i = 1, 2, …, k, ri units of traffic travel from an origin oi  V to a destination di 
V.

(a) Extend the definitions of a flow and of an equilibrium flow (Definition
11.3) to multicommodity networks.



(b) Extend the two expressions (11.3) and (11.4) for the total travel time to
multicommodity networks.

(c) Prove that Theorem 11.2 continues to hold for multicommodity networks.

Problems
Problem 11.1 In Pigou’s example (Section 11.1.2), the optimal flow routes some
traffic on a path with cost twice that of a shortest path. Prove that, in every
selfish routing network with affine cost functions, an optimal flow f* routes all
traffic on paths with cost at most twice that of a shortest path (according to the
travel times induced by f*).

Problem 11.2 In this problem we consider an alternative objective function, that
of minimizing the maximum travel time

of a flow f. The price of anarchy (POA) with respect to this objective is then
defined as the ratio between the maximum cost of an equilibrium flow and that of
a flow with minimum-possible maximum cost.6

We assume throughout this problem that there is one origin, one destination,
one unit of traffic, and affine cost functions (of the form ce(x) = aex + be for ae,
be ≥ 0).

(a) Prove that in networks with only two vertices o and d, and any number of
parallel edges, the POA with respect to the maximum cost objective is 1.

(b) (H) Prove that the POA with respect to the maximum cost objective can
be as large as 4/3.

(c) (H) Prove that the POA with respect to the maximum cost objective is
never larger than 4/3.

Problem 11.3 This problem considers Braess’s paradox in selfish routing
networks with nonlinear cost functions.

(a) Modify Braess’s paradox (Section 11.1.1) to show that adding an edge to
a network with nonlinear cost functions can double the travel time of
traffic in an equilibrium flow.

(b) (H) Show that adding edges to a network with nonlinear cost functions
can increase the equilibrium travel time by strictly more than a factor of
2.



1 This definition makes sense because the selfish routing networks considered
in this lecture always have at least one equilibrium, and because the average
travel time is the same in every equilibrium (see Lecture 13). Lecture 12
extends the definition of the POA to games with multiple equilibria.

2 To minimize notation, we state and prove the main result only for “single-
commodity networks,” where there is one origin and one destination. The main
result and its proof extend to networks with multiple origins and destinations
(Exercise 11.5).

3 Continuity of the cost function c implies that this infimum is attained, but we
won’t need this fact.

4 Whenever the ratio reads , we interpret it as 1.

5 As long as  contains at least one function c with c(0) > 0, the Pigou bound
is a lower bound on the POA of selfish routing networks with cost functions in

. The reason is that, under this weaker assumption, Pigou-like networks can
be simulated by slightly more complex networks with cost functions only in 
(Exercise 11.4).

6 For an equilibrium flow, the maximum cost is just the common cost incurred
by all of the traffic.



Lecture 12

Over-Provisioning and Atomic Selfish
Routing

Last lecture proved generic tight bounds on the price of anarchy (POA) of selfish
routing, parameterized by the edge cost functions. One particular instantiation of
these bounds gives a rigorous justification for the common strategy of over-
provisioning a communication network to achieve good performance (Section
12.1). A different result in the same vein states that a modest technology upgrade
improves network performance more than implementing dictatorial control
(Sections 12.2–12.3). Applications in which network users control a non-negligible
fraction of the traffic are best modeled via an “atomic” variant of selfish routing
(Section 12.4). The POA of atomic selfish routing is larger than in the
“nonatomic” model, but remains bounded provided the network cost functions are
affine (Sections 12.4–12.5), or more generally “not too nonlinear.”

12.1 Case Study: Network Over-Provisioning

12.1.1 Motivation
The study of selfish routing provides insight into many different kinds of networks,
including transportation, communication, and electrical networks. One big
advantage in communication networks is that it is often relatively cheap to add
additional capacity to a network. Because of this, a popular strategy to
communication network management is to install more capacity than is needed,
meaning that the network will generally not be close to fully utilized. One
motivation for such network over-provisioning is to anticipate future growth in
demand. Over-provisioning is also used for performance reasons, as it has been
observed empirically that networks tend to suffer fewer packet drops and delays
when they have extra capacity.

12.1.2 POA Bounds for Over-Provisioned Networks
The POA bounds for selfish routing developed in Lecture 11 are parameterized by
the class of permissible network cost functions. In this section, we consider
networks in which every cost function ce(x) has the form



(12.1)

The parameter ue represents the capacity of edge e. A cost function of the form
(12.1) is the expected per-unit delay in an M/M/1 queue, meaning a queue where
jobs arrive according to a Poisson process with rate x and have independent and
exponentially distributed services times with mean 1/ue. Such a function stays
very flat until the amount of traffic nears the capacity, at which point the cost
rapidly tends to + ∞ (Figure 12.1(a)). This is the simplest cost function used to
model delays in communication networks.

Figure 12.1: Modest over-provisioning guarantees near-optimal routing. The
first figure displays the per-unit cost c(x) = 1/(u − x) as a function of the
amount of traffic x for an edge with capacity u = 2. The second figure shows
the worst-case POA as a function of the fraction of unused network capacity.

For a parameter β  (0, 1), call a selfish routing network with cost functions of
the form (12.1) β-over-provisioned if fe ≤ (1 − β)ue for every edge e, where f is
some equilibrium flow. That is, at equilibrium, the maximum edge utilization in the
network is at most (1 − β) · 100%.

Figure 12.1(a) suggests the following intuition: when β is not too close to 0, the
equilibrium flow is not too close to the capacity on any edge, and in this range the
edges’ cost functions behave like low-degree polynomials with nonnegative
coefficients. Theorem 11.2 implies that the POA is small in networks with such
cost functions.

More formally, Theorem 11.2 reduces computing the worst-case POA in



arbitrary β-over-provisioned selfish routing networks to computing the worst-case
POA merely in β-over-provisioned Pigou-like examples. A computation (Exercise
12.2) then shows that the worst-case POA in β-over-provisioned networks is

(12.2)

an expression graphed in Figure 12.1(b).
Unsurprisingly, the bound in (12.2) tends to 1 as β tends to 1 and to + ∞ as β

tends to 0. These are the cases where the cost functions effectively act like
constant functions and like very high-degree polynomials, respectively.
Interestingly, even relatively small values of β imply good POA bounds. For
example, if β = .1, corresponding to a maximum edge utilization of 90%, then the
POA is always at most 2.1. Thus a little over-provisioning is sufficient for near-
optimal selfish routing, corroborating empirical observations.

12.2 A Resource Augmentation Bound
This section proves a guarantee for selfish routing in arbitrary networks, with no
assumptions on the cost functions. What could such a guarantee look like? Recall
that the nonlinear variant of Pigou’s example (Section 11.1.3) shows that the POA
in such networks is unbounded.

The key idea is to compare the performance of selfish routing to a handicapped
minimum-cost solution that is forced to route extra traffic. For example, in Figure
11.2(b) with p large, with one unit of traffic, the equilibrium flow has cost 1 while
the optimal flow has near-zero cost. If the optimal flow has to route two units of
traffic, then there is nowhere to hide: it again routes (1 − ) units of traffic on the
lower edge, with the remaining (1 + ) units of traffic routed on the upper edge.
The cost of this flow exceeds that of the equilibrium flow with one unit of traffic.

This comparison between two flows at different traffic rates has an equivalent
and easier-to-interpret formulation as a comparison between two flows with the
same traffic rate but in networks with different cost functions. Intuitively, instead
of forcing the optimal flow to route additional traffic, we allow the equilibrium
flow to use a “faster” network, with each original cost function ce(x) replaced by
the function  (Exercise 12.3).

This transformation is particularly meaningful for cost functions of the form
(12.1). If ce(x) = 1/(ue − x), then the “faster” function is 1/(2ue ‒ x),
corresponding to an edge with double the capacity. The next result, after this
reformulation, gives a second justification for network over-provisioning: a modest
technology upgrade improves performance more than implementing dictatorial
control.



Theorem 12.1 (Resource Augmentation Bound) For every selfish routing
network and r > 0, the cost of an equilibrium flow with traffic rate r is at
most the cost of an optimal flow with traffic rate 2r.

Theorem 12.1 also applies to selfish routing networks with multiple origins and
destinations (Exercise 12.1).

*12.3 Proof of Theorem 12.1
Fix a network G with nonnegative, nondecreasing, and continuous cost functions,
and a traffic rate r. Let f and f* denote equilibrium and minimum-cost flows at the
traffic rates r and 2r, respectively.

The first part of the proof reuses the trick from the proof of Theorem 11.2
(Section 11.5) of employing fictitious cost functions, frozen at the equilibrium
costs, to get a handle on the cost of the optimal flow f*. Recall that since f is an
equilibrium flow (Definition (11.3)), all paths P used by f have a common cost
cP(f), call it L. Moreover, cP(f) ≥ L for every path P  . Analogously to
(11.5)–(11.8), we have

and

With respect to the fictitious frozen costs, we get an excellent lower bound on the
cost of f*, of twice the cost of the equilibrium flow f.

The second step of the proof shows that using the fictitious costs instead of the
accurate ones overestimates the cost of f* by at most the cost of f. Specifically,
we complete the proof by showing that

(12.3)

We prove that (12.3) holds term-by-term, with

(12.4)



for every edge e  E. When  ≥ fe, since the cost function ce is nondecreasing
and nonnegative, the left-hand side of (12.4) is nonpositive and there is nothing to
show. Nonnegativity of ce also implies that inequality (12.4) holds when  < fe.
This completes the proof of Theorem 12.1.

12.4 Atomic Selfish Routing
So far we’ve studied a nonatomic model of selfish routing, meaning that all
agents have negligible size. This is a good model for cars on a highway or small
users of a communication network. This section introduces atomic selfish routing
networks, the more appropriate model for applications where each agent controls
a significant fraction of the overall traffic. For example, an agent could represent
an Internet service provider responsible for routing the data of a large number of
end users.

An atomic selfish routing network consists of a directed graph G = (V, E) with
nonnegative and nondecreasing edge cost functions and a finite number k of
agents. Agent i has an origin vertex oi and a destination vertex di. Each agent
routes 1 unit of traffic on a single oi-di path, and seeks to minimize her cost.1 Let 

i denote the oi-di paths of G. A flow can now be represented as a vector (P1,
…, Pk), with Pi  i the path on which agent i routes her traffic. The cost of a
flow is defined as in the nonatomic model, as (11.3) or (11.4). An equilibrium
flow is one in which no agent can decrease her cost via a unilateral deviation.

Definition 12.2 (Equilibrium Flow (Atomic)) A flow (P1, …, Pk) is an
equilibrium if, for every agent i and path ,

Definition 12.2 differs from Definition 11.3 because a deviation by an agent with
non-negligible size increases the cost of the newly used edges.

To get a feel for the atomic model, consider the variant of Pigou’s example
shown in Figure 12.2. Suppose there are two agents, each controlling one unit of
traffic. The optimal solution routes one agent on each edge, for a total cost of 1 +
2 = 3. This is also an equilibrium flow, since neither agent can decrease her cost
via a unilateral deviation. The agent on the lower edge does not want to switch,
since her cost would jump from 1 to 2. More interestingly, the agent on the upper
edge (with cost 2) has no incentive to switch to the lower edge, where her sudden
appearance would drive the cost up to 2.



Figure 12.2: A Pigou-like network for atomic selfish routing.

There is a second equilibrium flow in the network: if both agents take the lower
edge, then both have a cost of 2 and neither can decrease her cost by switching
to the upper edge. This equilibrium has cost 4. This example illustrates an
important difference between nonatomic and atomic selfish routing: while
different equilibria always have the same cost in the nonatomic model (see
Lecture 13), they can have different costs in the atomic model.

Our definition of the POA in Lecture 11 assumes that all equilibria have the
same cost. We next extend the definition to games with multiple equilibria using a
worst-case approach.2 Formally, the price of anarchy (POA) of an atomic selfish
routing network is the ratio

For example, in the network in Figure 12.2, the POA is .3

A second difference between nonatomic and atomic selfish routing is that the
POA can be larger in the latter model. To see this, consider the four-agent
bidirected triangle network shown in Figure 12.3. Each agent has two options, a
one-hop path and a two-hop path. In the optimal flow, every agent routes her
traffic on her one-hop path. These one-hop paths are precisely the four edges
with the cost function c(x) = x, so the cost of this flow is 4. This flow is also an
equilibrium flow. On the other hand, if every agent routes her traffic on her two-
hop path, then we obtain a second equilibrium flow (Exercise 12.5). Since the first
two agents each incur three units of cost and the last two agents each incur two
units of cost, the cost of this flow is 10. The POA of this network is 10/4 = 2.5.



Figure 12.3: In atomic selfish routing networks with affine cost functions,
the POA can be as large as 5/2.

No atomic selfish routing network with affine cost functions has a larger POA.

Theorem 12.3 (POA Bound for Atomic Selfish Routing)
In every atomic selfish routing network with affine cost functions, the POA is
at most .

Theorem 12.3 and its proof can be generalized to give tight POA bounds for
arbitrary sets of cost functions; see the Notes.

*12.5 Proof of Theorem 12.3
The proof of Theorem 12.3 is a “canonical POA proof,” in a sense made precise
in Lecture 14. To begin, let’s just follow our nose. We need to bound from above
the cost of every equilibrium flow; fix one f arbitrarily. Let f* denote a minimum-
cost flow. Write fe and fe* for the number of agents in f and f*, respectively, that
pick a path that includes the edge e. Write each affine cost function as ce(x) =
aex + be for ae, be ≥ 0.

The first step of the proof identifies a useful way of applying our hypothesis
that f is an equilibrium flow. If we consider any agent i, using the path Pi in f, and
any unilateral deviation to a different path , then we can conclude that i’s



equilibrium cost using Pi is at most what her cost would be if she switched to 

(Definition 12.2). This looks promising: we want an upper bound on the cost of
the equilibrium flow f, and hypothetical deviations give us upper bounds on the
equilibrium costs of individual agents. Which hypothetical deviations should we
single out for the proof? Given that f* is the only other object referenced in the
theorem statement, a natural idea is to use the optimal flow f* to suggest
deviations.

Formally, suppose agent i uses path Pi in f and path  in f*. By Definition

12.2,

(12.5)

This completes the first step, in which we apply the equilibrium hypothesis to
generate an upper bound (12.5) on the equilibrium cost of each agent.

The second step of the proof sums the upper bound (12.5) on individual
equilibrium costs over all agents to obtain a bound on the total equilibrium cost:

(12.7)

(12.8)

(12.9)

where inequality (12.6) follows from (12.5), inequality (12.7) from the assumption
that cost functions are nondecreasing, equation (12.8) from the fact that the term
ce(fe + 1) is contributed once by each agent i for which e   (  times in

all), and equation (12.9) from the assumption that cost functions are affine. This



completes the second step of the proof.
The previous step gives an upper bound on a quantity that we care about—the

cost of the equilibrium flow f—in terms of a quantity that we don’t care about, the
“entangled” version of f and f* on the right-hand side of (12.9). The third and
most technically challenging step of the proof is to “disentangle” the right-hand
side of (12.9) and relate it to the only quantities that we care about for a POA
bound, the costs of f and f*.

We use the following inequality, which is easily checked (Exercise 12.6).

Lemma 12.4 For every y, z  {0, 1, 2, 3,…},

We now apply Lemma 12.4 once per edge in the right-hand side of (12.9), with
y =  and z = fe. Using the definition (11.4) of the cost C(·) of a flow, this yields

(12.10)

Subtracting C(f) from both sides and multiplying through by  gives

which completes the proof of Theorem 12.3.



The Upshot

 A selfish routing network with cost functions of the form ce(x) = 1/(ue
− x) is β-over-provisioned if the amount of equilibrium flow on each
edge e is at most (1 − β)ue.

 The POA is small in β-over-provisioned networks even with fairly
small β, corroborating empirical observations that a little over-
provisioning yields good network performance.

 The cost of an equilibrium flow is at most that of an optimal flow that
routes twice as much traffic. Equivalently, a modest technology
upgrade improves performance more than implementing dictatorial
control.

 In atomic selfish routing, where each agent controls a non-negligible
fraction of the network traffic, different equilibrium flows can have
different costs.

 The POA is the ratio between the objective function value of the worst
equilibrium and that of an optimal outcome.

 The worst-case POA of atomic selfish routing with affine cost
functions is exactly 2.5. The proof is “canonical” is a price sense.

Notes
Bertsekas and Gallager (1987) is a good reference for models of communication
networks, and Olifer and Olifer (2005) for communication network management
strategies such as over-provisioning. POA bounds for β-over-provisioned
networks are discussed by Roughgarden (2010a). Theorem 12.1 is due to
Roughgarden and Tardos (2002). Atomic selfish routing networks first appear in
Rosenthal (1973), and the POA of such networks is first studied in Awerbuch et
al. (2013) and Christodoulou and Koutsoupias (2005b). Our proof of Theorem
12.3 follows Christodoulou and Koutsoupias (2005a). Defining the POA via the
worst-case equilibrium is the original proposal of Koutsoupias and Papadimitriou
(1999). See Aland et al. (2011) for tight POA bounds for atomic selfish routing
networks with polynomial cost functions, and Roughgarden (2015) for general
cost functions. Tight POA bounds for agents controlling different amounts of
traffic are given by Awerbuch et al. (2013), Christodoulou and Koutsoupias
(2005b), Aland et al. (2011), and Bhawalkar et al. (2014). For agents who can
split traffic over multiple paths, POA bounds appear in Cominetti et al. (2009) and



Harks (2011), and tight bounds in Roughgarden and Schoppmann (2015). In all of
these atomic models, when edges’ cost functions are polynomials with
nonnegative coefficients and degree at most p, the POA is bounded by a constant
that depends on p. The dependence on p is exponential, in contrast to the
sublinear dependence in nonatomic selfish routing networks. Problems 12.1–12.4
are from Chakrabarty (2004), Christodoulou and Koutsoupias (2005b),
Koutsoupias and Papadimitriou (1999), and Awerbuch et al. (2006), respectively.

Exercises
Exercise 12.1 Multicommodity selfish routing networks are defined in Exercise
11.5. Generalize Theorem 12.1 to such networks.

Exercise 12.2 This exercise outlines the proof that the worst-case POA in β-
over-provisioned networks is at most the expression in (12.2).

(a) Prove that, in a Pigou-like network (Section 11.3) with traffic rate r and
cost function 1/(u − x) with u > r on the lower edge, the POA is the
expression in (12.2), where .

(b) Adapt the Pigou bound (11.2) to β-over-provisioned networks by defining

where cu denotes the cost function 1/(u − x). Prove that, for every β 
(0, 1), αβ equals the expression in (12.2).

(c) (H) Prove that the POA of every β-over-provisioned network is at most
the expression in (12.2).

Exercise 12.3 Prove that the following statement is equivalent to Theorem 12.1:
If f* is a minimum-cost flow in a selfish routing network with cost functions c and
f is an equilibrium flow in the same network with cost functions , where 
is defined as ce(x/2)/2, then

The notation  and C refers to the cost of a flow (11.3) with the cost functions 

 and c, respectively.

Exercise 12.4 Prove the following generalization of Theorem 12.1: for every
selfish routing network and r, δ > 0, the cost of an equilibrium flow with traffic



rate r is at most  times the cost of an optimal flow with traffic rate (1 + δ)r.

Exercise 12.5 Verify that if each agent routes her traffic on her two-hop path in
the network in Figure 12.3, then the result is an equilibrium flow.

Exercise 12.6 (H) Prove Lemma 12.4.

Problems
Problem 12.1 (H) For selfish routing networks with affine cost functions, prove
the following stronger version of Theorem 12.1: for every such network and r > 0,
the cost of an equilibrium flow with traffic rate r is at most that of an optimal flow
with traffic rate .

Problem 12.2 Recall the four-agent atomic selfish routing network in Figure
12.3, where the POA is 2.5.

(a) Using a different network, show that the POA of atomic selfish routing
with affine cost functions can be 2.5 even when there are only three
agents.

(b) How large can the POA be with affine cost functions and only two
agents?

Problem 12.3 This problem studies a scenario with k agents, where agent i has a
positive weight wi. There are m identical machines. Each agent chooses a
machine, and wants to minimize the load of her machine, defined as the sum of
the weights of the agents who choose it. This problem considers the objective of
minimizing the makespan, defined as the maximum load of a machine. A pure
Nash equilibrium is an assignment of agents to machines so that no agent can
unilaterally switch machines and decrease the load she experiences.

(a) (H) Prove that the makespan of a pure Nash equilibrium is at most twice
that of the minimum possible.

(b) Prove that, as k and m tend to infinity, pure Nash equilibria can have
makespan arbitrarily close to twice the minimum possible.

Problem 12.4 This problem modifies the model in Problem 12.3 in two ways.
First, every agent has unit weight. Second, each agent i must choose from a
restricted subset Si of the m machines.

(a) Prove that, for every constant a ≥ 1, with sufficiently many agents and
machines, the makespan of a pure Nash equilibrium can be more than a



times the minimum makespan of a feasible schedule (assigning each
agent i to a machine in her set Si).

(b) Prove that there is a constant a > 0 such that the makespan of every pure
Nash equilibrium is at most a ln m times the minimum possible. Can you
obtain an even tighter dependence on the number m of machines?

1 Two natural variants of the model allow agents to control different amounts
of traffic or to split traffic over multiple paths. Tight worst-case POA bounds
for both variants follow from ideas closely related to those of this and the next
section. See the Notes for details.

2 See Lecture 15 for some alternatives.

3 The POA is well defined in every atomic selfish routing network, as every
such network has at least one equilibrium flow (see Theorem 13.6).



Lecture 13

Equilibria: Definitions, Examples, and
Existence

Equilibrium flows in atomic selfish routing networks (Definition 12.2) are a form
of “pure” Nash equilibria, in that the agents do not randomize over paths. The
Rock-Paper-Scissors game (Section 1.3) shows that some games have no pure
Nash equilibria. When are pure Nash equilibria guaranteed to exist? How do we
analyze games without any pure Nash equilibria?

Section 13.1 introduces three relaxations of pure Nash equilibria, each more
permissive and computationally tractable than the previous one. All three of these
relaxed equilibrium concepts are guaranteed to exist in all finite games. Section
13.2 proves that every routing game has at least one pure Nash equilibrium.
Section 13.3 generalizes the argument and defines the class of potential games.

13.1 A Hierarchy of Equilibrium Concepts
Many games have no pure Nash equilibria. In addition to Rock-Paper-Scissors,
another example is the generalization of atomic selfish routing networks to agents
with different sizes (Exercise 13.5). For a meaningful equilibrium analysis of such
games, such as a price-of-anarchy analysis, we need to enlarge the set of
equilibria to recover guaranteed existence. Figure 13.1 illustrates the hierarchy of
equilibrium concepts defined in this section. Lecture 14 proves worst-case
performance guarantees for all of these equilibrium concepts in several games of
interest.



Figure 13.1: A hierarchy of equilibrium concepts: pure Nash equilibria
(PNE), mixed Nash equilibria (MNE), correlated equilibria (CE), and coarse
correlated equilibria (CCE).

13.1.1 Cost-Minimization Games
A cost-minimization game has the following ingredients:

a finite number k of agents;
a finite set Si of pure strategies, or simply strategies, for each agent i;
a nonnegative cost function Ci(s) for each agent i, where s   S1 × ··· × Sk
denotes a strategy profile or outcome.

For example, every atomic selfish routing network corresponds to a cost-
minimization game, with Ci(s) denoting i’s travel time on her chosen path, given
the paths chosen by the other agents.

Remark 13.1 (Payoff-Maximization Games) In a payoff-maxi-mization
game, the cost function Ci of each agent i is replaced by a payoff function πi.
This is the more conventional way to define games, as in the Rock-Paper-
Scissors game in Section 1.3. The following equilibrium concepts are defined
analogously in payoff-maximization games, except with all of the inequalities
reversed. The formalisms of cost-minimization and payoff-maximization games
are equivalent, but in most applications one is more natural than the other.



13.1.2 Pure Nash Equilibria (PNE)
A pure Nash equilibrium is an outcome in which a unilateral deviation by an agent
can only increase the agent’s cost.

Definition 13.2 (Pure Nash Equilibrium (PNE)) A strategy profile s  of a cost-
minimization game is a pure Nash equilibrium (PNE) if for every agent i  {1,
2, …, k} and every unilateral deviation   Si,

(13.1)

By s−i we mean the vector s  of all strategies, with the ith component removed.
Equivalently, in a PNE s, every agent i’s strategy si is a best response to s−i,
meaning that it minimizes Ci( , s−i) over   Si. PNE are easy to interpret but,
as discussed above, do not exist in many games of interest.

13.1.3 Mixed Nash Equilibria (MNE)
Lecture 1 introduced the idea of an agent randomizing over her strategies via a
mixed strategy. In a mixed Nash equilibrium, agents randomize independently and
unilateral deviations can only increase an agent’s expected cost.

Definition 13.3 (Mixed Nash Equilibrium (MNE))

Distributions σ1, …, σk over strategy sets S1, …, Sk of a cost-minimization game
constitute a mixed Nash equilibrium (MNE) if for every agent i  {1, 2, …, k}
and every unilateral deviation   Si,

(13.2)

where σ denotes the product distribution σ1 × ··· × σk.

Definition 13.3 considers only unilateral deviations to pure strategies, but allowing
deviations to mixed strategies does not change the definition (Exercise 13.1).

Every PNE is a MNE in which every agent plays deterministically. The Rock-
Paper-Scissors game shows that a game can have MNE that are not PNE.

Two facts discussed at length in Lecture 20 are relevant here. First, every
cost-minimization game has at least one MNE. We can therefore define the POA
of MNE of a cost-minimization game, with respect to an objective function
defined on the game’s outcomes, as the ratio

(13.3)



Second, computing a MNE appears to be a computationally intractable
problem, even when there are only two agents.1 This raises the concern that
POA bounds for MNE need not be meaningful. In games where we don’t expect
the agents to quickly reach an equilibrium, why should we care about
performance guarantees for equilibria? This objection motivates the search for
more permissive and computationally tractable equilibrium concepts.

13.1.4 Correlated Equilibria (CE)
Our next equilibrium notion takes some getting used to. We define it, then explain
the standard semantics, and then offer an example.

Definition 13.4 (Correlated Equilibrium (CE)) A distribution σ on the set S1 ×
··· × Sk of outcomes of a cost-minimization game is a correlated equilibrium
(CE) if for every agent i  {1, 2, …, k}, strategy si  Si, and deviation   Si,

(13.4)

Importantly, the distribution σ in Definition 13.4 need not be a product distribution;
in this sense, the strategies chosen by the agents are correlated. The MNE of a
game correspond to the CE that are product distributions (Exercise 13.2). Since
MNE are guaranteed to exist, so are CE. CE also have a useful equivalent
definition in terms of “swapping functions” (Exercise 13.3).

The usual interpretation of a correlated equilibrium involves a trusted third
party. The distribution σ over outcomes is publicly known. The trusted third party
samples an outcome s according to σ. For each agent i = 1, 2, …, k, the trusted
third party privately suggests the strategy si to i. The agent i can follow the
suggestion si, or not. At the time of decision making, an agent i knows the
distribution σ and one component si of the realization s , and accordingly has a
posterior distribution on others’ suggested strategies s‒i. With these semantics, the
correlated equilibrium condition (13.4) requires that every agent minimizes her
expected cost by playing the suggested strategy si. The expectation is conditioned
on i’s information—σ and s i—and assumes that other agents play their
recommended strategies s‒i.

Believe it or not, a traffic light is a perfect example of a CE that is not a MNE.
Consider the following two-agent game, with each matrix entry listing the costs of
the row and column agents in the corresponding outcome:

Stop Go
Stop 1,1 1,0
Go 0,1 5,5



There is a modest cost (1) for waiting and a large cost (5) for getting into an
accident. This game has two PNE, the outcomes (Stop, Go) and (Go, Stop).
Define σ by randomizing uniformly between these two PNE. This is not a product
distribution over the game’s four outcomes, so it cannot correspond to a MNE of
the game. It is, however, a CE. For example, consider the row agent. If the
trusted third party (i.e., the stoplight) recommends the strategy “Go” (i.e., is
green), then the row agent knows that the column agent was recommended
“Stop” (i.e., has a red light). Assuming the column agent plays her recommended
strategy and stops at the red light, the best strategy for the row agent is to follow
her recommendation and to go. Similarly, when the row agent is told to stop, she
assumes that the column agent will go, and under this assumption stopping is the
best strategy.

Lecture 18 proves that, unlike MNE, CE are computationally tractable. There
are even distributed learning algorithms that quickly guide the history of joint play
to the set of CE. Thus bounding the POA of CE, defined as the ratio (13.3) with
“MNE” replaced by “CE,” provides a meaningful equilibrium performance
guarantee.

13.1.5 Coarse Correlated Equilibria (CCE)
We should already be quite pleased with positive results, such as good POA
bounds, that apply to the computationally tractable set of CE. But if we can get
away with it, we’d be happy to enlarge the set of equilibria even further, to an
“even more tractable” concept.

Definition 13.5 (Coarse Correlated Equilibrium (CCE)) A distribution σ on
the set S1 × ···× Sk of outcomes of a cost-minimization game is a coarse
correlated equilibrium (CCE) if for every agent i  {1, 2, …, k} and every
unilateral deviation   Si,

(13.5)

The condition (13.5) is the same as that for MNE (13.2), except without the
restriction that σ is a product distribution. In this condition, when an agent i
contemplates a deviation , she knows only the distribution σ and not the
component si of the realization. Put differently, a CCE only protects against
unconditional unilateral deviations, as opposed to the unilateral deviations
conditioned on si that are addressed in Definition 13.4. It follows that every CE is
a CCE, and so CCE are guaranteed to exist and are computationally tractable.
Lecture 17 demonstrates that the distributed learning algorithms that quickly guide
the history of joint play to the set of CCE are even simpler and more natural than
those for the set of CE.



13.1.6 An Example
We next increase intuition for the four equilibrium concepts in Figure 13.1 with a
concrete example. Consider an atomic selfish routing network (Section 12.4) with
four agents. The network is simply a common origin vertex o, a common
destination vertex d, and an edge set E = {0, 1, 2, 3, 4, 5} consisting of 6 parallel
o-d edges. Each edge has the cost function c(x) = x.

The pure Nash equilibria are the outcomes in which each agent chooses a
distinct edge. Every agent suffers only one unit of cost in such an equilibrium.
One mixed Nash equilibrium that is obviously not pure has each agent
independently choosing an edge uniformly at random. Every agent suffers
expected cost  in this equilibrium. The uniform distribution over all outcomes in

which there is one edge with two agents and two edges with one agent each is a
(non-product) correlated equilibrium, since both sides of (13.4) read  for every i,

si, and . The uniform distribution over the subset of these outcomes in which
the set of chosen edges is either {0, 2, 4} or {1, 3, 5} is a coarse correlated
equilibrium, since both sides of (13.5) read  for every i and . It is not a

correlated equilibrium, since an agent i that is recommended the edge s i can
reduce her conditional expected cost to 1 by choosing the deviation  to the
successive edge (modulo 6).

13.2 Existence of Pure Nash Equilibria
This section proves that equilibrium flows exist in atomic selfish routing networks
(Section 13.2.1) and are also essentially unique in nonatomic selfish routing
networks (Section 13.2.2), and introduces the class of congestion games (Section
13.2.3).

13.2.1 Existence of Equilibrium Flows
Section 12.4 asserts that atomic selfish routing networks are special games, in
that a (pure) equilibrium flow always exists. We now prove this fact.

Theorem 13.6 (Existence of PNE in Routing Games) Every atomic selfish
routing network has at least one equilibrium flow.

Proof: Define a function on the flows of an atomic selfish routing network by

(13.6)



where fe is the number of agents that choose a path in f that includes the edge e.
The inner sum in (13.6) is the “area under the curve” of the cost function ce; see
Figure 13.2. By contrast, the corresponding term fe · ce(fe) of the cost objective
function (11.4) corresponds to the shaded bounding box in Figure 13.2.2

Figure 13.2: Edge e’s contribution to the potential function  and to the cost
objective function.

Consider a flow f, an agent i using the oi-di path Pi in f, and a deviation to
some other oi-di path . Let  denote the flow after i’s deviation from Pi to 

. We claim that

(13.7)

In words, the change in  under a unilateral deviation is exactly the same as the
change in the deviator’s individual cost. Thus, the single function 
simultaneously tracks the effect of deviations by each of the agents.

To prove this claim, consider how  changes when i switches her path from
Pi to . The inner sum of the potential function corresponding to edge e picks

up an extra term ce(fe + 1) whenever e is in  but not Pi, and sheds its final



term ce(fe) whenever e is in Pi but not . Thus, the left-hand side of (13.7) is

which is exactly the same as the right-hand side of (13.7).
To complete the proof of the theorem, consider a flow f that minimizes .

There are only finitely many flows, so such a flow exists. No unilateral deviation
by any agent can decrease . By (13.7), no agent can decrease her cost by a
unilateral deviation, and f is an equilibrium flow. 

13.2.2 Uniqueness of Nonatomic Equilibrium Flows
This section sketches the analog of Theorem 13.6 for the nonatomic selfish
routing networks introduced in Lecture 11. Since agents have negligible size in
such networks, we replace the inner sum in (13.6) by an integral:

(13.8)

where fe is the amount of traffic routed on edge e by the flow f. Because edge
cost functions are continuous and nondecreasing, the function  is continuously
differentiable and convex. The first-order optimality conditions of  are precisely
the equilibrium flow conditions (Definition 11.3), and so the local minima of 
correspond to equilibrium flows. Since  is continuous and the space of all flows
is compact,  has a global minimum, and this flow is an equilibrium. Moreover,
the convexity of  implies that its only local minima are its global minima. When 

 is strictly convex, there is only one global minimum and hence only one
equilibrium flow. When  has multiple global minima, these correspond to
equilibrium flows that all have the same cost.

