
Lecture Notes in Computer Science 1657
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Thorsten Altenkirch Wolfgang Naraschewski
Bernhard Reus (Eds.)

Types for
Proofs and Programs

International Workshop, TYPES ’98
Kloster Irsee, Germany, March 27-31, 1998
Selected Papers

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Thorsten Altenkirch
Bernhard Reus
Ludwig-Maximilians-Universität, Institut für Informatik
Oettingenstr. 67, D-80538 München, Germany
E-mail: {alti,reus}@informatik.uni-muenchen.de

Wolfgang Naraschewski
Technische Universität München, Institut für Informatik
Arcisstr. 21-1528, D-80290 München, Germany
E-mail: narasche@informatik.tu-muenchen.de

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Types for proofs and programs : international workshop, types ’98, Kloster
Irsee, Germany, March 27 - 31, 1998 ; selected papers / Thorsten Altenkirch . . .
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 1999

(Lecture notes in computer science ; Vol. 1657)
ISBN 3-540-66537-4

CR Subject Classification (1998): F.4.1, F.3.1, D.3.3, I.2.3

ISSN 0302-9743
ISBN 3-540-66537-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10704119 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

This book contains a selection of papers presented at the second annual workshop
held under the auspices of the Esprit Working Group 21900 Types. The workshop
took place in Irsee, Germany, from 27 to 31 of March 1998 and was attended by
89 researchers.
Of the 25 submissions, 14 were selected for publication after a regular refer-

eeing process. The final choice was made by the editors.
This volume is a sequel to the proceedings from the first workshop of the

working group, which took place in Aussois, France, in December 1996. The
proceedings appeared in vol. 1512 of the LNCS series, edited by Christine Paulin-
Mohring and Eduardo Giménez.
These workshops are, in turn, a continuation of the meetings organized in

1993, 1994, and 1995 under the auspices of the Esprit Basic Research Action
6453 Types for Proofs and Programs. Those proceedings were also published
in the LNCS series, edited by Henk Barendregt and Tobias Nipkow (vol. 806,
1993), by Peter Dybjer, Bengt Nordström and Jan Smith (vol. 996, 1994) and
by Stefano Berardi and Mario Coppo (vol. 1158, 1995). The Esprit BRA 6453
was a continuation of the former Esprit Action 3245 Logical Frameworks: De-
sign, Implementation and Experiments. The articles from the annual workshops
organized under that Action were edited by Gerard Huet and Gordon Plotkin
in the books Logical Frameworks and Logical Environments, both published by
Cambridge University Press.

Acknowledgments

We would like to thank Irmgard Mignani and Agnes Szabo-Lackinger for helping
us with processing the registrations, and Ralph Matthes and Markus Wenzel for
organizational support during the meeting. We are indebted to the organizers of
the Working Group Types and also to Peter Clote, Tobias Nipkow and Martin
Wirsing for giving us the opportunity to organize this workshop and for their
support. We would also like to acknowledge funding by the European Union.
This volume would not have been possible without the work of the referees.
They are listed on the next page and we thank them for their invaluable help.

June 1999 Thorsten Altenkirch
Wolfgang Naraschewski

Bernhard Reus

VI

List of Referees

Peter Aczel
Thorsten Altenkirch
Gilles Barthe
Henk Barendregt
Uli Berger
Marc Bezem
Venanzio Capretta
Mario Coppo
Catarina Coquand
Roberto Di Cosmo
Gilles Dowek
Marc Dymetman
Jean-Christophe Filliâtre
Neil Ghani
Martin Hofmann
Furio Honsell
Paul Jackson
Felix Joachimski
Florian Kammüller
James McKinna
Simão Melo de Sousa
Thomas Kleymann
Hans Leiss

Petri Mäenpää
Ralph Matthes
Michael Mendler
Wolfgang Naraschewski
Tobias Nipkow
Sara Negri
Christine Paulin-Mohring
Henrik Persson
Randy Pollack
David Pym
Christophe Raffalli
Aarne Ranta
Bernhard Reus
Eike Ritter
Giovanni Sambin
Monika Seisenberger
Anton Setzer
Jan Smith
Sergei Soloview
Makoto Takeyama
Silvio Valentini
Markus Wenzel
Benjamin Werner

Table of Contents

On Relating Type Theories and Set Theories . 1
Peter Aczel

Communication Modelling and Context-Dependent Interpretation:
An Integrated Approach . 19

René Ahn, Tijn Borghuis

Gröbner Bases in Type Theory . 33
Thierry Coquand, Henrik Persson

A Modal Lambda Calculus with Iteration and Case Constructs 47
Joëlle Despeyroux, Pierre Leleu

Proof Normalization Modulo . 62
Gilles Dowek, Benjamin Werner

Proof of Imperative Programs in Type Theory . 78
Jean-Christophe Filliâtre

An Interpretation of the Fan Theorem in Type Theory 93
Daniel Fridlender

Conjunctive Types and SKInT . 106
Jean Goubault-Larrecq

Modular Structures as Dependent Types in Isabelle . 121
Florian Kammüller

Metatheory of Verification Calculi in LEGO . 133
Thomas Kleymann

Bounded Polymorphism for Extensible Objects . 149
Luigi Liquori

About Effective Quotients in Constructive Type Theory 164
Maria Emilia Maietti

VIII

Algorithms for Equality and Unification in the Presence of
Notational Definitions . 179

Frank Pfenning, Carsten Schürmann

A Preview of the Basic Picture: A New Perspective on Formal Topology . . 194
Giovanni Sambin, Silvia Gebellato

On Relating Type Theories and Set Theories�

Peter Aczel

Departments of Mathematics and Computer Science
Manchester University
petera@cs.man.ac.uk

Introduction

The original motivation1 for the work described in this paper was to deter-
mine the proof theoretic strength of the type theories implemented in the proof
development systems Lego and Coq, [12,4]. These type theories combine the im-
predicative type of propositions2, from the calculus of constructions, [5], with
the inductive types and hierarchy of type universes of Martin-Löf’s constructive
type theory, [13]. Intuitively there is an easy way to determine an upper bound
on the proof theoretic strength. This is to use the ‘obvious’ types-as-sets in-
terpretation of these type theories in a strong enough classical axiomatic set
theory. The elementary forms of type of Martin-Löf’s type theory have their
familiar set theoretic interpretation, the impredicative type of propositions can
be interpreted as a two element set and the hierarchy of type universes can
be interpreted using a corresponding hierarchy of strongly inaccessible cardinal
numbers. The assumption of the existence of these cardinal numbers goes be-
yond the proof theoretic strength of ZFC. But Martin-Löf’s type theory, even
with its W types and its hierarchy of universes, is not fully impredicative and
has proof theoretic strength way below that of second order arithmetic. So it
is not clear that the strongly inaccessible cardinals used in our upper bound
are really needed. Of course the impredicative type of propositions does give a
fully impredicative type theory, which certainly pushes up the proof theoretic
strength to a set theory3, Z−, whose strength is well above that of second or-
der arithmetic. The hierarchy of type universes will clearly lead to some further
strengthening. But is it necessary to go beyond ZFC to get an upper bound?

� This paper was written while on sabbatical leave from Manchester University. I
am grateful to my two departments for making this possible. I am also grateful to
Nijmegen University Computer Science Department for supporting my visit there.
Some of the ideas for this paper were developed during that visit.

1 The same motivation may be found in [15]. More or less the same tools are used
there as here; i.e. the types-as-sets and sets-as-trees interpretations. But that paper
focuses on slightly different results to the ones obtained here.

2 Here we will ignore the use of any rules for putting types other than Π types into
the impredicative type of propositions.