13.2.3 Congestion Games
The proof of Theorem 13.6 never uses the network structure of an atomic selfish
routing game. The argument remains valid for congestion games, where there is
an abstract set E of resources (previously, the edges), each with a cost function,
and each agent i has an arbitrary collection Si ⊆ 2E of strategies (previously, the
oi-di paths), each a subset of resources. Congestion games play an important role
in Lecture 19.



The proof of Theorem 13.6 also does not use the assumption that edge cost
functions are nondecreasing. The generalization of Theorem 13.6 to networks
with decreasing cost functions is useful in Lecture 15.

13.3 Potential Games
A potential game is one for which there exists a potential function  with the
property that, for every unilateral deviation by some agent, the change in the
potential function value equals the change in the deviator’s cost. Formally,

(13.9)

for every outcome s , agent i, and unilateral deviation . Intuitively, the agents of
a potential game are inadvertently and collectively striving to optimize . We
consider only finite potential games in these lectures.

The identity (13.7) in the proof of Theorem 13.6 shows that every atomic
selfish routing game, and more generally every congestion game, is a potential
game. Lectures 14 and 15 furnish additional examples.

The final paragraph of the proof of Theorem 13.6 implies the following result.

Theorem 13.7 (Existence of PNE in Potential Games)
Every potential game has at least one PNE.

Potential functions are one of the only general tools for proving the existence
of PNE.



The Upshot

 Pure Nash equilibria (PNE) do not exist in many games, motivating
relaxations of the equilibrium concept.

 Mixed Nash equilibria (MNE), where each agent randomizes
independently over her strategies, are guaranteed to exist in all finite
games.

 In a correlated equilibrium (CE), a trusted third party chooses an
outcome s from a public distribution σ, and every agent i, knowing σ
and si, prefers strategy si to every unilateral deviation .

 Unlike MNE, CE are computationally tractable.

 A coarse correlated equilibrium (CCE) is a relaxation of a correlated
equilibrium in which an agent’s unilateral deviation must be independent
of si.

 CCE are even easier to learn than CE.
 A potential game is one with a potential function such that, for every
unilateral deviation by some agent, the change in the potential function
value equals the change in the deviator’s cost.

 Every potential game has at least one PNE.

 Every atomic selfish routing game is a potential game.

Notes
Nash (1950) proves that every finite game has at least one mixed Nash
equilibrium. The correlated equilibrium concept is due to Aumann (1974). Coarse
correlated equilibria are implicit in Hannan (1957) and explicit in Moulin and Vial
(1978). The existence and uniqueness of equilibrium flows in nonatomic selfish
routing networks (Section 13.2.2) is proved in Beckmann et al. (1956). Theorem
13.6 and the definition of congestion games are from Rosenthal (1973). Theorem
13.7 and the definition of potential games are from Monderer and Shapley (1996).

The example in Exercise 13.5 is from Goemans et al. (2005), while Exercise
13.6 is due to Fotakis et al. (2005). Problem 13.1 is discussed by Koutsoupias and
Papadimitriou (1999). The results in Problems 13.2 and 13.4 are due to Monderer
and Shapley (1996), although the suggested proof of the latter follows Voorneveld



et al. (1999). Problem 13.3 is from Facchini et al. (1997).

Exercises
Exercise 13.1 Prove that the mixed Nash equilibria of a cost-minimization game
are precisely the mixed strategy profiles σ1, …, σk that satisfy

for every agent i and mixed strategy  of i.

Exercise 13.2 Consider a cost-minimization game and a product distribution σ =
σ1 × ··· × σk over the game’s outcomes, where σi is a mixed strategy for agent i.
Prove that σ is a correlated equilibrium of the game if and only if σ1, …, σk form a
mixed Nash equilibrium of the game.

Exercise 13.3 Prove that a distribution σ over the outcomes S1 × ··· × Sk of a
cost-minimization game is a correlated equilibrium if and only if it has the
following property: for every agent i and swapping function δ : Si → Si,

Exercise 13.4 (H) Consider an atomic selfish routing network where each edge
e has an affine cost function ce(x) = aex + be with ae, be ≥ 0. Let C(f) denote the
cost (11.4) of a flow f and  (f) the potential function value (13.6). Prove that

for every flow f.

Exercise 13.5 In a weighted atomic selfish routing network, each agent i has a
positive weight wi and chooses a single oi-di path on which to route all of her
traffic. Consider the network shown in Figure 13.3, and suppose there are two
agents with weights 1 and 2, both with the origin vertex o and the destination
vertex d. Each edge is labeled with its cost function, which is a function of the
total amount of traffic routed on the edge. For example, if agents 1 and 2 choose
the paths o → v → w → d and o → w → d, then they incur costs of 48 and 74
per-unit of traffic, respectively.



Figure 13.3: Exercise 13.5. A weighted atomic selfish routing network with
no equilibrium.

Prove that there is no (pure) equilibrium flow in this network.

Exercise 13.6 Consider a weighted atomic selfish routing network (Exercise
13.5) where each edge has an affine cost function. Use the potential function

where Se denotes the set of agents that use edge e in the flow f, to prove that
there is at least one (pure) equilibrium flow.

Problems
Problem 13.1 (H) Recall the class of cost-minimization games introduced in
Problem 12.3, where each agent i = 1, 2, …, k has a positive weight wi and
chooses one of m identical machines to minimize her load. We again consider the
objective of minimizing the makespan, defined as the maximum load of a machine.
Prove that, as k and m tend to infinity, the worst-case POA of mixed Nash
equilibria (13.3) in such games is not upper bounded by any constant.

Problem 13.2 This problem and the next two problems develop further theory
about potential games (Section 13.3). Recall that a potential function is defined
on the outcomes of a cost-minimization game and satisfies



for every outcome s, agent i, and deviation  by i.

(a) Prove that if a cost-minimization game admits two potential functions of 
1 and  2, then there is a constant  such that 1 (s) = 2(s)

+ b for every outcome s  of the game.
(b) Prove that a cost-minimization game is a potential game if and only if for

every two outcomes s1 and s2 that differ in the strategies of exactly two
agents i and j,

Problem 13.3 (H) A team game is a cost-minimization game in which all agents
have the same cost function: C1(s) = ··· = Ck (s) for every outcome s . In a
dummy game, the cost of every agent i is independent of her strategy: Ci(si, s−i)
=  for every s−i and every .

Prove that a cost-minimization game with agent cost functions C1, …, Ck is a
potential game if and only if

for every i and s, where  is a team game and  is

a dummy game.

Problem 13.4 Section 13.2.3 defines congestion games and notes that every
such game is a potential game, even when cost functions need not be
nondecreasing. This problem proves the converse, that every potential game is a
congestion game in disguise. Call two games  and  isomorphic if: (1) they
have the same number k of agents; (2) for each agent i, there is a bijection fi from
the strategies Si of i in  to the strategies Ti of i in ; and (3) these bijections
preserve costs, so that 

 for every agent i and

outcome s1, …, sk of . (Here C1 and C2 denote agents’ cost functions in 
and , respectively.)



(a) (H) Prove that every team game, as defined in the previous problem, is
isomorphic to a congestion game.

(b) (H) Prove that every dummy game, as defined in the previous problem, is
isomorphic to a congestion game.

(c) Prove that every potential game is isomorphic to a congestion game.

1 The precise statement uses an analog of -completeness suitable for
equilibrium computation problems (see Lecture 20).

2 This similarity between the function  and the cost objective function is
useful; see Lecture 15.



Lecture 14

Robust Price-of-Anarchy Bounds in Smooth
Games

The preceding lecture introduced several relaxations of the pure Nash equilibrium
concept. The benefit of enlarging the set of equilibria is increased plausibility and
computational tractability. The drawback is that price-of-anarchy bounds, which
concern the worst equilibrium of a game, can only degrade as the set of equilibria
grows. This lecture introduces “smooth games,” in which POA bounds for PNE
extend without degradation to several relaxed equilibrium concepts, including
coarse correlated equilibria.

Section 14.1 outlines a four-step recipe for proving POA bounds for PNE,
inspired by our results for atomic selfish routing networks. Section 14.2 introduces
a class of location games and uses the four-step recipe to prove a good POA
bound for the PNE of such games. Section 14.3 defines smooth games, and
Section 14.4 proves that POA bounds in such games extend to several relaxations
of PNE.

*14.1 A Recipe for POA Bounds
Theorem 12.3 shows that the POA in every atomic selfish routing network with
affine cost functions is at most . To review, the proof has the following high-

level steps.

1. Given an arbitrary PNE s, the equilibrium hypothesis is invoked once per
agent i with the hypothetical deviation , where s* is an optimal

outcome, to derive the inequality Ci(s) ≤  for each i.

Importantly, the deviations s* are independent of the choice of the PNE
s . This is the only time that the PNE hypothesis is invoked in the entire
proof.

2. The k inequalities that bound individuals’ equilibrium costs are summed
over the agents. The left-hand side of the resulting inequality (12.9) is the
cost of the PNE s; the right-hand side is a strange entangled function of s



and s*.

3. The hardest step is to relate the entangled term 

generated by the previous step to the only two quantities that we care
about, the costs of s  and s*. Specifically, inequality (12.10) proves an
upper bound of . This step is

just algebra, and is agnostic to our choices of s  and s* as a PNE and an
optimal outcome, respectively.

4. The final step is to solve for the POA. Subtracting 

from both sides and multiplying through by  proves that the POA is at

most .

This proof is canonical, in that POA proofs for many other classes of games
follow the same four-step recipe. The main point of this lecture is that this recipe
generates “robust” POA bounds that apply to all of the equilibrium concepts
defined in Lecture 13.

*14.2 A Location Game
Before proceeding to the general theory, it is helpful to have another concrete
example under our belt.

14.2.1 The Model
Consider a location game with the following ingredients:

A set L of possible locations. These could represent servers capable of
hosting a Web cache, gentrifying neighborhoods ready for an artisanal
chocolate shop, and so on.
A set of k agents. Each agent i chooses one location from a set Li ⊆ L
from which to provide a service. All agents provide the same service, and
differ only in where they are located. There is no limit on the number of
markets that an agent can provide service to.
A set M of markets. Each market j  M has a value vj that is known to all
agents. This is the market’s maximum willingness-to-pay for receiving the
service.
For each location ℓ  L and market j  M, there is a cost cℓj of serving j
from ℓ. This could represent physical distance, the degree of incompatibility
between two technologies, and so on.

Given a location choice by each agent, each agent tries to capture as many



markets as possible, at the highest prices possible. To define the payoffs precisely,
we start with an example. Figure 14.1 shows a location game with L = {ℓ1, ℓ2,
ℓ3} and M = {m1, m2}. There are two agents, with L1 = {ℓ1, ℓ2} and L2 = {ℓ2,
ℓ3}. Both markets have value 3. The cost between location ℓ2 and either market
is 2. Locations ℓ1 and ℓ3 have cost 1 to markets m1 and m2, respectively, and
infinite cost to the other market.

Figure 14.1: A location game with two agents (1 and 2), three locations (L =
{ℓ1, ℓ2, ℓ3}), and two markets (M = {m1, m2}).

Continuing the example, suppose the first agent chooses location ℓ1 and the
second agent chooses location ℓ3. Then, each agent has a monopoly in the market
that they entered. The only thing restricting the price charged is the maximum
willingness-to-pay of each market. Thus, each agent can charge 3 for her service
to her market. Since the cost of service is 1 in both cases, both agents have a
payoff of 3 − 1 = 2.

Alternatively, suppose the first agent switches to location ℓ2, while the second
agent remains at location ℓ3. Agent 1 still has a monopoly in market m1, and thus
can still charge 3. Her service cost has jumped to 2, however, so her payoff from
that market has dropped to 1. In market m2, agent 2 can no longer charge a price
of 3 without consequence—at any price strictly bigger than 2, agent 1 can
profitably undercut the price and take the market. Thus, agent 2 will charge the
highest price she can without losing the market to the competition, which is 2.



Since her cost of serving the market is 1, agent 2’s payoff is 2 − 1 = 1.
In general, in a strategy profile s  of a location game in which T is the set of

chosen locations and agent i chooses ℓ  T, agent i’s payoff from a market j 
M is

where  (s) is the highest price that agent i can get away with, namely the

minimum of vj and the second-smallest cost between a location of T and j. The
definition in (14.1) assumes that each market is served by the potential provider
with the lowest service cost, at the highest competitive price. The payoff πij(s) is
thus the “competitive advantage” that i has over the other agents for market j, up
to a cap of vj minus the service cost.

Agent i’s total payoff is then

Location games are examples of payoff-maximization games (Remark 13.1).
The objective function in a location game is to maximize the social welfare,

which for a strategy profile s  is defined as

(14.2)

where dj(s) is the minimum of vj and the smallest cost between a chosen location
and j. The definition (14.2) assumes that each market j is served by the chosen
location with the smallest cost of serving j, or not at all if this cost is at least vj.

The welfare W(s) depends on the strategy profile s  only through the set of
locations chosen by some agent in s . The definition (14.2) makes sense more
generally for any subset of chosen locations T, and we sometimes write W(T) for
this quantity.

Every location game has at least one PNE (Exercise 14.1). We next work
toward a proof that every PNE of every location game has social welfare at least



50% times the maximum possible.1

Theorem 14.1 (POA Bound for Location Games) The POA of every
location game is at least .

The bound of  is tight in the worst case (Exercise 14.2).

14.2.2 Properties of Location Games
We next identify three properties possessed by every location game. Our proof of
Theorem 14.1 relies only on these properties.

(P1) For every strategy profile s , the sum (s) of agents’ payoffs

is at most the social welfare W(s).

This property follows from the facts that each market j  M contributes

vj − dj(s) to the social welfare and (s) − dj(s) to the payoff of the

closest location, and that (s) ≤ vj by definition.

(P2) For every strategy profile s, πi(s) = W(s) − W(s−i). That is, an agent’s
payoff is exactly the extra welfare created by the presence of her
location.

To see this property, write the contribution of a market j to W(s) − W(s−i)
as min{vj, dj(s‒i)} ‒ min{vj, dj(s)}. When the upper bound vj is not
binding, this is the extent to which the closest chosen location to j is closer
in s  than in s−i. This quantity is zero unless agent i’s location is the closest
to j in s, in which case it is

(14.3)

Either way, this is precisely market j’s contribution πij(s) to agent i’s
payoff in s. Summing over all j  M proves the property.

(P3) The social welfare W is monotone and submodular as a function of
the set of chosen locations. Monotonicity just means that W(T1) ≤ W(T2)
whenever T1 ⊆ T2 ⊆ L; this property is evident from (14.2).
Submodularity is a set-theoretic version of diminishing returns, defined
formally as

(14.4)



for every location ℓ  L and subsets T1 ⊆ T2 ⊆ L of locations (Figure
14.2). This property follows from our expression (14.3) for the welfare
increase caused by one new location ℓ; Exercise 14.3 asks you to provide
the details.

Figure 14.2: Definition of submodularity. Adding ℓ to the bigger set T2 yields
a smaller increase in social welfare than adding ℓ to the smaller set T1.

14.2.3 Proof of Theorem 14.1
We follow the four-step recipe in Section 14.1. Let s  denote an arbitrary PNE
and s* a social welfare-maximizing outcome. In the first step, we invoke the PNE
hypothesis once per agent, with the outcome s* providing hypothetical deviations.
That is, since s  is a PNE,

(14.5)

for every agent i. This is the only step of the proof that uses the assumption that s
is a PNE.

The second step is to sum (14.5) over all of the agents, yielding

(14.6)



where the first inequality is property (P1) of location games.
The third step is to disentangle the final term of (14.6) and relate it to the only

two quantities that we care about, W(s) and W(s*). By property (P2) of location
games, we have

(14.7)

To massage the right-hand side into a telescoping sum, we add the extra locations 
 to the ith term.2 By submodularity of W (property (P3)), we

have

for each i = 1, 2, …, k. Thus, the right-hand side of (14.7) can be bounded below
by

which simplifies to

where the inequality follows from the monotonicity of W (property (P3)).
Summarizing, we have

(14.8)

completing the third step of the proof.
The fourth and final step is to solve for the POA. Inequalities (14.6) and (14.8)

imply that



and so

and the POA is at least . This completes the proof of Theorem 14.1.

*14.3 Smooth Games
The following definition is an abstract version of the third “disentanglement” step
in the proofs of the POA bounds for atomic selfish routing games (Theorem 12.3)
and location games (Theorem 14.1). The goal is not generalization for its own
sake; POA bounds established via this condition are automatically robust in
several senses.

Definition 14.2 (Smooth Games)

(a) A cost-minimization game is (λ, μ)-smooth if

(14.9)

for all strategy profiles s , s*. Here cost(·) is an objective function that
satisfies cost(s)  (s) for every strategy profile s.

(b) A payoff-maximization game is (λ, μ)-smooth if

(14.10)

for all strategy profiles s , s*. Here W(·) is an objective function that
satisfies W(s) (s) for every strategy profile s .

Every game is (λ, μ)-smooth for suitable choices of λ and μ, but good POA
bounds require that neither λ nor μ is too large (see Section 14.4).

The smoothness condition controls the effect of a set of “one-dimensional
perturbations” of an outcome, as a function of both the initial outcome s  and the
perturbations s*. Intuitively, in a (λ, μ)-smooth game with small values of λ and μ,
the externality imposed by one agent on the others is bounded.



Atomic selfish routing networks are -smooth cost-minimization games.

This follows from our proof that the right-hand side of (12.6) is bounded above by
the right-hand side of (12.10), and the choice of the objective function (11.3) as
cost (s) = (s). Location games are (1, 1)-smooth payoff-maximization

games, as witnessed by property (P1) of Section 14.2.2 and inequality (14.8).3

Remark 14.3 (Smoothness with Respect to a Profile)

A game is (λ, μ)-smooth with respect to the strategy profile s* if the inequality
(14.9) or (14.10) holds for the specific strategy profile s* and all strategy profiles
s. All known consequences of Definition 14.2, including those in Section 14.4, only
require smoothness with respect to some optimal outcome s*. See Problems
14.1–14.3 for applications of this relaxed condition.

*14.4 Robust POA Bounds in Smooth Games
This section shows that POA bounds for smooth games apply to several
relaxations of PNE. In general, the POA of an equilibrium concept is defined as
the ratio (13.3), with the “MNE” in the numerator replaced by the present
concept.

14.4.1 POA Bounds for PNE
In a (λ, μ)-smooth cost-minimization game with μ < 1, every PNE s  has cost at
most  times that of an optimal outcome s*. To see this, use the assumption

that the objective function satisfies cost(s) ≤ (s), the PNE condition
(once per agent), and the smoothness assumption to derive

Rearranging terms establishes the bound of .

Similarly, every PNE of a (λ, μ)-smooth payoff-maximization game has



objective function value at least  times that of an optimal outcome. These

observations generalize our POA bounds of  and  for atomic selfish routing

networks with affine cost functions and location games, respectively.

14.4.2 POA Bounds for CCE
We next describe the first sense in which the POA bound of  or  for a

(λ, μ)-smooth game is robust: it applies to all coarse correlated equilibria (CCE) of
the game (Definition 13.5).

Theorem 14.4 (POA of CCE in Smooth Games) In every (λ, μ)-smooth
cost-minimization game with μ < 1, the POA of CCE is at most .

That is, the exact same POA bound that we derived in in the previous section for
PNE holds more generally for all CCE. CCE are therefore a “sweet spot”
equilibrium concept in smooth games—permissive enough to be highly tractable
(see Lecture 17), yet stringent enough to allow good worst-case bounds.

Given the definitions, we can prove Theorem 14.4 just by following our nose.

Proof of Theorem 14.4: Consider a (λ, μ)-smooth cost-minimization game, a
coarse correlated equilibrium σ, and an optimal outcome s*.

We can write

(14.11)

(14.12)

(14.13)

(14.14)

(14.15)



(14.16)

where inequality (14.11) follows from the assumption on the objective function,
equations (14.12), (14.14), and (14.16) follow from linearity of expectation,
inequality (14.13) follows from the definition (13.5) of a coarse correlated
equilibrium (applied once per agent i, with the hypothetical deviation ), and
inequality (14.15) follows from (λ, μ)-smoothness. Rearranging terms completes
the proof. 

Similarly, in (λ, μ)-smooth payoff-maximization games, the POA bound of 

applies to all CCE (Exercise 14.4).

Our POA bounds of  and  for atomic selfish routing games (Theorem 12.3)

and location games (Theorem 14.1) may initially seem specific to PNE, but since
the proofs establish the stronger smoothness condition (Definition 14.2), Theorem
14.4 implies that they hold for all CCE.

14.4.3 POA Bounds for Approximate PNE
Smooth games have a number of other nice properties, as well. For example, the
POA bound of  or  for a (λ, μ)-smooth game applies automatically to

approximate equilibria, with the POA bound degrading gracefully as a function of
the approximation parameter.

Definition 14.5 ( -Pure Nash Equilibrium) For  ≥ 0, an outcome s  of a cost-
minimization game is an -pure Nash equilibrium ( -PNE) if, for every agent i
and deviation ,

(14.17)

This is, in an -PNE, no agent can decrease her cost by more than a 1 +  factor
via a unilateral deviation. The following guarantee holds (Exercise 14.5).

Theorem 14.6 (POA of -PNE in Smooth Games) In every (λ, μ)-smooth
cost-minimization game with μ < 1, for every , the POA of -

PNE is at most

Similar results hold for (λ, μ)-smooth payoff-maximization games, and for



approximate versions of other equilibrium concepts.
For example, in atomic selfish routing networks with affine cost functions,

which are -smooth, the POA of -PNE with  < 2 is at most .

The Upshot

 A four-step recipe for proving POA bounds is: (1) invoke the
equilibrium condition once per agent, using an optimal outcome to
define hypothetical deviations, to bound agents’ equilibrium costs; (2)
add up the resulting inequalities to bound the total equilibrium cost; (3)
relate this entangled bound back to the equilibrium and optimal costs;
(4) solve for the POA.

 The POA bound for atomic selfish routing networks with affine cost
functions follows from this four-step recipe.

 In a location game where agents choose locations from which to
provide a service and compete for several markets, this four-step
recipe proves that the POA is at least .

 The definition of a smooth game is an abstract version of the third
“disentanglement” step in this recipe.

 The POA bound implied by the smoothness condition extends to all
coarse correlated equilibria.

 The POA bound implied by the smoothness condition extends to all
approximate equilibria, with the POA bound degrading gracefully as a
function of the approximation parameter.

Notes
The definition of location games and Theorem 14.1 are due to Vetta (2002). The
importance of POA bounds that apply beyond Nash equilibria is articulated in
Mirrokni and Vetta (2004). The POA of CCE is first studied in Blum et al. (2008).
Definition 14.2 and Theorems 14.4 and 14.6 are from Roughgarden (2015). The
term “smooth” is meant to succinctly suggest an analogy between Definition 14.2
and a Lipschitz-type condition. Problems 14.1–14.3 are from Hoeksma and Uetz
(2011), Caragiannis et al. (2015), and Christodoulou et al. (2008), respectively. For
more on the POA in (non-DSIC) auctions and mechanisms, see the survey by
Roughgarden et al. (2016).



Exercises
Exercise 14.1 (H) Prove that every location game is a potential game (Section
13.3) and hence has at least one PNE.

Exercise 14.2 Prove that Theorem 14.1 is tight, in that there is a location game
in which the POA of PNE is .

Exercise 14.3 Prove that the social welfare function of a location game is a
submodular function of the set of chosen locations.

Exercise 14.4 Prove that the POA of CCE of a (λ, μ)-smooth payoff-
maximization game is at least .

Exercise 14.5 (H) Prove Theorem 14.6.

Problems
Problem 14.1 This problem studies a scenario with k agents, where agent j has a
processing time pj. There are m identical machines. Each agent chooses a
machine, and the agents on each machine are processed serially from shortest to
longest. (You can assume that the pj’s are distinct.) For example, if agents with
processing times 1, 3, and 5 are scheduled on a common machine, then they will
complete at times 1, 4, and 9, respectively. The following questions concern the
cost-minimization game in which agents choose machines to minimize their
completion times, and the objective function of minimizing the sum 

of the agents’ completion times.

(a) Define the rank Rj of agent j in a schedule as the number of agents on j’s
machine with processing time at least pj, including j itself. For example, if
agents with processing times 1, 3, and 5 are scheduled on a common
machine, then they have ranks 3, 2, and 1, respectively.

Prove that the objective function value  of an outcome can

also be written as .

(b) Prove that the following algorithm produces an optimal outcome: (1) sort
the agents from largest to smallest; (2) for j = 1, 2, …, k, assign the jth
agent in this ordering to machine j mod m (where machine 0 means
machine m).

(c) (H) Prove that in every such scheduling game, the POA of CCE is at
most 2.



Problem 14.2 The Generalized Second Price sponsored search auction
described in Problem 3.1 induces a payoff-maximization game, where bidder i
strives to maximize her utility αj(i)(vi – pj(i)), where vi is her value-per-click, j(i) is
her assigned slot, and pj(i) and αj(i) are the price-per-click and click-through rate
of this slot. (If i is not assigned a slot, then αj(i) = pj(i) = 0.)

(a) Assume that each bidder can bid any nonnegative number. Show that
even with one slot and two bidders, the POA of PNE can be 0.

(b) (H) Now assume that each bidder i always bids a number between 0 and
vi. Prove that the POA of CCE is at least .

Problem 14.3 This problem concerns combinatorial auctions (Example 7.2)
where each bidder i has a unit-demand valuation vi (Exercise 7.5). This means
that there are values vi1 …, vim such that vi(S) = maxj S vij for every subset S of
items.

Consider a payoff-maximization game in which each bidder i submits one bid
bij for each item j and each item is sold separately using a second-price single-
item auction. Similarly to Problem 14.2(b), assume that each bid bij lies between 0
and vij. The utility of a bidder is her value for the items won less her total
payment. For example, if bidder i has values vi1 and vi2 for two items, and wins
both items when the second-highest bids are p1 and p2, then her utility is max{vi1,
vi2} − (p1 + p2).

(a) (H) Prove that the POA of PNE in such a game can be at most .

(b) (H) Prove that the POA of CCE in every such game is at least .

1 With a maximization objective, the POA is always at most 1, the closer to 1
the better.

2 Some of the locations in s  and s* may coincide, but this does not affect the
proof.

3 When we proved the “disentanglement” inequalities for atomic selfish
routing and location games, we had in mind the case where s  and s* are a
PNE and an optimal outcome, respectively. Our proofs do not use these facts,
however, and apply more generally to all pairs of strategy profiles.



Lecture 15

Best-Case and Strong Nash Equilibria

This lecture has two purposes. The first is to introduce a simple model of network
formation that resembles atomic selfish routing games but has positive
externalities, meaning that an agent prefers to share the edges of her path with as
many other agents as possible. Such games generally have multiple PNE with
wildly varying costs. The second purpose of the lecture is to explain two
approaches for confining attention to a subset of “reasonable” PNE. Ideally,
better worst-case approximation bounds should hold for such a subset than for all
PNE, and there should also be a plausible narrative as to why PNE in the subset
are more worthy of study than the others.

Section 15.1 defines network cost-sharing games and considers two important
examples. Section 15.2 proves an approximation bound for the best-case PNE of
a network cost-sharing game. Sections 15.3 and 15.4 prove a bound on the POA
of strong Nash equilibria, the subset of PNE for which no coalition of agents has
a beneficial deviation.

15.1 Network Cost-Sharing Games

15.1.1 Externalities
The network formation model introduced next is a concrete example of a game
with positive externalities. The externality caused by an agent in a game is the
difference between her individual objective function value and her contribution to
the social objective function value. The models studied in previous lectures have
negative externalities, meaning that agents do not fully account for the harm that
they cause. In a routing game, for example, an agent does not take into account
the additional cost her presence creates for the other agents using the edges in
her path.

There are also important applications that exhibit positive externalities. You
usually join a campus organization or a social network to derive personal benefit
from it, but your presence also enriches the experience of other people in the
same group. As an agent, you’re generally bummed to see new agents show up in
a game with negative externalities, and excited for the windfalls of new agents in
a game with positive externalities.



15.1.2 The Model
A network cost-sharing game takes place in a graph G = (V, E), which can be
directed or undirected, and each edge e  E carries a fixed cost γe ≥ 0. There
are k agents. Agent i has an origin vertex oi  V and a destination vertex di  V,
and her strategy set is the set of oi-di paths of the graph. Outcomes of the game
correspond to path vectors P = (P1, …, Pk), with the semantics that the
subnetwork  gets formed.

We think of γe as the cost of building the edge e, for example of laying down
high-speed Internet fiber to a neighborhood. This cost is independent of the
number of agents that use the edge. Agents’ costs are defined edge-by-edge, as
in routing games (Lectures 11–12). If multiple agents use an edge e in their
chosen paths, then they are jointly responsible for the edge’s fixed cost γe, and we
assume that they split it equally. In the language of cost-minimization games
(Lecture 13), the cost Ci(P) of agent i in the outcome P is

(15.1)

where  denotes the number of agents that choose a

path that includes e. The objective function is to minimize the total cost of the
formed network:

(15.2)

Analogous to the objective function (11.3) and (11.4) in routing games, the
function (15.2) can equally well be written as the sum  (P) of the
agents’ costs.

15.1.3 Example: VHS or Betamax
Let’s build our intuition for network cost-sharing games through a couple of
examples. The first example demonstrates how tragic miscoordination can occur
in games with positive externalities.

Consider the simple network in Figure 15.1, with k agents with a common
origin o and destination d. One interpretation of this example is as a choice
between two competing technologies. For example, back in the 1980s, there were
two new technologies enabling home movie rentals. Betamax was lauded by



technology geeks as the better one, and thus corresponds to the cheaper edge in
Figure 15.1. VHS was the other technology, and it grabbed a larger market share
early on. Coordinating on a single technology proved the primary driver in
consumers’ decisions—having the better technology is little consolation for being
unable to rent anything from your corner store—and Betamax was eventually
driven to extinction.

Figure 15.1: VHS or Betamax. The POA in a network cost-sharing game
can be as large as the number k of agents. The parameter  > 0 can be
arbitrarily small.

The optimal outcome in the network in Figure 15.1 is for all agents to pick the
upper edge, for a total cost of 1 + . This is also a PNE (Definition 13.2).
Unfortunately, there is a second PNE, in which all agents pick the lower edge.
Since the cost of k is split equally, each agent pays 1. If an agent deviated
unilaterally to the upper edge, she would pay the full cost 1 +  of that edge and
thus suffer a higher cost. This example shows that the POA in network cost-
sharing games can be as high as k, the number of agents. Exercise 15.1 proves a
matching upper bound.

The VHS-or-Betamax example is exasperating. We proposed a reasonable
network model capturing positive externalities, and the POA—which has helped
us reason about several models already—is distracted by an extreme equilibrium
and yields no useful information. What if we focus only on the “nice” equilibria?
We’ll return to this question after considering another important example.

15.1.4 Example: Opting Out
Consider the network cost-sharing game shown in Figure 15.2. The k agents have
distinct origins o1, …, ok but a common destination d. They have the option of
meeting at the rendezvous point v and continuing together to d, incurring a joint
cost of 1 + . Each agent can also “opt out,” meaning take the direct oi-d path



solo. Agent i incurs a cost of 1/i for her opt-out strategy.

Figure 15.2: Opting out. There can be a unique PNE with cost  times
that of an optimal outcome. The parameter  > 0 can be arbitrarily small.

The optimal outcome is clear: if all agents travel through the rendezvous point,
the cost is 1 + . Unfortunately, this is not a PNE: agent k can pay slightly less by
switching to her opt-out strategy, which is a dominant strategy for her. Given that
agent k does not use the rendezvous in a PNE, agent k ‒ 1 does not either; she
would have to pay at least (1 + )/(k ‒ 1) with agent k absent, and her opt-out
strategy is cheaper. Iterating this argument, there is no PNE in which any agent
travels through v. Meanwhile, the outcome in which all agents opt out is a PNE.1

The cost of this unique PNE is the kth harmonic number . This number

lies between ln k and ln k + 1, and we denote it by .

The POA in the opt-out example approaches  as  tends to 0. Unlike the
VHS-or-Betamax example, this inefficiency is not the result of multiple or
unreasonable equilibria.

15.2 The Price of Stability



The two examples in the previous section limit our ambitions: we cannot hope to
prove anything interesting about worst-case PNE of network cost-sharing games,
and even when there is a unique PNE, it can cost  times that of an optimal
outcome. This section proves the following guarantee on the best PNE of a
network cost-sharing game.

Theorem 15.1 (Price of Stability) In every network cost-sharing game with
k agents, there exists a PNE with cost at most  times that of an optimal
outcome.

The theorem asserts in particular that every network cost-sharing game
possesses at least one PNE. The opt-out example shows that the factor of 
in Theorem 15.1 cannot be replaced by anything smaller.

The price of stability is the “optimistic” version of the POA, defined as the
ratio

Thus Theorem 15.1 states that the price of stability is at most  in every
network cost-sharing game.

Proof of Theorem 15.1: Network cost-sharing games have the same form as
atomic selfish routing games (Section 12.4), with each agent i picking an oi-di
path in a network. Moreover, an agent’s cost (15.1) is the sum of the costs of the
edges in her path, and each edge cost depends only on the number of agents using
it. The “cost function” of an edge e can be thought of as ce(fe) = γe/fe, where fe is
the number of agents using the edge.