3 The theory Z− is obtained from Zermelo set theory, Z, by only using formulae with
restricted quantifiers in the separation axiom scheme

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 1–18, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

2 Peter Aczel

Surprisingly perhaps, the types-as-sets interpretation4 has hardly been stud-
ied systematically5. So it is the main aim of this paper to start such a systematic
study. In section 2 we first present some of the details of the TS interpretation
of a type theory MLWext that is a reformulation of Martin-Löf’s extensional type
theory with W types but no type universes. This interpretation is carried out
in the standard axiomatic set theory ZFC and so gives a proof theoretic reduc-
tion of MLWext to ZFC. Of course this result is much too crude and we go on in
section 2 to describe two approaches to getting a better result.

The first approach is to make the type theory classical by adding the natural
formulation of the law of excluded middle. It turns out that to carry through
the interpretation we need to strengthen the set theory by adding a global form
of the axiom of choice and we get a proof theoretic reduction of MLWext + EM
to ZFGC. Fortunately it is known that the strengthened set theory is not proof
theoretically stronger, so that we do get a reduction of MLWext + EM to ZFC.

Section 2 ends with the second approach, which is to replace the classical set
theory by a constructive set theory, CZF+, that is based on intuitionistic logic
rather than classical logic. So we get a reduction of MLWext to CZF+.

In section 3 we extend the results of section 2 by adding first a type universe
reflecting the forms of type of MLWext and then an infinite cumulative hierarchy
of such type universes. To extend the TS interpretation to the resulting type
theories we use, in classical set theory, strongly inaccessible cardinal numbers
for the type theories with EM, and in constructive set theory, inaccessible sets as
introduced in [11]. Finally in section 3, we formulate type theories having rules
for the impredicative type of propositions of the calculus of constructions and
formulate corresponding axioms of constructive set theory and again describe
how each of these type theories has a TS interpretation into a corresponding set
theory.

In section 4 we briefly describe how the sets-as-trees interpretation 6 of
CZF into the type theory MLWU, first presented in [1] and then developed fur-
ther in [2,3,10,11], extends to the other set theories, giving reductions to the
corresponding type theories with an extra type universe. Fortunately each type
theory with an infinite hierarchy of type universes is proof theoretically as strong
as the type theory with a type universe added on top, so that we end up with
results stating that to each of the type theories we consider that have an infi-
nite hierarchy of type universes there is a corresponding set theory of the same
proof theoretic strength. In particular the type theory MLWPU<ω, that is our
aproximation to the type theories implemented in Lego and Coq, has the same
proof theoretic strength as the set theory CZF+pu<ω. This last result does not
solve the original problem motivating our work as the set theory is unfamiliar.
Nevertheless I think that it does give a new handle on the problem. The new
set theory is an interesting one and I plan to present some results about it on a
future occasion.

4 Here abbreviated TS interpretation.
5 But see [6,7,8,15].
6 Here abbreviated ST interpretation.

On Relating Type Theories and Set Theories 3

In section 1 we set up our particular approach to the syntax of our type
theories and the TS interpretation of them. We have tried to make this as simple
as possible. We have preferred to focus on extensional Martin-Löf type theories
having extensional equality types Eq(A, a1, a2) for the TS interpretation, as the
rules for these types are easily seen to be sound. We have also added equality
types EQ(A1, A2) for the same reason. For the reverse ST interpretation these
equality types are not needed, but nor are any intensional equality types needed,
so we can simply drop the extensionality rules.

In this paper we claim various results about proof theoretic reductions be-
tween formal systems. When we have reductions both ways we write that the
formal systems have the same proof theoretic strength. What do we mean by
such claims? Here I will only be concerned with the relatively weak notion of
reduction given by a finitistic relative consistency proof. It is standard practice
to take the quantifier free theory PRA of primitive recursive arithmetic to codify
finitistic mathematics. A more convenient, but essentially equivalent theory is
the formal system Σ0

1 -IA. This is the subsystem of Formal Arithmetic, PA, in
which the induction scheme is restricted to Σ0

1 formulae. For each type theory or
set theory, Σ that we will be interested in there will be a standard Π0

1 sentence
Con(Σ) of Formal Arithmetic, that naturally expresses the formal consistency
of Σ. For formal systems, such as the set theories, that use a first order language,
the system is understood to be consistent if there is no proof of a contradiction
A∧¬A. In the case of the type theories considered here, where there is an empty
type, 0, we will call the type theory consistent if there is no derivation in the
type theory of a judgement of the form ⇒ a : 0, for some a. Given two formal
systems Σ1 and Σ2, Σ1 is defined to be proof theoretically reducible to Σ2 if
the sentence Con(Σ2) → Con(Σ1) can be proved in Σ0

1 -IA. In this paper we
generally obtain such a reduction via an explicit interpretation that allows any
derivation of a theorem of Σ1 to determine a corresponding derivation in Σ2,
in such a way that Con(Σ2) → Con(Σ1) easily follows. The interpretations can
probably be used to give proof theoretic reductions in a stronger sense than
used here.7 But we leave such strengthenings for others. We say that two formal
systems are of the same proof theoretic strength if each is proof theoretically
reducible to the other.

1 The General Form of the Syntax and Set Theoretical
Semantics of Our Type Theories

1.1 Syntax

We give the general form of the syntax of the type theories we will consider.

The Pseudoterms. These are expressions,M , given by the following abstract
syntax.

M ::= x | c0 | c1(M) | c2(M,M) | c3(M,M,M) | (Qx :M)M
7 See [9] and [14] for more discussion of the concepts of proof theoretic reduction.

4 Peter Aczel

where x : V AR, c0 : C0, c1 : C1, c2 : C2, c3 : C3 and Q : QUANT . Here V AR
is an infinite set of variables and the sets Ci, for i = 0, 1, 2, 3, and QUANT are
finite sets of symbols that will depend on the type theory.

Each Q operates as a variable binder so that free occurrences of x in M ′

get bound in (Qx : M)M ′. The notions of free and bound occurrences of vari-
ables and the substitution operation are defined in the standard way. We write
M [M1, . . . ,Mn/x1, . . . xn] for the result of simultaneously substituting Mi for xi
in M , for i = 1, . . . n, relabelling bound variables in the usual way so as to avoid
variable clashes. For this we assume that the variables x1, . . . , xn are pairwise
distinct. In general we will not distinguish between pseudoterms that only differ
in a suitable relabelling of the bound variables.

The Pseudojudgements and Formal Judgements of a Type Theory.

Definition 1 A pseudojudgement has the form Γ ⇒ B where Γ is a pseudo-
context and B is a pseudobody, as defined below.

– A pseudocontext is a finite sequence x1 : M1, . . . , xn : Mn of pseudo-
declarations, xi : Mi for i = 1, . . . , n where each Mi is a pseudoterm and
each xi : V AR and, for 1 ≤ j < i, xi is distinct from xj and is not free
in Mj.

– A pseudobody has one of the following four forms.

M type, M1 =M2,
M0 :M, M1 =M2 : M

When the pseudocontext is the empty sequence then we get a pseudojudge-
ment ⇒ B which will usually simply be written B.

If Γ is a pseudocontext x1 :M1, . . . , xn :Mn then a variable y is new to Γ if y
is distinct from each xi and not free in any Mi.
Note: If Γ is a pseudocontext x1 : M1, . . . , xn : Mn, the variable x is distinct
from each xi and M is a pseudoterm that has no free occurrences of any xi
then x1 : M1[M/x], . . . , xn : Mn[M/x] is also a pseudocontext that we will
abbreviate Γ [M/x]. Also we can define the result B[M/x] of substituting M
for x in a pseudobody B in the obvious way. For example (M1 = M2)[M/x] is
defined to be M1[M/x] =M2[M/x].

The rules of inference of the type theories that we will consider will be given
schematically and will have instances of the following form.

J1 · · · Jk
J

where k ≥ 0 and J1 · · · Jk are the premisses and J is the conclusion of the
instance, both the premisses and the conclusion being pseudojudgements. When
k = 0, so that there are no premisses then the line above the conclusion will be
omitted in writing the inference.

On Relating Type Theories and Set Theories 5

The schemes presenting the rules will have the abbreviated form

Γ1 ⇒ B1 · · · Γk ⇒ Bk

∆⇒ B
,

which is unabbreviated by making explicit an implicit pseudocontext metavari-
able Γ of the scheme by adding it to the front of the left hand side of each
premiss and the conclusion to get the scheme

Γ, Γ1 ⇒ B1 · · · Γ, Γk ⇒ Bk

Γ,∆ ⇒ B
.

Note that an unabbreviated scheme will generally involve metavariables and an
instance of the scheme will be obtained by substituting for the metavariables,
provided that the side conditions of the scheme hold.

A pseudojudgement is a theorem and so a formal judgement of the type
theory, if it is in the smallest class of pseudojudgements that includes the con-
clusion whenever it includes the premisses of any instance of a rule of the type
theory. Whenever a pseudocontext Γ appears in a formal judgement Γ ⇒ B then
we call Γ a context.

All our type theories will have a common list of general rules of inference.
These come under three headings, assumption rules, equality rules and substi-
tution rules.

General Rules

Assumption Rules In these rules the variable x must be new to the implicit
context Γ ; i.e. not appear in Γ . Also, in the second assumption rule, the
variable x must not be declared in ∆.

A type
x : A ⇒ x : A

∆⇒ B A type
x : A,∆⇒ B

Equality Rules

A type
A = A

A1 = A2

A2 = A1

A1 = A2 A2 = A3

A1 = A3

a : A
a = a : A

a1 = a2 : A
a2 = a1 : A

a1 = a2 : A a2 = a3 : A
a1 = a3 : A

a : A1 A1 = A2

a : A2

a1 = a2 : A1 A1 = A2

a1 = a2 : A2

Substitution Rule

x : A,∆⇒ B a : A
∆[a/x] ⇒ B[a/x]

Congruence Rules

x : A,∆ ⇒ C type a1 = a2 : A
∆[a1/x] ⇒ C[a1/x] = C[a2/x]

x : A,∆ ⇒ c : C a1 = a2 : A
∆[a1/x] ⇒ c[a1/x] = c[a2/x] : C[a1/x]

6 Peter Aczel

1.2 Types-as-Sets

We now assume given a fixed type theory T and a fixed set theory S. We will
work informally in the set theory S.

A types-as-sets interpretation (TS interpretation) of T in S is determined by
the following set theoretic data.

– For each c0, a set c�0
– For each cn, where n = 1, 2, 3, a definable n-place operation c�n assigning a

set c�1(A1, . . . , An) to each n-tuple A1, . . . , An of sets.
– For each Q, a definable operation Q� that assigns to each set B that is a

function a set Q�(B). In practice, if A is a set and F is a definable unary
operation on sets then, using the Replacement Axiom Scheme, that will be
available in our set theory, we may form the set B = {(a, F (a)) | a ∈ A}
which is a function defined on A. The result of applying Q� to this set B
will be written (Q�a ∈ A)F (a).

The Interpretation Functions. By a variable assignment we mean a set
theoretic function that assigns a set ξ(x) to each variable x. We can define
the interpretation function mapping each variable assignment ξ to the inter-
pretation [[M]]ξ of M , for each pseudoterm M . The definition is by structural
induction on the formation of the pseudoterm M , using the variable assignment
when M is a variable and using the corresponding operation on sets, as illus-
trated earlier, for each other form of expression. In the following n = 1, 2 or 3.

[[x]]ξ = ξ(x)
[[c0]]ξ = c�0

[[cn(M1, . . . ,Mn)]]ξ = c�n([[M1]]ξ, . . . , [[Mn]]ξ)
[[(Qx : M)M ′]]ξ = (Q�a ∈ [[M]]ξ)[[M ′]]ξ(a/x)

Here ξ(a/x) is the variable assignment ξ′ that is like ξ except that ξ′(x) = a.
The following lemmas are proved by a routine induction on the structure of

the pseudoterm M .

Lemma 2 If the variable x is not free in the pseudoterm M and ξ, ξ′ are variable
assignments that agree except possibly at x then [[M]]ξ = [[M]]ξ′ .

Lemma 3 (Substitution Lemma) [[M [M ′/x]]]ξ = [[M]]ξ([[M ′]]ξ/x) for all
pseudoterms M , M ′, all variables x and all variable assignments ξ.

Definition 4 If Γ is a pseudocontext x1 :M1, . . . , xn :Mn then let ξ |= Γ if

ξ(xi) ∈ [[Mi]]ξ for i = 1, . . . n.

Lemma 5 If Γ is a pseudocontext x1 : M1, . . . , xn :Mn, x is a variable distinct
from each xi and M is a pseudoterm that has no free occurrences of any xi then
ξ |= Γ [M/x] ⇐⇒ ξ([[M]]ξ/x) |= Γ for each variable assignment ξ.

On Relating Type Theories and Set Theories 7

Definition 6 We define ξ |= B for each form of pseudobody B.

– ξ |=M type for any pseudoterm M ,
– ξ |=M1 =M2 if [[M1]]ξ = [[M2]]ξ,
– ξ |=M :M ′ if [[M]]ξ ∈ [[M ′]]ξ,
– ξ |=M1 =M2 :M ′ if [[M1]]ξ = [[M2]]ξ ∈ [[M ′]]ξ,

Lemma 7 ξ |= B[M/x] ⇐⇒ ξ([[M]]ξ/x) |= B.

Definition 8 A pseudojudgement Γ ⇒ B is valid, written |= Γ ⇒ B if, for all
variable assignments ξ, ξ |= Γ implies ξ |= B.

Definition 9 (Soundness) A rule of inference is sound if, for every instance
J1 · · · Jk

J
of the rule, if the premisses are valid then so is the conclusion; i.e.

[|= J1 & · · ·& |= Jk] implies |= J . A type theory T is sound if each of its rules
is sound. When we have a sound TS interpretation of a type theory T in a set
theory S we will write T ≤TS S.

The following result is by structural induction following the inductive definition
of the formal judgements of a type theory.

Lemma 10 If the type theory T is sound then every formal judgement of T is
valid.

Proposition 11 Each general rule is sound. Moreover, for each quantifier Q of
the type theory the following congruence rule is sound.

x :M ⇒ M1 =M2

(Qx :M)M1 = (Qx :M)M2

The proof of this result is straightforward. The assumption and equality rules
are trivial. The substitution and congruence rules make use of previously stated
lemmas.

2 The Theory MLWext

We will start with the theory MLW. The abstract syntax of the theory is deter-
mined by the following syntax equations.

c0 ::= 0 | 1 | 2 | ∗ | 1 | 2, c1 ::= R0 | π1 | π2,
c2 ::= R1 | pair | sup | app | rec, c3 ::= R2, Q ::= Π | Σ |W | λ.

2.1 Some Defined Forms of Pseudoterm

(M1 →M2) = (Π :M1)M2 (M1 ×M2) = (Σ :M1)M2

(M1 +M2) = (Σx : 2)R2(M1,M2, x) N = (Wx : 2)R2(0,1, x)

Note that the underscore, , in the first two definitions represents a vacuous
variable; i.e. a variable that is being bound by Π and Σ but does not occur
in M2.

8 Peter Aczel

2.2 Special Rules for MLW

Type Formation Rules

c type (c ∈ {0,1,2}) A1 type A2 type c : 2
R2(A1, A2, c) type

x : A⇒ B type
(Qx : A)B type

(Q ∈ {Π,Σ,W})

Using the definitions above we have the following derived type formation
rules.