Adapting the potential function (13.7) from the proof of Theorem 13.6 to
network cost-sharing games yields

(15.3)

As in that proof, the outcome that minimizes this function  is a PNE.2 For
instance, in the VHS-or-Betamax example, the low-cost PNE minimizes (15.3)
while the high-cost PNE does not. While the minimizer of the potential function
need not be the best PNE (Problem 15.1), we next prove that its cost is at most 

 times that of an optimal outcome.

The key observation is that the potential function (15.3), whose numerical value
we don’t care about per se, approximates well the objective function (15.2) that



we do care about. Precisely, since

for every edge e with fe ≥ 1, we can sum over such edges to derive

(15.4)

for every outcome P. The inequalities (15.4) state that PNE are inadvertently
trying to minimize an approximately correct function , so it makes sense that
one PNE should approximately minimize the correct objective function.

To finish the proof, let P denote a PNE minimizing the potential function (15.3)
and P* an optimal outcome. We have

where the first and last inequalities follow from (15.4) and the middle inequality
follows from the choice of P as a minimizer of . 

How should we interpret Theorem 15.1? A bound on the price of stability,
which only ensures that one equilibrium is approximately optimal, provides a
significantly weaker guarantee than a bound on the POA. The price of stability is
relevant for games where there is a third party who can propose an initial
outcome—default behavior for the agents. It’s easy to find examples in real life
where an institution or society effectively proposes one equilibrium out of many,
even just in choosing which side of the road everybody drives on. For a computer
science example, consider the problem of choosing the default values of user-
defined parameters of software or a network protocol. One sensible approach is
to set default parameters so that users are not motivated to change them and,
subject to this, to optimize performance. The price of stability quantifies the
necessary degradation in the objective function value caused by the restriction to
equilibrium outcomes.

The proof of Theorem 15.1 implies that every minimizer of the potential
function (15.3) has cost at most  times that of an optimal outcome. There are
plausible narratives for why such PNE are more relevant than arbitrary PNE; see
the Notes for details. This gives a second interpretation of Theorem 15.1 that
makes no reference to a third party and instead rests on the belief that potential



function minimizers are in some sense the most important of the PNE.

15.3 The POA of Strong Nash Equilibria
This section gives an alternative approach to eluding the bad PNE of the VHS-or-
Betamax example and proving meaningful bounds on the inefficiency of equilibria
in network cost-sharing games. We once again argue about all (i.e., worst-case)
equilibria, but first restrict attention to a well-motivated subset of PNE.3

In general, when studying the inefficiency of equilibria in a class of games, one
should zoom out (i.e., enlarge the set of equilibria) as much as possible subject to
the existence of meaningful POA bounds. In games with negative externalities,
such as routing and location games, we zoomed all the way out to the set of
coarse correlated equilibria (Lecture 14). The POA of PNE is reasonably close to
1 in these games, so we focused on extending our worst-case bounds to ever-
larger sets of equilibria. In network cost-sharing games, where worst-case PNE
can be highly suboptimal, we need to zoom in to recover interesting POA bounds
(Figure 15.3).

Figure 15.3: Strong Nash equilibria are a special case of pure Nash
equilibria.

Recall the VHS or Betamax example (Section 15.1.3). The high-cost outcome
is a PNE because an agent that deviates unilaterally would pay the full cost 1 + 
of the upper edge. What if a coalition of two agents deviated jointly to the upper
edge? Each deviating agent would then pay only , so this would be a

profitable deviation for both of them. We conclude that the high-cost PNE does
not persist when coalitional deviations are allowed.

Definition 15.2 (Strong Nash Equilibrium) Let s  be an outcome of a cost-



minimization game.

(a) Strategies  are a beneficial deviation for a subset A
of agents if

for every agent i  A, with the inequality holding strictly for at least one
agent of A.

(b) The outcome s  is a strong Nash equilibrium if there is no coalition of
agents with a beneficial deviation.

Every strong Nash equilibrium is a PNE, as beneficial deviations for singleton
coalitions correspond to improving unilateral deviations. It is plausible that strong
Nash equilibria are more likely to occur than other PNE.

To get a better feel for strong Nash equilibria, let’s return to our two examples.
As noted above, the high-cost PNE of the VHS or Betamax example is not a
strong Nash equilibrium. The low-cost PNE is a strong Nash equilibrium. More
generally, since the coalition of the entire agent set is allowed, intuition might
suggest that strong Nash equilibria are always optimal outcomes. This is the case
when all agents share the same origin and destination (Exercise 15.3), but not in
general. In the opt-out example (Section 15.1.4), the same argument that proves
that the all-opt-out outcome is the unique PNE also proves that it is a strong Nash
equilibrium. This strong Nash equilibrium has cost arbitrarily close to  times
that of an optimal outcome. Our next result states that no worse example is
possible.

Theorem 15.3 (The POA of Strong Nash Equilibria) In every network cost-
sharing game with k agents, every strong Nash equilibrium has cost at most 

 times that of an optimal outcome.

The guarantee in Theorem 15.3 differs from that in Theorem 15.1 in two ways.
On the positive side, the guarantee holds for every strong Nash equilibrium, as
opposed to just one PNE. Were it true that every network cost-sharing game has
at least one strong Nash equilibrium, Theorem 15.3 would be a strictly stronger
statement than Theorem 15.1. Unfortunately, a strong Nash equilibrium may or
may not exist in a network cost-sharing game (see Figure 15.4 and Exercise
15.4), and so Theorems 15.1 and 15.3 offer incomparable guarantees.



Figure 15.4: A network cost-sharing game with no strong Nash equilibrium.

*15.4 Proof of Theorem 15.3
The proof of Theorem 15.3 bears some resemblance to our previous POA
analyses, but it has a couple of extra ideas. One nice feature is that the proof uses
the potential function (15.3) in an interesting way. Our POA analyses of selfish
routing and location games did not make use of their potential functions.

Fix a network cost-sharing game and a strong Nash equilibrium P. The usual
first step in a POA analysis is to invoke the equilibrium hypothesis once per agent
to generate upper bounds on agents’ equilibrium costs. To use the strong Nash
equilibrium assumption in the strongest-possible way, the natural place to start is
with the most powerful coalition Ak = {1, 2, …, k} of all k agents. Why doesn’t
this coalition collectively switch to the optimal outcome P*? It must be that for
some agent i, Ci(P) ≥ Ci(P*).4 Rename the agents so that this is agent k.

We want an upper bound on the equilibrium cost of every agent, not just that of
agent k. To ensure that we get an upper bound for a new agent, we next invoke
the strong Nash equilibrium hypothesis for the coalition Ak−1 = {1, 2, …, k − 1}
that excludes agent k. Why don’t these k − 1 agents collectively deviate to P*Ak−1
? There must be an agent i  {1, 2, …, k − 1} with Ci(P) ≤ Ci(P*Ak−1, Pk). We
rename the agents of Ak−1 so that this is true for agent k − 1 and continue.

By iterating this argument, we obtain a renaming of the agents as {1, 2, …, k}
such that, for every i,



(15.5)

where Ai = {1, 2, …, i} Now that we have an upper bound on the equilibrium cost
of every agent, we can sum (15.5) over the agents to obtain

(15.6)

(15.7)

Inequality (15.6) is immediate from (15.5). Inequality (15.7) follows from the fact
that network cost-sharing games have positive externalities; removing agents only
decreases the number of agents using each edge and hence only increases the
cost share of each remaining agent on each edge. The purpose of the inequality
(15.7) is to simplify our upper bound on the equilibrium cost to the point that it
becomes a telescoping sum.

Next we use the potential function  defined in (15.3). Letting  denote the
number of agents of Ai that use a path in P* that includes edge e, we have

(15.8)

with the second equation following from the definition of .

Combining (15.7) with (15.8), we obtain

(15.9)



where inequality (15.9) follows from our earlier observation (15.4) that the
potential function  can only overestimate the cost of an outcome by an 
factor. This completes the proof of Theorem 15.3.

The Upshot

 In a network cost-sharing game, each agent picks a path from her
origin to her destination, and the fixed cost of each edge used is split
equally among its users.

 Different PNE of a network cost-sharing game can have wildly
different costs, and the POA can be as large as the number k of
agents. These facts motivate approximation bounds that apply only to a
subset of PNE.

 The price of stability of a game is the ratio between the lowest cost of
an equilibrium and the cost of an optimal outcome.

 The worst-case price of stability of network cost-sharing games is 
.

 A strong Nash equilibrium is an outcome such that no coalition of
agents has a collective deviation that benefits at least one agent and
harms no agent of the coalition.

 Every strong Nash equilibrium of a network-cost sharing game has
cost at most  times that of an optimal outcome.

 Strong Nash equilibria are not guaranteed to exist in network cost-
sharing games.

Notes
Network cost-sharing games and Theorem 15.1 are from Anshelevich et al.
(2008a). The VHS or Betamax example is from Anshelevich et al. (2008b).
Many other models of network formation have been proposed and studied; see
Jackson (2008) for a textbook treatment. It is an open question to analyze the
worst-case price of stability in undirected network cost-sharing games; see Bilò et
al. (2016) for the latest progress. Experimental evidence that potential function
minimizers are more commonly played than other PNE is given in Chen and Chen
(2011); related theoretical results appear in Blume (1993) and Asadpour and



Saberi (2009). The strong Nash equilibrium concept is due to Aumann (1959), and
Andelman et al. (2009) propose studying the price of anarchy of strong Nash
equilibria. Theorem 15.3, the example in Figure 15.4, and Problem 15.2 are from
Epstein et al.(2009).

Exercises
Exercise 15.1 Prove that in every network cost-sharing game, the POA of PNE
is at most k, the number of agents.

Exercise 15.2 If we modify the opt-out example (Section 15.1.4) so that all of
the edges are undirected, and each agent i can choose an oi-d path that traverses
edges in either direction, what is the price of stability in the resulting network
cost-sharing game?

Exercise 15.3 Prove that in every network cost-sharing game in which all
agents have a common origin vertex and a common destination vertex, there is a
one-to-one correspondence between strong Nash equilibria and minimum-cost
outcomes. (Thus, in such games, strong Nash equilibria always exist and the POA
of such equilibria is1.)

Exercise 15.4 Prove that the network cost-sharing game shown in Figure 15.4
has no strong Nash equilibrium.

Exercise 15.5 Extend the model of network cost-sharing games by allowing
each edge e to have a cost γe(x) that depends on the number x of agents that use
it. The joint cost γe(x) is again split equally between the x users of the edge.
Assume that each function γe is concave, meaning that

for each i = 1, 2, …, k − 1. Extend Theorems 15.1 and 15.3 to this more general
model.

Exercise 15.6 (H) Continuing the previous exercise, suppose γe(x) = aex
p for

every edge e, where each ae > 0 is a positive constant and the common exponent
p lies in (0, 1]. For this special case, improve the upper bounds of  in

Theorems 15.1 and 15.3 to , independent of the number of agents k.

Problems
Problem 15.1 (a) Exhibit a network cost-sharing game in which the minimizer of
the potential function (15.3) is not the lowest-cost PNE.



(b) Exhibit a network cost-sharing game with at least one strong Nash
equilibrium in which the minimizer of the potential function is not a strong
Nash equilibrium.

Problem 15.2 Suppose we weaken the definition of a strong Nash equilibrium
(Definition 15.2) by requiring only that no coalition of at most ℓ agents has a
beneficial deviation, where ℓ  {1, 2, …, k} is a parameter. Pure Nash equilibria
and strong Nash equilibria correspond to the ℓ = 1 and ℓ = k cases, respectively.
What is the worst-case POA of ℓ-strong Nash equilibria in network cost-sharing
games, as a function of ℓ and k? Prove the best upper and lower bounds that you
can.

Problem 15.3 (H) Prove that in every atomic selfish routing network (Section
12.4) with edge cost functions that are polynomials with nonnegative coefficients
and degree at most p, the price of stability is at most p + 1.

1 This argument is an example of the iterated removal of strictly dominated
strategies. When a unique outcome survives this procedure, it is the unique
PNE of the game.

2 Network cost-sharing games have decreasing per-agent cost functions,
reflecting the positive externalities and contrasting with routing games. The
proof of Theorem 13.6 holds for any edge cost functions, decreasing or
otherwise.

3 When one equilibrium concept is only more stringent than another, the
former is called an equilibrium refinement of the latter.

4 This inequality is strict if at least one other agent is better off, but we don’t
need this stronger statement.



Lecture 16

Best-Response Dynamics

This lecture segues into the third part of the course, where we ask: Do we expect
strategic agents to reach an equilibrium? If so, which learning algorithms quickly
converge to an equilibrium? Reasoning about these questions requires specifying
dynamics, which describe how agents act when not at equilibrium. We consider
dynamics where each agent’s behavior is governed by an algorithm that attempts
to, in some sense, learn the best response to how the other agents are acting.
Ideally, we seek results that hold for multiple simple and natural learning
algorithms. Then, even though agents may not literally follow such an algorithm,
we can still have some confidence that our conclusions are robust and not an
artifact of the particular choice of dynamics. This lecture focuses on variations of
“best-response dynamics,” while the next two lectures study dynamics based on
regret-minimization.

Section 16.1 defines best-response dynamics and proves convergence in
potential games. Sections 16.2 and 16.3 introduce -best-response dynamics and
prove that several variants of it converge quickly in atomic selfish routing games
where all agents have a common origin and destination. Section 16.4 proves that,
in the (λ,μ)-smooth games defined in Lecture 14, several variants of best-
response dynamics quickly reach outcomes with objective function value almost
as good as at an equilibrium.

16.1 Best-Response Dynamics in Potential Games
Best-response dynamics is a straightforward procedure by which agents search
for a pure Nash equilibrium (PNE) of a game (Definition 13.2), using successive
unilateral deviations.



Best-Response Dynamics

While the current outcome s  is not a PNE:
pick an arbitrary agent i and an arbitrary beneficial deviation  of for

agent i, and update the outcome to ( , s‒i).

There might be many options for the deviating agent i and for the beneficial
deviation . We leave both unspecified for the moment, specializing these

choices later as needed.1 We always allow the initial outcome to be arbitrary.
Best-response dynamics can be visualized as a walk in a graph, with vertices

corresponding to strategy profiles, and outgoing edges corresponding to beneficial
deviations (Figure 16.1). The PNE are precisely the vertices of this graph that
have no outgoing edges. Best-response dynamics can only halt at a PNE, so it
cycles in any game without one. It can also cycle in games that have a PNE
(Exercise 16.1).



Figure 16.1: Best-response dynamics can be viewed as a walk in a graph.
There is one vertex for each strategy profile. There is one edge for each
beneficial unilateral deviation, labeled with the name of the deviating agent.
PNE correspond to vertices with no outgoing edges, such as s2.

Best-response dynamics is a perfect fit for potential games (Section 13.3).
Recall that a potential game admits a real-valued function  with the property
that, for every unilateral deviation by some agent, the change in the potential
function value equals the change in the deviator’s cost (13.9). Routing games
(Section 12.4), location games (Section 14.2), and network cost-sharing games
(Section 15.2) are all potential games.

Theorem 13.7 notes that every potential game has at least one PNE, since the
potential function minimizer is one. Best-response dynamics offers a more
constructive proof of this fact.

Proposition 16.1 (Convergence of Best-Response Dynamics)
In a potential game, from an arbitrary initial outcome, best-response



dynamics converges to a PNE.

Proof: In every iteration of best-response dynamics, the deviator’s cost strictly
decreases. By (13.9), the potential function strictly decreases. Thus, no cycles are
possible. Since the game is finite by assumption, best-response dynamics
eventually halts, necessarily at a PNE. 

Translated to the graph in Figure 16.1, Proposition 16.1 asserts that every walk
in a directed acyclic graph eventually stops at a vertex with no outgoing edges.

Proposition 16.1 shows that there is a natural procedure by which agents can
reach a PNE of a potential game. How fast does this happen? One strong notion
of “fast convergence” is convergence to a PNE in a reasonably small number of
iterations. This occurs when, for example, the potential function  takes on only
a small number of distinct values (Exercise 16.2). In general, best-response
dynamics can decrease the potential function very slowly and require an
exponential (in the number of agents k) number of iterations to converge (Lecture
19). This fact motivates the relaxed definitions of convergence studied in the rest
of this lecture.

16.2 Approximate PNE in Selfish Routing Games
Our second notion of “fast convergence” settles for an approximate PNE.

Definition 16.2 ( -Pure Nash Equilibrium) For   [0, 1], an outcome s  of a
cost-minimization game is an -pure Nash equilibrium ( -PNE) if, for every
agent i and deviation ,

(16.1)

Definition 16.2 is the same as Definition 14.5, reparametrized for convenience.
An -PNE in the sense of Definition 16.2 corresponds to a -PNE under

Definition 14.5.
We next study -best-response dynamics, in which we only permit moves

that yield significant improvements.



-Best-Response Dynamics

While the current outcome s  is not an .-PNE:

pick an arbitrary agent i who has an -move—a deviation  with Ci( ,

s‒i) < (1 − )Ci(s)—and an arbitrary such move for the agent, and
update the outcome to ( , s‒i)

-best-response dynamics can only halt at an -PNE, and it eventually converges
in every potential game.

Our next result identifies a subclass of atomic selfish routing games (Section
12.4) in which a specialized variant of -best response dynamics converges
quickly, meaning in a number of iterations that is bounded above by a polynomial
function of all of the relevant pa-rameters.2

-Best-Response Dynamics (Maximum-Gain)

While the current outcome s  is not an -PNE:

among all agents with an -move, let i denote an agent who can obtain the
largest cost decrease

and  a best response to s‒i

update the outcome to ( , s‒i)

Theorem 16.3 (Convergence to an -PNE) Consider an atomic selfish
routing game where:

1. All agents have a common origin vertex and a common destination
vertex.

2. For α ≥ 1, the cost function ce of each edge e satisfies the α − bounded
jump condition, meaning ce(x + 1)  [ce(x), α · ce(x)] for every edge e
and positive integer x.



Then, the maximum-gain variant of -best-response dynamics converges to

an -PNE in at most  ln  iterations, where s0 is the initial outcome

and min = mins (s).

Analogs of Theorem 16.3 continue to hold for many different variants of -best-
response dynamics (Problem 16.2); the only essential requirement is that every
agent is given the opportunity to move sufficiently often. Even if we don’t literally
believe that agents will follow one of these variants of -best-response dynamics,
the fact that simple and natural learning procedures converge quickly to
approximate PNE in these games provides compelling justification for their study.
Unfortunately, if either hypothesis of Theorem 16.3 is dropped, then all variants of

-best-response dynamics can take an exponential (in k) number of iterations to
converge (see the Notes).

*16.3 Proof of Theorem 16.3
The plan for proving Theorem 16.3 is to strengthen quantitatively the proof of
Proposition 16.1 and show that every iteration of maximum-gain -best-response
dynamics decreases the potential function by a lot. We need two lemmas. The
first one guarantees the existence of an agent with a high cost; if this agent is
chosen to move in an iteration, then the potential function decreases significantly.
The issue is that some other agent might move instead. The second lemma, which
is the one that needs the two hypotheses in Theorem 16.3, proves that the agent
chosen to move has cost within an α factor of that of any other agent. This is
good enough for fast convergence.

Lemma 16.4 In every outcome s , there is an agent i with Ci(s) ≥  (s)/k.

Proof: In atomic selfish routing games, which have nondecreasing edge cost
functions, the potential function can only underestimate the cost of an outcome.
To see this, recall the definitions of the potential function (13.7) and objective
function (11.3)–(11.4) of an atomic selfish routing game, and derive

(16.2)

for every outcome s , where fe denotes the number of agents that choose in s  a
path including edge e. The inequality follows from the fact that cost functions are
nondecreasing.

Since some agent must have cost at least as large as the average, we have



for every outcome s , as claimed. 
The next lemma relates the cost of the deviating agent in maximum-gain -

best-response dynamics to those of the other agents.

Lemma 16.5 Suppose agent i is chosen by maximum-gain -best-response
dynamics to move in the outcome s , and takes the -move . Then

(16.3)

for every other agent j.

Proof: Fix the agent j. If j has an -move  in s , which by definition would

decrease agent j’s cost by at least Cj(s), then

The first inequality holds because i was chosen over j in maximum-game -best-
response dynamics.

The trickier case is when the agent j has no -move available. We use here
that all agents have the same set of available strategies. If  is such a great
deviation for agent i, why isn’t it for agent j as well? That is, how can it be that

(16.4)

while

(16.5)

A key observation is that the outcomes ( , s−i) and ( , s−j) have at least k −

1 strategies in common. The strategy  is used by i in the former outcome and
by j in the latter outcome, and the k − 2 agents other than i and j use the same
strategies in both outcomes. Since the two outcomes differ in only one chosen
strategy, for every edge e of the network, the number of agents using e differs by
at most one in the two outcomes. By the α-bounded jump hypothesis in Theorem
16.3, the cost of every edge differs by at most a factor of α in the two outcomes.
In particular, the cost of agent j after deviating unilaterally to  is at most α times



that of agent i after the same unilateral deviation:

(16.6)

The inequalities (16.4)–(16.6) imply that Cj(s) ≤ α · Ci(s). Combining this with
(16.4) yields

as required. 
Lemma 16.4 guarantees that there is always an agent whose -move would

rapidly decrease the potential function. Lemma 16.5 extends this conclusion to the
agent who actually moves in maximum-gain -best-response dynamics. The
bound on the number of iterations required for convergence now follows
straightforwardly.

Proof of Theorem 16.3: In an iteration of maximum-gain -best-response
dynamics where agent i makes an -move to the strategy ,

(16.7)

(16.8)

(16.9)

where equation (16.7) follows from the defining property (13.9) of a potential
function, and inequalities (16.8) and (16.9) follow from Lemmas 16.5 and 16.4,
respectively.

The derivation (16.7)–(16.9) shows that every iteration of maximum-gain -
best-response dynamics decreases the potential function by at least a factor of 

. Thus, every  iterations decrease the potential function by at least

a factor of e = 2.718….3 Since the potential function begins with the value 

(s0) and cannot drop lower than min, maximum-gain -best-response dynamics

converges in at most  ln  iterations. 



*16.4 Low-Cost Outcomes in Smooth Potential
Games

This section explores our final notion of “fast convergence”: quickly reaching
outcomes with objective function value as good as if agents had already
converged to an approximate PNE. This guarantee does not imply convergence to
an approximate PNE, but it is still quite compelling. When the primary reason for
an equilibrium analysis is a price-of-anarchy bound, this weaker guarantee is a
costless surrogate for convergence to an approximate equilibrium.

Weakening our notion of fast convergence enables positive results with
significantly wider reach. The next result applies to all potential games that are (λ,
μ)-smooth in the sense of Definition 14.2, including all atomic selfish routing
games (Section 12.4) and location games (Section 14.2). It uses the following
variant of best-response dynamics, which is the analog of the variant of -best-
response dynamics used in Theorem 16.3.

Best-Response Dynamics (Maximum-Gain)

While the current outcome s  is not a PNE:

among all agents with a beneficial deviation, let i denote an agent who can
obtain the largest cost decrease

and  a best response to s‒i

update the outcome to ( , s‒i)

We state the theorem for cost-minimization games; an analogous result holds for
(λ, μ)-smooth payoff-maximization games (Remark 13.1).

Theorem 16.6 (Convergence to Low-Cost Outcomes)

Consider a (λ, μ)-smooth cost-minimization game with μ < 1 that has a
positive potential function  that satisfies  (s) ≤ cost(s) for every outcome

s . Let s0, …, sT be a sequence of outcomes generated by maximum-gain
best-response dynamics, s* a minimum-cost outcome, and η  (0, 1) a
parameter. Then all but at most



outcomes s t satisfy

(16.10)

where min = mins  (s) and k is the number of agents.

Recall that in a (λ, μ)-smooth cost-minimization game, every PNE has cost at
most  times the minimum possible (Section 14.4).

Thus Theorem 16.6 states that for all but a small number of outcomes in the
sequence, the cost is almost as low as if best-response dynamics had already
converged to a PNE.

Proof of Theorem 16.6: Fix η  (0, 1). The plan is to show that if s t is a bad
state, meaning one that fails to obey the guarantee in (16.10), then the next
iteration of maximum-gain best-response dynamics decreases the potential
function significantly. This yields the desired bound on the number of bad states.

For an outcome s t, define δi (s
t) = Ci (s

t) − Ci( , st
‒i) as the cost decrease

that agent i would experience by switching her strategy to , and Δ(s t) = 

. The value δi(s
t) is nonpositive when s t is a PNE, but in general

it can be positive or negative. Using this notation and the defining property (14.9)
of a (λ, μ)-smooth cost-minimization game, we can derive



and hence

(16.11)

This inequality implies that an outcome can be bad only when the amount Δ(s t)
that agents have to gain by unilateral deviations to s* is large.

In a bad state s t, using inequality (16.11) and the assumption that  (s) ≤
cost(s) for all outcomes s ,

(16.12)

If an agent i switches her strategy to a best response in the outcome s t, then her
cost decreases by at least δi(s

t). (It could decrease by more, if her best response 
 is better than .) Inequality (16.12) implies that, in a bad state s t, the cost of

the agent chosen by maximum-gain best-response dynamics decreases by at least
. Since  is a potential function and satisfies (13.9),

whenever s t is a bad state. This inequality, together with the fact that  can only
decrease in each iteration of best-response dynamics, implies that the potential
function decreases by a factor of at least e = 2.718… for every sequence of 

 bad states. This yields the desired upper bound of  ln  on

the total number of bad states. 



The Upshot

 In each iteration of best-response dynamics, one agent unilaterally
deviates to a better strategy.

 Best-response dynamics converges, necessarily to a PNE, in every
potential game.

 Several variants of -best-response dynamics, where only moves that
yield significant improvements are permitted, converge quickly to an
approximate PNE in atomic selfish routing games where all agents
have the same origin and destination.

 In (λ, μ)-smooth games, several variants of best-response dynamics
quickly reach outcomes with objective function value almost as good as
a PNE.

Notes
Proposition 16.1 and Exercises 16.3–16.4 are from Monderer and Shapley (1996).
Theorem 16.3 and Problem 16.2 are due to Chien and Sinclair (2011). Skopalik
and Vöcking (2008) show that, if either hypothesis of Theorem 16.3 is dropped,
then -best-response dynamics can require an exponential number of iterations to
converge, no matter how the deviating agent and deviation are chosen in each
iteration. Approximation bounds for outcome sequences generated by best-
response dynamics are first considered in Mirrokni and Vetta (2004). Theorem
16.6 is from Roughgarden (2015), inspired by results of Awerbuch et al. (2008).
Problems 16.1 and 16.3 are from Even-Dar et al. (2007) and Milchtaich (1996),
respectively.

Exercises
Exercise 16.1 (H) Exhibit a game with a PNE and an initial outcome from
which best-response dynamics cycles forever.

Exercise 16.2 Consider an atomic selfish routing game (Section 12.4) with m
edges and cost functions taking values in {1, 2, 3, …, H}. Prove that best-
response dynamics converges to a PNE in at most mH iterations.

Exercise 16.3 A generalized ordinal potential game is a cost-minimization
game for which there exists a generalized ordinal potential function  such
that ( , s‒i) < (s) whenever Ci( , s‒i) < Ci(s) for some outcome s , agent



i, and deviation . Extend Proposition 16.1 to generalized ordinal potential
games.

Exercise 16.4 (H) Prove the converse of Exercise 16.3: if best-response
dynamics always converges to a PNE, for every choice of initial outcome and
beneficial unilateral deviation at each iteration, then the game admits a generalized
ordinal potential function.

Problems
Problem 16.1 Recall the class of cost-minimization games introduced in Problem
12.3, where each agent i = 1, 2, …, k has a positive weight wi and chooses one of
m identical machines to minimize her load. Consider the following restriction of
best-response dynamics:

Maximum-Weight Best-Response Dynamics

While the current outcome s  is not a PNE:

among all agents with a beneficial deviation, let i denote an agent with the
largest weight wi and  a best response to s−i

update the outcome to ( , s‒i)

Prove that MaxWeight best-response dynamics converges to a PNE in at most k
iterations.

Problem 16.2 (H) This problem considers another variant of -best-response
dynamics.



-Best-Response Dynamics (Maximum-Relative-Gain)

While the current outcome s  is not an -PNE:

among all agents with an -move, let i denote an agent who can obtain the
largest relative cost decrease

and  a best response to s‒i

update the outcome to ( , s‒i)

Prove that the iteration bound in Theorem 16.3 applies also to the maximum-
relative-gain variant of -best-response dynamics.

Problem 16.3 This problem considers a variant of the cost-minimization games in
Problem 16.1 where every agent has weight 1 but agents can have different
individual cost functions. Formally, each agent i incurs a cost (ℓ) on machine j

if she is among ℓ agents using j. Assume that for each fixed i and j, (ℓ) is

nondecreasing in ℓ.

(a) Prove that if there are only two machines, then best-response dynamics
converges to a PNE.

(b) (H) Prove that if there are three machines, then best-response dynamics
need not converge.

(c) (H) Prove that, no matter how many machines there are, a PNE always
exists.

l This procedure is sometimes called “better-response dynamics,” with the
term “best-response dynamics” reserved for the version in which  is chosen

to minimize i’s cost, given the strategies s‒i of the other agents.

2 The number of outcomes of a game with k agents is exponential in k, so any
polynomial bound on the number of iterations required is significant.

3 To see this, use that (1 − x)1/x ≤ (e−x)1/x = 1/e for x ≠ 0.



Lecture 17

No-Regret Dynamics

This lecture studies a second fundamental class of dynamics, no-regret
dynamics. While best-response dynamics can only converge to a pure Nash
equilibrium and is most relevant for potential games, no-regret dynamics
converges to the set of coarse correlated equilibria in arbitrary finite games.

Section 17.1 considers a single decision maker playing a game online against an
adversary, and defines no-regret algorithms.1 Section 17.2 presents the
multiplicative weights algorithm, and Section 17.3 proves that it is a no-regret
algorithm. Section 17.4 defines no-regret dynamics in multi-agent games, and
proves that it converges to the set of coarse correlated equilibria.

17.1 Online Decision Making

17.1.1 The Model
Consider a set A of n ≥ 2 actions and a time horizon T ≥ 1, both known in
advance to a decision maker. For example, A could represent different investment
strategies, or different driving routes between home and work. When we return to
multi-agent games (Section 17.4), the action set will be the strategy set of a single
agent, with the consequence of each action determined by the strategies chosen
by all of the other agents.

We consider the following setup.2



Online Decision Making

At each time step t = 1, 2, …, T:

a decision maker picks a probability distribution pt over her actions A

an adversary picks a cost vector ct : A → [−1, 1]

an action at is chosen according to the distribution pt, and the decision
maker incurs cost ct(at)

the decision maker learns ct, the entire cost vector3

An online decision-making algorithm specifies for each t the probability
distribution pt, as a function of the cost vectors c1, …, ct−1 and realized actions
a1, …, at−1 of the first t − 1 time steps. An adversary for such an algorithm 

specifies for each t the cost vector ct, as a function of the probability distributions
p1, …, pt used by  on the first t days and the realized actions a1, …, at−1 of the
first t − 1 days. We evaluate the performance of an online decision-making
algorithm by its expected cost (over the realized actions) with respect to a worst-
case adversary. Negative costs are allowed, and can be used to model payoffs.

17.1.2 Definitions and Examples
We seek a “good” online decision-making algorithm. But the setup seems a bit
unfair, no? The adversary is allowed to choose each cost function ct after the
decision maker has committed to her probability distribution pt. With such
asymmetry, what kind of guarantee can we hope for? This section gives three
examples that establish limitations on what is possible.

The first example shows that there is no hope of achieving cost close to that of
the best action sequence in hindsight. This benchmark 

 is just too strong.

Example 17.1 (Comparing to the Best Action Sequence)

Suppose A = {1, 2} and fix an arbitrary online decision-making algorithm. Each
day t, the adversary chooses the cost vector ct as follows: if the algorithm
chooses a distribution pt for which the probability on action 1 is at least , then ct

is set to the vector (1, 0). Otherwise, the adversary sets ct equal to (0, 1). This
adversary forces the expected cost of the algorithm to be at least  while



ensuring that the cost of the best action sequence in hindsight is 0.
Example 17.1 motivates the following important definitions. Rather than

comparing the expected cost of an algorithm to that of the best action sequence
in hindsight, we compare it to the cost incurred by the best fixed action in
hindsight. That is, we change our benchmark from  to

.

Definition 17.2 (Regret) Fix cost vectors c1, …, cT. The regret of the action
sequence a1, …, aT is

(17.1)

The quantity in (17.1) is sometimes called external regret.4 Lecture 18 discusses
swap regret, a more stringent notion.

Definition 17.3 (No-Regret Algorithm) An online decision-making algorithm 
 has no regret if for every  > 0 there exists a sufficiently large time horizon T

= T( ) such that, for every adversary for , in expectation over the action
realizations, the regret (17.1) is at most .

In Definition 17.3, we think of the number n of actions as fixed, and the time
horizon T tending to infinity.5

This lecture adopts the no-regret guarantee of Definition 17.3 as the holy grail
in the design of online decision-making algorithms. The first reason is that this
goal can be achieved by simple and natural learning algorithms (Section 17.2).
The second reason is that the goal is nontrivial: as the following examples make
clear, some ingenuity is required to achieve it. The third reason is that, when we
pass to multi-agent games in Section 17.4, the no-regret guarantee translates
directly to the coarse correlated equilibrium conditions (Definition 13.5).

One natural online decision-making algorithm is follow-the-leader (FTL),
which at time step t chooses the action a with minimum cumulative cost 

 so far. The next example shows that FTL is not a no-regret

algorithm, and more generally rules out any deterministic no-regret algorithm.