N type
A1 type A2 type

(A1#A2) type
(# ∈ {→, ×, +})

Introduction Rules

∗ : 1 1 : 2 2 : 2
x : A⇒ b : B

(λx : A)b : (Πx : A)B

x : A ⇒ B type a : A b : B[a/x]
pair(a, b) : (Σx : A)B

x : A ⇒ B type a : A f : (B[a/x] → (Wx : A)B)
sup(a, f) : (Wx : A)B

Special Congruence Rules

x : A⇒ B1 = B2

(Qx : A)B1 = (Qx : A)B2
(Q ∈ {Π, Σ, W})

x : A⇒ b1 = b2 : B
(λx : A)b1 = (λx : A)b2 : (Πx : A)B

Elimination Rules
x : 0 ⇒ C type a : 0

R0(a) : C[a/x]
x : 1 ⇒ C type a : 1 c : C[∗/x]

R1(c, a) : C[a/x]

x : 2 ⇒ C type a : 2 c1 : C[1/x] c2 : C[2/x]
R2(c1, c2, a) : C[a/x]

x : A⇒ B type f : (Πx : A)B a : A
app(f, a) : B[a/x]

x : A⇒ B type c : (Σx : A)B{
π1(c) : A
π2(c) : B[π1(c)/x]

{
x : A⇒ B type z :W ⇒ C type
b : (Πx : A)(Πu : B →W)D(x, u) e :W

rec(b, e) : C[e/z]

On Relating Type Theories and Set Theories 9

In the last rule we used W to abbreviate (Wx : A)B and D(x, u) to abbre-
viate (Πy : B)C[app(u, y)/z] → C[sup(x, u)/z].

Computation Rules

A1 type A2 type{
R2(A1, A2, 1) = A1

R2(A1, A2, 2) = A2

x : 1 ⇒ C type c : C[∗/x]
R1(c, ∗) = c : C[∗/x]

x : 2 ⇒ C type c1 : C[1/x] c2 : C[2/x]{
R2(c1, c2, 1) = c1 : C[1/x]
R2(c1, c2, 2) = c2 : C[2/x]

x : A⇒ b : B a : A
app((λx : A)b, a) = b[a/x] : B[a/x]

x : A ⇒ B type a : A b : B[a/x]{
π1(pair(a, b)) = a : A
π2(pair(a, b)) = b : B[a/x]

{
x : A⇒ B type z :W ⇒ C type
b : (Πx : A)(Πu : B →W)D(x, u) a : A f : B[a/x] →W
rec(b, sup(a, f)) = app(app(app(b, a), f), g) : C[sup(a, f)/z]

In this last rule we used the following abbreviations.

W for (Wx : A)B,
D(x, u) for (Πy : B)C[app(u, y)/z] → C[sup(x, u)/z],

g for (λy : B[a/x])rec(b, app(f, y)).

2.3 Extending to MLWext

We first extend the syntax equations using c2 ::= · · · | EQ and c3 ::= · · · | Eq.
We add the rules of inference given by the following schemes in abbreviated
form.

A type a1 : A a2 : A
Eq(A, a1, a2) type

A1 type A2 type
EQ(A1, A2) type

a1 = a2 : A
∗ : Eq(A, a1, a2)

A1 = A2

∗ : EQ(A1, A2)

c : Eq(A, a1, a2){
a1 = a2 : A
c = ∗ : Eq(A, a1, a2)

c : EQ(A1, A2){
A1 = A2

c = ∗ : EQ(A1, A2)

10 Peter Aczel

2.4 The TS Interpretation of MLWext in ZFC

We will work informally in the set theory ZFC. We use the usual von Neumann
definition of the natural numbers; i.e. 0 = ∅, 1 = {0}, 2 = {0, 1}, etc Ordered
pairs are defined as usual; i.e. for sets a, bwe define (a, b) = {{a}, {a, b}}. As usual
functions are single valued sets of ordered pairs. For any set b, its domain and
range are the sets dom(b) = {x | ∃y (x, y) ∈ b} and ran(b) = {y | ∃x (x, y) ∈ b}.

If a is a set andB is a definable operation that assigns a setB(x) to each x ∈ a
then we let Πx∈aB(x) be the set of all the functions f , with domain a, such that
f(x) ∈ B(x) for all x ∈ a. Also, we let Σx∈aB(x) be the set of all pairs (x, y)
such that x ∈ a and y ∈ B(x).

A function coding in set theory consists of a pair of definable operations
APP,LAM on sets, APP being binary and LAM being unary, such that if f is
a function and a ∈ dom(f) then

APP(LAM(f), a) = f(a).

The standard example of a function coding is given by the definitions

APP(a, b) = {x ∈ ∪ ∪ ∪a | ∃y[x ∈ y & (b, y) ∈ a]},
LAM(a) = a

for all sets a, b. Later it will be convenient to use a non-standard function coding.
In the following we assume given some function coding. Given sets a, b, c, d let

EXP(a, b) = {LAM(f) | f : a→ b}
PIx∈aB(x) = {LAM(f) | f ∈ Πx∈aB(x)} if B(x) is a set for each x ∈ a

APP2(a, b, c) = APP(APP(a, b), c)
APP3(a, b, c, d) = APP(APP(APP(a, b), c), d)

We now present the set theoretic interpretations of the syntactic operations
of MLext, leaving the interpretations for the W rules til later.

0� = 0, 1� = 1, 2� = 2, ∗� = 0, 1� = 0, 2� = 1

R�
0(a) = a, π�1(a) = {x | ∃y (x, y) = a}, π�2(a) = {y | ∃x (x, y) = a}

R�
1(a, b) = a, pair�(a, b) = (a, b), app�(a, b) = APP(a, b)

R�
2(a, b, c) = {x | (c = 1� & x ∈ a) ∨ (c = 2� & x ∈ b)}

EQ�(a, b) = {x | x = 0 & a = b}, Eq�(a, b, c) = {x | x = 0 & b = c & b ∈ a}
If b is a function with domain a let

λ�(b) = LAM(b) Π�(b) = PIx∈ab(x) Σ�(b) = Σx∈ab(x)

To deal with the W rules we will need the following result.

On Relating Type Theories and Set Theories 11

Theorem 12

1. For each set b there is a smallest set W such that if (x, y) ∈ b and
f ∈ EXP(y,W) then (x, f) ∈ W . We write W(b) for this set W .

2. Given a set g let Y (g) = Σx∈dom(g)Σu∈dom(APP(g,x))dom(APP2(g, x, u)) and
if (x, (u, v)) ∈ Y (g) then let Xu,v = {(APP(u, y),APP(v, y)) | y ∈ dom(u)}.
There is a smallest set f such that if (x, (u, v)) ∈ Y (g) and Xu,v ⊆ f , then
((x, u),APP3(g, x, u, v)) ∈ f . We write R(g) for this set f .

3. Let a, b, c be sets such that b, c are functions with dom(b) = a and dom(c) =
W(b) and let W = W(b). Let g ∈ PIx∈aPIu∈EXP(b(x),W)d((x, u)) where
d(w) = EXP(PIy∈b(x)c(APP(u, y)), c(w)) for w = (x, u) ∈W . Then R(g) is
the unique function f ∈ Πw∈W c(w) such that if w = (x, u) ∈W then

f(w) = APP3(g, x, u,LAM(H(f, u)).

Here H(f, u) is the function h ∈ Πy∈b(x)c(APP(u, y)) such that

h(y) = f(APP(u, y)) for y ∈ b(x).

Proof of the Theorem in ZFC.

The first two parts of this theorem are applications of the following
result.

Lemma 13 Let Θ be a definable operation on sets such that, for some
set B, whenever X is a set such that Θ(X) has an element then there is
a surjective function f : b→ X for some b ∈ B. Then there is a smallest
class I such that

X ⊆ I =⇒ Θ(X) ⊆ I.

Moreover I is a set.

To prove part 1 of the theorem, using this lemma, it suffices to let

Θ(X) =
⋃

(x,y)∈b
{(x,LAM(f)) | f : y → X is onto X},

and choose B = ran(b). For part 2 we let

Θ(X) = {((x, u),APP3(g, x, u, v)) | (x, (u, v)) ∈ Y (g) & X = Xu,v},
and choose B = {Xu,v | (x, (u, v)) ∈ Y (g)}. For part 3 of the theorem,
first observe that, by an easy induction following the inductive definition
of R(g), dom(R(g)) ⊆W . Now, by another easy induction, this time on
the inductive definition of W , observe that, for each w = (x, u) ∈ W ,
APP3(g, x, u, LAM(H(f, u))) is the unique z such that (w, z) ∈ R(g)
and moreover z ∈ c(w). All this shows that R(g) is an f satisfying the
desired conditions. Finally, another proof by induction on W will show
that R(g) is the unique f satisfying these conditions.

12 Peter Aczel

We now turn to the proof of the lemma. Let Γ be the operation on
sets given by

Γ (Y) =
⋃

X∈Pow(Y)

Θ(X),

for each set Y . The operation Γ is monotone and we must show that it
has a least fixed point. By transfinite recursion on ordinals we can define
sets Iα, for ordinals α, so that Iα = Γ (I<α), where I<α =

⋃
β<α I

β .
Let κ be an infinite regular ordinal such that card(b) < κ for all b ∈ B.

We now claim that Iκ ⊆ I<κ. To see this, let a ∈ Iκ. Then a ∈ Θ(X)
for some set X ⊆ I<κ. For each x ∈ X let h(x) be the least ordinal γ < κ
such that x ∈ Iγ . By the assumption on Θ there is b ∈ B and a function
f : b → X that is onto X . If α = card(b) then α < κ and there is a
function g : α → b that is onto b. It follows that h ◦ f ◦ g : α → κ. As κ
is regular there is β < κ such that h ◦ f ◦ g : α → β. As f ◦ g is onto X
it follows that h : X → β so that X ⊆ I<β and hence a ∈ Iβ ⊆ I<κ.

It is a standard consequence of this claim that Iκ is the least fixed
point of Γ and so is the desired set I of the lemma.8

To interpret the extra syntax needed for the W rules we use sup�(a, b) = (a, b),
rec�(a, b) = R(a)(b) and if b is a function we use W �(b) = W(b).

Theorem 14 (ZFC) The type theory MLWext is sound.

This result gives a proof theoretic reduction of the type theory MLWext to the
set theory ZFC. We write MLWext ≤TS ZFC to express this reduction. The type
theory is constructive in the sense that when the propositions-as-types idea is
used to represent logic then intuitionistic logic is represented and the law of
excluded middle is not justified. On the other hand the set theory is classical. In
the following two subsections we improve on the result by first making the type
theory classical and second by making the set theory constructive.

2.5 Adding Excluded Middle

Recall that the logical notions are represented in MLW by using the propositions-
as-types idea. In particular the operation + on types represents disjunction and
negation is represented by the operation that maps a type A to the type A→ 0.
So to add the law EM of excluded middle to the type theory we extend the
syntax c1 ::= · · · | cl and add the following rule.

A type
cl(A) : A+ (A→ 0)

.

We call the resulting theory MLW + EM.
8 This proof of the lemma uses the classical theory of cardinal numbers and uses AC.

I do not think that AC can be avoided. Instead of AC it may be possible to use the
axiom that there are unboundedly many regular ordinals.

On Relating Type Theories and Set Theories 13

We need to extend the TS interpretation by having an equation for the new
form of pseudoterm. To do so we strengthen the axiom system ZFC by adding a
one-place function symbol CH to the language of ZFC and adding the following
global form of the axiom of choice.

∀x[x �= ∅ → CH(x) ∈ x].

The axiom schemes of ZFC should be extended to the extended language. We
call the resulting axiom system ZFGC. Working in this axiom system we can
define an operation CL where, for each set a,

CL(a) =
{
(∅, CH(a)) if a �= ∅
({∅}, ∅) if a = ∅

We can now let cl� = CL. It is easy to check that ξ |= [cl(A) ∈ A + (A → 0)]
for each pseudoterm A and each variable assignment ξ. So we get the result that
MLWext + EM ≤TS ZFGC.

2.6 Reduction to a Constructive Set Theory

We now follow the other strategy to improve on the result MLWext ≤TS ZFC. This
is to weaken ZFC to a constructive set theory. In [1] a constructive set theory
CZF was introduced that is a subtheory of ZF whose logic is intuitionistic. This
set theory was shown to have the property that when excluded middle is added
to the logic then a theory CZF + EM is obtained that has the same theorems as
ZF. Here we will consider the extension CZF+ = CZF + REA of CZF obtained
by adding to CZF the following axiom, that was first introduced in [3]. First we
define a transitive set A to be a regular set if, for every a ∈ A and every set
R ⊆ a × A such that ∀x ∈ a∃y ∈ A[(x, y) ∈ R] there is a set b ∈ A such that
∀x ∈ a∃y ∈ b[(x, y) ∈ R] and ∀y ∈ b∃x ∈ a[(x, y) ∈ R].

Regular Extension Axiom (REA) Every set is a subset of a regular set.

The construction, in subsection 2.4, of the TS interpretation of MLWext was car-
ried out in the set theory ZFC. It is straightforward to show that the construction
can be carried through in CZF+. In fact it can all be carried through in CZF,
except for the proof of Lemma 13 The proof in ZFC that was given here of that
lemma used the power set axiom and some of the classical theory of cardinal
numbers and needed the axiom of choice. Instead we can apply Theorem 5.2
of [3] to see that the lemma is provable in CZF+.9 So we now have the following
result.

Theorem 15 (CZF+) The type theory MLWext is sound.

This can be expressed as MLWext ≤TS CZF+.
9 The status of CZF+ + EM ≡ ZF + REA is unclear. Every theorem is a theorem of

ZFC. But it is probable that REA is not provable in ZF.

14 Peter Aczel

3 Adding Type Universes

In this section we consider natural ways of extending the type theory MLW
with one or more type universes; i.e. types of types. In each case we define a
corresponding way of extending set theory so that the TS interpretation extends
to include the type universes.

3.1 Adding a Single Reflecting Type Universe, U

We extend the type theory MLW to MLWU by adding a type U of types that
has rules that reflect the type forming rules of MLW. First we extend the syntax
with c0 ::= · · · | U. Next we add the rules given by the following schemes in
abbreviated form.

U type
A : U
A type

c : U (c ∈ {0, 1, 2})

A : U x : A⇒ B : U
(Qx : A)B : U

(Q ∈ {Π, Σ, W})

When extending MLWext to MLWextU we also need rules for U to reflect Eq
and EQ; i.e.

A : U a1 : A a2 : A
Eq(A, a1, a2) : U

A1 : U A2 : U
EQ(A1, A2) : U

In order to extend the TS interpretation to MLWextU + EM it suffices to add to
ZFGC the axiom that there is a strongly inaccessible cardinal and interpret U as
the set U� of all sets of set theoretic rank less than the least strongly inaccessible
cardinal. If we call the resulting set theory ZFGC1 then we get the reduction
MLWextU + EM ≤TS ZFGC1. To extend the TS interpretation of MLWext in CZF+

we add to CZF+ an individual constant u and axioms expressing that u is an
inaccessible set in the sense of [11]10. We write CZF+u for the resulting theory.
Now it suffices to take U� = u and we get the reduction MLWextU ≤TS CZF+u.

3.2 Adding an Infinite Hierarchy, U0, U1, . . ., of Reflecting Type
Universes

This time we extend the syntax using c0 ::= · · · | Un (n = 0, 1, . . .) and add
rules given by the following schemes for n = 0, 1,

Un type
A : Un

A type
c : Un (c ∈ {0, 1, 2})

A : U x : A⇒ B : Un

(Qx : A)B : Un
(Q ∈ {Π, Σ, W})

10 i.e. a regular set that is a transitive model of CZF+.