Example 17.4 (Randomization Is Necessary for No Regret) Fix a
deterministic online decision-making algorithm. At each time step t, the algorithm
commits to a single action at. The obvious strategy for the adversary is to set the
cost of action at to 1, and the cost of every other action to 0. Then, the cost of the



algorithm is T while the cost of the best action in hindsight is at most . Even

when there are only 2 actions, for arbitrarily large T, the worst-case regret of the
algorithm is at least .

For randomized algorithms, the next example limits the rate at which regret can
vanish as the time horizon T grows.

Example 17.5 (  Lower Bound on Regret) Suppose there are

n = 2 actions, and that we choose each cost vector ct independently and equally
likely to be (1, 0) or (0, 1). No matter how smart or dumb an online decision-
making algorithm is, with respect to this random choice of cost vectors, its
expected cost at each time step is exactly  and its expected cumulative cost is 

. The expected cumulative cost of the best fixed action in hindsight is only 

, where b is some constant independent of T. This follows from the

fact that if a fair coin is flipped T times, then the expected number of heads is 

and the standard deviation is .

Fix an online decision-making algorithm . A random choice of cost vectors

causes  to experience expected regret at least , where the

expectation is over both the random choice of cost vectors and the action
realizations. At least one choice of cost vectors induces an adversary that causes 

 to have expected regret at least , where the expectation is over the

action realizations.
A similar argument shows that, with n actions, the expected regret of an online

decision-making algorithm cannot vanish faster than , where b

> 0 is some constant independent of n and T (Problem 17.1).

17.2 The Multiplicative Weights Algorithm
The most important result in this lecture is that no-regret algorithms exist.
Lecture 18 shows that this fact alone has some amazing consequences. Even
better, there are simple and natural such algorithms. While not a literal description
of human behavior, the guiding principles behind such algorithms are recognizable
from the way many people learn and make decisions. Finally, the algorithm
discussed next has optimal worst-case expected regret, matching the lower bound
in Example 17.5 up to constant factors.

Theorem 17.6 (No-Regret Algorithms Exist) For every set A of n actions



and time horizon T ≥ 4 ln n, there is an online decision-making algorithm
that, for every adversary, has expected regret at most .

An immediate corollary is that the number of time steps needed to drive the
expected regret down to a small constant is only logarithmic in the number of
actions.

Corollary 17.7 (Logarithmic Number of Steps Suffice) For every   (0, 1],
set A of n actions and time horizon T ≥ (4 ln n)/ 2, there is an online
decision-making algorithm that, for every adversary, has expected regret at
most .

The guarantees of Theorem 17.6 and Corollary 17.7 are achieved in particular
by the multiplicative weights (MW) algorithm.6 Its design follows two guiding
principles.

No-Regret Algorithm Design Principles

1. Past performance of actions should guide which action is chosen at
each time step, with the probability of choosing an action decreasing in
its cumulative cost.

2. The probability of choosing a poorly performing action should decrease
at an exponential rate.

The first principle is essential for obtaining a no-regret algorithm, and the second
for optimal regret bounds.

The MW algorithm maintains a weight, intuitively a “credibility,” for each
action. At each time step the algorithm chooses an action with probability
proportional to its current weight.

Multiplicative Weights (MW) Algorithm

initialize w1 (a) = 1 for every a  A
for each time step t = 1, 2, …, T do

use the distribution pt = wt/Γt over actions, where 

is the sum of the weights

given the cost vector ct, for every action a  A use the formula wt+1(a) =
wt(a) · (1 − ηct(a)) to update its weight



For example, if all costs are either -1, 0, or 1, then the weight of each action a
either stays the same (if ct(a) = 0) or gets multiplied by 1 − η (if ct(a) = 1) or 1 +
η (if ct(a) = −1). The parameter η, which is sometimes called the “learning rate,”
lies between 0 and , and is chosen at the end of the proof of Theorem 17.6 as a

function of n and T. When η is close to 0, the distributions pt stay close to the
uniform distribution. Thus small values of η encourage exploration. As η tends to
1, the distributions pt increasingly favor the actions with the smallest cumulative
cost so far. Thus large values of η encourage exploitation, and the parameter
provides a knob for interpolating between these two extremes. The MW
algorithm is simple to implement, as the only requirement is to maintain a weight
for each action.

*17.3 Proof of Theorem 17.6

17.3.1 Adaptive vs. Oblivious Adversaries
In the definition of an adversary for an online decision-making algorithm (Section
17.1), the cost vector ct can depend on what happened in the first t − 1 time
steps. Such adversaries are called adaptive. An oblivious adversary for an
algorithm specifies the entire sequence c1, …, cT of cost vectors in advance,
before any actions are realized.

To prove Theorem 17.6 for the MW algorithm, we only need to consider
oblivious adversaries. The reason is that the behavior of the MW algorithm is
independent of the realized actions, with each distribution pt chosen by the
algorithm a deterministic function of c1, …, ct−1. Thus, to maximize the expected
regret of the MW algorithm, there is no reason for an adversary to condition its
cost vectors on previously realized actions. Similarly, there is no need for an
adversary for the MW algorithm to condition a cost vector ct explicitly on the
distributions p1, …, pt, since these distributions are uniquely determined by the
adversary’s previous cost vectors c1, …, ct‒1.

17.3.2 The Analysis
Fix a set A of n actions and a time horizon T ≥ 4 ln n. Fix an oblivious adversary,
or equivalently a sequence c1, …, cT of cost vectors. This fixes the corresponding
sequence p1, …, pT of probability distributions used by the MW algorithm. Recall
that  denotes the sum of the actions’ weights in the

MW algorithm at the beginning of time step t. The proof plan is to relate the only
two quantities that we care about, the expected cost of the MW algorithm and the



cost of the best fixed action, to the intermediate quantity ΓT+1.
The first step, and the step that is special to the MW algorithm, shows that the

sum of the weights Γt evolves together with the expected cost incurred by the
algorithm. Letting νt denote the expected cost of the MW algorithm at time step t,
we have

(17.2)

We want to upper bound the sum of the νt’s.

To understand Γt+1 as a function of Γt and the expected cost (17.2), we derive

(17.3)

For convenience, we’ll bound this quantity from above, using the fact that 1 + x ≤
ex for all real-valued x (Figure 17.1). Then,

for each t and hence

(17.4)



Figure 17.1: The inequality 1 + x ≤ ex holds for all real-valued x.

The second step is to show that if there is a good fixed action, then the weight
of this action single-handedly shows that the final value ΓT+1 is pretty big. This
implies that the algorithm can only incur large cost if all fixed actions are bad.

Formally, let OPT denote the cumulative cost  of the best

fixed action a* for the cost vector sequence. Then, since weights are always
nonnegative,

(17.5)

It is again convenient to approximate 1 + x by an exponential function, this time
from below. Figure 17.1 indicates that the two functions are close to each other
for x near 0. This can be made precise through the Taylor expansion

Provided |x| ≤ , we can obtain a lower bound of −x −x2 on ln(1 − x) by throwing

out all terms of the expansion except the first two, and doubling the second term



to compensate. Hence, 1 − x ≥ e−x−x2
 for |x| ≤ .

Since η ≤  and |ct(a*)| ≤ 1 for every t, we can combine this lower bound with

(17.5) to obtain

(17.6)

where in (17.6) we’re just using the crude estimate ct(a*)2 ≤ 1 for all t.
Through (17.4) and (17.6), we’ve connected the cumulative expected cost 

 of the MW algorithm with the cumulative cost OPT of the best fixed

action via the intermediate quantity ΓT+1:

Taking the natural logarithm of both sides and dividing through by −η yields

(17.7)

Finally, we set the free parameter η. There are two error terms in (17.7), the
first one corresponding to inaccurate learning (higher for larger η), the second
corresponding to learning overhead (higher for smaller η). To equalize the two
terms, we choose . As T ≥ 4 ln n, η ≤ , as required. The

cumulative expected cost of the MW algorithm is then at most 

more than the cumulative cost of the best fixed action. This completes the proof
of Theorem 17.6.

Remark 17.8 (Unknown Time Horizons) The choice of η in the proof above
assumes advance knowledge of the time horizon T. Minor modifications extend
the multiplicative weights algorithm and its regret guarantee to the case where T
is not known a priori, with the “2” in Theorem 17.6 replaced by a modestly larger
factor (Exercise 17.2).

17.4 No Regret and Coarse Correlated Equilibria



We now move from single-agent to multi-agent settings and study no-regret
dynamics in finite games.

17.4.1 No-Regret Dynamics
We describe no-regret dynamics using the language of cost-minimization games
(Section 13.1.1). There is an obvious analog for payoff-maximization games, with
payoffs acting as negative costs.

No-Regret Dynamics

At each time step t = 1, 2, …, T:

each agent i independently chooses a mixed strategy  using a no-regret
algorithm, with actions corresponding to pure strategies

each agent i receives a cost vector , where (si) is the expected cost

of the pure strategy si given the mixed strategies chosen by the other
agents:

where σt
−i is the product distribution 

For example, if every agent uses the MW algorithm, then in each iteration each
agent simply updates the weight of each of her pure strategies. In this case, if
every agent has at most n strategies and costs lie in [‒cmax, cmax], then only
(4c2

max ln n)/ 2 iterations of no-regret dynamics are required before every agent
has expected regret at most  (Theorem 17.6 and Exercise 17.1).

17.4.2 Convergence to Coarse Correlated Equilibria
The next result is simple but important: the time-averaged history of joint play
under no-regret dynamics converges to the set of coarse correlated equilibria, the
biggest set in our hierarchy of equilibrium concepts (Definition 13.5). This forges
a fundamental connection between a static equilibrium concept and the outcomes
generated by natural learning dynamics.

Proposition 17.9 (No-Regret Dynamics Converges to CCE)
Suppose that after T iterations of no-regret dynamics, each agent i = 1, 2, …,



k of a cost-minimization game has expected regret at most . Let 
 denote the outcome distribution at iteration t and 

 the time-averaged history of these distributions.

Then σ is an approximate coarse correlated equilibrium, in the sense that

(17.8)

for every agent i and unilateral deviation .

Proof: By the definition of σ, for every agent i,

(17.9)

and

(17.10)

The right-hand sides of (17.9) and (17.10) are the time-averaged expected costs
of agent i when playing according to her no-regret algorithm and when playing the
fixed action  every iteration, respectively. Since every agent has regret at most 

, the former is at most  more than the latter. This verifies the approximate
coarse correlated equilibrium conditions (17.8). 

Proposition 17.9 gives a sense in which the coarse correlated equilibrium
concept is particularly computationally tractable, and hence a relatively plausible
prediction of agent behavior.

17.4.3 Final Remarks
The conventional interpretation of coarse correlated and correlated equilibria
involves a third party who samples an outcome from the equilibrium distribution
(Section 13.1). Proposition 17.9 demonstrates how such correlation arises
endogenously when independent agents play the same game repeatedly. The
correlation stems from the shared history of joint play.

The notion of approximate equilibrium in Proposition 17.9 concerns additive
error, while Definitions 14.5 and 16.2 use relative error. These choices are
primarily for technical convenience.

An alternative form of no-regret dynamics samples an outcome s t according to



the distribution  at each iteration t, with agent i receiving the

cost vector  with (si) = Ci(si, s
t
‒i) for each strategy si  Si. An analog of

Proposition 17.9 holds for the uniform distribution σ over the multi-set {s1, …, sT}
of sampled outcomes, with the statement and the proof modified to accommodate
sampling error. In these alternative dynamics, it is essential that agents use
algorithms that have no regret with respect to adaptive adversaries (Section
17.3.1).

Lecture 14 shows that price-of-anarchy bounds for (λ, μ)-smooth games
(Definition 14.2) hold for all coarse correlated equilibria (Theorem 14.4) and
degrade gracefully for approximate equilibria (Theorem 14.6). Thus, Proposition
17.9 suggests that such bounds should apply also to the time-averaged expected
objective function value of an outcome sequence generated by no-regret
dynamics. This is indeed the case (Exercise 17.3).

Corollary 17.10 (POA Bounds for No-Regret Dynamics)
Suppose that after T iterations of no-regret dynamics, each of the k agents of
a (λ, μ)-smooth cost-minimization game has expected regret at most . If 

 denotes the outcome distribution at iteration t and s* an
optimal outcome, then

As  → 0, this guarantee converges to , the standard price-of-anarchy

bound for smooth games (Section 14.4).



The Upshot

 In each time step of an online decision-making problem, an algorithm
chooses a probability distribution over actions and then an adversary
reveals the cost of each action.

 The regret of an action sequence is the difference between the time-
averaged costs of the sequence and of the best fixed action in
hindsight.

 A no-regret algorithm guarantees expected regret tending to 0 as the
time horizon tends to infinity.

 The multiplicative weights algorithm is a simple no-regret algorithm
with optimal worst-case expected regret.

 In every iteration of no-regret dynamics, each agent independently
chooses a mixed strategy using a no-regret algorithm.

 The time-averaged history of joint play in no-regret dynamics
converges to the set of coarse correlated equilibria.

 Price-of-anarchy bounds in smooth games apply to the time-averaged
expected objective function value of an outcome sequence generated
by no-regret dynamics.

Notes
The versions of the multiplicative weights algorithm and Theorem 17.6 described
here are from Cesa-Bianchi et al. (2007). Many variants and extensions, including
to the bandit model where the decision maker only learns the cost of the chosen
action at each time step, are discussed by Cesa-Bianchi and Lugosi (2006) and
Blum and Mansour (2007b). These sources, together with Foster and Vohra
(1999) and Arora et al. (2012), also cover the history of online decision-making
problems, no-regret algorithms, and important precursors to the multiplicative
weights algorithm such as “randomized weighted majority” and “hedge.” Key
references include Blackwell (1956), Hannan (1957), Littlestone and Warmuth
(1994), and Freund and Schapire (1997). Proposition 17.9 is already implicit in
Hannan (1957). Problems 17.2 and 17.4 are from Littlestone (1988) and Kalai
and Vempala (2005), respectively.

Exercises



Exercise 17.1 (H) Extend Corollary 17.7 to online decision-making problems
where actions’ costs lie in [‒cmax, cmax] rather than [‒1, 1], losing a factor of
c2

max in the number of time steps. You can assume that the value cmax is known
in advance.

Exercise 17.2 (H) The multiplicative weights algorithm requires advance
knowledge of the time horizon T to set the parameter η. Modify the algorithm so
that it does not need to know T a priori. Your algorithm should have expected
regret at most  for all sufficiently large T and for every

adversary, where b > 0 is a constant independent of n and T.

Exercise 17.3 (H) Prove Corollary 17.10.

Exercise 17.4 Proposition 17.9 proves that the time-averaged joint distribution 
 generated by no-regret dynamics is an approximate coarse

correlated equilibrium, but it says nothing about the outcome distribution σt in a
given iteration t. Prove that such a distribution σt is an approximate coarse
correlated equilibrium if and only if it is an approximate Nash equilibrium (with the
same additive error term).

Problems
Problem 17.1 Consider an online decision-making problem with n actions. Prove
that the worst-case expected regret of an online decision-making algorithm cannot
vanish faster than , where b > 0 is some constant independent

of n and T.

Problem 17.2 This problem considers a variant of the online decision-making
problem. There are n “experts,” where n is a power of 2.



Combining Expert Advice

At each time step t = 1, 2, …, T:

each expert offers a prediction of the realization of a binary event (e.g.,
whether a stock will go up or down)

a decision maker picks a probability distribution pt over the possible
realizations 0 and 1 of the event

the actual realization rt  {0, 1} of the event is revealed

a 0 or 1 is chosen according to the distribution pt, and a mistake occurs
whenever it is different from rt

You are promised that there is at least one omniscient expert who makes a
correct prediction at every time step.

(a) (H) A deterministic algorithm always assigns all of the probability mass in
pt to one of 0 or 1. Prove that the minimum worst-case number of
mistakes that a deterministic algorithm can make is precisely log2 n.

(b) Prove that for every randomized algorithm, there is a sequence of expert
predictions and event realizations such that the expected number of
mistakes made by the algorithm is at least  log2 n.

(c) (H) Prove that there is a randomized algorithm such that, for every
sequence of expert predictions and event realizations, the expected
number of mistakes is at most blog2 n, where b < 1 is a constant
independent of n. How small can you take b?

Problem 17.3 (H) Consider a k-agent cost-minimization game in which no agent
i incurs equal cost Ci(s) in two different outcomes. Prove the following converse
to Proposition 17.9: for every coarse correlated equilibrium σ of the game, there
exist choices of no-regret algorithms 1, …, k for the agents so that the time-
averaged history of the corresponding no-regret dynamics converges to σ as the
number of iterations T tends to infinity.

Problem 17.4 Example 17.4 shows that the follow-the-leader (FTL) algorithm,
and more generally every deterministic algorithm, fails to have no regret. This
problem outlines a randomized variant of FTL, the follow-the-perturbed-leader
(FTPL) algorithm, with worst-case expected regret comparable to that of the
multiplicative weights algorithm. We define each probability distribution pt over



actions implicitly through a randomized subroutine.

Follow-the-Perturbed-Leader (FTPL) Algorithm

for each action a  A do

independently sample a geometric random variable with parameter η,7
denoted by Xa

for each time step t = 1, 2, …, T do

choose the action a that minimizes the perturbed cumulative cost 
 so far

Fix an oblivious adversary, meaning a sequence c1…, cT of cost vectors. For
convenience, assume that, at every time step t, there is no pair of actions whose
(unperturbed) cumulative costs-so-far differ by an integer.

(a) (H) Prove that, at each time step t = 1, 2, …, T, with probability at least 1
− η, the smallest perturbed cumulative cost of an action prior to t is more
than 2 less than the second-smallest such perturbed cost.

(b) (H) As a thought experiment, consider the (unimplementable) algorithm
that, at each time step t, picks the action that minimizes the perturbed
cumulative , taking into account the

current cost vector. Prove that the regret of this algorithm is at most
maxa AXa.

(c) Prove that E[maxa A Xa] ≥ bη−1 ln n, where n is the number of actions
and b > 0 is a constant independent of η and n.

(d) (H) Prove that, for a suitable choice of η, the worst-case ex-pected regret
of the FTPL algorithm is at most , where b > 0 is a

constant independent of n and T.
(e) (H) How would you modify the FTPL algorithm and its analysis to

achieve the same regret guarantee with respect to adaptive adversaries?

1 In this context, “online” means that the protagonist must make a sequence of



decisions without knowledge of the future.

2 For extensions to costs in an interval [‒cmax, cmax], see Exercise 17.1.

3 The guarantees presented in this lecture carry over, with somewhat worse
bounds and more complex algorithms, to the bandit model in which the
decision maker only learns the cost of her chosen action.

4 This quantity can be negative, but it is positive for worst-case adversaries
(Example 17.5).

5 Strictly speaking, Definition 17.3 concerns a family of online decision-
making algorithms, one for each value of T (with the action set A fixed). See
Remark 17.8 and Exercise 17.2 for extensions to the scenario where T is not
known to the decision maker a priori.

6 Variants of this algorithm have been rediscovered many times; see the
Notes.

7 Equivalently, when repeatedly flipping a coin that comes up “heads” with
probability η, count the number of flips up to and including the first “heads.”



Lecture 18

Swap Regret and the Minimax Theorem

Lecture 17 proves that the coarse correlated equilibrium concept is tractable in a
satisfying sense: there are simple and computationally efficient learning
procedures that converge quickly to the set of coarse correlated equilibria in
every finite game. What can we say if we zoom in to one of the smaller sets in
our hierarchy of equilibrium concepts (Figure 13.1)? Sections 18.1 and 18.2
present a second and more stringent notion of regret, and use it to prove that the
correlated equilibrium concept is tractable in a similar sense. Sections 18.3 and
18.4 zoom in further to the mixed Nash equilibrium concept, and prove its
tractability in the special case of two-player zero-sum games.

18.1 Swap Regret and Correlated Equilibria
This lecture works with the definition of a correlated equilibrium given in Exercise
13.3, which is equivalent to Definition 13.4.

Definition 18.1 (Correlated Equilibrium) A distribution σ on the set S1 ×···×
Sk of outcomes of a cost-minimization game is a correlated equilibrium if for
every agent i  {1, 2, …, k} and swapping function δ : Si → Si,

Every correlated equilibrium is a coarse correlated equilibrium, and the converse
does not generally hold (Section 13.1.6).

Is there an analog of no-regret dynamics (Section 17.4) that converges to the
set of correlated equilibria in the sense of Proposition 17.9? For an affirmative
answer, the key is to define the appropriate more stringent notion of regret, which
compares the cost of an online decision-making algorithm to that of the best
swapping function in hindsight. This is a stronger benchmark than the best fixed
action in hindsight, since fixed actions correspond to the special case of constant
swapping functions.

Recall the model of online decision-making problems introduced in Section
17.1. At each time step t = 1, 2, …, T, a decision maker commits to a distribution
pt over her n actions A, then an adversary chooses a cost function ct: A → [‒1,



1], and finally an action at is chosen according to pt, resulting in cost ct(at) to the
decision maker.

Definition 18.2 (Swap Regret) Fix cost vectors c1, …, cT. The swap regret of
the action sequence a1 …, aT is

(18.1)

where the minimum ranges over all swapping functions δ.1

Definition 18.3 (No-Swap-Regret Algorithm) An online decision-making
algorithm  has no swap regret if for every  > 0 there exists a sufficiently
large time horizon T = T( ) such that, for every adversary for , the expected
swap regret is at most .

As with Definition 17.3, we think of the number n of actions as fixed and the time
horizon T tending to infinity, and we allow  to depend on T.

In every time step t of no-swap-regret dynamics, every agent i independently
chooses a mixed strategy  using a no-swap-regret algorithm. Cost vectors are

defined as in no-regret dynamics, with (si) the expected cost of the pure

strategy si  Si, given that every other agent j plays the mixed strategy . The

connection between correlated equilibria and no-swap-regret dynamics is the
same as that between coarse correlated equilibria and no-(external-)regret
dynamics.

Proposition 18.4 (No-Swap-Regret Dynamics and CE)
Suppose that after T iterations of no-swap-regret dynamics, each agent i = 1,
2, …, k of a cost-minimization game has expected swap regret at most . Let 

 denote the outcome distribution at iteration t and 

 the time-averaged history of these distributions. Then

σ is an approximate correlated equilibrium, in the sense that

for every agent i and swapping function δ : Si → Si.

Definitions 18.2–18.3 and Proposition 18.4 are all fine and good, but do any no-
swap-regret algorithms exist? The next result is a “black-box reduction” from the



problem of designing a no-swap-regret algorithm to that of designing a no-
external-regret algorithm.

Theorem 18.5 (Black-Box Reduction) If there is a no-external-regret
algorithm, then there is a no-swap-regret algorithm.

Combining Theorems 17.6 and 18.5, we conclude that no-swap-regret algorithms
exist. For example, plugging the multiplicative weights algorithm (Section 17.2)
into this reduction yields a no-swap-regret algorithm that is also computationally
efficient. We conclude that correlated equilibria are tractable in the same strong
sense as coarse correlated equilibria.

*18.2 Proof of Theorem 18.5
The reduction is very natural, one that you’d hope would work. It requires one
clever trick at the end of the proof.

Fix a set A = {1, 2, …, n} of actions. Let M1, …, Mn denote n different no-
(external)-regret algorithms, such as n instantiations of the multiplicative weights
algorithm. Each of these algorithms is poised to produce probability distributions
over the actions A and receive cost vectors as feedback. Roughly, we can think
of algorithm Mj as responsible for protecting against profitable deviations from
action j to other actions. Assume for simplicity that, as with the multiplicative
weights algorithm, the probability distribution produced by each algorithm Mj at a
time step t depends only on the cost vectors c1, …, ct−1 of previous time steps,
and not on the realized actions a1, …, at−1. This assumption lets us restrict
attention to oblivious adversaries (Section 17.3.1), or equivalently to cost vector
sequences c1, …, cT that are fixed a priori.

The following “master algorithm” M coordinates M1, …, Mn; see also Figure
18.1.

The Master Algorithm

for each time step t = 1, 2, …, T do

receive distributions  over the actions A from the

algorithms M1, …, Mn

compute and output a consensus distribution pt receive a cost vector ct

from the adversary give each algorithm Mj the cost vector pt(j)·ct

We discuss how to compute the consensus distribution pt from the distributions 



 at the end of the proof; this is the clever trick in the reduction. At

the end of a time step, the true cost vector ct is parceled out to the no-regret
algorithms, scaled according to the current relevance (i.e., pt(j)) of the algorithm.

Figure 18.1: Black-box reduction from swap-regret-minimization to external-
regret-minimization.

We hope to piggyback on the no-external-regret guarantee provided by each
algorithm Mj and conclude a no-swap-regret guarantee for the master algorithm
M. Let’s take stock of what we’ve got and what we want, parameterized by the
consensus distributions p1, …, pT.

Fix a cost vector sequence c1, …, cT. The time-averaged expected cost of the
master algorithm is



(18.2)

The time-averaged expected cost under a fixed swapping function δ: A → A is

(18.3)

Our goal is to prove that (18.2) is at most (18.3), plus a term that goes to 0 as T
tends to infinity, for every swapping function δ.

Adopt the perspective of an algorithm Mj. This algorithm believes that actions

are being chosen according to its recommended distributions  and

that the true cost vectors are p1(j) · c1, …, pT(j) · cT. Thus, algorithm Mj
perceives its time-averaged expected cost as

(18.4)

Since Mj is a no-regret algorithm, its perceived cost (18.4) is, up to a term Rj that
tends to 0 as T tends to infinity, at most that of every fixed action k  A. That is,
the quantity (18.4) is bounded above by

(18.5)

Now fix a swapping function δ. Summing the inequality between (18.4) and
(18.5) over all j = 1, 2, …, n, with k instantiated as δ(j) in (18.5), proves that

(18.6)

is at most



(18.7)

The expression (18.7) is equivalent to (18.3), up to a term  that goes

to 0 as T goes to infinity. Indeed, we chose the splitting of the cost vector ct

among the no-external-regret algorithms M1, …, Mn to guarantee this property.

We complete the reduction by showing how to choose the consensus
distributions p1, …, pT so that (18.2) and (18.6) coincide. For each t = 1, 2, …, T,
we show how to choose the consensus distribution pt so that, for each i  A,

(18.8)

The left-and right-hand sides of (18.8) are the coefficients of ct(i) in (18.2) and in
(18.6), respectively.

The key trick in the reduction is to recognize the equations (18.8) as those
defining the stationary distribution of a Markov chain. Precisely, given distributions

 from the algorithms M1, …, Mn at time step t, form the following

Markov chain (Figure 18.2): the set of states is A = {1, 2, …, n}, and for every i, j
 A, the transition probability from j to i is (i). That is, the distribution 

specifies the transition probabilities out of state j. A probability distribution pt

satisfies (18.8) if and only if it is a stationary distribution of this Markov chain. At
least one such distribution exists, and one can be computed efficiently using an
eigenvector computation (see the Notes). This completes the proof of Theorem
18.5.



Figure 18.2: Markov chain used to compute consensus distributions.

Remark 18.6 (Interpretation of Consensus Distributions)

The choice of the consensus distribution pt given the no-regret algorithms’
suggestions  follows from the proof approach, but it also has a

natural interpretation as the limit of an iterative decision-making process. Consider
asking some algorithm Mj1 for a recommended strategy. It gives a
recommendation j2 drawn from its distribution . Then ask algorithm Mj2 for a

recommendation j3, which it draws from its distribution , and so on. This

random process is effectively trying to converge to a stationary distribution pt of
the Markov chain defined in the proof of Theorem 18.5.

18.3 The Minimax Theorem for Zero-Sum Games
The rest of this lecture restricts attention to games with two agents. As per
convention, we call each agent a player, and use the payoff-maximization
formalism of games (Remark 13.1).



18.3.1 Two-Player Zero-Sum Games
A two-player game is zero-sum if, in every outcome, the payoff of each player is
the negative of the other. These are games of pure competition, with one player’s
gain the other player’s loss. A two-player zero-sum game can be specified by a
single matrix A, with the two strategy sets corresponding to the rows and
columns. The entry aij specifies the payoff of the row player in the outcome (i, j)
and the negative payoff of the column player in this outcome. Thus, the row and
column players prefer bigger and smaller numbers, respectively. We can assume
that all payoffs lie between −1 and 1, scaling the payoffs if necessary.

For example, the following matrix describes the payoffs in the Rock-Paper-
Scissors game (Section 1.3) in our current language.

Rock Paper Scissors
Rock 0 ‒1 1
Paper 1 0 ‒1

Scissors ‒1 1 0

Pure Nash equilibria (Definition 13.2) generally don’t exist in two-player zero-
sum games, so the analysis of such games focuses squarely on mixed Nash
equilibria (Definition 13.3), with each player randomizing independently according
to a mixed strategy. We use x and y to denote mixed strategies over the rows and
columns, respectively.

When payoffs are given by an m × n matrix A, the row strategy is x, and the
column strategy is y, we can write the expected payoff of the row player as

2

The column player’s expected payoff is the negative of this. Thus, the mixed
Nash equilibria are precisely the pairs  such that

and

18.3.2 The Minimax Theorem
In a two-player zero-sum game, would you prefer to commit to a mixed strategy
before or after the other player commits to hers? Intuitively, there is only a first-



mover disadvantage, since the second player can adapt to the first player’s
strategy. The Minimax theorem is the amazing statement that it doesn’t matter.

Theorem 18.7 (Minimax Theorem) For every two-player zero-sum game A,

(18.9)

On the left-hand side of (18.9), the row player moves first and the column player
second. The column player plays optimally given the strategy chosen by the row
player, and the row player plays optimally anticipating the column player’s
response. On the right-hand side of (18.9), the roles of the two players are
reversed. The Minimax theorem asserts that, under optimal play, the expected
payoff of each player is the same in the two scenarios. The quantity (18.9) is
called the value of the game A.

The Minimax theorem is equivalent to the statement that every two-player
zero-sum game has at least one mixed Nash equilibrium (Exercise 18.3). It also
implies the following “mix and match” property (Exercise 18.4): if (x1, y1) and
(x2, y2) are mixed Nash equilibria of the same two-player zero-sum game, then so
are (x1, y2) and (x2, y1).

*18.4 Proof of Theorem 18.7
In a two-player zero-sum game, it’s only worse to go first: if  is an optimal
mixed strategy for the row player when she plays first, she always has the option
of playing  when she plays second. Thus the left-hand side of (18.9) is at most
the right-hand side. We turn our attention to the reverse inequality.

Fix a two-player zero-sum game A with payoffs in [‒1, 1] and a parameter  
 (0, 1]. Suppose we run no-regret dynamics (Section 17.4) for enough iterations

T that both players have expected (external) regret at most . For example, if
both players use the multiplicative weights algorithm, then T = (4 ln(max{m, n}))/

2 iterations are enough, where m and n are the dimensions of A (Corollary
17.7).3

Let p1, …, pT and q1, …, qT be the mixed strategies played by the row and
column players, respectively, as advised by their no-regret algorithms. The payoff
vector revealed to each no-regret algorithm after iteration t is the expected payoff
of each strategy, given the mixed strategy played by the other player in iteration t.
This translates to the payoff vectors Aqt and (pt) A for the row and column
player, respectively.

Let



be the time-averaged mixed strategy of the row player,

the time-averaged mixed strategy of the column player, and

the time-averaged expected payoff of the row player.
Adopt the row player’s perspective. Since her expected regret is at most , for

every vector ei corresponding to a fixed pure strategy i, we have

Since an arbitrary mixed strategy x over the rows is just a probability distribution
over the ei’s, inequality (18.10) and linearity imply that

(18.11)

for every mixed strategy x.
A symmetric argument from the column player’s perspective, using that her

expected regret is also at most , shows that

(18.12)

for every mixed strategy y over the columns. Thus



(18.13)

where (18.13) and (18.14) follow from (18.12) and (18.11), respectively. Taking
the limit as  → 0 (and T → ∞) completes the proof of the Minimax theorem.

The Upshot

 The swap regret of an action sequence is the difference between the
time-averaged costs of the sequence and of the best swapping function
in hindsight.

 A no-swap-regret algorithm guarantees expected swap regret tending
to 0 as the time horizon tends to infinity.

 There is a black-box reduction from the problem of no-swap-regret
algorithm design to that of no-(external)-regret algorithm design.

 The time-averaged history of joint play in no-swap-regret dynamics
converges to the set of correlated equilibria.

 A two-player game is zero-sum if, in every outcome, the payoff of
each player is the negative of the other.

 The Minimax theorem states that, under optimal play in a two-player
zero-sum game, the expected payoff of a player is the same whether
she commits to a mixed strategy before or after the other player.

Notes
The close connection between no-swap-regret algorithms and correlated equilibria
is developed in Foster and Vohra (1997) and Hart and Mas-Colell (2000).
Theorem 18.5 is due to Blum and Mansour (2007a). Background on Markov
chains is in Karlin and Taylor (1975), for example. The first proof of the Minimax
theorem (Theorem 18.7) is due to von Neumann (1928). von Neumann and



Morgenstern (1944), inspired by Ville (1938), give a more elementary proof.
Dantzig (1951), Gale et al. (1951), and Adler (2013) make explicit the close
connection between the Minimax theorem and linear programming duality,
following the original suggestion of von Neumann (see Dantzig (1982)). Our proof
of the Minimax theorem, using no-regret algorithms, follows Freund and Schapire
(1999); a similar result is implicit in Hannan (1957). Cai et al. (2016) investigate
generalizations of the Minimax theorem to wider classes of games. Problems 18.2
and Problem 18.3 are from Freund and Schapire (1999) and Gilboa and Zemel
(1989), respectively.

Exercises
Exercise 18.1 (H) Prove that, for arbitrarily large T, the swap regret of an
action sequence of length T can exceed its external regret by at least T.

Exercise 18.2 In the black-box reduction in Theorem 18.5, suppose we take
each of the no-regret algorithms M1, …, Mn to be the multiplicative weights
algorithm (Section 17.2), where n denotes the number of actions. What is the
swap regret of the resulting master algorithm, as a function of n and T?

Exercise 18.3 Let A denote the matrix of row player payoffs of a two-player
zero-sum game. Prove that a pair  of mixed strategies forms a mixed Nash
equilibrium of the game if and only if it is a minimax pair, meaning

and

Exercise 18.4 (H) Prove that if (x1, y1) and (x2, y2) are mixed Nash equilibria
of a two-player zero-sum game, then so are (xl, y2) and (x2, y1).

Exercise 18.5 A two-player game is constant-sum if there is a constant a such
that, in every outcome, the sum of the players’ payoffs equals a. Does the
Minimax theorem (Theorem 18.7) hold in all constant-sum games?

Exercise 18.6 (H) Call a game with three players zero-sum if, in every
outcome, the payoffs of the three players sum to zero. Prove that, in a natural
sense, three-player zero-sum games include arbitrary two-player games as a
special case.

Problems



Problem 18.1 (H) Exhibit a (non-zero-sum) two-player game in which the time-
averaged history of joint play generated by no-regret dynamics need not converge
to a mixed Nash equilibrium.

Problem 18.2 Fix a two-player zero-sum game A with payoffs in [‒1, 1] and a
parameter   (0, 1]. Suppose that, at each time step t = 1, 2 …, T, the row
player moves first and uses the multiplicative weights algorithm to choose a mixed
strategy pt, and the column moves second and chooses a best response qt to pt.
Assume that T ≥ (4 ln m)/ 2, where m is the number of rows of A.

(a) Adopt the row player’s perspective to prove that the time-averaged
expected payoff  of the row player is at least

(b) Adopt the column player’s perspective to prove that the time-averaged
expected payoff of the row player is at most

(c) Use (a) and (b) to give an alternative proof of Theorem 18.7.

Problem 18.3 This problem and the next assume familiarity with linear
programming, and show that all of our computationally tractable equilibrium
concepts can be characterized by linear programs.

Consider a cost-minimization game with k agents that each have at most m
strategies. We can view a probability distribution over the outcomes O of the
game as a point  for which zs ≥ 0 for every outcome s and 

.

(a) (H) Exhibit a system of at most km additional inequalities, each linear in z,
such that the coarse correlated equilibria of the game are precisely the
distributions that satisfy all of the inequalities.

(b) Exhibit a system of at most km2 additional inequalities, each linear in z,
such that the correlated equilibria of the game are precisely the
distributions that satisfy all of the inequalities.

Problem 18.4 (H) Prove that the mixed Nash equilibria of a two-player zero-
sum game can be characterized as the optimal solutions to a pair of linear
programs. 



1 Internal regret is a closely related notion, and is defined using the best single
swap from one action to another in hindsight, rather than the best swapping
function. The swap and internal regret of an action sequence differ by at most
a factor of n.

2 The symbol “ ” denotes vector or matrix transpose.

3 In Lecture 17, the multiplicative weights algorithm and its guarantee are
stated for cost-minimization problems. Viewing payoffs as negative costs, they
carry over immediately to the present setting.



Lecture 19

Pure Nash Equilibria and -
Completeness

The final two lectures study the limitations of learning dynamics and
computationally efficient algorithms for converging to and computing equilibria,
and develop analogs of -completeness that are tailored to equilibrium
computation problems. After setting the stage by reviewing our positive results
and motivating the use of computational complexity theory (Section 19.1), this
lecture develops the theory of -completeness (Section 19.2) and applies it
to give evidence that computing a pure Nash equilibrium of a congestion game is
an intractable problem (Section 19.3).

This lecture and the next assume basic familiarity with polynomial-time
algorithms and -completeness (see the Notes for references).

19.1 When Are Equilibrium Concepts Tractable?

19.1.1 Recap of Tractability Results
Lectures 16–18 prove four satisfying equilibrium tractability results, stating that
simple and natural dynamics converge quickly to an approximate equilibrium. See
also Figure 19.1. These results support the predictive power of these equilibrium
concepts.



Four Tractability Results

1. (Corollary 17.7 and Proposition 17.9) In every game, the time-averaged
history of joint play of no-regret dynamics converges quickly to an
approximate coarse correlated equilibrium (CCE).

2. (Proposition 18.4 and Theorem 18.5) In every game, the time-averaged
history of joint play of no-swap-regret dynamics converges quickly to
an approximate correlated equilibrium (CE).

3. (Corollary 17.7 and Theorem 18.7) In every two-player zero-sum game,
the time-averaged history of joint play of no-regret dynamics
converges quickly to an approximate mixed Nash equilibrium (MNE).

4. (Theorem 16.3) In every atomic routing game where all agents share
the same origin and destination, many variants of -best-response
dynamics converge quickly to an approximate pure Nash equilibrium
(PNE).



Figure 19.1: Tractability results for the hierarchy of equilibrium concepts.
“Tractable” means that simple and natural dynamics converge quickly to an
approximate equilibrium, and also that there are polynomial-time algorithms
for computing an exact equilibrium.

Can we prove stronger tractability results? For example, can simple dynamics
converge quickly to approximate MNE in general two-player games, or to
approximate PNE in general atomic selfish routing games?

19.1.2 Dynamics vs. Algorithms
With an eye toward intractability results, we weaken our standing notion of
tractability from

Are there simple and natural dynamics that converge quickly to a given
equilibrium concept in a given class of games?

to
Is there an algorithm that computes quickly a given equilibrium concept in a
given class of games?

Technically, by “quickly” we mean that the number of iterations required for
convergence or the number of elementary operations required for computation is
bounded by a polynomial function of the number of parameters needed to specify
all of the agents’ cost or payoff functions.1 For instance, knk parameters are
required to define all of the costs or payoffs of an arbitrary game with k agents
with n strategies each (k payoffs per outcome). Special classes of games often
have compact descriptions with much fewer than knk parameters. For example, in
an atomic selfish routing game with k agents and m edges, mk parameters suffice
to specify fully the agents’ cost functions (the cost ce(i) of each edge e for each i 

 {1, 2, …, k}).
One particular type of algorithm for computing an approximate equilibrium is to

simulate a choice of dynamics until it (approximately) converges. Provided each
iteration of the dynamics can be simulated in polynomial time and that the
dynamics requires only a polynomial number of iterations to converge, the induced
algorithm runs in polynomial time. This is the case for the four tractability results
reviewed in Section 19.1.1, provided no-regret and no-swap-regret dynamics are
implemented using a computationally efficient subroutine like the multiplicative
weights algorithm. We conclude that the second goal is weaker than the first, and
hence impossibility results for it are only stronger.

In all four of the settings mentioned in Section 19.1.1, there are also
polynomial-time algorithms for computing an exact equilibrium that are not based
on any natural dynamics (Problems 18.3, 18.4, and 19.1). These exact algorithms



seem far removed from any reasonable model of how agents learn in strategic
environments.

19.1.3 Toward Intractability Results
There is no simple learning procedure that is known to converge quickly to
approximate MNE in general two-player games or to approximate PNE in general
atomic selfish routing games. There are not even any known polynomial-time
algorithms for computing such equilibria. Do we merely need a new and clever
idea, or are such results impossible? How might we prove limitations on
equilibrium tractability?

These questions are in the wheelhouse of computational complexity theory.
Why is it so easy to come up with polynomial-time algorithms for the minimum-
spanning tree problem and so difficult to come up with one for the traveling
salesman problem? Could it be that no efficient algorithm for the latter problem
exists? If so, how can we prove it? If we can’t prove it, how can we nevertheless
amass evidence of computational intractability? These questions are addressed by
the theory of -completeness. This lecture and the next assume basic
knowledge of this theory and describe analogs of -completeness for
equilibrium computation problems.

19.2 Local Search Problems
This section is a detour into a branch of complexity theory designed to reason
about local search problems. The resulting theory is perfectly suited to provide
evidence of the inherent intractability of computing a PNE of an atomic selfish
routing game. Briefly, the connection is that computing a PNE of such a game is
equivalent to computing a local minimum of the potential function defined in
(13.7).

19.2.1 Canonical Example: The Maximum Cut
Problem

A canonical problem through which to study local search is the maximum cut
problem. The input is an undirected graph G = (V, E) with a nonnegative weight
we ≥ 0 for each edge e  E. Feasible solutions correspond to cuts (X, ),
where (X, ) is a partition of V into two sets. The objective is to maximize the
total weight of the cut edges, meaning the edges with one endpoint in each of X
and .2 The maximum cut problem is -hard, so assuming that 

, there is no polynomial-time algorithm that solves it.

Local search is a natural heuristic that is useful for many -hard
problems, including the maximum cut problem. The algorithm is very simple.



Local Search for Maximum Cut
initialize with an arbitrary cut (X, )

while  there is an improving local move do take an arbitrary such move

By a local move, we mean moving a single vertex v from one side of the cut to
the other. For example, when moving a vertex v from X to , the increase in
objective function value is

(19.1)

If the difference in (19.1) is positive, then this is an improving local move. Local
search stops at a solution with no improving local move, a local optimum. A local
optimum need not be a global optimum (Figure 19.2).



Figure 19.2: A local maximum of a maximum cut instance that is not a
global maximum. The cut (X, V \ X) has objective function value 15, and every
local move results in a cut with smaller objective function value. The
maximum cut value is 17.

We can visualize local search as a walk in a directed graph H (Figure 19.3).
For a maximum cut instance with input graph G, vertices of H correspond to cuts
of G. Each directed edge of H represents an improving local move from one cut
to another. There can be no cycle of such moves, so H is a directed acyclic
graph. Vertices with no outgoing edges—sink vertices of the graph H—
correspond to the local optima. Local search repeatedly follows outgoing edges of
H until it reaches a sink vertex.

Figure 19.3: Local search can be visualized as a walk in a directed acyclic
graph. Vertices correspond to feasible solutions, edges to improving local
moves, and sink vertices to local minima.

Since there are only more local optima than global optima, they are only easier
to find. For example, consider the special case of maximum cut instances in
which every edge has weight 1. Computing a global maximum remains an -
hard problem, but computing a local maximum is easy. Because the objective
function in this case can only take on values in the set {0, 1, 2, …, |E|}, local



search stops (at a local maximum) within at most |E| iterations.
There is no known polynomial-time algorithm, based on local search or

otherwise, for computing a local optimum of a maximum cut instance with
arbitrary nonnegative edge weights. How might we amass evidence that no such
algorithm exists?

The strongest negative result would be an “unconditional” one, meaning a proof
with no unproven assumptions that there is no polynomial-time algorithm for the
problem. No one knows how to prove unconditional results like this, and such a
result would separate  from . The natural next goal is to prove that the
problem is -hard, and therefore admits a polynomial-time algorithm only if 

. Lecture 20 explains why this is also too strong a negative result to
shoot for. Instead, we develop an analog of -completeness tailored to local
search problems. As a by-product, we also obtain strong unconditional lower
bounds on the worst-case number of iterations required by local search to reach a
local optimum.

19.2.2 : Abstract Local Search Problems
This section and the next make precise the idea that the problem of computing a
local optimum of a maximum cut instance is as hard as any other local search
problem. This statement is in the spirit of an -completeness result, which
establishes that a problem is as hard as any problem with efficiently verifiable
solutions. For such “hardest” local search problems, we don’t expect any clever,
problem-dependent algorithms that always improve significantly over local search.
This parallels the idea that for -complete problems, we don’t expect any
algorithms that always improve significantly over brute-force search.

What could we mean by “any other local search problem?” For an analogy,
recall that an  problem is defined by a polynomial-time verifier of alleged
solutions to a given instance, like truth assignments to the variables of a logical
formula or potential Hamiltonian cycles of a graph. In some sense, an efficient
verifier of purported solutions is the minimal ingredient necessary to execute
brute-force search through all possible solutions, and  is the class of
problems that admit such a brute-force search procedure. So what are the
minimal ingredients necessary to run local search?

An abstract local search problem can be a maximization or a minimization
problem. One is specified by three algorithms, each running in time polynomial in
the input size.



Ingredients of an Abstract Local Search Problem

1. The first polynomial-time algorithm takes as input an instance and
outputs an arbitrary feasible solution.

2. The second polynomial-time algorithm takes as input an instance and a
feasible solution, and returns the objective function value of the
solution.

3. The third polynomial-time algorithm takes as input an instance and a
feasible solution and either reports “locally optimal” or produces a
solution with better objective function value.3

For example, in the maximum cut problem, the first algorithm can just output an
arbitrary cut. The second algorithm computes the total weight of the edges
crossing the given cut. The third algorithm checks all |V| local moves. If none are
improving, it outputs “locally optimal”; otherwise, it takes some improving local
move and outputs the resulting cut.

Every abstract local search problem admits a local search procedure that uses
the given three algorithms as subroutines in the obvious way. Given an instance,
the generic local search procedure uses the first algorithm to obtain an initial
solution, and iteratively applies the third algorithm until a local optima solution is
reached.4 Since the objective function values of the candidate solutions strictly
improve until a local optima solution is found, and since there is only a finite
number of feasible solutions, this procedure eventually stops.5

As in the maximum cut problem, this local search procedure can be visualized
as a walk in a directed acyclic graph (Figure 19.3)—the first algorithm identifies
the starting vertex, and the third algorithm the sequence of outgoing edges.
Because the number of feasible solutions can be exponential in the input size, this
local search procedure could require more than a polynomial number of iterations
to complete.

The goal in an abstract local search problem is to compute a local optimum, or
equivalently to find a sink vertex of the corresponding directed acyclic graph. This
can be done by running the generic local search procedure, but any correct
algorithm for computing a local optimum is also allowed. The complexity class 

 is, by definition, the set of all such abstract local search problems.6 Most
if not all of the local search problems that you’ve ever seen can be cast as
problems in .

19.2.3 -Completeness



Our goal is to prove that the problem of computing a local optimum of a maximum
cut instance is as hard as any other local search problem. Having formalized “any
other search problem,” we now formalize the phrase “as hard as.” This is done
using polynomial-time reductions, as in the theory of -completeness.

Formally, a reduction from a problem L1   to a problem L2  
 consists of two polynomial-time algorithms with the following properties.

A  Reduction

1. Algorithm  maps every instance x  L1 to an instance (x) 
L2.

2. Algorithm  maps every local optimum of (x) to a local optimum
of x.

The definition of a reduction ensures that if we can solve the problem L2 in
polynomial time then, by combining the solution with algorithms  and , we
can also solve the problem L1 in polynomial time (Figure 19.4).

Figure 19.4: A reduction from L1 to L2 transfers solvability from 
problem L2 to  problem L1.

Definition 19.1 ( -Complete Problem) A problem L is -
complete if L   and every problem in  reduces to it.

By definition, there is a polynomial-time algorithm for solving a -complete
problem if and only if every  problem can be solved in polynomial time.7

A -complete problem is a single local search problem that
simultaneously encodes every local search problem. If we didn’t already have the
remarkable theory of -completeness to guide us, we might not believe that



a -complete problem could exist. But just like -complete problems, 
-complete problems do exist. Even more remarkably, many natural and

practically relevant problems are -complete, including the maximum cut
problem.

Theorem 19.2 (Maximum Cut is -Complete) Computing a local
maximum of a maximum cut instance with general nonnegative edge weights
is a -complete problem.

The proof of Theorem 19.2 is difficult and outside the scope of this book (see the
Notes).

We already mentioned the conditional result that, unless every  problem
can be solved in polynomial time, there is no polynomial-time algorithm, based on
local search or otherwise, for any -complete problem. Independent of
whether or not all  problems can be solved in polynomial time, the proof of
Theorem 19.2 implies that the specific algorithm of local search requires
exponential time in the worst case.

Theorem 19.3 (Lower Bounds for Local Search) Computing a local
maximum of a maximum cut instance with general nonnegative edge weights
using local search can require an exponential (in |V|) number of iterations,
no matter how an improving local move is chosen in each iteration.

19.3 Computing a PNE of a Congestion Game

19.3.1 Computing a PNE as a  Problem
Section 13.2.3 introduces congestion games as a natural generalization of atomic
selfish routing games in which strategies are arbitrary subsets of a ground set,
rather than paths in a graph. Thus a congestion game is described by a set E of
resources (previously, the edges), an explicitly described strategy set Si ⊆ 2E for
each agent i = 1, 2, …, k (previously, the oi-di paths), and the possible costs ce(1),
…, ce(k) for each resource e  E. The cost Ci(s) of an agent in an outcome s
remains the sum Σe si

 ce(ne(s)) of the costs of the resources she uses, where
ne(s) denotes the number of agents in the outcome s  that use a strategy that
includes the resource e.

All of our major results for atomic selfish routing games (Theorems 12.3, 13.6
and 16.3) hold more generally, with exactly the same proofs, for the analogous
classes of congestion games. In particular, every congestion game is a potential
game (Section 13.3) with the potential function



(19.2)

satisfying

(19.3)

for every outcome s , agent i, and unilateral deviation  by i.

We claim that the problem of computing a PNE of a congestion game is a 
 problem. This follows from the correspondence between best-response

dynamics (Section 16.1) in a congestion game and local search with respect to the
potential function (19.2). Proving the claim formally involves describing the three
polynomial-time algorithms that define a  problem. The first algorithm
takes as input a congestion game, described via agents’ strategy sets and the
resource cost functions, and returns an arbitrary outcome, such as the one in
which each agent chooses her first strategy. The second algorithm takes a
congestion game and an outcome s , and returns the value of the potential function
(19.2). The third algorithm checks whether or not the given outcome is a PNE, by
considering each unilateral deviation of each agent.8 If so, it reports “locally
optimal”; if not, it executes an iteration of best-response dynamics and returns the
resulting outcome, which by (19.3) has a smaller potential function value.

19.3.2 Computing a PNE is a -Complete
Problem

Computing a PNE of a congestion game is as hard as every other local search
problem.9

Theorem 19.4 (Computing a PNE is -Complete) The problem of
computing a PNE of a congestion game is -complete.

Proof: Since reductions are transitive, we only need to exhibit a reduction from
some -complete problem to the problem of computing a PNE of a
congestion game. We give a reduction from the problem of computing a local
maximum of a maximum cut instance, which is -complete (Theorem
19.2).

The first polynomial-time algorithm  of the reduction is given as input a
graph G = (V, E) with nonnegative edge weights {we}e E. The algorithm
constructs the following congestion game.

1. Agents correspond to the vertices V.



2. There are two resources for each edge e  E, re and .
3. Agent v has two strategies, each comprising |δ(v)| resources, where δ(v) is

the set of edges incident to v in G: {re}e δ(v) and .

4. A resource re or  with e = (u, v) can only be used by the agents
corresponding to u and v. The cost of such a resource is 0 if used by only
one agent, and we if used by two agents.

This construction can be carried out in polynomial time.
The key point is that the PNE of this congestion game are in one-to-one

correspondence with the local optima of the given maximum cut problem. We
prove this using a bijection between the 2|V| outcomes of this congestion game and
cuts of the graph G, where the cut (X, ) corresponds to the outcome in which
every agent corresponding to v  X (respectively, v  ) chooses her strategy
that contains resources of the form re (respectively, ).

This bijection maps cuts (X, ) of G with weight w(X, ) to outcomes with
potential function value (19.2) equal to W − w(X, ), where W = Σe E we

denotes the sum of the edges’ weights. To see this, fix a cut (X, ). For an edge
e cut by (X, ), each resource re and  is used by only one agent and hence
contributes 0 to (19.2). For an edge e not cut by (X, ), two agents use one of
re,  and none use the other. These two resources contribute we and 0 to (19.2)
in this case. We conclude that the potential function value of the corresponding
outcome is the total weight of the edges not cut by (X, ), or W − w(X, ).

Cuts of G with larger weight thus correspond to outcomes with smaller
potential function value, so locally maximum cuts of G are in one-to-one
correspondence with the local minima of the potential function. By (19.3), the
local minima of the potential function are in one-to-one correspondence with the
PNE of the congestion game.

The second algorithm  of the reduction simply translates a PNE of the
congestion game constructed by  to the corresponding locally maximum cut of
G. 

The reduction in the proof of Theorem 19.4 establishes a one-to-one
correspondence between improving moves in a maximum cut instance and
beneficial unilateral deviations in the constructed congestion game. Thus, the
unconditional lower bound on the number of iterations required for local search to
converge in the maximum cut problem (Theorem 19.3) translates to a lower
bound on the number of iterations required by best-response dynamics to
converge in a congestion game.

Corollary 19.5 (Lower Bound for Best-Response Dynamics) Computing a
PNE of a k-agent congestion game using best-response dynamics can



require an exponential (in k) number of iterations, no matter how a
beneficial unilateral deviation is chosen in each iteration.

Lower bounds like Corollary 19.5 are often much easier to prove via reductions
than from scratch.

19.3.3 Symmetric Congestion Games
We conclude this lecture with another reduction that extends Theorem 19.4 and
Corollary 19.5 to the special case of symmetric congestion games, where every
agent has the same set of strategies. Such games generalize atomic selfish routing
games in which all agents have a common origin vertex and a common destination
vertex.10

Theorem 19.6 ( -Completeness in Symmetric Games) The
problem of computing a PNE of a symmetric congestion game is -
complete.

As with Corollary 19.5, the proof of Theorem 19.6 implies unconditional lower
bounds on the number of iterations required for convergence in best-response
dynamics (Exercise 19.4).

Corollary 19.7 (Lower Bound for Best-Response Dynamics) Computing a
PNE of a k-agent symmetric congestion game using best-response dynamics
can require an exponential (in k) number of iterations, no matter how a
beneficial unilateral deviation is chosen in each iteration.

Why don’t Theorem 19.6 and Corollary 19.7 contradict Theorem 16.3, which
states that -best-response dynamics converges quickly in symmetric congestion
games? The reason is that -best-response dynamics only converges to an
approximate PNE, while Theorem 19.6 asserts the intractability of computing an
exact PNE.11 Thus, Theorem 19.6 and Corollary 19.7 provide an interesting
separation between the tractability of exact and approximate PNE, and between
the convergence properties of best-response and -best-response dynamics, in
symmetric congestion games.

Proof of Theorem 19.6: We reduce the problem of computing a PNE of a
general congestion game, which is -complete (Theorem 19.4), to that of
computing a PNE of a symmetric congestion game. Given a general congestion
game with resources E and k agents with arbitrary strategy sets S1, …, Sk, the
first polynomial-time algorithm  of the reduction constructs a “symmetrized”
version. The agent set remains the same. The new resource set is E ∪ {r1, …,
rk}. Resources of E retain their cost functions. The cost function of each new
resource ri is defined to be zero if used by only one agent, and extremely large if
used by two or more. Each strategy of Si is supplemented by the resource ri, and
any agent can use any one of these augmented strategies. That is, the common



strategy set of all agents is {si ∪ {ri}: i  {1, 2, …, k}, si  Si}. We can think
of an agent choosing a strategy containing resource ri as adopting the identity of
agent i in the original game. The key insight is that at a PNE of the constructed
symmetric game, each agent adopts the identity of exactly one agent of the
original game. This is due to the large penalty incurred by two agents that choose
strategies that share one of the new resources. The algorithm  can easily
map such a PNE to a PNE of the original congestion game, completing the
reduction. 

The Upshot

 Simple and natural dynamics converge quickly to approximate CCE
and approximate CE in arbitrary games, to approximate MNE in two-
player zero-sum games, and to approximate PNE in symmetric
congestion games.
 Designing an algorithm that computes an (approximate) equilibrium
quickly is a weaker goal than proving fast convergence of simple
dynamics.
  is the class of abstract local search problems, and it includes
the problems of computing a locally maximum graph cut and of
computing a PNE of a congestion game.
 A problem is -complete if every problem in  reduces to
it.
 There is a polynomial-time algorithm for a -complete problem if
and only if every  problem can be solved in polynomial time.
Most experts believe that -complete problems cannot be solved
in polynomial time.
 Computing a PNE of a congestion game is a -complete
problem, even in the special case of symmetric congestion games.
 Best-response dynamics can require an exponential number of
iterations to converge to a PNE in a congestion game, even in the
special case of a symmetric congestion game.

Notes
Garey and Johnson (1979) is an accessible introduction to the theory of -
completeness; see also Roughgarden (2010b) for examples germane to
algorithmic game theory. The definition of the complexity class  is due to
Johnson et al. (1988), who also provided several examples of -complete



problems and proved unconditional lower bounds on the worst-case number of
iterations required by local search to compute a local optimum in these problems.
Theorems 19.2 and 19.3 are proved in Schäffer and Yannakakis (1991). All of the
results in Section 19.3, and also Problem 19.1(a), are from Fabrikant et al. (2004).
Problem 19.1(b) is from Fotakis (2010). Fabrikant et al. (2004) also show that
computing a PNE of an atomic selfish routing game with multiple origins and
destinations is a -complete problem. Skopalik and Vöcking (2008) show
that, in general atomic selfish routing games, Theorem 19.4 and Corollary 19.5
hold even for the problem of computing an -PNE and for -best-response
dynamics, respectively. The problem of computing an exact or approximate
correlated equilibrium in time polynomial in the number of agents (cf., Exercises
19.1–19.2) is addressed by Papadimitriou and Roughgarden (2008) and Jiang and
Leyton-Brown (2015) for compactly represented games like congestion games,
and by Hart and Nisan (2013) for general games.

Exercises
Exercise 19.1 Assume for this exercise that an optimal solution to a linear
program, if one exists, can be computed in time polynomial in the size of the linear
program’s description. Use this fact and Problem 18.3 to give an algorithm for
computing the correlated equilibrium of a general cost-minimization game with the
minimum expected sum of agents’ costs. Your algorithm should run in time
polynomial in the description length of the game.

Exercise 19.2 (H) Does Exercise 19.1 imply that a correlated equilibrium of a
congestion game can be computed in time polynomial in the game’s description?

Exercise 19.3 (H) Prove that the following problem is -complete: given a
description of a general congestion game and a real-valued target τ, decide
whether or not the game has a PNE with cost at most τ.

Exercise 19.4 Explain why the reduction in the proof of Theorem 19.6 implies
Corollary 19.7.

Exercise 19.5 Given a general atomic selfish routing game with origins o1, …,
ok and destinations d1, …, dk, construct a symmetric such game by adding new
origin and destination vertices o and d, and new directed edges (o, o1), …, (o, ok)
and (d1, d), …, (dk, d), each with a cost function that is zero with one agent and
extremely large with two or more agents.

Why doesn’t this idea lead to a reduction, analogous to that in the proof of
Theorem 19.6, from the problem of computing a PNE of a general atomic selfish
routing game to that of computing a PNE of a symmetric such game?

Problems



Problem 19.1 This problem considers atomic selfish routing networks with a
common origin vertex o and a common destination vertex d.

(a) (H) Prove that a PNE can be computed in time polynomial in the
description length of the game. As usual, assume that each edge cost
function is nondecreasing.

(b) (H) Suppose the network is just a collection of parallel edges from o to d,
with no other vertices. Prove a converse to Theorem 13.6: every
equilibrium flow minimizes the potential function (13.6).

(c) Show by example that (b) does not hold in general networks with a
common origin vertex and a common destination vertex.

1 To be fully rigorous, we should also keep track of the number of bits required
to describe these costs or payoffs. We omit further discussion of this issue.

2 Graph cuts are usually defined with the additional restriction that both sides
are nonempty. Permitting empty cuts as feasible solutions does not change the
maximum cut problem.

3 We’re glossing over some details. For example, all algorithms should check if
the given input is a legitimate encoding of an instance. There is also some
canonical interpretation when an algorithm misbehaves, by running too long or
outputting something invalid. For example, we can interpret the output of the
third algorithm as “locally optimal” unless it outputs a feasible solution better
than the previous one, as verified by the second algorithm, within a specified
polynomial number of steps. These details guarantee that a generic local
search procedure, which uses these three algorithms only as “black boxes,”
eventually stops with a local optimum.

4 The purpose of the second algorithm is to keep the third algorithm honest,
and ensure that each solution produced does indeed have better objective
function value than the previous one. If the third algorithm fails to produce an
improved solution, the generic procedure can interpret its output as “locally
optimal.”

5 The three algorithms run in polynomial time, which implicitly forces feasible
solutions to have polynomial description length. Hence, there are at most
exponentially many feasible solutions.



6 The letters in  stand for “polynomial local search.”

7 Most researchers believe that -complete problems cannot be solved
in polynomial time, though confidence is not quite as strong as for the 

 conjecture.

8 Because the strategy set of each agent is given explicitly as part of the input,
this algorithm runs in time polynomial in the length of the game’s description.

9 Changing the goal to computing all PNE or a PNE that meets additional
criteria can only result in a harder problem (e.g., Exercise 19.3). Intractability
results are most compelling for the easier problem of computing an arbitrary
PNE.

10 The problem of computing a PNE of a symmetric atomic selfish routing
game can be solved in polynomial time (Problem 19.1), so it is probably not 

-complete.

11 Our proof of Theorem 19.6 also violates the α-bounded jump assumption
made in Theorem 16.3, but the proof can be modified to respect this condition.



Lecture 20

Mixed Nash Equilibria and -
Completeness

This lecture continues our study of the limitations of learning dynamics and
polynomial-time algorithms for converging to and computing equilibria, with a
focus on mixed Nash equilibria (MNE). The theory of -completeness,
which resembles that of -completeness except for certain details, provides
evidence that the problem of computing a MNE of a general two-player game is
computationally intractable. This suggests that the positive results in Lecture 18
for two-player zero-sum games cannot be extended to a significantly larger class
of games.

Section 20.1 formally defines the problem of computing a MNE of a bimatrix
game. Section 20.2 explains why -completeness is not the right intractability
notion for the problem, or for the  problems studied in Lecture 19. Section
20.3 formally defines the complexity class , the class for which
computing a MNE is a complete problem. Section 20.4 describes a canonical 

 problem inspired by Sperner’s lemma, while Section 20.5 explains
why computing a MNE of a bimatrix game is a  problem. Section 20.6
discusses the ramifications of the -completeness of this problem.

20.1 Computing a MNE of a Bimatrix Game
A two-player game that is not necessarily zero-sum is called a bimatrix game. A
bimatrix game can be specified by two m × n payoff matrices A and B, one for
the row player, one for the column player. In zero-sum games, B = −A. We
consider the problem of computing a mixed Nash equilibrium (MNE) of a bimatrix
game, or equivalently mixed strategies  and  over the rows and columns such
that

(20.1)

for all row mixed strategies x and

(20.2)



for all column mixed strategies y.
There is no known polynomial-time algorithm for computing a MNE of a

bimatrix game, despite significant effort by many experts. This lecture develops
the appropriate complexity theory for arguing that the problem may be inherently
intractable. The goal is to prove that the problem is complete for a suitable
complexity class. But which class? Before providing the solution in Section 20.3,
Section 20.2 explains why plain old -completeness is not the right
intractability notion for equilibrium computation problems.

20.2 Total  Search Problems ( )

20.2.1  Search Problems ( )
An  problem is defined by a polynomial-time verifier of alleged solutions to
a given instance, and the inputs accepted by the verifier are called the witnesses
for the instance.  problems are traditionally defined as decision problems,
where the correct answer to an instance is either “yes” or “no,” depending on
whether or not the instance has at least one witness.

Equilibrium computation problems are not decision problems, as the output
should be a bona fide equilibrium. To address this typechecking error, we work
with the complexity class , which stands for “functional .” 

 problems are just like  problems except that, for “yes” instances,
a witness must be produced. These are also called search problems.

An algorithm for a  problem takes as input an instance of an 
problem, like an encoding of a logical formula or an undirected graph. The
responsibility of the algorithm is to output a witness for the instance, like a
satisfying truth assignment or a Hamiltonian cycle, provided one exists. If no
witnesses exist for the instance, then the algorithm should output “no.” 
denotes the subclass of  problems that can be solved by a polynomial-
time algorithm.

A reduction from one search problem L1 to another one L2 is defined as in
Section 19.2.3 via two polynomial-time algorithms, the first algorithm 
mapping instances x of L1 to instances (x) of L2, the second algorithm 

mapping witnesses of (x) to witnesses of x (and “no” to “no”).1

The class  of local search problems, defined in Section 19.2, is a subset
of . The witnesses of an instance of a  problem are its local
optima, and the third algorithm in the  problem description acts as an
efficient verifier of witnesses. In fact, the third algorithm of a  problem
does considerably more than is asked of an  verifier. When this algorithm is
given a solution that is not locally optimal, it does not merely say “no,” and instead



offers an alternative solution with superior objective function value.
The problem of computing a MNE of a bimatrix game also belongs to 

. This assertion boils down to an efficient solution to the problem of
checking whether or not given mixed strategies  and  of a given bimatrix
game (A, B) constitute a MNE. While the equilibrium conditions (20.1) and (20.2)
reference an infinite number of mixed strategies, it is enough to check only the
pure-strategy deviations (cf., Exercise 13.1), and this can be done in polynomial
time.2

20.2.2  Search Problems with Guaranteed
Witnesses

Could computing a MNE of a bimatrix game be -complete? Being as
hard as every problem in  would constitute strong evidence of
intractability. Intriguingly, -completeness would have astonishing
consequences.

Theorem 20.1 (Computing a MNE Not -Complete) The problem
of computing a MNE of a bimatrix game is not -complete unless 

.