On Relating Type Theories and Set Theories 15

Un : Un+1
A : Un

A : Un+1

In the case of MLWext we also need the obvious rules for reflecting Eq and EQ.
We get the resulting type theories MLWU<ω and MLWextU<ω. To extend the
TS interpretation we need to extend the classical and intuitionistic set theories
in the following way. We add an infinite sequence un for n = 0, 1, . . . of indi-
vidual constants to the set theoretical language and add axioms un ∈ un+1 for
n = 0, 1, In the classical case we also add axioms that express that each un
is the set of sets of rank less than a strongly inaccessible cardinal number and in
the constructive case we add axioms that express that each un is an inaccessible
set. We write ZFGCu<ω and CZF+u<ω for the resulting extensions. We extend
the TS interpretation by taking U�

n = un for each n and get the reductions
MLWextU<ω + EM ≤TS ZFGCu<ω and MLWextU<ω ≤TS CZF+u<ω.

3.3 Adding an Impredicatively Π-closed Type Universe P

We extend the syntax with c0 ::= · · · | P and add rules given by the schemes

P type
A : P
A type

A : P a1 : A a2 : A
a1 = a2 : A

0 : P
x : A ⇒ B : P
(Πx : A)B : P

x : A⇒ B1 = B2 : P
(Πx : A)B1 = (Πx : A)B2 : P

With these rules the type P behaves like the impredicative type of proposi-
tions of the calculus of constructions, with the additional properties that 0 : P
and all the propositions in P are proof-irrelevant. Adding these rules we get
the type theories MLWP and MLWextP. To get the type theories MLWPU and
MLWextPU we need to add the previously given rules for U and also the following
rules so that U reflects P.

P : U
A : P
A : U

Similarly we can define the type theories MLWPU<ω and MLWextPU<ω.
We show how to extend the TS interpretation so as to interpret the type P and

justify its rules. In classical set theory we can interpret P as the set 2 = {0, 1}.
But to do so we need to use a non-standard function coding. Recall that our
TS interpretation uses an arbitrary function coding and so far the standard
one has been good enough. But to justify the rules for P we use the following
non-standard function coding.

APP(a, b) = {y | (b, y) ∈ a},
LAM(a) =

⋃
(x,z)∈a({x} × z).

The advantage of this function coding over the standard one is that we can
prove the following result, which we express in a form that still usefully holds in
constructive set theory. Recall that 1 = {0}.

16 Peter Aczel

Proposition 16 For any set a, if B(x) ⊆ 1 for each x ∈ a then

PIx∈aB(x) = {y ∈ 1 | ∀x ∈ a(B(x) = 1)} ⊆ 1

so that PIx∈aB(x) = 1 ⇐⇒ ∀x ∈ a(B(x) = 1).

Note that in classical set theory the subsets of 1 are just the elements of
2 = {0, 1}. In constructive set theory the subsets of 1 play the role of the small
extensional propositions and the above result expresses that the PI operation
behaves like universal quantification on such propositions.

Using this result we get the soundness of the rules for P and hence the
reductions MLWextP + EM ≤TS ZFGC, MLWextPU + EM ≤TS ZFGC1 and
MLWextPU<ω + EM ≤TS ZFGCu<ω. In constructive set theory we cannot use
Pow(1) = {x | x ⊆ 1} to interpret the type P as the class Pow(1) cannot be
shown to be a set in CZF or its constructive extensions. Instead we will here
simply extend the theory to give us what we want. So we add a new individual
constant p to the language and add the following axioms.

1. 0 ∈ p,
2. ∀x ∈ p x ⊆ 1,
3. If B is a function with domain the set a such that ∀x ∈ a B(x) ∈ p then

PIx∈aB(x) ∈ p.

This gives us the extension CZF+p. For the theories CZF+pu, CZF+pu<ω we also
need the axioms p ∈ u, p ∈ u0 respectively.

Of course in the TS interpretations in our constructive set theories we let
P� = p and get the reductions: MLWextP ≤TS CZF+p, MLWextPU ≤TS CZF+pu
and MLWextPU<ω ≤TS CZF+pu<ω.

4 Interpreting Set Theories in Type Theories

We now explore to what extent the proof theoretic reductions we have obtained
using the TS interpretation can be reversed using what we will here call the ST
interpretation. This is the sets-as-trees interpretation that was introduced and
developed in [1,2,3] and has also been used in [10,11]. It is used to interpret a set
theory in a type theory. The idea for the original interpretation, in [1], of CZF
in MLWU was to interpret the sets of CZF as the well-founded trees of the type
V = (Wx : U)x, the membership and equality relations of CZF being interpreted
as terms εV , =V of type V → (V → U). Using the propositions-as-types idea each
sentence of CZF was interpreted as a type of MLWU and it was shown that each
theorem of CZF is an inhabited type of MLWU; i.e. a type A such that a : A can be
derived in MLWU for some term a. In this way a proof theoretic reduction of CZF
to MLWU is obtained that will be expressed as 11 CZF ≤ST MLWU. In fact, as
11 Notice that the ST interpretation does not use any kind of equality types, neither

intensional nor extensional, so that we have stated the stronger result of a reduction
to MLWU rather than to MLWextU.

On Relating Type Theories and Set Theories 17

shown in [3], we get CZF+ ≤ST MLWU. Also, it is easy to see that, using the rule
EM of MLWU + EM we can justify both the law of excluded middle and global
choice for the set theory so as to get the reduction ZFGC ≤ST MLWU + EM.
Unfortunately this and the previous reduction do not match up exactly with our
earlier TS reductions. The trouble is the need to use a type universe U in our
ST interpretation. In order to interpret the type universe in set theory we need
to strengthen the set theory with a set theoretic version; i.e. an inaccessible set
in the constructive set theory case and a strongly inaccessible cardinal in the
classical set theory case. Now, if we wish to extend the ST interpretation of CZF+

to an interpretation of CZF+u, we need to use two of the type universes U0, U1

of MLWU<ω and their rules and use the type V1 = (Wx : U1)x to interpret the
universe of sets of CZF+u. The inaccessible set u of CZF+u can be modelled by
v0 = sup(V0, (λx : V0)h(x)) : V1 where V0 = (Wx ∈ U0)x : U1 and h(x) : V1 is
defined by transfinite recursion on x : V0 so that

h(sup(a, f)) = sup(V0, (λx : a)h(app(f, x)))

for a : U0 and f : a → V0; i.e. h(x) is the term rec(b, x) where b is the term
(λx : U0)(λy : x→ V0)(λz : x→ V1)sup(x, z).

We can extend these ideas to more universes, a set theory with n inaccessibles
being given an ST interpretation in a type theory with n + 1 type universes,
U0, . . . ,Un, with the universe of sets of the set theory being interpreted as the
type Vn = (Wx : Un)x.

Fortunately we do get a matching of a set theory with a type theory of the
same proof theoretic strength when we go to the limit. First consider the type
theory MLWU<ωU that is obtained from MLWU<ω by adding the type universe U
at the top reflecting all the rules of MLWU<ω so that in particular we have the
rules

Un : U
A : Un

A : U

for n = 0, 1, As above we get an ST interpretation of CZF+
ω into this theory,

using V = (Wx ∈ U)x to interpret the universe of sets of the set theory, giving
us CZF+

ω ≤ST MLWU<ωU. Now observe that we have a proof theoretic reduction
MLWU<ωU ≤ MLWU<ω. The idea for this is that any derivation in the left hand
type theory can only involve finitely many of the type universes Ui and so can
be translated into a derivation in the right hand type theory by replacing the
symbol U everywhere by Un, where n is chosen large enough so that n > i
whenever Ui occurs in the derivation. Using a previous TS reduction, we get the
next result.

Theorem 17 The following theories are of the same proof theoretic strength:
CZF+u<ω, MLWU<ωU, MLWU<ω, MLWextU<ω.

We have the same situation for classical set theory so that, using the fact that
global choice does not increase the proof theoretic strength, we get the next
result.

18 Peter Aczel

Theorem 18 The following theories are of the same proof theoretic strength:
ZFCu<ω, ZFGCu<ω, MLWU<ωU + EM, MLWU<ω + EM, MLWextU<ω + EM.

Finally we observe that the ST interpretation carries over to the set theory
CZF+p to give the reduction CZF+p ≤ST MLWUP and, as above, the reduc-
tion CZF+pu<ω ≤ST MLWPU<ω. This, with a previous reduction gives us the
following result.

Theorem 19 The following theories are of the same proof theoretic strength:
CZF+pu<ω, MLWPU<ω, MLWextPU<ω.

References

1. Peter Aczel, The Type Theoretic Interpretation of Constructive Set Theory, in:
MacIntyre, A., Pacholski, L., Paris, J. (eds), Logic Colloquium ’77, (North Holland,
Amsterdam, 1978). 2, 13, 16

2. Peter Aczel, The Type Theoretic Interpretation of Constructive Set Theory: Choice
Principles, in: Troelstra, S. S., van Dalen, D. (eds), The L. E. J. Brouwer Centenary
Symposium, (North Holland, Amsterdam, 1982). 2, 16

3. Peter Aczel, The Type Theoretic Interpretation of Constructive Set Theory: Induc-
tive Definitions, in: Marcus, R. B. et al. (eds), Logic, Methodology and Philosophy
of Science VII, (North Holland, Amsterdam, 1986). 2, 13, 16, 17

4. Barras et al. The Coq Proof Assistant Reference Manual, Version 6.1 INRIA Tech-
nical Report, 1996. 1

5. Thierry Coquand, Metamathematical Investigations of a Calculus of Constructions.
In P. Oddifredi (editor), Logic and Computer Science. Academic Press, 1990. 1

6. Peter Dybjer, Inductive sets and families in Martin-Löf’s type theory and their set-
theoretic semantics. In Gerard Huet and Gordon Plotkin (editors), Logical Frame-
works, pp 280-306, Prentice Hall, 1991. 2

7. Peter Dybjer, A general formulation of simultaneous inductive-recursive definitions
in type theory. To appear in The Journal of Symbolic Logic, 1999? 2

8. Peter Dybjer and Anton Setzer, A finite axiomatization of inductive-recursive def-
initions. To appear in Proceedings of TLCA 1999, LNCS. 2

9. Solomon Feferman, Hilbert’s Program Relativised: Proof-Theoretical and Founda-
tional Reductions, Journal of Symbolic Logic, Vol 53, (1988) 364-384. 3

10. Ed. Griffor and Michael Rathjen, The Strength of some Martin-Löf type theories,
Archiv for Mathematical Logic 33 (1994) 347-385. 2, 16

11. Ed. Griffor and Michael Rathjen, Inaccessibility in Constructive Set Theory and
type theory, Technical Report U. U. D. M. 1996:20, Department of Mathematics,
Uppsala University. 2, 14, 16

12. Zhaohui Luo and Randy Pollack, LEGO Proof Development System: User’s Man-
ual, Edinburgh University Computer Science Department Technical Report, ECS-
LFCS-92-211, 1992. 1

13. Per Martin-Löf, Intuitionistic type Theory. Studies in Proof Theory, Bibliopolis,
1984. 1

14. Michael Rathjen, The Realm of Ordinal Analysis, To appear in S. B. Cooper, J. K.
Truss (eds.): Sets and Proofs, Proceedings of the Logic Cooloquium ’97, Cambridge
University Press. 3

15. Benjamin Werner, Sets in Types, Types in Sets, TACS ’97, LNCS 1281. 1, 2

Communication Modelling and

Context-Dependent Interpretation:
An Integrated Approach�

René Ahn and Tijn Borghuis

Eindhoven University of Technology
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

rahn@ipo.tue.nl

tijn@win.tue.nl

Abstract In this paper we present a simple model of communication.
We assume that communication takes place between two agents. Each
agent has a private and subjective knowledge state. The knowledge of
both agents is partial, finite, and represented in a computational way. We
investigate how ideas can be transferred from one agent to the other one,
in spite of the subjective nature of the knowledge of both participants.
Posing the problem in this way, it can be seen that mechanisms for
context-dependent interpretation are a prerequisite for succesfull com-
munication.

1 Introduction

Language solves a problem. It helps people to exchange ideas, even if these people
come from different backgrounds, know different concepts and individuals, and
have wildly diverging views in many different matters. Ideas that are privately
known to one agent, are transformed into a public message and subsequently
decoded by another agent, who interpretes this message, and reacts on it. We
model this proces, starting from subjective knowledge states, and show how
content which is meaningful in the subjective knowledge state of one agent can
be transferred to the subjective knowledge state of another agent by means of a
common language.

Throughout this paper we concentrate on the simple case where two agents
communicate about their common (physical) environment. Specifically, we use
examples in which two agents discuss an electron-microscope, a situation taken
from the ‘DenK-project’ ([2]). In this project we constructed a man-machine
interface based on the approach to communication sketched in this paper.

� This research was sponsored by the Organization for Inter-university Cooperation
between the universities of Tilburg and Eindhoven (SOBU).

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 19–32, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

20 René Ahn and Tijn Borghuis

2 Formalising Knowledge States

In this section, we show how an agent’s subjective knowledge state can be for-
malized by means of type theoretical contexts. First, however, we explain what
we mean by knowledge.

2.1 Knowledge

Each person understands the world in terms of his own concepts. Which con-
cepts a person has formed at a given moment in time is obviously dependend
on many factors, like his physical and cultural environment, personal history,
etc. Although we are not concerned with the formation of concepts here, we
assume that concepts pertaining to an agents physical environment are some-
how inspired by his sense impressions: a human interacting with his environment
experiences these impressions as an organised whole, in which various familiar
phenomena interact in more or less predictable ways. These correlations between
sense impressions somehow allow concepts to be formed that are subsequently
used to ‘understand’ the diverse experiences from which they have arisen. Some
of these concepts are ‘inhabitable’, i.e. they may have instances. The person
which is familiar with a specific inhabitable concept will recognise an instance
of this concept, whenever he runs into it1. In this way he is able to connect his
raw experience with the subjective concepts that he uses to classify it. As a con-
sequence, each agent has its own concepts, often similar to, but not necessarily
identical with, those of his fellow-agents.

An agent’s conscious knowledge2 about the world will be formulated entirely
in terms of the concepts that he recognises. This knowledge is not static, but
can grow as a result of communication, observation and inference processes. The
resulting body of knowledge, the knowledge state, will not be a bare set of facts,
but a structured conglomerate of justified beliefs, where each new item must
be embedded in the knowledge which is already present. Thus, this body of
knowledge is:

Subjective: It is formulated in terms of personal concepts, it will be partial,
and it may even be incorrect.
Incremental: The ways in which this body of knowledge can be extended
depend on what is already present.
Justified: Knowledge is not a collection of bare facts, but will be justified in
terms of other, more basic knowledge.

1 How this happens is irrelevant here, an obvious possibility is through neural net-
works.

2 Here we take knowledge in the everyday sense of the word. We quote the definition
in Webster’s new dictionary of synonyms (p. 481): ‘Knowledge applies not only to a
body of facts gathered by study, investigation, or experience but also to a body of
ideas acquired by inference from such facts or accepted on good grounds as truths.’