While  doesn’t immediately imply that ,
experts regard it as an equally unlikely state of affairs. For example, if 

, then the -complete unsatisfiability problem has
short and efficiently verifiable proofs of membership. Convincing someone that a
formula in propositional logic is satisfiable is easy enough—just exhibit a satisfying
truth assignment. But how would you quickly convince someone that none of the
exponentially many truth assignments satisfy a formula? Most researchers believe
that there is no way to do it, or equivalently that . If this is
indeed the case, then Theorem 20.1 implies that the problem of computing a MNE
of a bimatrix game is not -complete.

Proof of Theorem 20.1: The proof is short but a bit of a mind-bender. Suppose
there is a reduction, in the same sense of the  reductions described in
Section 19.2.3, from the functional SAT problem to the problem of computing a
MNE of a bimatrix game. By definition, the reduction comprises two algorithms:

1. A polynomial-time algorithm  that maps every SAT formula  to a
bimatrix game ( ).

2. A polynomial-time algorithm  that maps every MNE ( , ) of a game
( ) to a satisfying assignment ( , ) of , if one exists, and to



the string “no” otherwise.

See also Figure 20.1.

Figure 20.1: A reduction from the functional SAT problem to the problem of
computing a MNE of a bimatrix game. Such a reduction would yield a
polynomial-time verifier for the unsatisfiability problem.

We claim that the existence of these algorithms  and  imply that 
. In proof, consider an unsatisfiable SAT formula , and an

arbitrary MNE ( , ) of the game ( ).3 We claim that ( , ) is a short,
efficiently verifiable proof of the unsatisfiability of , implying that 

. Given an alleged certificate ( , ) that  is unsatisfiable,
the verifier performs two checks: (1) compute the game ( ) using algorithm 

 and verify that ( , ) is a MNE of ( ); (2) use the algorithm  to
verify that ( , ) is the string “no.” This verifier runs in time polynomial in
the description lengths of  and ( , ). If ( , ) passes both of these tests,
then correctness of the algorithms  and  implies that  is unsatisfiable. 

What’s really going on in the proof of Theorem 20.1 is a mismatch between a 
-complete problem like the functional version of SAT, where an instance

may or may not have a witness, and a problem like computing a MNE, where
every instance has at least one witness. While the correct answer to a SAT
instance might well be “no,” a correct answer to an instance of MNE
computation is always a MNE.

The subset of  problems for which every instance has at least one
witness is called , for “total functional .” The proof of
Theorem 20.1 shows more generally that if any  problem is 

-complete, then . In particular, since every instance
of a  problem has at least one witness—local search has to stop
somewhere, necessarily at a local optimum—  is a subset of .



Hence no  problem, such as computing a PNE of a congestion game, can
be -complete unless .

Theorem 20.2 (  Problems Not -Complete) No 
problem is -complete, unless .

Theorem 20.2 justifies the development in Lecture 19 of -completeness, a
weaker analog of -completeness tailored for local search problems.

20.2.3 Syntactic vs. Semantic Complexity Classes
Membership in  precludes proving that computing a MNE of a
bimatrix game is -complete (unless ). The sensible
refined goal is to prove that the problem is -complete, and hence as
hard as any other problem in .

Unfortunately, -completeness is also too ambitious a goal. The
reason is that  does not seem to have complete problems. To explain,
think about the complexity classes that are known to have complete problems—

 of course, and also classes like  and . What do these
complexity classes have in common? They are “syntactic,” meaning that
membership can be characterized via acceptance by some concrete
computational model, such as polynomial-time or polynomial-space deterministic
or nondeterministic Turing machines. In this sense, there is a generic reason for
membership in these complexity classes.

Syntactically defined complexity classes always have a “generic” complete
problem, where the input is a description of a problem in terms of the accepting
machine and an instance of the problem, and the goal is to solve the given
instance of the given problem. For example, the generic -complete problem
takes as input a description of a verifier, a polynomial time bound, and an encoding
of an instance, and the goal is to decide whether or not there is a witness,
meaning a string that causes the given verifier to accept the given instance in at
most the given number of steps.

 has no obvious generic reason for membership, and as such is

called a “semantic” class.4 For example, the problem of computing a MNE of a
bimatrix game belongs to  because of the topological arguments that
guarantee the existence of a MNE (see Section 20.5). Another problem in 

 is factoring: given a positive integer, output its factorization. Here,
membership in  has a number-theoretic explanation. Can the
guaranteed existence of a MNE of a game and of a factorization of an integer be
regarded as separate instantiations of some “generic”  argument?
No one knows the answer.



20.2.4 Where We’re Going
Section 20.3 defines a subclass of , known as , that
characterizes the computational complexity of computing a MNE of a bimatrix
game. Figure 20.2 summarizes the conjectured relationships between 
and the other complexity classes discussed.

Figure 20.2: Summary of complexity classes. The inclusions  ∪ 
 ⊆  ⊆  follow from the definitions. Every

problem in  can be viewed as a degenerate type of  or 
 problem by treating the transcript of a correct computation as a

legitimate (and efficiently verifiable) witness.

The definition of  is technical and may seem unnatural, but it is
justified by the following result.

Theorem 20.3 (Computing a MNE Is -Complete) Computing



a MNE of a bimatrix game is a -complete problem.

The known proofs of Theorem 20.3 are much too long and complex to describe
here (see the Notes). The remainder of this lecture focuses on the definition of
and intuition behind the complexity class , and explains why
computing a MNE of a bimatrix game is a  problem.

*20.3 : A Syntactic Subclass of 
Our goal is to provide evidence of the computational intractability of the problem
of computing a MNE of a bimatrix game by proving that it is complete for a
suitable complexity class , where  is plausibly a strict superset of .
Section 20.2 argues that  needs to be a subset of  that also has
complete problems. Roughly equivalently, the class  should have a “syntactic”
definition, in the form of a generic reason for membership in .

We already know one example of a subclass of  that appears
larger than  and also admits complete problems, namely  (Section
19.2). For example, computing a local optimum of a maximum cut instance is a 

-complete problem that is not known to be polynomial-time solvable. The
definition of  is syntactic in that every  problem is specified by the
descriptions of three algorithms (Section 19.2.2). Among  problems, the
common reason for membership in  is that the generic local search
procedure, using the three given algorithms as “black boxes,” is guaranteed to
eventually stop with a witness (a local optimum).

The right complexity class for studying the computation of MNE in bimatrix
games is called .5 Before defining the class formally, we describe it by
analogy with the class , which is similar in spirit but different in the details.
The connection to computing MNE is far from obvious, and it is taken up in
Section 20.5.

Recall that we can view a local search problem as one of searching a directed
acyclic graph for a sink vertex (Figure 19.3). Vertices of this graph correspond to
feasible solutions, such as outcomes in a congestion game, and the number of
vertices can be exponential in the description length of the instance. Every 

 problem can be solved by a generic local search procedure that
corresponds to following outgoing edges until a sink vertex is reached.

 problems, like  problems, are those solvable by a particular
generic path-following procedure. Every  problem can be thought of as
a directed graph (Figure 20.3), where the vertices again correspond to “solutions”
and directed edges to “moves.” The essential difference between  and 

 is that the graph corresponding to a  problem is directed



acyclic, while the graph corresponding to a  problem is directed with
all in-and out-degrees at most 1. Also, by definition, the graph corresponding to a 

 problem has a canonical source vertex, meaning a vertex with no
incoming edges. Traversing outgoing edges starting from the canonical source
vertex cannot produce a cycle, since every vertex has in-degree at most 1 and the
canonical source vertex has no incoming edges. We conclude that there is a sink
vertex reachable from the canonical source vertex. Unlike a  problem,
there is no objective function, and a  directed graph can possess
cycles. The witnesses of a  problem are, by definition, all of the
solutions that correspond to a sink vertex or to a source vertex other than the
canonical one.

Figure 20.3: A  problem corresponds to a directed graph with all
in-and out-degrees at most 1.

Formally, as with , the class  is defined syntactically as the
problems that can be specified by three algorithms.



Ingredients of a  Problem

1. The first polynomial-time algorithm takes as input an instance and
outputs two distinct solutions, corresponding to the canonical source
vertex and its successor.

2. The second polynomial-time algorithm takes as input an instance and a
solution x other than the canonical source vertex and its successor, and
either returns another solution y, the predecessor of x, or declares “no
predecessor.”

3. The third polynomial-time algorithm takes as input an instance and a
solution x other than the canonical source vertex, and either returns
another solution y, the successor of x, or declares “no successor.”

These three algorithms implicitly define a directed graph. The vertices correspond
to the possible solutions. There is a directed edge (x, y) if and only if the second
algorithm outputs x as the predecessor of y and the third algorithm agrees that y is
the successor of x. There is also a directed edge from the canonical source
vertex to its successor, as defined by the first algorithm; this ensures that the
canonical source vertex is not also a sink vertex. Every vertex of the graph has
in-and out-degree at most 1. The witnesses are all of the solutions that correspond
to vertices with in-degree or out-degree 0, other than the canonical source
vertex.6

Every  problem has at least one witness, and a witness can be
computed by a generic path-following procedure that uses the given three
algorithms as “black boxes.” This procedure effectively traverses outgoing edges,
beginning at the canonical source vertex, until a sink vertex (a witness) is
reached.7 In this sense, the problems in  have a generic reason for
membership in .

What do  problems have to do with computing MNE, or anything
else for that matter? To get a feel for this complexity class, we next discuss a
canonical example of a  problem.

*20.4 A Canonical  Problem: Sperner’s
Lemma

This section presents a computational problem that is clearly well matched with
the  complexity class. Section 20.5 describes its relevance to
computing a MNE of a bimatrix game.



Consider a subdivided triangle in the plane (Figure 20.4). A legal coloring of
its vertices colors the top corner vertex red, the left corner vertex green, and the
right corner vertex blue. A vertex on the boundary must have one of the two
colors of the endpoints of its side. Internal vertices are allowed to possess any of
the three colors. A small triangle is trichromatic if all three colors are
represented at its vertices.

Figure 20.4: A subdivided triangle in the plane.

Sperner’s lemma asserts that for every legal coloring, there is at least one
trichromatic triangle.8

Theorem 20.4 (Sperner’s Lemma) For every legal coloring of a subdivided
triangle, there is an odd number of trichromatic triangles.

Proof: The proof is constructive. Define an undirected graph G that has one
vertex corresponding to each small triangle, plus a source vertex that corresponds
to the region outside the big triangle. The graph G has one edge for each pair of
small triangles that share a side with one red and one green endpoint. Every
trichromatic small triangle corresponds to a degree-one vertex of G. Every small
triangle with one green and two red corners or two green and one red corners
corresponds to a vertex with degree two in G. The source vertex of G has degree
equal to the number of red-green segments on the left side of the big triangle,
which is an odd number. Because every undirected graph has an even number of



vertices with odd degree, there is an odd number of trichromatic triangles. 
The proof of Sperner’s lemma shows that following a path from a canonical

source vertex in a suitable graph leads to a trichromatic triangle. Thus, computing
a trichromatic triangle of a legally colored subdivided triangle is a 
problem.9

*20.5 MNE and 
What does computing a MNE have to do with , the subclass of 

 problems that are solvable by a particular generic path-following
procedure? There are two fundamental connections.

20.5.1 Sperner’s Lemma and Nash’s Theorem
Sperner’s lemma (Theorem 20.4) turns out to be the combinatorial heart of
Nash’s theorem, stating that every finite game has at least one MNE.

Theorem 20.5 (Nash’s Theorem) Every finite game has at least one mixed
Nash equilibrium.

The reduction of Nash’s theorem to Sperner’s lemma has two parts. The first
part is to use Sperner’s lemma to prove Brouwer’s fixed-point theorem. The
latter theorem states that every continuous function f that maps a convex compact
subset C of  to itself has at least one fixed point, meaning a point x  C with
f(x) = x.10

Consider the special case where C is a simplex in . Let f : C → C be
continuous. Subdivide C into small triangles as in Figure 20.4. Color a triangle
corner x green if f(x) is farther from the left corner of C than x; red if f(x) is
farther from the top corner of C than x; and blue if x is farther from the right
corner of C than x. If two of these conditions apply to x, either corresponding
color can be used. (If none of them apply, x is a fixed point and there’s nothing
left to prove.) This results in a legal coloring of the subdivision. By Sperner’s
lemma, there is at least one trichromatic triangle, representing a triangle whose
corners are pulled in different directions by f. Taking a sequence of finer and finer
subdivisions, we get a sequence of ever-smaller trichromatic triangles. Because C
is compact, the centers of these triangles contain a subsequence that converges to
a point x* in C. Because f is continuous, in the limit, f(x*) is at least as far from
each of the three corners of C as x*. This means that x* is a fixed point of f.11

To sketch how Nash’s theorem (Theorem 20.5) reduces to Brouwer’s fixed-
point theorem, consider a k-agent game with strategy sets S1, …, Sk and payoff
functions π1, …, πk. The relevant convex compact set is C = Δ1 × · · · × Δk,
where Δi is the simplex representing the mixed strategies over Si. We want to



define a continuous function f : C → C, from mixed strategy profiles to mixed
strategy profiles, such that the fixed points of f are the MNE of this game. We
define f separately for each component fi : C → Δi. A natural idea is to set fi to be
a best response of agent i to the mixed strategy profiles of the other agents. This
does not lead to a continuous, or even well defined, function. We instead use a
“regularized” version of this idea, defining

(20.3)

where

(20.4)

The first term of the function gi encourages a best response while the second
“penalty term” discourages big changes to i’s mixed strategy. Because the
function gi is strictly concave in , fi is well defined. The function f = (f1, …, fk)
is continuous (Exercise 20.5). By definition, every MNE of the given game is a
fixed point of f. For the converse, suppose that x is not a MNE, with agent i able
to increase her expected payoff by deviating unilaterally from xi to . A simple
computation shows that, for sufficiently small  > 0, 

, and hence x is not a fixed point
of f (Exercise 20.6).

This proof of Nash’s theorem translates the path-following algorithm for
computing a panchromatic subsimplex of a legally colored subdivided simplex to a
path-following algorithm for computing an approximate MNE of a finite game.
This establishes membership of this problem in .

20.5.2 The Lemke-Howson Algorithm
There is also a second way to prove that computing a MNE of a bimatrix game is
a  problem, via the Lemke-Howson algorithm. Describing this
algorithm is outside the scope of this book, but the essential point is that the
Lemke-Howson algorithm reduces computing a MNE of a bimatrix game to a
path-following problem, much in the way that the simplex algorithm reduces
computing an optimal solution of a linear program to following a path of improving
edges along the boundary of the feasible region. The biggest difference between
the Lemke-Howson algorithm and the simplex method is that the former is not
guided by an objective function. All known proofs of its inevitable convergence
use parity arguments akin to the one in the proof of Sperner’s lemma. These



convergence proofs show that the problem of computing a MNE of a bimatrix
game lies in .

20.5.3 Final Remarks
The two connections between  and computing a MNE are
incomparable. The Lemke-Howson algorithm applies only to games with two
players, but it shows that the problem of computing an exact MNE of a bimatrix
game belongs to . The path-following algorithm derived from
Sperner’s lemma applies to games with any fixed finite number of players, but
only shows that the problem of computing an approximate MNE is in 
.12

In any case, we conclude that our motivating problem of computing a MNE of
a bimatrix game is a  problem. Theorem 20.3 shows the
complementary result that the problem is as hard as every other problem that can
be solved by a generic path-following procedure in a directed graph with a
canonical source vertex and all in-and out-degrees at most 1. This shows that 

 is, at last, the right complexity class for building evidence that the
problem is computationally intractable.

For example, Theorem 20.3 implies that the problem of computing an
approximate fixed point of a finitely represented continuous function, a 

 problem, reduces to the problem of computing a MNE. This
effectively reverses the reduction outlined in Section 20.5.1.

20.6 Discussion
One interpretation of Theorem 20.3, which is somewhat controversial, is that the
seeming intractability of the Nash equilibrium concept renders it unsuitable for
general-purpose behavioral prediction. If no polynomial-time algorithm can
compute a MNE of a game, then we don’t expect a bunch of strategic players to
find one quickly, either.

Intractability is not necessarily first on the list of the Nash equilibrium’s issues.
For example, its non-uniqueness already limits its predictive power in many
settings. But the novel computational intractability critique in Theorem 20.3 is one
that theoretical computer science is particularly well suited to contribute.

If we don’t analyze the Nash equilibria of a game, then what should we
analyze? Theorem 20.3 suggests shining a brighter spotlight on computationally
tractable classes of games and equilibrium concepts. For example, our
convergence guarantees for no-regret dynamics motivate identifying properties
that hold for all correlated or coarse correlated equilibria of a game.

How hard are  problems, anyways? This basic question is not well
understood. In the absence of an unconditional proof about whether or not 



 problems are polynomial-time solvable, it is important to relate the
assumption that  to other complexity assumptions stronger
than . For example, can we base the computational intractability of 

 problems on cryptographic assumptions like the existence of one-way
functions?

The Upshot

 There is no known polynomial-time algorithm for computing a MNE of
a bimatrix game, despite significant effort by many experts.
  is the subclass of  search problems ( ) for
which the existence of a witness is guaranteed. Examples include all 

 problems and computing a MNE of a bimatrix game.
 No  problem can be -complete, unless 

.
  does not seem to contain complete problems.
  is the subclass of  where a witness can always
be computed by a generic path-following procedure in a directed graph
with a source vertex and all in-and out-degrees at most 1.
 The problem of computing a MNE of a bimatrix game is -
compete.

Notes
The definition of  and Theorem 20.1 are due to Megiddo and
Papadimitriou (1991). Theorem 20.2 is from Johnson et al. (1988). The
complexity class , as well as several other syntactically defined
subclasses of , is defined by Papadimitriou (1994). Daskalakis et al.
(2009a) develop most of the machinery in the proof of Theorem 20.3 and prove
that computing an approximate MNE of a three-player game is -
complete. The result stated for bimatrix games (Theorem 20.3) is due to Chen
and Deng; see Chen et al. (2009). For overviews of this proof in order of
increasing levels of detail, see Roughgarden (2010b), Papadimitriou (2007), and
Daskalakis et al. (2009b). Sperner’s lemma (Theorem 20.4) is from Sperner
(1928). Our proof of Nash’s theorem (Theorem 20.5) follows Geanakoplos (2003)
and is a variant of the one in Nash (1951). The Lemke-Howson algorithm is from
Lemke and Howson (1964); see von Stengel (2002) for a thorough exposition.
Etessami and Yannakakis (2010) show that the problem of exact MNE
computation in games with more than two players is complete for a complexity



class  that appears to be strictly larger than . Bitansky et al.
(2015) and Rosen et al. (2016) discuss the prospects of basing the intractability of

-complete problems on cryptographic assumptions.
Problem 20.2, which shows that an approximate MNE of a bimatrix game can

be computed in quasipolynomial time, is due to Lipton et al. (2003).13 Such an
approximate MNE need not be close to any exact MNE. Rubinstein (2016)
proves that, under plausible complexity assumptions, there is no significantly faster
algorithm for computing an approximate MNE. Problem 20.3 is derived from
Brown and von Neumann (1950) and Gale et al. (1950).

Exercises
Exercise 20.1 (H) Assume for this exercise that every system of linear
equations Cx = d that has a solution has at least one solution with description
length (in bits) polynomial in that of C and d.

Prove that every bimatrix game (A, B) has a MNE with description length
polynomial in that of the payoff matrices A and B.

Exercise 20.2 (H) Consider the following problem: given descriptions of a
nondeterministic algorithm  (for accepting “yes” instances) and a co-
nondeterministic algorithm  (for accepting “no” instances), a polynomial time
bound, and an encoding of an instance, find a witness that causes one of , 

 to accept the given instance in the prescribed number of time steps.

Why isn’t this a generic complete problem for , in the
sense of Section 20.2.3?

Exercise 20.3 This exercise demonstrates the necessity of all of the hypotheses
of Brouwer’s fixed-point theorem, even in a single dimension.

(a) Exhibit a (discontinuous) function f from a compact interval to itself that
has no fixed point.

(b) Exhibit a continuous function f from the union of two compact intervals to
itself that has no fixed point.

(c) Exhibit a continuous function f from a bounded open interval to itself that
has no fixed point.

Exercise 20.4 Suppose C1 and C2 are subsets of  that are homeomorphic,
meaning that there is a bijection h: C1 → C2 such that both h and h−1 are
continuous. Prove that if every continuous function from C1 to itself has a fixed
point, then every continuous function from C2 to itself has a fixed point.

Exercise 20.5 Prove that the function defined in (20.3)–(20.4) is continuous.



Exercise 20.6 In the mixed strategy profile x, suppose that agent i can increase
her expected payoff by deviating unilaterally from xi to . Prove that 

 for all sufficiently small  > 0,
where gi is the function defined in (20.4).

Problems
Problem 20.1 (H) Assume for this problem that there is a polynomial-time
algorithm that determines whether or not a system of linear equations has a
solution, and computes a solution if one exists. Use such an algorithm as a
subroutine to compute a MNE of a bimatrix game in time bounded above by 2n ·
p(n) for some polynomial p, where n is the combined number of rows and
columns.

Problem 20.2 Let (A, B) be a bimatrix game in which each player has at most n
strategies and all payoffs lie in [0, 1]. An -approximate mixed Nash
equilibrium ( -MNE) is a pair ( , ) of mixed strategies over the rows and
columns such that

for all row mixed strategies x and

for all column mixed strategies y.

(a) (H) Fix   (0, 1), let (x*, y*) be a MNE of (A, B), and define K = (b ln
n)/ 2, where b > 0 is a sufficiently large constant, independent of n and 
. Let (r1, c1), …, (rK, cK) denote K outcomes sampled independently from
the product distribution defined by (x*, y*). Let  and  denote the
corresponding marginal empirical distributions. For example, the
component  is defined as the fraction of outcomes (rℓ, cℓ) for which rℓ
is the row i. Prove that, with high probability over the choice of (r1, c1),
…, (rK, cK), ( , ) is an -MNE.

(b) (H) Give an algorithm for computing an -MNE of a bimatrix game that
runs in time at most n2K ·p(n) for some polynomial p, where K is defined
as in (a).14

(c) Extend your algorithm and analysis to compute an -MNE with expected
total payoff close to that of the maximum expected payoff achieved by
any exact MNE. Your running time bound should remain the same.

Problem 20.3 A bimatrix game (A, B) is symmetric if both players have the



same strategy set and B = A . Examples include Rock-Paper-Scissors (Section
18.3.1) and the traffic light game (Section 13.1.4). Nash’s theorem and the
Lemke-Howson algorithm can both be adapted to show that every symmetric
game has a symmetric MNE ( , ), in which both players employ the same
mixed strategy (i.e.,  = ).

(a) (H) Give a reduction, in the sense of Section 19.2.3, from the problem of
computing a MNE of a general bimatrix game to that of computing a
symmetric MNE of a symmetric bimatrix game.

(b) Give a reduction from the problem of computing a MNE of a general
bimatrix game to that of computing any MNE of a symmetric bimatrix
game.

(c) (H) Give a reduction from the problem of computing a MNE of a general
bimatrix game to that of the problem of computing an asymmetric MNE
of a symmetric bimatrix game, or reporting “no solution” if there are no
asymmetric MNE.

1Intuition for the class  works fine for . For example, the
proofs showing that the decision version of the satisfiability problem (SAT) is 

-complete also show that the functional version of SAT is -
complete.

2To be completely rigorous, we also need to argue that there is a MNE whose
description length (in bits) is polynomial in that of A and B (Exercise 20.1).

3Crucially, ( ) has at least one MNE (Theorem 20.5), including one
whose description length is polynomial in that of the game (Exercise 20.1).

4There are many other interesting examples, such as 
(Exercise 20.2).

5The letters in  stand for “polynomial parity argument, directed
version.”

6As in the definition of a  problem, there is some canonical
interpretation when an algorithm misbehaves. For example, the output of the
third algorithm is interpreted as “no successor” if it does not stop within a
specified polynomial number of steps, and also if it outputs the canonical



source vertex or its successor.

7The purpose of the second algorithm is to keep the third algorithm honest, and
ensure that the latter never creates an in-degree larger than 1.

8The same result and proof extend by induction to higher dimensions. Every
subdivided simplex in  with vertices legally colored with n + 1 colors has
an odd number of panchromatic subsimplices, with a different color at each
vertex.

9We’re glossing over some details. The graph of a  problem is
directed, while the graph G defined in the proof of Theorem 20.4 is
undirected. There is, however, a canonical way to direct the edges of the
graph G. Also, the canonical source vertex of a  problem has out-
degree 1, while the source of the graph G has degree 2k − 1 for some positive
integer k. This can be rectified by splitting the source vertex of G into k
vertices, a source vertex with out-degree 1 and k − 1 vertices with in-and out-
degree 1.

10So after stirring a cup of coffee, there is some point in the coffee that ends
up exactly where it started!

11Here’s the idea for extending Brouwer’s fixed-point theorem to all convex
compact subsets of . First, since Sperner’s lemma extends to higher
dimensions, the same argument shows that Brouwer’s fixed-point theorem
holds for simplices in any number of dimensions. Second, radial projection
shows that every pair C1, C2 of convex compact subsets of equal dimension
are homeomorphic, meaning there is a bijection h: C1 → C2 with h and h−1

continuous. Homeomorphisms preserve fixed-point theorems (Exercise 20.4).

12In fact, with 3 or more players, the problem of computing an exact MNE of
a game appears to be strictly harder than any problem in  (see the
Notes).

13The approximation in this result is additive. Daskalakis (2013) proves that
for multiplicative approximation, as in Definitions 14.5 and 16.2, the problem of
computing an approximate MNE of a bimatrix game is -complete,
and hence unlikely to admit a quasipolynomial-time algorithm.

14A running time bound of the form nb ln 
a n for constants a and b is called

quasipolynomial. Such a bound is bigger than every polynomial but smaller
than every exponential function.



The Top 10 List

1. The second-price single-item auction. Our first example of an “ideal”
auction, which is dominant-strategy incentive compatible (DSIC), welfare
maximizing, and computationally efficient (Theorem 2.4). Single-item
auctions already show how small design changes, such as a first-price vs.
a second-price payment rule, can have major ramifications for participant
behavior.

2. Myerson’s lemma. For single-parameter problems, DSIC mechanism
design reduces to monotone allocation rule design (Theorem 3.7).
Applications include ideal sponsored search auctions (Section 3.5),
polynomial-time approximately optimal knapsack auctions (Theorem 4.2),
and the reduction of expected revenue maximization with respect to a
valuation distribution to expected virtual welfare maximization (Theorem
5.4).

3. The Bulow-Klemperer theorem. In a single-item auction, adding an extra
bidder is as good as knowing the underlying distribution and running an
optimal auction (Theorem 6.5). This result, along with the prophet
inequality (Theorem 6.1), is an important clue that simple and prior-
independent auctions can be almost as good as optimal ones.

4. The VCG mechanism. Charging participants their externalities yields a
DSIC welfare-maximizing mechanism, even in very general settings
(Theorem 7.3). The VCG mechanism is impractical in many real-world
applications, including wireless spectrum auctions (Lecture 8), which
motivates simpler and indirect auction formats like simultaneous ascending
auctions (Section 8.3).

5. Mechanism design without money. Many of the most elegant and widely
deployed mechanisms do not use payments. Examples include the Top
Trading Cycle mechanism (Theorems 9.7 and 9.8), mechanisms for kidney
exchange (Theorem 10.1), and the Gale-Shapley stable matching
mechanism (Theorems 10.5, 10.7, and 10.8).

6. Selfish routing. Worst-case selfish routing networks are always simple,
with Pigou-like networks maximizing the price of anarchy (POA)
(Theorems 11.1 and 11.2). The POA of selfish routing is therefore large
only when cost functions are highly nonlinear, corroborating empirical
evidence that network over-provisioning leads to good network
performance (Section 12.1).

7. Robust POA Bounds. All of the proofs of POA bounds in these lectures
are smoothness arguments (Definition 14.2). As such, they apply to



relatively permissive and tractable equilibrium concepts like coarse
correlated equilibria (Theorem 14.4).

8. Potential games. In many classes of games, including routing, location,
and network cost-sharing games, players are inadvertently striving to
optimize a potential function. Every potential game has at least one pure
Nash equilibrium (Theorem 13.7) and best-response dynamics always
converges (Proposition 16.1). Potential functions are also useful for
proving POA-type bounds (Theorems 15.1 and 15.3).

9. No-regret algorithms. No-regret algorithms exist, including simple ones
with optimal regret bounds, like the multiplicative weights algorithm
(Theorem 17.6). If each agent of a repeatedly played game uses a no-
regret or no-swap-regret algorithm to choose her mixed strategies, then the
time-averaged history of joint play converges to the sets of coarse
correlated equilibria (Proposition 17.9) or correlated equilibria (Proposition
18.4), respectively. These two equilibrium concepts are computationally
tractable, as are mixed Nash equilibria in two-player zero-sum games
(Theorem 18.7).

10. Complexity of equilibrium computation. Computing a Nash equilibrium
appears computationally intractable in general. -completeness
(Section 19.2) and -completeness (Section 20.3) are analogs of 

-completeness tailored to provide evidence of intractability for pure
and mixed equilibrium computation problems, respectively (Theorems 19.4
and 20.3).



Hints to Selected Exercises and Problems

Problem 2.1(c): Shoot for . Use the first half of the bidders to get
calibrated.

Problem 3.1(b): Adopt bidder i’s perspective and “target” slot j.

Problem 3.1(d): First prove that, in a locally envy-free bid profile, the bidders
must be sorted in nonincreasing order of values-per-click.

Problem 3.1(e): Use (3.8). What bids would yield these payments in a GSP
auction? Use part (d) to argue that these bids form an equilibrium.

Problem 3.2(b): This boils down to checking that the payment rule of the
Revenue Target Auction satisfies Myerson’s payment formula.

Exercise 4.7: For example, what do auction houses such as Christie’s and
Sotheby’s use?

Problem 4.2(b): If S* is the optimal solution (with item values v), and S is the
computed solution (optimal for item values ), then 

.

Problem 4.2(e): Try many different values of m and use part (c). Under what
conditions does taking the better of two monotone allocation rules yield another
monotone allocation rule?

Problem 4.3(a): Reduce from the problem of computing the largest independent
set of a graph (see, e.g., Garey and Johnson (1979)).

Problem 4.3(c): When the greedy algorithm makes a mistake by selecting some
bidder, how many other bidders can it “block”?

Exercise 5.6: The distribution has infinite expectation, violating the assumptions
of Section 5.1.3.

Problem 5.2: Use Problem 5.1(c).

Problem 5.3(c): First extend part (a), with bi(vi) set to the expected value of the
second-highest valuation, conditioned on the event that vi is the highest valuation.

Exercise 6.1(b): Two bidders with valuations drawn from different uniform
distributions suffice.



Exercise 6.2: Define t such that Pr[πi > t for all i] ≤  ≤ Pr[πi ≥ t for all i].
Show that at least one of the two corresponding strategies—either taking the first
prize with value at least t, or the first with value exceeding t—satisfies the
requirement.

Exercise 6.4: Use the Bulow-Klemperer theorem. Use Theorem 5.2 to bound
the amount by which the optimal expected revenue can decrease when one
bidder is removed.

Problem 6.1(a): Take n = 2.

Problem 6.2(b): Use downward-closure to reason about the outcome selected
by .

Problem 6.2(c): Use part (a).

Problem 6.3(b): Given posted prices p1, …, pn, consider a single-item auction
that applies a reserve price of pi to each bidder i and then awards the item to the
remaining bidder (if any) with the largest value of vi ‒ pi.

Problem 6.3(c): Identify posted prices p1, …, pn as in the proof of Theorem
6.4.15 Show that only less expected revenue is earned by the single-item auction
that applies a reserve price of pi to each bidder i and then awards the item to the
remaining bidder (if any) with the smallest value of pi. Use the prophet inequality
(Theorem 6.1 and Remark 6.2) to lower bound the expected virtual welfare, and
hence expected revenue, of this auction.

Problem 6.4(b): Instantiate Theorem 6.5 with n = 1 to deduce that, with one
bidder and one item, the expected revenue earned by a posted price p drawn
randomly from F is at least half that by a monopoly price p* for F. Use regularity
to argue that, for every t ≥ 0, this guarantee continues to hold for the prices
max{p, t} and max{p*, t}. How much expected revenue does a bidder i ≠ j
contribute to the optimal and given mechanisms?

Exercise 7.5: Use the fact that a maximum-weight matching of a bipartite graph
can be computed in polynomial time.

Problem 7.1(b): Sum up the VCG payments (7.2) and simplify to obtain a
multiple of the left-hand side of (7.4) and bid-independent terms.

Problem 7.3(b): Use subadditivity.

Problem 7.3(c): Use Problem 7.2. Exercise 7.5 is also relevant.

Exercise 8.1: First show that the sum of bidders’ utilities (at prices p) is
maximized, then cancel out the price terms.

Exercise 8.2: Use the same example that illustrates the exposure problem.



Problem 8.3: For the reader familiar with linear programming duality, the
allocation corresponds to a maximum-weight bipartite matching, the prices to an
optimal dual solution, and the equilibrium conditions to complementary slackness
conditions. Alternatively, use the payments of the VCG mechanism to define the
item prices, and the structure of optimal matchings to verify the equilibrium
conditions.

Exercise 9.3: Construct an example where one bidder can delay reporting a
demand decrease to cause a different bidder to pay extra, resulting in lower
prices for future items.

Exercise 9.4(c): Consider the realistic setting in which each Bi/vi is modestly
large but still far smaller than m.

Problem 9.1(b): First prove that, for every such deterministic DSIC auction,
there is a simple probability distribution over valuation profiles such that the
expected social welfare of the auction is at most c/n times the expected highest
valuation. Explain why this implies the desired lower bound for both deterministic
and randomized auctions.

Problem 9.3(c): Generalize the mechanism in (b) in two different ways. The less
obvious way is to supplement the reported peaks with additional “dummy peaks.”

Exercise 10.1: Adding back an edge of Ei \ Fi either has no effect on which
vertices before i get matched, or else guarantees that i is matched.

Exercise 10.6: If a hospital w prefers its match v in the applicant-optimal stable
matching to its match v′ in some other stable matching M′, then (v, w) form a
blocking pair for M′.

Problem 10.1: First consider a misreport that differs from the true preference
list only in the order of two consecutive hospitals. Use induction to extend to
arbitrary misreports.

Exercise 11.1: Prove that there is no loss of generality restricting to Pigou-like
networks with a = r = 1. The POA in such networks is decreasing in b.

Exercise 11.2: Proceed by direct computation, or alternatively show how to
replace the concave cost functions of a network by affine cost functions so that
the POA can only increase.

Exercise 11.3(c): Transform a network with polynomial cost functions into one
with the same POA and monomial cost functions.

Exercise 11.4(a): Starting from a Pigou-like example, simulate the edge with
constant cost function c(x) = β by many parallel edges, each with a cost function
c satisfying c(0) = β.

Exercise 11.4(b): Let  denote the set of all nonnegative scalar multiples of



cost functions in . Apply part (a) to  and simulate scalar multiples using paths
of multiple edges.

Problem 11.2(b): Braess’s paradox.

Problem 11.2(c): This is a relatively straightforward consequence of Theorem
11.2 and Exercise 11.1.

Problem 11.3(b): Add two edges to a network with six vertices.

Exercise 12.2(c): Follow the proof of Theorem 11.2. In (11.10), invoke the β-
over-provisioned assumption to justify using αβ in place of α( ).

Exercise  12.6: Check all cases where y and z are both small. What happens as
y or z grows large?

Problem 12.1: Prove that, with an affine cost function, the inequality (12.4)
holds even with an extra factor of  on the right-hand side.

Problem 12.3(a): Two useful lower bounds on the minimum-possible makespan
are  and .

Exercise 13.4: Proceed edge-by-edge.

Problem 13.1: Consider the special case of k = m and wi = 1 for all agents i.
Invoke well-known properties of occupancy (i.e., “balls into bins”) problems that
are discussed in standard texts like Mitzenmacher and Upfal (2005) and Motwani
and Raghavan (1996).

Problem 13.3: For the “only if” direction, set  equal to the
potential function.

Problem 13.4(a): The resources E correspond to the outcomes of the team
game. Map each strategy si of agent i in the team game to the subset of E
corresponding to outcomes where i chooses si. The cost of each resource is zero
except when used by all of the agents.

Problem 13.4(b): The resources E correspond to choices of an agent i and
strategies s‒i of the others. Map each strategy si of agent i in the dummy game to
the set of resources of the form s‒i or s‒j with i playing a strategy other than si.
The cost of each resource is zero except when used by a single agent. (Such cost
functions may be decreasing, as permitted in congestion games.)

Exercise 14.1: Use property (P2).

Exercise 14.5: Follow the derivation in Section 14.4.1.

Problem 14.1(c): Prove that every such game is (2, 0)-smooth with respect to
the optimal outcome in (b) (see Remark 14.3).



Problem 14.2(b): Prove that every such game is ( , 1)-smooth with respect to

the optimal outcome in which each bidder bids half her value.

Problem 14.3(a): Consider two bidders and two items, with v11 = v22 = 2 and
v12 = v21 = 1.

Problem 14.3(b): Fix an optimal outcome in which each bidder i receives at
most one item j(i). Prove that every such game is (1, 1)-smooth with respect to
the optimal outcome in which each bidder i bids vij(i) on item j(i) and zero on all
other items.

Exercise 15.6: Prove a stronger version of (15.4).

Problem 15.3: Generalize Exercise 13.4 and proceed as in the proof of Theorem
15.1.

Exercise 16.1: Two agents with three strategies each suffice.

Exercise 16.4: Create a directed graph as in Figure 16.1 and topologically sort
the vertices.

Problem 16.2: Reprove Lemma 16.5, again using that agent i was chosen over j
and that agent j has the option of deviating to .

Problem 16.3(b): Three agents suffice.

Problem 16.3(c): Proceed by induction on the number of agents. After adding a
new agent to an inductively defined PNE, show that best-response dynamics
converges to a PNE in at most k iterations.

Exercise 17.1: Reduce the problem to the special case of costs in [−1, 1].

Exercise 17.2: Restart the algorithm with a new “guess” for T each time it
reaches a time step t that is a power of 2.

Exercise 17.3: Use a time-averaged version of (16.11).

Problem 17.2(a): For the upper bound, follow the advice of the majority of the
remaining potentially omniscient experts.

Problem 17.2(c): Follow the advice of one of the remaining potentially
omniscient experts, chosen uniformly at random.

Problem 17.3: Pre-program σ into the algorithms . To make
sure that each  is a no-regret algorithm, switch to the multiplicative weights
algorithm if some other agent j fails to use the agreed-upon algorithm .

Problem 17.4(a): Sample the Xa’s gradually by flipping coins only as needed,
pausing once the action a* with smallest perturbed cumulative cost is identified.
Resuming, only Xa* is not yet fully determined. What can you say if the next coin



flip comes up “tails?”

Problem 17.4(b): Consider first the special case where Xa = 0 for all a.
Iteratively transform the action sequence that always selects the best action in
hindsight to the sequence chosen by the proposed algorithm. Work backward
from time T, showing that the cost only decreases with each step of the
transformation.

Problem 17.4(d): By (a), at each time step, the FTPL algorithm chooses the
same action as the algorithm in (b) except with probability η.

Problem 17.4(e): Use a new perturbation at each time step.

Exercise 18.1: Look to Rock-Paper-Scissors for inspiration.

Exercise 18.4: Use Exercise 18.3.

Exercise 18.6: Given an arbitrary two-player game, add a “dummy player” to
make it zero-sum.

Problem 18.1: Two agents with two strategies each suffice.

Problem 18.3(a): Each inequality has the form 
 for an agent i and a

strategy .

Problem 18.4: Use Exercise 18.3 and characterize the minimax pairs instead. To
compute a strategy for the row player, solve for a mixed strategy x and the
largest real number ζ such that, for every pure (and hence mixed) strategy that
the column player might play, the row player’s expected payoff when playing x is
at least ζ.

Exercise 19.2: No. Describing a congestion game with k agents and m edges
requires only km parameters, while the linear program in Problem 18.3 has size
exponential in k.

Exercise 19.3: Use the reduction in the proof of Theorem 19.4.

Problem 19.1(a): Reduce the problem of computing a global minimizer of the
potential function (13.6) to the minimum-cost flow problem (see, e.g., Cook et al.
(1998)).

Problem 19.1(b): Proceed directly or use the fact that minimum-cost flows are
characterized by the nonexistence of improving cycles in the “residual graph.”

Exercise 20.1: Consider some MNE of (A, B), and suppose the row and
column players place positive probability only on the rows R and columns C,
respectively. Solve a system of linear equations to recover the probabilities of a
MNE where the row and column players randomize only over R and C,



respectively.

Exercise 20.2: Given only the descriptions of  and , how can you be
sure there is always such a witness? If there isn’t one, how do you solve the
problem in ?

Problem 20.1: Use the solution to Exercise 20.1.

Problem 20.2(a): Use Chernoff-Hoeffding bounds, as presented in standard
texts like Mitzenmacher and Upfal (2005) and Motwani and Raghavan (1996), to
prove that that the expected payoff of every pure strategy is almost the same in
(x*, y*) and in ( , ).

Problem 20.2(b): Adapt the solution to Problem 20.1. How many components of
 and  are nonzero?

Problem 20.3(a): Given a bimatrix game (A, B), have the players play twice in
parallel, once in either role. That is, after translating the payoffs, use the payoff

matrix  and its transpose.

Problem 20.3(c): Prove that the symmetric games generated by the reduction in
(a) are guaranteed to possess asymmetric MNE.

15Warning: as a non-single-parameter setting, you cannot assume that
expected revenue equals expected virtual welfare (cf., Theorem 5.2).



Bibliography

Abdulkadiro lu, A. and Sönmez, T. (1999). House allocation with existing
tenants. Journal of Economic Theory, 88(2):233–260. (Cited on page 142.)

Adler, I. (2013). The equivalence of linear programs and zero-sum games.
International Journal of Game Theory, 42(1):165–177. (Cited on page
258.)

Aggarwal, G., Goel, A., and Motwani, R. (2006). Truthful auctions for pricing
search keywords. In Proceedings of the 7th ACM Conference on
Electronic Commerce (EC), pages 1–7. (Cited on page 35.)

Alaei, S., Hartline, J. D., Niazadeh, R., Pountourakis, E., and Yuan, Y. (2015).
Optimal auctions vs. anonymous pricing. In Proceedings of the 56th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1446–
1463. (Cited on page 83.)

Aland, S., Dumrauf, D., Gairing, M., Monien, B., and Schoppmann, F. (2011).
Exact price of anarchy for polynomial congestion games. SIAM Journal on
Computing, 40(5):1211–1233. (Cited on page 169.)

Andelman, N., Feldman, M., and Mansour, Y. (2009). Strong price of anarchy.
Games and Economic Behavior, 65(2):289–317. (Cited on page 214.)

Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., and
Roughgarden, T. (2008a). The price of stability for network design with fair
cost allocation. SIAM Journal on Computing, 38(4):1602–1623. (Cited on
page 213.)

Anshelevich, E., Dasgupta, A., Tardos, É., and Wexler, T. (2008b). Near-optimal
network design with selfish agents. Theory of Computing, 4(1):77–109.
(Cited on page 213.)

Archer, A. F. and Tardos, É. (2001). Truthful mechanisms for one-parameter
agents. In Proceedings of the 42nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 482–491. (Cited on page 49.)

Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(1):121–
164. (Cited on page 243.)

Asadpour, A. and Saberi, A. (2009). On the inefficiency ratio of stable equilibria
in congestion games. In Proceedings of the 5th International Workshop
on Internet and Network Economics (WINE), pages 545–552. (Cited on
page 214.)



Ashlagi, I., Fischer, F. A., Kash, I. A., and Procaccia, A. D. (2015). Mix and
match: A strategyproof mechanism for multi-hospital kidney exchange.
Games and Economic Behavior, 91:284–296. (Cited on page 143.)

Aumann, R. J. (1959). Acceptable points in general cooperative n-person games.
In Luce, R. D. and Tucker, A. W., editors, Contributions to the Theory of
Games, volume 4, pages 287–324. Princeton University Press. (Cited on
page 214.)

Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies.
Journal of Mathematical Economics, 1(1):67–96. (Cited on page 183.)

Ausubel, L. M. (2004). An efficient ascending-bid auction for multiple objects.
American Economic Review, 94(5):1452–1475. (Cited on page 123.)

Ausubel, L. M. and Milgrom, P. (2002). Ascending auctions with package bidding.
Frontiers of Theoretical Economics, 1(1):1–42. (Cited on page 110.)

Ausubel, L. M. and Milgrom, P. (2006). The lovely but lonely Vickrey auction. In
Cramton, P., Shoham, Y., and Steinberg, R., editors, Combinatorial
Auctions, chapter 1, pages 57–95. MIT Press. (Cited on page 93.)

Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V. S., and Skopalik, A. (2008). Fast
convergence to nearly optimal solutions in potential games. In Proceedings
of the 9th ACM Conference on Electronic Commerce (EC), pages 264–
273. (Cited on page 227.)

Awerbuch, B., Azar, Y., and Epstein, L. (2013). The price of routing unsplittable
flow. SIAM Journal on Computing, 42(1):160–177. (Cited on page 169.)

Awerbuch, B., Azar, Y., Richter, Y., and Tsur, D. (2006). Tradeoffs in worst-case
equilibria. Theoretical Computer Science, 361(2–3):200–209. (Cited on
page 169.)

Azar, P., Daskalakis, C., Micali, S., and Weinberg, S. M. (2013). Optimal and
efficient parametric auctions. In Proceedings of the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 596–604. (Cited
on page 70.)

Beckmann, M. J., McGuire, C. B., and Winsten, C. B. (1956). Studies in the
Economics of Transportation. Yale University Press. (Cited on pages 156
and 183.)

Bertsekas, D. P. and Gallager, R. G. (1987). Data Networks. Prentice-Hall.
Second Edition, 1991. (Cited on page 169.)

Bhawalkar, K., Gairing, M., and Roughgarden, T. (2014). Weighted congestion
games: Price of anarchy, universal worst-case examples, and tightness. ACM
Transactions on Economics and Computation, 2(4):14. (Cited on page
169.)

Bilò, V., Flammini, M., and Moscardelli, L. (2016). The price of stability for
undirected broadcast network design with fair cost allocation is constant.



Games and Economic Behavior. To appear. (Cited on page 214.)
Bitansky, N., Paneth, O., and Rosen, A. (2015). On the cryptographic hardness of

finding a Nash equilibrium. In Proceedings of the 56th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1480–1498. (Cited
on page 295.)

Blackwell, D. (1956). Controlled random walks. In Noordhoff, E. P., editor,
Proceedings of the International Congress of Mathematicians 1954,
volume 3, pages 336–338. North-Holland. (Cited on page 243.)

Blum, A., Hajiaghayi, M. T., Ligett, K., and Roth, A. (2008). Regret minimization
and the price of total anarchy. In Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (STOC), pages 373–382. (Cited on
page 199.)

Blum, A. and Mansour, Y. (2007a). From external to internal regret. Journal of
Machine Learning Research, 8:1307–1324. (Cited on page 258.)

Blum, A. and Mansour, Y. (2007b). Learning, regret minimization, and equilibria.
In Nisan, N., Roughgarden, T., Tardos, É., and Vazirani, V., editors,
Algorithmic Game Theory, chapter 4, pages 79–101. Cambridge University
Press. (Cited on page 243.)

Blume, L. (1993). The statistical mechanics of strategic interaction. Games and
Economic Behavior, 5(3):387–424. (Cited on page 214.)

Blumrosen, L. and Nisan, N. (2007). Combinatorial auctions. In Nisan, N.,
Roughgarden, T., Tardos, É., and Vazirani, V., editors, Algorithmic Game
Theory, chapter 11, pages 267–299. Cambridge University Press. (Cited on
page 93.)

Börgers, T. (2015). An Introduction to the Theory of Mechanism Design.
Oxford University Press. (Cited on page 20.)

Braess, D. (1968). Über ein Paradoxon aus der Verkehrsplanung. Un-
ternehmensforschung, 12(1):258–268. (Cited on pages 9 and 156.)

Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Procaccia, A. D., editors
(2016). Handbook of Computational Social Choice. Cambridge University
Press. (Cited on page xi.)

Briest, P., Krysta, P., and Vöcking, B. (2005). Approximation techniques for
utilitarian mechanism design. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC), pages 39–48. (Cited on
page 50.)

Brown, J. W. and von Neumann, J. (1950). Solutions of games by differential
equations. In Kuhn, H. W. and Tucker, A. W., editors, Contributions to the
Theory of Games, volume 1, pages 73–79. Princeton University Press.
(Cited on page 295.)

Bulow, J. and Klemperer, P. (1996). Auctions versus negotiations. American



Economic Review, 86(1):180–194. (Cited on page 83.)
Bulow, J. and Roberts, J. (1989). The simple economics of optimal auctions.

Journal of Political Economy, 97(5):1060–1090. (Cited on page 70.)
Cai, Y., Candogan, O., Daskalakis, C., and Papadimitriou, C. H. (2016). Zero-sum

polymatrix games: A generalization of minmax. Mathematics of Operations
Research, 41(2):648–655. (Cited on page 258.)

Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M., Lucier, B.,
Paes Leme, R., and Tardos, É. (2015). On the efficiency of equilibria in
generalized second price auctions. Journal of Economic Theory, 156:343–
388. (Cited on page 199.)

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games.
Cambridge University Press. (Cited on page 243.)

Cesa-Bianchi, N., Mansour, Y., and Stolz, G. (2007). Improved second-order
bounds for prediction with expert advice. Machine Learning, 66(2–3):321–
352. (Cited on page 243.)

Chakrabarty, D. (2004). Improved bicriteria results for the selfish routing problem.
Unpublished manuscript. (Cited on page 169.)

Chawla, S., Hartline, J. D., and Kleinberg, R. D. (2007). Algorithmic pricing via
virtual valuations. In Proceedings of the 8th ACM Conference on
Electronic Commerce (EC), pages 243–251. (Cited on page 83.)

Chawla, S., Hartline, J. D., Malec, D., and Sivan, B. (2010). Multi-parameter
mechanism design and sequential posted pricing. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing (STOC), pages 311–
320. (Cited on page 83.)

Chekuri, C. and Gamzu, I. (2009). Truthful mechanisms via greedy iterative
packing. In Proceedings of the 12th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 56–69. (Cited on page 50.)

Chen, R. and Chen, Y. (2011). The potential of social identity for equilibrium
selection. American Economic Review, 101(6):2562–2589. (Cited on page
214.)

Chen, X., Deng, X., and Teng, S.-H. (2009). Settling the complexity of computing
two-player Nash equilibria. Journal of the ACM, 56(3):14. (Cited on page
294.)

Chien, S. and Sinclair, A. (2011). Convergence to approximate Nash equilibria in
congestion games. Games and Economic Behavior, 71(2):315–327. (Cited
on page 227.)

Christodoulou, G. and Koutsoupias, E. (2005a). On the price of anarchy and
stability of correlated equilibria of linear congestion games. In Proceedings
of the 13th Annual European Symposium on Algorithms (ESA), pages



59–70. (Cited on page 169.)
Christodoulou, G. and Koutsoupias, E. (2005b). The price of anarchy of finite

congestion games. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC), pages 67–73. (Cited on page 169.)

Christodoulou, G., Kovács, A., and Schapira, M. (2008). Bayesian combinatorial
auctions. In Proceedings of the 35th International Colloquium on
Automata, Languages and Programming (ICALP), pages 820–832. (Cited
on page 199.)

Clarke, E. H. (1971). Multipart pricing of public goods. Public Choice, 11(1):17–
33. (Cited on page 93.)

Cohen, J. E. and Horowitz, P. (1991). Paradoxical behaviour of mechanical and
electrical networks. Nature, 352(8):699–701. (Cited on page 9.)

Cominetti, R., Correa, J. R., and Stier Moses, N. E. (2009). The impact of
oligopolistic competition in networks. Operations Research, 57(6):1421–
1437. (Cited on page 169.)

Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., and Schrijver, A. (1998).
Combinatorial Optimization. Wiley. (Cited on pages 156 and 308.)

Correa, J. R., Schulz, A. S., and Stier Moses, N. E. (2004). Selfish routing in
capacitated networks. Mathematics of Operations Research, 29(4):961–
976. (Cited on page 156.)

Cramton, P. (2006). Simultaneous ascending auctions. In Cramton, P., Shoham, Y.,
and Steinberg, R., editors, Combinatorial Auctions, chapter 4, pages 99–
114. MIT Press. (Cited on page 110.)

Cramton, P. and Schwartz, J. (2000). Collusive bidding: Lessons from the FCC
spectrum auctions. Journal of Regulatory Economics, 17(3):229–252.
(Cited on page 110.)

Cramton, P., Shoham, Y., and Steinberg, R., editors (2006). Combinatorial
Auctions. MIT Press. (Cited on page 110.)

Crémer, J. and McLean, R. P. (1985). Optimal selling strategies under uncertainty
for a discriminating monopolist when demands are interdependent.
Econometrica, 53(2):345–361. (Cited on page 69.)

Dantzig, G. B. (1951). A proof of the equivalence of the programming problem
and the game problem. In Koopmans, T. C., editor, Activity Analysis of
Production and Allocation, Cowles Commission Monograph No. 13,
chapter XX, pages 330–335. Wiley. (Cited on page 258.)

Dantzig, G. B. (1982). Reminiscences about the origins of linear programming.
Operations Research Letters, 1(2):43–48. (Cited on page 258.)

Daskalakis, C. (2013). On the complexity of approximating a Nash equilibrium.
ACM Transactions on Algorithms, 9(3):23. (Cited on page 295.)



Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009a). The
complexity of computing a Nash equilibrium. SIAM Journal on Computing,
39(1):195–259. (Cited on page 294.)

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009b). The
complexity of computing a Nash equilibrium. Communications of the ACM,
52(2):89–97. (Cited on page 295.)

Devanur, N. R., Ha, B. Q., and Hartline, J. D. (2013). Prior-free auctions for
budgeted agents. In Proceedings of the 14th ACM Conference on
Electronic Commerce (EC), pages 287–304. (Cited on page 123.)

Dhangwatnotai, P., Roughgarden, T., and Yan, Q. (2015). Revenue maximization
with a single sample. Games and Economic Behavior, 91:318–333. (Cited
on page 83.)

Diamantaras, D., Cardamone, E. I., Campbell, K. A., Deacle, S., and Delgado, L.
A. (2009). A Toolbox for Economic Design. Palgrave Macmillan. (Cited on
page 20.)

Dobzinski, S., Lavi, R., and Nisan, N. (2012). Multi-unit auctions with budget
limits. Games and Economic Behavior, 74(2):486–503. (Cited on pages 123
and 124.)

Dobzinski, S., Nisan, N., and Schapira, M. (2010). Approximation algorithms for
combinatorial auctions with complement-free bidders. Mathematics of
Operations Research, 35(1):1–13. (Cited on page 93.)

Dobzinski, S. and Paes Leme, R. (2014). Efficiency guarantees in auctions with
budgets. In Proceedings of the 41st International Colloquium on
Automata, Languages and Programming (ICALP), pages 392–404. (Cited
on page 124.)

Dubins, L. E. and Freedman, D. A. (1981). Machiavelli and the Gale-Shapley
algorithm. American Mathematical Monthly, 88(7):485–494. (Cited on page
143.)

Dynkin, E. B. (1963). The optimum choice of the instant for stopping a Markov
process. Soviet Mathematics Doklady, 4:627–629. (Cited on page 20.)

Edelman, B., Ostrovsky, M., and Schwarz, M. (2007). Internet advertising and the
Generalized Second-Price Auction: Selling billions of dollars worth of
keywords. American Economic Review, 97(1):242–259. (Cited on pages 20
and 35.)

Epstein, A., Feldman, M., and Mansour, Y. (2009). Strong equilibrium in cost
sharing connection games. Games and Economic Behavior, 67(1):51–68.
(Cited on page 214.)

Etessami, K. and Yannakakis, M. (2010). On the complexity of Nash equilibria
and other fixed points. SIAM Journal on Computing, 39(6):2531–2597.
(Cited on page 295.)



Even-Dar, E., Kesselman, A., and Mansour, Y. (2007). Convergence time to
Nash equilibrium in load balancing. ACM Transactions on Algorithms,
3(3):32. (Cited on page 227.)

Fabrikant, A., Papadimitriou, C. H., and Talwar, K. (2004). The complexity of
pure Nash equilibria. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing (STOC), pages 604–612. (Cited on page 277.)

Facchini, G., van Megan, F., Borm, P., and Tijs, S. (1997). Congestion models and
weighted Bayesian potential games. Theory and Decision, 42(2):193–206.
(Cited on page 183.)

Federal Communications Commission (2015). Procedures for competitive bidding
in auction 1000, including initial clearing target determination, qualifying to bid,
and bidding in auctions 1001 (reverse) and 1002 (forward). Public notice
FCC 15-78. (Cited on page 110.)

Foster, D. P. and Vohra, R. (1997). Calibrated learning and correlated equilibrium.
Games and Economic Behavior, 21(1–2):40–55. (Cited on page 258.)

Foster, D. P. and Vohra, R. (1999). Regret in the on-line decision problem. Games
and Economic Behavior, 29(1–2):7–35. (Cited on page 243.)

Fotakis, D. (2010). Congestion games with linearly independent paths:
Convergence time and price of anarchy. Theory of Computing Systems,
47(1):113–136. (Cited on page 277.)

Fotakis, D., Kontogiannis, S. C., and Spirakis, P. G. (2005). Selfish unsplittable
flows. Theoretical Computer Science, 348(2–3):226–239. (Cited on page
183.)

Fréchette, A., Newman, N., and Leyton-Brown, K. (2016). Solving the station
repacking problem. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI). (Cited on page 110.)

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139. (Cited on page 243.)

Freund, Y. and Schapire, R. E. (1999). Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29(1–2):79–103. (Cited on page
258.)

Gale, D., Kuhn, H. W., and Tucker, A. W. (1950). On symmetric games. In Kuhn,
H. W. and Tucker, A. W., editors, Contributions to the Theory of Games,
volume 1, pages 81–87. Princeton University Press. (Cited on page 295.)

Gale, D., Kuhn, H. W., and Tucker, A. W. (1951). Linear programming and the
theory of games. In Koopmans, T. C., editor, Activity Analysis of
Production and Allocation, Cowles Commission Monograph No. 13,
chapter XIX, pages 317–329. Wiley. (Cited on page 258.)

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of



marriage. American Mathematical Monthly, 69(1):9–15. (Cited on page
143.)

Gale, D. and Sotomayor, M. (1985). Ms. Machiavelli and the stable matching
problem. American Mathematical Monthly, 92(4):261–268. (Cited on page
143.)

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman. (Cited on pages 50,
276, and 301.)

Geanakoplos, J. (2003). Nash and Walras equilibrium via Brouwer. Economic
Theory, 21(2/3):585–603. (Cited on page 295.)

Gibbard, A. (1973). Manipulation of voting schemes: A general result.
Econometrica, 41(4):587–601. (Cited on page 50.)

Gilboa, I. and Zemel, E. (1989). Nash and correlated equilibria: Some complexity
considerations. Games and Economic Behavior, 1(1):80–93. (Cited on page
258.)

Goemans, M. X., Mirrokni, V. S., and Vetta, A. (2005). Sink equilibria and
convergence. In Proceedings of the 46th Annual Symposium on
Foundations of Computer Science (FOCS), pages 142–151. (Cited on
page 183.)

Goeree, J. K. and Holt, C. A. (2010). Hierarchical package bidding: A paper &
pencil combinatorial auction. Games and Economic Behavior, 70(1):146–
169. (Cited on page 110.)

Goldberg, A. V., Hartline, J. D., Karlin, A., Saks, M., and Wright, A. (2006).
Competitive auctions. Games and Economic Behavior, 55(2):242–269.
(Cited on pages 35 and 83.)

Groves, T. (1973). Incentives in teams. Econometrica, 41(4):617–631. (Cited on
page 93.)

Hajiaghayi, M. T., Kleinberg, R. D., and Parkes, D. C. (2004). Adaptive limited-
supply online auctions. In Proceedings of the 5th ACM Conference on
Electronic Commerce (EC), pages 71–80. (Cited on page 20.)

Hannan, J. (1957). Approximation to Bayes risk in repeated play. In Dresher, M.,
Tucker, A. W., and Wolfe, P., editors, Contributions to the Theory of
Games, volume 3, pages 97–139. Princeton University Press. (Cited on
pages 183, 243, and 258.)

Harks, T. (2011). Stackelberg strategies and collusion in network games with
splittable flow. Theory of Computing Systems, 48(4):781–802. (Cited on
page 169.)

Harstad, R. M. (2000). Dominant strategy adoption and bidders’ experience with
pricing rules. Experimental Economics, 3(3):261–280. (Cited on page 110.)



Hart, S. and Mas-Colell, A. (2000). A simple adaptive procedure leading to
correlated equilibrium. Econometrica, 68(5):1127–1150. (Cited on page 258.)

Hart, S. and Nisan, N. (2013). The query complexity of correlated equilibria.
Working paper. (Cited on page 277.)

Hartline, J. D. (2016). Mechanism design and approximation. Book in preparation.
(Cited on pages xi, 69, and 83.)

Hartline, J. D. and Kleinberg, R. D. (2012). Badminton and the science of rule
making. The Huffington Post. (Cited on page 9.)

Hartline, J. D. and Roughgarden, T. (2009). Simple versus optimal mechanisms.
In Proceedings of the 10th ACM Conference on Electronic Commerce
(EC), pages 225–234. (Cited on page 83.)

Hoeksma, R. and Uetz, M. (2011). The price of anarchy for min-sum related
machine scheduling. In Proceedings of the 9th International Workshop on
Approximation and Online Algorithms (WAOA), pages 261–273. (Cited on
page 199.)

Holmstrom, B. (1977). On Incentives and Control in Organizations. PhD
thesis, Stanford University. (Cited on page 93.)

Hurwicz, L. (1972). On informationally decentralized systems. In McGuire, C. B.
and Radner, R., editors, Decision and Organization, pages 297–336.
University of Minnesota Press. (Cited on page 20.)

Ibarra, O. H. and Kim, C. E. (1975). Fast approximation algorithms for the
knapsack and sum of subset problems. Journal of the ACM, 22(4):463–468.
(Cited on page 50.)

Jackson, M. O. (2008). Social and Economic Networks. Princeton University
Press. (Cited on page 213.)

Jiang, A. X. and Leyton-Brown, K. (2015). Polynomial-time computation of exact
correlated equilibrium in compact games. Games and Economic Behavior,
91:347–359. (Cited on page 277.)

Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. (1988). How easy is
local search? Journal of Computer and System Sciences, 37(1):79–100.
(Cited on pages 276 and 294.)

Kalai, A. and Vempala, S. (2005). Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307.
(Cited on page 243.)

Karlin, S. and Taylor, H. (1975). A First Course in Stochastic Processes.
Academic Press, second edition. (Cited on page 258.)

Kirkegaard, R. (2006). A short proof of the Bulow-Klemperer auctions vs.
negotiations result. Economic Theory, 28(2):449–452. (Cited on page 83.)

Klemperer, P. (2004). Auctions: Theory and Practice. Princeton University



Press. (Cited on page 110.)
Koutsoupias, E. and Papadimitriou, C. H. (1999). Worst-case equilibria. In

Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS), volume 1563 of Lecture Notes in Computer
Science, pages 404–413. (Cited on pages 9, 169, and 183.)

Krishna, V. (2010). Auction Theory. Academic Press, second edition. (Cited on
pages 20 and 70.)

Lehmann, D., O’Callaghan, L. I., and Shoham, Y. (2002). Truth revelation in
approximately efficient combinatorial auctions. Journal of the ACM,
49(5):577–602. (Cited on pages 49 and 50.)

Lemke, C. E. and Howson, Jr., J. T. (1964). Equilibrium points of bimatrix games.
SIAM Journal, 12(2):413–423. (Cited on page 295.)

Lipton, R. J., Markakis, E., and Mehta, A. (2003). Playing large games using
simple strategies. In Proceedings of the 4th ACM Conference on
Electronic Commerce (EC), pages 36–41. (Cited on page 295.)

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2(4):285–318. (Cited on page
243.)

Littlestone, N. and Warmuth, M. K. (1994). The weighted majority algorithm.
Information and Computation, 108(2):212–261. (Cited on page 243.)

Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). Microeconomic
Theory. Oxford University Press. (Cited on page 20.)

McVitie, D. G. and Wilson, L. B. (1971). The stable marriage problem.
Communications of the ACM, 14(7):486–490. (Cited on page 143.)

Megiddo, N. and Papadimitriou, C. H. (1991). On total functions, existence
theorems and computational complexity. Theoretical Computer Science,
81(2):317–324. (Cited on page 294.)

Milchtaich, I. (1996). Congestion games with player-specific payoff functions.
Games and Economic Behavior, 13(1):111–124. (Cited on page 227.)

Milgrom, P. (2004). Putting Auction Theory to Work. Cambridge University
Press. (Cited on page 110.)

Milgrom, P. and Segal, I. (2015a). Deferred-acceptance auctions and radio
spectrum reallocation. Working paper. (Cited on page 110.)

Milgrom, P. and Segal, I. (2015b). Designing the US Incentive Auction. Working
paper. (Cited on page 110.)

Mirrokni, V. S. and Vetta, A. (2004). Convergence issues in competitive games.
In Proceedings of the 7th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), pages
183–194. (Cited on pages 199 and 227.)



Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge University
Press. (Cited on pages 305 and 308.)

Monderer, D. and Shapley, L. S. (1996). Potential games. Games and Economic
Behavior, 14(1):124–143. (Cited on pages 183 and 226.)

Motwani, R. and Raghavan, P. (1996). Randomized Algorithms. Cambridge
University Press. (Cited on pages 305 and 308.)

Moulin, H. (1980). On strategy-proofness and single peakedness. Public Choice,
35(4):437–455. (Cited on page 124.)

Moulin, H. and Shenker, S. (2001). Strategyproof sharing of submodular costs:
Budget balance versus efficiency. Economic Theory, 18(3):511–533. (Cited
on page 35.)

Moulin, H. and Vial, J. P. (1978). Strategically zero-sum games: The class of
games whose completely mixed equilibria cannot be improved upon.
International Journal of Game Theory, 7(3–4):201–221. (Cited on page
183.)

Mu’Alem, A. and Nisan, N. (2008). Truthful approximation mechanisms for
restricted combinatorial auctions. Games and Economic Behavior,
64(2):612–631. (Cited on page 50.)

Myerson, R. (1981). Optimal auction design. Mathematics of Operations
Research, 6(1):58–73. (Cited on pages 35 and 69.)

Nash, Jr., J. F. (1950). Equilibrium points in N-person games. Proceedings of the
National Academy of Sciences, 36(1):48–49. (Cited on pages 9 and 183.)

Nash, Jr., J. F. (1951). Non-cooperative games. Annals of Mathematics,
54(2):286–295. (Cited on page 295.)

Nisan, N. (2015). Algorithmic mechanism design: Through the lens of multi-unit
auctions. In Young, H. P. and Zamir, S., editors, Handbook of Game
Theory, volume 4, chapter 9, pages 477–515. North-Holland. (Cited on page
49.)

Nisan, N. and Ronen, A. (2001). Algorithmic mechanism design. Games and
Economic Behavior, 35(1–2):166–196. (Cited on page 49.)

Nisan, N., Roughgarden, T., Tardos, É., and Vazirani, V., editors (2007).
Algorithmic Game Theory. Cambridge University Press. (Cited on page xi.)

Nobel Prize Committee (2007). Scientific background on the Sveriges Riksbank
Prize in Economic Sciences in Memory of Alfred Nobel: Mechanism Design
Theory. Prize Citation. (Cited on page 20.)

Olifer, N. and Olifer, V. (2005). Computer Networks: Principles, Technologies
and Protocols for Network Design. Wiley. (Cited on page 169.)

Ostrovsky, M. and Schwarz, M. (2009). Reserve prices in Internet advertising



auctions: A field experiment. Working paper. (Cited on page 70.)
Papadimitriou, C. H. (1994). On the complexity of the parity argument and other

inefficient proofs of existence. Journal of Computer and System Sciences,
48(3):498–532. (Cited on page 294.)

Papadimitriou, C. H. (2007). The complexity of finding Nash equilibria. In Nisan,
N., Roughgarden, T., Tardos, É., and Vazirani, V., editors, Algorithmic Game
Theory, chapter 2, pages 29–51. Cambridge University Press. (Cited on
page 295.)

Papadimitriou, C. H. and Roughgarden, T. (2008). Computing correlated equilibria
in multi-player games. Journal of the ACM, 55(3):14. (Cited on page 277.)

Parkes, D. C. and Seuken, S. (2016). Economics and computation. Book in
preparation. (Cited on page xi.)

Pigou, A. C. (1920). The Economics of Welfare. Macmillan. (Cited on page
156.)

Rabin, M. O. (1957). Effective computability of winning strategies. In Dresher,
M., Tucker, A. W., and Wolfe, P., editors, Contributions to the Theory of
Games, volume 3, pages 147–157. Princeton University Press. (Cited on
page 9.)

Rassenti, S. J., Smith, V. L., and Bulfin, R. L. (1982). A combinatorial auction
mechanism for airport time slot allocation. Bell Journal of Economics,
13(2):402–417. (Cited on page 110.)

Rochet, J. C. (1987). A necessary and sufficient condition for rationalizability in a
quasi-linear context. Journal of Mathematical Economics, 16(2):191–200.
(Cited on page 93.)

Rosen, A., Segev, G., and Shahaf, I. (2016). Can PPAD hardness be based on
standard cryptographic assumptions? Working paper. (Cited on page 295.)

Rosenthal, R. W. (1973). A class of games possessing pure-strategy Nash
equilibria. International Journal of Game Theory, 2(1):65–67. (Cited on
pages 169 and 183.)

Roth, A. E. (1982a). The economics of matching: Stability and incentives.
Mathematics of Operations Research, 7(4):617–628. (Cited on page 143.)

Roth, A. E. (1982b). Incentive compatibility in a market with indivisible goods.
Economics Letters, 9(2):127–132. (Cited on page 124.)

Roth, A. E. (1984). The evolution of the labor market for medical interns and
residents: A case study in game theory. Journal of Political Economy,
92(6):991–1016. (Cited on page 143.)

Roth, A. E. and Peranson, E. (1999). The redesign of the matching market for
American physicians: Some engineering aspects of economic design.
American Economic Review, 89(4):748–780. (Cited on page 143.)



Roth, A. E. and Postlewaite, A. (1977). Weak versus strong domination in a
market with indivisible goods. Journal of Mathematical Economics,
4(2):131–137. (Cited on page 124.)

Roth, A. E., Sönmez, T., and Ünver, M. U. (2004). Kidney exchange. Quarterly
Journal of Economics, 119(2):457–488. (Cited on page 142.)

Roth, A. E., Sönmez, T., and Ünver, M. U. (2005). Pairwise kidney exchange.
Journal of Economic Theory, 125(2):151–188. (Cited on page 143.)

Roth, A. E., Sönmez, T., and Ünver, M. U. (2007). Efficient kidney exchange:
Coincidence of wants in markets with compatibility-based preferences.
American Economic Review, 97(3):828–851. (Cited on page 143.)

Rothkopf, M., Teisberg, T., and Kahn, E. (1990). Why are Vickrey auctions rare?
Journal of Political Economy, 98(1):94–109. (Cited on page 93.)

Roughgarden, T. (2003). The price of anarchy is independent of the network
topology. Journal of Computer and System Sciences, 67(2):341–364.
(Cited on page 156.)

Roughgarden, T. (2005). Selfish Routing and the Price of Anarchy. MIT Press.
(Cited on page 156.)

Roughgarden, T. (2006). On the severity of Braess’s Paradox: Designing
networks for selfish users is hard. Journal of Computer and System
Sciences, 72(5):922–953. (Cited on pages 9 and 156.)

Roughgarden, T. (2010a). Algorithmic game theory. Communications of the
ACM, 53(7):78–86. (Cited on page 169.)

Roughgarden, T. (2010b). Computing equilibria: A computational complexity
perspective. Economic Theory, 42(1):193–236. (Cited on pages 276 and
294.)

Roughgarden, T. (2015). Intrinsic robustness of the price of anarchy. Journal of
the ACM, 62(5):32. (Cited on pages 169, 199, and 227.)

Roughgarden, T. and Schoppmann, F. (2015). Local smoothness and the price of
anarchy in splittable congestion games. Journal of Economic Theory,
156:317–342. (Cited on page 169.)

Roughgarden, T. and Sundararajan, M. (2007). Is efficiency expensive? In
Proceedings of the 3rd Workshop on Sponsored Search. (Cited on page
83.)

Roughgarden, T., Syrgkanis, V., and Tardos, É.. (2016). The price of anarchy in
auctions. Working paper. (Cited on page 199.)

Roughgarden, T. and Tardos, É. (2002). How bad is selfish routing? Journal of
the ACM, 49(2):236–259. (Cited on pages 156 and 169.)

Rubinstein, A. (2016). Settling the complexity of computing approximate two-
player Nash equilibria. Working paper. (Cited on page 295.)



Sack, K. (2012). 60 lives, 30 kidneys, all linked. New York Times. February 18.
(Cited on page 143.)

Samuel-Cahn, E. (1984). Comparison of threshold stop rules and maximum for
independent nonnegative random variables. Annals of Probability,
12(4):1213–1216. (Cited on page 83.)

Schäffer, A. A. and Yannakakis, M. (1991). Simple local search problems that are
hard to solve. SIAM Journal on Computing, 20(1):56–87. (Cited on page
277.)

Shapley, L. and Scarf, H. (1974). On cores and indivisibility. Journal of
Mathematical Economics, 1(1):23–37. (Cited on page 124.)

Shapley, L. S. and Shubik, M. (1971). The assignment game I: The core.
International Journal of Game Theory, 1(1):111–130. (Cited on page 110.)

Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis with
Mathematical Programming Methods. Prentice-Hall. (Cited on page 156.)

Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press.
(Cited on page xi.)

Skopalik, A. and Vöcking, B. (2008). Inapproximability of pure Nash equilibria. In
Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC), pages 355–364. (Cited on pages 227 and 277.)

Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of
Nations. Methuen. (Cited on page 9.)

Sperner, E. (1928). Neuer Beweis für die Invarianz der Dimensionszahl und des
Gebietes. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 6(1):265–272. (Cited on page 295.)

Varian, H. R. (2007). Position auctions. International Journal of Industrial
Organization, 25(6):1163–1178. (Cited on pages 20 and 35.)

Vazirani, V. V. (2001). Approximation Algorithms. Springer. (Cited on page 50.)
Vetta, A. (2002). Nash equilibria in competitive societies, with applications to

facility location, traffic routing and auctions. In Proceedings of the 43rd
Annual Symposium on Foundations of Computer Science (FOCS), pages
416–425. (Cited on page 199.)

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders.
Journal of Finance, 16(1):8–37. (Cited on pages 20, 70, and 93.)

Ville, J. (1938). Sur la theorie générale des jeux ou intervient l’habileté des
joueurs. Fascicule 2 in Volume 4 of É. Borel, Traité du Calcul des
probabilités et de ses applications, pages 105–113. Gauthier-Villars. (Cited
on page 258.)

Vohra, R. V. (2011). Mechanism Design: A Linear Programming Approach.



Cambridge University Press. (Cited on page 93.)
Vojnović, M. (2016). Contest Theory. Cambridge University Press. (Cited on

page xi.)
von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Math-ematische

Annalen, 100:295–320. (Cited on page 258.)
von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic

Behavior. Princeton University Press. (Cited on page 258.)
von Stengel, B. (2002). Computing equilibria for two-person games. In Aumann,

R. J. and Hart, S., editors, Handbook of Game Theory with Economic
Applications, volume 3, chapter 45, pages 1723–1759. North-Holland. (Cited
on page 295.)

Voorneveld, M., Borm, P., van Megen, F., Tijs, S., and Facchini, G. (1999).
Congestion games and potentials reconsidered. International Game Theory
Review, 1(3–4):283–299. (Cited on page 183.)

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. In
Proceedings of the Institute of Civil Engineers, Pt. II, volume 1, pages
325–378. (Cited on page 156.)

Williamson, D. P. and Shmoys, D. B. (2010). The Design of Approximation
Algorithms. Cambridge University Press. (Cited on page 50.)



Index

acknowledgments, xii
agent, 25, 87, 173
allocation curve, 29

area under, 31
allocation rule, 26

approximately welfare-maximizing, 43
cycle monotonicity, 89, 93
deferred, 107, 111–112
greedy, 44, 106, 112
implementable, 27
monotone, 27
non-monotone, 45
scoring function, 108
virtual threshold, 78
virtual welfare-maximizing, 62
welfare-maximizing, 19, 22, 42, 50, 89

approximation algorithm, 43, 44
auction

approximately optimal, 75, 84
ascending, 21, 97–98, 112, 115
clinching, 116–119, 126
combinatorial, see combinatorial auction
competition, 80
English, see auction, ascending
first-price, 12, 64, 72–73
ideal, 15–16
Japanese, 98
k-unit, 20, 25, 37, 71
knapsack, 39–40, 43–46



multi-item, see combinatorial auction
multi-unit, 114, 126
online, 22
optimal, 57, 64
prior-free, 83
prior-independent, 79–82, 86
procurement, 21
revenue-maximizing, 57
reverse, 21, 106
sealed-bid, 12
second-price, 13, 32
separate single-item, 98
sequential, 100
simple, 75, 77–79, 84
simultaneous sealed-bid, 101, 201
single-item, 11–16, 24, 31, 88
sniping, 102
spectrum, see spectrum auction
sponsored search, see sponsored search
third-price, 20
two-step design approach, 18
uniform-price, 114–116
versus negotiation, 80
weird, 75, 83
welfare-maximizing, 15
with budgets, 113
with one bidder, 56, 57

badminton, 1–3
Bayesian analysis, 56, 63, 72–73
Bayesian incentive compatible (BIC), 63
best response, 175
best-response dynamics, 216

as a graph walk, 217
as local search, 274



convergence time, 218
-, 219, 275

fast convergence, 220–223, 227, 228, 228
in atomic selfish routing, 220–223, 228
in congestion games, 274
in potential games, 217
in scheduling, 227–229
in smooth games, 223–226
in symmetric congestion games, 275
lower bounds, 274, 275
maximum-gain, 219, 224
maximum-relative-gain, 228
maximum-weight, 227
non-convergence, 227, 229
vs. better-response dynamics, 217

bid, 26
critical, 41, 63
false-name, 92, 94

bimatrix game, 7, 279
bounded rationality, 8
Braess’s paradox, 4, 145, 158
Brouwer’s fixed-point theorem, 290, 295

and Nash’s theorem, 291, 293, 296
in higher dimensions, 291

budget, 114
private, 119, 124

budget-balance, 21, 95–96
Bulow-Klemperer theorem, 80–82, 86
bundle, 88

case studies, xii, 16, 65–66, 99–109, 128–136, 159–161
CCE, see coarse correlated equilibrium
CE, see correlated equilibrium
Chernoff-Hoeffding bounds, 308
Christie’s, 98



coalition
blocking (core allocation), 121
deviation (strong Nash equilibrium), 209

coarse correlated equilibrium, 177–178
and no-regret dynamics, 240–241, 243, 245
approximate, 241
as a linear program, 260
interpretation, 241
tractability, 178, 241, 260, 263, 293

coffee, 290
collusion, 23, 38, 92, 94
combinatorial auction, 88, 93–95, 97

applications, 88
approximation, 96–97
complements, 99
exposure problem, 104
package bidding, 105
price of anarchy, 201
substitutes, 99

common prior, 48, 57, 72
communication network, 159, 169
computational efficiency, 16
congestion game, 181, 271

as a potential game, 186, 271
computing a correlated equilibrium, 277
intractability of pure Nash equilibria, 272–275
lower bound for best-response dynamics, 274, 275
symmetric, 274–275

, 281
core allocation, 122
correlated equilibrium, 176–177

and no-swap-regret dynamics, 248, 257
as a linear program, 260, 277
in congestion games, 277



interpretation, 176, 241
swapping function, 183, 247
tractability, 177, 249, 260, 263, 277, 293
traffic light example, 177

cost function
in cost-minimization games, 174
in selfish routing, 148

cryptography, 293, 295
CTR, see sponsored search, click-through rate

deferred acceptance algorithm, 137–141
applicant-optimality, 140
convergence, 139
incentive properties, 141, 144

deferred allocation rule, see allocation rule, deferred
demand

aggregate, 115
of a bidder, 114
reduction, 103, 115
residual, 116

density function, 57
dependencies, xii
direct-revelation, see mechanism, direct-revelation
distribution function, 57
dominant strategy, 13
dominant-strategy incentive compatible, see DSIC
DSIC, 15, 16, 46

for randomized mechanisms, 86, 126
dynamics, 216

best-response, see best-response dynamics
no-regret, see no-regret dynamics
no-swap-regret, see no-swap-regret dynamics vs. algorithms, 263

eBay, 13, 21, 58, 64
economics and computation, xi



environment, see single-parameter environment
envy-free, see sponsored search, envy-free
equilibrium

Bayes-Nash, 48, 57, 63, 72–73
coarse correlated, see coarse correlated equilibrium
competitive, see Wal-rasian equilibrium
computation, 263
correlated, see correlated equilibrium
dominant-strategy, 46
flow, 152, 164
hierarchy, 173, 208
Nash, see Nash equilibrium
refinement, 208
sponsored search, 36
Walrasian, see Walrasian equilibrium

experts, see online decision making
externality, 50, 90, 195, 202

negative vs. positive, 202
feasible set (of outcomes), 24
Federal Communications Commission (FCC), 106
first welfare theorem, 111

, 295
flow network, 152–153, 156

multicommodity, 157
 (functional ), 280

and mixed Nash equilibria, 281
decision vs. search problems, 280

-completeness, 281

Gale-Shapley algorithm, see deferred acceptance algorithm
game

compact, 263, 277
congestion, see congestion game
constant-sum, 258
cost-minimization, 173



description length, 263
location, 188, 199
network cost-sharing, see network cost-sharing game
payoff-maximization, 174, 190
potential, see potential game
smooth, see smooth game
symmetric, 297
two-player, see bimatrix game
zero-sum, see zero-sum game

Google, 17
greedy, see allocation rule, greedy
group-strategyproof, 38

weakly, 112
GSP, see sponsored search, generalized second-price auction

hints, xii, 301–308
, 205

house allocation, 119–122, 125
and kidney exchange, 129

implementable, see allocation rule, implementable
incentive guarantee, 16
individual rationality, 15, 26, 46
information rent, 60
intended audience, xii
intractability

of approximate mixed Nash equilibria, 295
of local search, 267–271
of mixed Nash equilibria, 8, 284, 292–293
of pure Nash equilibria, 272–275
of welfare maximization, 41, 92

Iran, 129
item, 11, 88

kidney exchange, 128–136
altruistic donor, 131



chain, 131, 143
for money, 129
incentives for hospitals, 134
incompatibility, 128
pairwise, 131–134
patient-donor pair, 128
priorities, 132
simultaneous vs. sequential, 130

knapsack problem, 40
auction, see auction, knapsack
fully polynomial-time approximation scheme (FPTAS), 45, 52
greedy heuristic, 43

learning, see dynamics
online, see online decision making

lecture videos, xii
Lemke-Howson algorithm, 292, 295
linear programming, 259–260, 277, 292
local optimum, 265
local search, 265

abstract, 267
and best-response dynamics, 274
as a walk in a graph, 265, 269
generic procedure, 268
improving move, 265
intractability, 267–271
polynomial, see 
unconditional lower bounds, 271

Markov chain, 252, 257

matching
in kidney exchange, 131
stable, see stable matching

maximum cut problem, 264
and congestion games, 273



is -complete, 270, 277
unconditional lower bounds, 271
with unit edge weights, 265

mechanism, 25
anonymous, 127
approximately optimal, 75, 84, 96
direct-revelation, 26, 46
ideal, 51, 89
indirect, 21, 26, 97–98
onto, 127
optimal, 57
prior-free, 83
prior-independent, 79–82, 86
priority, 125
randomized, 86, 126
serial dictatorship, 125
simple, 84
single-sample, 86
VCG, see VCG mechanism

mechanism design, 3
algorithmic, 42–43, 45
applications, 3, 16, 65, 106
Bayesian, xi, 48
direct-revelation, 91
multi-parameter, 87
preference elicitation, 91
single-parameter, 24
two-step design approach, 18, 89
with budgets, 113

Minimax theorem, 254–256
and linear programming duality, 258
and no-regret dynamics, 255, 259
equivalent to equilibrium existence, 258
for constant-sum games, 258



history, 257
interpretation, 254
mix and match, 258

mixed Nash equilibrium, 7, 175
brute-force search algorithm, 296
existence, 175, 290
in bimatrix games, 279
intractability, 8, 176, 284, 292–293
intractability of approximate equilibria, 295
intractability with three or more players, 295
quasitractability of approximate equilibria, 295–297

mixed strategy, 7, 175
MNE, see mixed Nash equilibrium
monopoly price, 58, 85
monotone, see allocation rule, monotone
monotone hazard rate (MHR), 70, 84
multiplicative weights (MW) algorithm, see no-regret algorithm, multiplicative
weights
Myerson’s lemma, 28–31

in multi-parameter environments, 89
Myerson’s payment formula, 30

Nash equilibrium, 7
approximate, 197, 219, 295–297
as a predictor of behavior, 8, 293
best-case, see price of stability
existence (mixed), 290
existence (pure), 179–182
existence (strong), 210, 214
in zero-sum games, 255, 258, 260
ℓ-strong, 215
mixed, see mixed Nash equilibrium
non-uniqueness, 293
pure, see pure Nash equilibrium
strong, 209



worst-case, see price of anarchy

Nash’s theorem, 7, 290
network cost-sharing game, 203

examples, 203–205
opting out, 205
price of anarchy, 204, 214
price of stability, 205–208
strong Nash equilibria, 208–212
undirected networks, 213, 214
VHS or Betamax, 204
with concave cost functions, 214

network formation, 202, 213
network over-provisioning, 159, 169
no-regret algorithm, 232

design principles, 234
deterministic, 233
existence, 234
follow-the-leader (FTL), 233
follow-the-perturbed-leader (FTPL), 245–246
learning rate, 235, 239
multiplicative weights, 234–239
with unknown time horizon, 239, 243

no-regret dynamics, 239
converges to coarse correlated equilibria, 240–241, 245
in payoff-maximization games, 239
in smooth games, 241, 243
in zero-sum games, 255, 259
non-convergence to mixed Nash equilibria, 259

no-swap-regret algorithm, 248
existence, 249
reduction to a no-regret algorithm, 249–252

no-swap-regret dynamics, 248
converges to correlated equilibria, 248, 257

, 42



 search problem, see 

-completeness, 264, 276

unsuitability for equilibrium computation, 281–283
-hard, 8, 42, 107

Olympic scandal, 1–3
online decision making, 230

adversary (adaptive), 231, 241
adversary (oblivious), 236
algorithm, 231
bandit model, 231, 243
examples, 231–234
history, 243
in games, see no-regret dynamics
mistake bound, 244
regret-minimization, see no-regret algorithm
with an omniscient expert, 244
with large costs, 243
with payoffs, 231, 255

organization of book, xi
outcome, 87, 174

, 42
Pareto optimal, 124
payment rule, 26

computation, 42, 51
explicit formula, 30, 33, 41
nonnegative, 26
uniqueness, 28

payoff, 7
performance guarantee, 16

ex post, 56
Pigou’s example, see selfish routing, Pigou’s example
player, 253

, 269, 276



as a subset of , 281

as a subset of , 283

as a syntactic class, 286
as a walk in a graph, 269

-completeness, 270
analogy with -completeness, 267

justification, 283
of computing a locally maximum cut, 270
of computing a pure Nash equilibrium of a congestion game, 272–275
vs. unconditional results, 266

PNE, see pure Nash equilibrium
POA, see price of anarchy
polynomial time, 41, 263
posted price, 56, 85
potential function, 181, 206

generalized ordinal, 227
minimizer, 207, 213, 215

potential game, 181, 185–186, 199
as a congestion game, 186
convergence of best-response dynamics, 217
equilibrium existence, 182, 217
generalized ordinal, 227
smooth, 223

, 286, 294
and mixed Nash equilibria, 292–293
and Sperner’s lemma, 289
as a subset of , 288

as a syntactic class, 287
as a walk in a graph, 286
evidence of intractability, 293

-completeness
of computing a mixed Nash equilibrium of a bimatrix game, 284
of computing a trichromatic triangle, 289

prerequisites, xii



price of anarchy, 5
four-step recipe, 187
in location games, 188–194
in network cost-sharing games, 204, 214
in scheduling, 171–172, 185, 200
in selfish routing, 146–155
in selfish routing (atomic), 165–168
in smooth games, 195–198, 200
in sponsored search, 200
of correlated equilibria, 177
of mixed Nash equilibria, 176
of no-regret dynamics, 241, 243
of strong Nash equilibria, 208–212
optimistic, see price of stability

price of stability, 205
in atomic selfish routing networks, 215
in network cost-sharing games, 205–208
interpretation, 208

private, 12
prophet inequality, 75–77, 82–84
public project, 25
pure Nash equilibrium, 174

existence, 179–182, 184
intractability, 272–275, 277
tractability, 278

pure strategy, 174

quasilinear utility, 12, 23, 26
quasipolynomial time, 297

reduction (between search problems), 269, 280, 297
regret, 232

-minimization algorithm, see no-regret algorithm
external, 232
external vs. swap, 258



internal, 248
lower bound, 233, 244
swap, 248
vs. stronger benchmarks, 231

regular distribution, see valuation distribution, regular
report, 25
reserve price, 58, 65–66

anonymous, 79, 83
bidder-specific, 79, 83, 85

resource augmentation, 161
revelation principle, 46–48, 64, 89
revenue, 59

curve, 60, 72
equals virtual welfare, 60
equivalence, 70, 72
monotonicity, 93
of a mechanism, 59, 61
target, 37

revenue maximization, see auction, revenue-maximizing
Rock-Paper-Scissors, 7, 253
routing, see selfish routing

SAA, see spectrum auction, simultaneous ascending
satisfiability (SAT), 107

functional version, 281
scheduling, 171–172, 185, 200, 227–229
science of rule-making, see mechanism design
secretary problem, 22
selfish routing, 4, 148

affine cost functions, 151, 156, 171
affine cost functions (atomic), 165
α-bounded jump condition, 220
atomic, 163–168, 170, 184, 198
atomic splittable, 169



best-response dynamics (atomic), 220–223, 228, 277
Braess’s paradox, 145, 158
computing an equilibrium flow (atomic), 277, 278
concave cost functions, 151, 156
cost function, 148
cost of a flow, 153
equilibrium existence, 146, 165, 179
equilibrium flow, 152
equilibrium flow (atomic), 164
equilibrium uniqueness, 146, 165, 180
examples, 145–147
flow, 152
history, 156
M/M/1 cost function, 162
maximum travel time, 157
multicommodity, 157, 169
nonlinear Pigou’s example, 147
over-provisioned network, 160–161, 169
Pigou bound, 151, 157
Pigou’s example, 146–147
Pigou’s example (atomic), 164
Pigou-like network, 150
polynomial cost functions, 151, 156
potential function, 179, 180, 221
price of anarchy, 146, 148–152
price of anarchy (atomic), 165, 170, 171
resource augmentation bound, 161–163, 170, 171
road traffic, 149, 156
total travel time, 153
weighted atomic, 169, 184
with a common origin and destination (atomic), 220, 277–278

semantic complexity class, 284, 295
single-item auction, see auction, single-item
single-parameter environment, 24



downward-closed, 84
single-peaked preferences, 126
sink vertex, 265
smooth game, 194–198

best-response dynamics, 223–226
examples, 195, 200–201
interpretation, 194
potential, 223
price of anarchy of approximate equilibria, 198, 200
price of anarchy of coarse correlated equilibria, 196
price of anarchy of pure Nash equilibria, 196
with respect to a strategy profile, 195

social welfare, 15, 55, 87
approximation, 43, 92
with budgets, 124, 126

Sotheby’s, 98
source vertex, 286
spectrum auction, 97–109

activity rule, 102, 105
bid signaling, 104
deferred allocation rule, 107
demand reduction, 103
descending implementation, 109
exposure problem, 104
hierarchical packages, 105
in New Zealand, 101
in Switzerland, 100
opening bids, 109
package bidding, 105
price discovery, 102
repacking, 106
rookie mistake, 100, 101
sanity checks, 102
scoring function, 108



simultaneous ascending, 102
substitutes vs. complements, 99, 104

Sperner’s lemma, 288
and Brouwer’s fixed-point theorem, 290
and Nash’s theorem, 290–292
as a  problem, 289
as a walk in a graph, 289
legal coloring, 288
trichromatic triangle, 288

sponsored search, 16–19, 25, 27, 32–33, 35, 65–66
click-through rate, 17
DSIC payment formula, 33
envy-free, 36
equilibrium, 36
equivalence of DSIC and GSP auctions, 35
generalized second-price auction, 33, 35
locally envy-free, 37
price of anarchy, 200
revenue maximization, 71
slot, 17
welfare maximization, 22

stable matching, 136–141
applicant-optimality, 140
blocking pair, 137
deferred acceptance, 137–141
DSIC mechanism, 141
existence, 139
in practice, 143

starred sections, xii
strategy profile, 174
strategy set, 7, 174
strings and springs, 5
submodular function, 192, 199
syntactic complexity class, 283



 (total functional ), 283, 294

lack of complete problems, 283
reasons for membership, 284

Top Trading Cycle algorithm, 119–122
in kidney exchange, 129–131

truthful mechanism, see mechanism, direct-revelation
TTC, see Top Trading Cycle algorithm

unit-demand, see valuation, unit-demand
utility, see quasilinear utility
valuation, 12, 24, 87

downward-sloping, 126
marginal, 126
single-minded, 53
subadditive, 96
unit-demand, 94, 112, 201

valuation distribution, 57
correlated, 69
irregular, 63, 69
regular, 62, 70
strictly regular, 64
unknown, 80

VCG mechanism, 90, 103
allocation rule, 89
and affine maximizers, 96
ascending implementation, 123
flaws, 91–92, 97, 105
non-monotonicity, 92, 93
payment rule, 90, 93
pivot term, 93, 95–96
revenue, 92
with unit-demand valuations, 94

Vickrey auction, see auction, second-price
Vickrey-Clarke-Groves, see VCG mechanism
virtual valuation, 59



ironing, 69
nondecreasing, 62

virtual welfare, 61

Walrasian equilibrium, 110–112
welfare, see social welfare
wireless spectrum, see spectrum auction

Yahoo, 65–66

zero-sum game, 7, 253–254
convergence of no-regret
dynamics, 255, 259
minimax pair, 258
Minimax theorem, see Minimax theorem
mixed Nash equilibrium, 254, 263
value, 255


	Half title
	Title
	Copyright
	Dedication
	Table of Contents
	Preface
	1 Introduction and Examples
	1.1 The Science of Rule-Making
	1.2 When Is Selfish Behavior Near-Optimal?
	1.3 Can Strategic Players Learn an Equilibrium?
	Notes
	Exercises
	Problems

	2 Mechanism Design Basics
	2.1 Single-Item Auctions
	2.2 Sealed-Bid Auctions
	2.3 First-Price Auctions
	2.4 Second-Price Auctions and Dominant Strategies
	2.5 Ideal Auctions
	2.6 Case Study: Sponsored Search Auctions
	Notes
	Exercises
	Problems

	3 Myerson’s Lemma
	3.1 Single-Parameter Environments
	3.2 Allocation and Payment Rules
	3.3 Statement of Myerson’s Lemma
	*3.4 Proof of Myerson’s Lemma
	3.5 Applying the Payment Formula
	Notes
	Exercises
	Problems

	4 Algorithmic Mechanism Design
	4.1 Knapsack Auctions
	4.2 Algorithmic Mechanism Design
	4.3 The Revelation Principle
	Notes
	Exercises
	Problems

	5 Revenue-Maximizing Auctions
	5.1 The Challenge of Revenue Maximization
	5.2 Characterization of Optimal DSIC Mechanisms
	5.3 Case Study: Reserve Prices in Sponsored Search
	*5.4 Proof of Lemma 5.1
	Notes
	Exercises
	Problems

	6 Simple Near-Optimal Auctions
	6.1 Optimal Auctions Can Be Complex
	6.2 The Prophet Inequality
	6.3 Simple Single-Item Auctions
	6.4 Prior-Independent Mechanisms
	Notes
	Exercises
	Problems

	7 Multi-Parameter Mechanism Design
	7.1 General Mechanism Design Environments
	7.2 The VCG Mechanism
	7.3 Practical Considerations
	Notes
	Exercises
	Problems

	8 Spectrum Auctions
	8.1 Indirect Mechanisms
	8.2 Selling Items Separately
	8.3 Case Study: Simultaneous Ascending Auctions
	8.4 Package Bidding
	8.5 Case Study: The 2016 FCC Incentive Auction
	Notes
	Exercises
	Problems

	9 Mechanism Design with Payment Constraints
	9.1 Budget Constraints
	9.2 The Uniform-Price Multi-Unit Auction
	*9.3 The Clinching Auction
	9.4 Mechanism Design without Money
	Notes
	Exercises
	Problems

	10 Kidney Exchange and Stable Matching
	10.1 Case Study: Kidney Exchange
	10.2 Stable Matching
	*10.3 Further Properties
	Notes
	Exercises
	Problems

	11 Selfish Routing and the Price of Anarchy
	11.1 Selfish Routing: Examples
	11.2 Main Result: Informal Statement
	11.3 Main Result: Formal Statement
	11.4 Technical Preliminaries
	*11.5 Proof of Theorem 11.2
	Notes
	Exercises
	Problems

	12 Over-Provisioning and Atomic Selfish Routing
	12.1 Case Study: Network Over-Provisioning
	12.2 A Resource Augmentation Bound
	*12.3 Proof of Theorem 12.1
	12.4 Atomic Selfish Routing
	*12.5 Proof of Theorem 12.3
	Notes
	Exercises
	Problems

	13 Equilibria: Definitions, Examples, and Existence
	13.1 A Hierarchy of Equilibrium Concepts
	13.2 Existence of Pure Nash Equilibria
	13.3 Potential Games
	Notes
	Exercises
	Problems

	14 Robust Price-of-Anarchy Bounds in Smooth Games
	*14.1 A Recipe for POA Bounds
	*14.2 A Location Game
	*14.3 Smooth Games
	*14.4 Robust POA Bounds in Smooth Games
	Notes
	Exercises
	Problems

	15 Best-Case and Strong Nash Equilibria
	15.1 Network Cost-Sharing Games
	15.2 The Price of Stability
	15.3 The POA of Strong Nash Equilibria
	*15.4 Proof of Theorem 15.3
	Notes
	Exercises
	Problems

	16 Best-Response Dynamics
	16.1 Best-Response Dynamics in Potential Games
	16.2 Approximate PNE in Selfish Routing Games
	*16.3 Proof of Theorem 16.3
	*16.4 Low-Cost Outcomes in Smooth Potential Games
	Notes
	Exercises
	Problems

	17 No-Regret Dynamics
	17.1 Online Decision Making
	17.2 The Multiplicative Weights Algorithm
	17.3 Proof of Theorem 17.6
	*17.4 No Regret and Coarse Correlated Equilibria
	Notes
	Exercises
	Problems

	18 Swap Regret and the Minimax Theorem
	18.1 Swap Regret and Correlated Equilibria
	*18.2 Proof of Theorem 18.5
	18.3 The Minimax Theorem for Zero-Sum Games
	*18.4 Proof of Theorem 18.7
	Notes
	Exercises
	Problems

	19 Pure Nash Equilibria and PLS-Completeness
	19.1 When Are Equilibrium Concepts Tractable?
	19.2 Local Search Problems
	19.3 Computing a PNE of a Congestion Game
	Notes
	Exercises
	Problems

	20 Mixed Nash Equilibria and PPAD-Completeness
	20.1 Computing a MNE of a Bimatrix Game
	20.2 Total NP Search Problems (TFNP)
	*20.3 PPAD: A Syntactic Subclass of TFNP
	*20.4 A Canonical PPAD Problem: Sperner’s Lemma
	*20.5 MNE and PPAD
	20.6 Discussion
	Notes
	Exercises
	Problems

	The Top 10 List
	Hints to Selected Exercises and Problems
	Bibliography
	Index