Communication Modelling and Context-Dependent Interpretation 21

2.2 Knowledge States as Contexts

How can these ‘subjective’, ‘incremental’, and ‘justified’ knowledge states be for-
malised? Fortunately, a similar problem arises in mathematics. The main concern
of mathematicians is to show which consequences follow from certain assump-
tions. On the one hand this activity is virtually unconstrained: new concepts may
be developed, and assumptions can be freely made, independent from external
reality. On the other hand the mathematician has to adhere to a strong kind of
mental hygiene: concepts can only be formed if they fit into existing categories,
assumptions can only be made if they are meaningful in the context of that
which is already given, and all conclusions have to be thoroughly justified. Pure
Type Systems (PTSs, [3]) are typed-lambda calculi that can be used to record
such mathematical activity in a formal and machine-readable format. In this
paper, we assume that a person that tries to understand the outside world is,
in many respects, comparable to a mathematician. However, the concepts that
this person develops will be inspired by his sense data, and the assumptions
that he makes are assumptions about the outside world, and are (one hopes)
supported by what he sees. In other words, the ‘body of hypotheses’ that this
person develops will be grounded in the external world.

A PTS-context Γ can represent the ‘body of hypotheses’ of a mathematician.
We propose to use such a context to represent the knowledge state of an agent.
To reflect the assumptions of an agent about the real world, this context has
to be partially grounded in its sense-impressions. This can be achieved if some
inhabitable terms T in the context have an observational interpretation. This
interpretation is the personal ability of the agent to judge whether something
which is perceived is an inhabitant of T or not. A typical PTS may have the
sorts ∗s and ∗p, where the sort ∗p corresponds to the type containing all possible
propositions, and the sort ∗s to the type containing all possible categories of
objects. For all types T for which the agent has an interpretation, either
Γ � T : ∗s or Γ � T : ∗p.

Combining sense-impressions and interpretations, the agent takes certain
types to be inhabited. This is expressed by judgements that contain atomic jus-
tifications, i.e. justifications which do not admit analysis. These correspond to
perceived objects, or direct physical evidence for a certain proposition. Though
an agent is only able to recognize types, he can nevertheless deal with individual
objects: if the agent knows a certain type T to have exactly one inhabitant3,
it will interpret all terms in T as denoting the same individual. In cases where
such a type T has an observational interpretation, the agent is able to recognise
this individual in the outside world.

3 Technically, this might be expressed by an axiom stating that all inhabitants of T
are Leibniz-identical

22 René Ahn and Tijn Borghuis

2.3 Growth of Knowledge

An agent’s knowledge can grow. In our formalization, this knowledge growth
corresponds to an extension of the context representing the agent’s knowledge
state.

Reasoning is one possible mechanism for knowledge growth. The reasoning of an
agent is modelled by the construction of new statements out of those occuring
in the context representing his knowledge state. Derivability on this context
(Γ � E : T) reflects the agent’s ability to find rational evidence (E) for an
assertion (T) in his current knowledge state. We assume that the derivation rules
are the same for all agents; knowledge states differ in content, but all agents ‘use
the same logic’.

After deriving a new statement (E : T), the knowledge state (Γ) should be
updated by somehow appending this statement. To allow this kind of record-
ing of conclusions, De Bruijn ([5]) proposed to enrich the notion of context
with ‘definitions’. Using this idea, the context can be extended with a definition
x = E : T 4 whenever a judgement Γ � E : T is derived in which E is a complex
expression. This definition expresses that the variable x of type T may be used to
refer to the complex term E in further derivations: Γ, x = E : T � x : T . In other
words, the definition ‘abbreviates’ the complex term with a fresh variable. At any
point in time a definition can be ‘unfolded’ again, replacing the abbreviation (x)
with the complex term E. In the presence of definitions, a well-formed context
will look like this: x1 : T1, x2 : T2, x3 = E3 : T3, x4 : T4, . . . , xn = En : Tn. It
represents a structured collection of assumptions (atomic justifications), inter-
mingled with conclusions (complex justifications) that have been drawn on the
basis of these assumptions.

At first sight, recording the results of reasoning in the knowledge state may
seem to be a mere ergonomical device: although the definition saves the trouble
of going through the derivation of E again, the statement E : T can be recon-
structed on any context Γ ′ containing Γ (Γ ⊆ Γ ′). However, in practice agents
have limited deductive powers, allowing them only to oversee the more or less
obvious consequences of their knowledge; conclusions which can be derived with
a reasonable amount deductive work. For such agents storing conclusions in the
knowledge state literally broadens their horizon, by bringing consequences into
view that were unreachable before.

Whereas the reasoning process extends an agent’s knowledge state from within,
knowledge can also be obtained from external sources through communication
and observation. This kind of information is represented by a pseudo-context
y1 : T1, . . . , ym : Tm, where y1, . . . , ym are fresh variables. In general, if one
appends a pseudo-context ∆ to a well-formed context Γ , the result (Γ,∆) is not
a well-formed context. In order to ensure the well-formedness of the result, we
require that ∆ is an extending segment of Γ :

4 This is shorthand for: x = E and E : T which together imply that x : T

Communication Modelling and Context-Dependent Interpretation 23

Definition 1. A pseudo-context ∆ is an extending segment of a well-formed
context Γ iff Γ,∆ is a well-formed context.

On the one hand this is just a technical requirement. On the other hand, given
that types represent concepts in the agent’s knowledge state, it captures the
intuition that an agent can only extend its knowledge state with information
that is meaningful to it, i.e. expressed in terms of familiar concepts.

2.4 Common versus Private Knowledge

The backbone of a communication process between (two) agents is the continous
extension of their common knowledge. To model this process adequately, we need
to distinguish within the knowledge state of each agent that part of its knowledge
which it assumes to be shared. So for each agent p we have a context Γp which
contains all of its knowledge, within which we can distinguish a (sub)context Ψp,
with Ψp ⊆ Γp, which contains all knowledge that, according to p, is shared.

Both Γp and Ψp are well-formed type theoretical contexts in their own right.
The common context Ψp is ‘a part of’ the private context Γp, and this relation
can be defined in a straightforward way:

Definition 2. Given two legal contexts Γ and Γ ′, Γ is a part of Γ ′, notation
Γ ⊆ Γ ′, iff

1 for all statements of the form x : T occurring in Γ either:
x : T or a definition x = E : T occurs in Γ ′,

2 all statements of the form x = E : T occurring in Γ occur also in Γ ′.

Under this ‘part of’-relation, every definition in Γ must occur in Γ ′ (2), but
declarations in Γ may be replaced by definitions in Γ ′ (1). This will be of use in
Sect. 5, where it allows us to ‘link’ shared information in Ψp to private informa-
tion in Γp.

The distinction between common and private knowledge gives rise to a some-
what more fine-grained account of reasoning. Since both Γp and Ψp are legal con-
texts, new statements can be constructed on either context using the derivation
rules. Hence we can model the agent reaching ‘private conclusions’ in reason-
ing with private information (Γp) and ‘common conclusions’ in reasoning with
common information (Ψp). Information that is shared with another agent is also
privately available, as reflected in the inclusion Ψp ⊆ Γp. This inclusion guar-
antees that any statement derivable on an agent’s common context (Ψp) is also
derivable on his private context (Γp), but not the other way around.

3 Communicable Content

The previous section shows how the knowledges states of communicating agents
are modelled by means of type theoretical contexts. In this section, we extend
the model with a formal account of communicable content: first the relation
between the subjective knowledge states and the common language in which the
agents communicate is discussed, then we characterize communicable content.

24 René Ahn and Tijn Borghuis

3.1 Concepts and the Common Language

One the one hand, each agent has its own knowledge state, built on concepts
which are meaningful only to himself. On the other hand, the agents speak
a common language in which they communicate. Hence each agent somehow
connects its subjective concepts to words in this language. For instance, each of
the agents will recognise a certain class of objects that are used by people to sit
on. There is a word to describe this class in the language; in English objects in
this class are called ‘chairs’. There may be certain differences in interpretation,
i.e. one agent may recognise an object as a chair that the other would call
otherwise, but on the whole the two categories will match quite well. This is the
case, because the use of all words is constantly being gauged by the language
community.

If a word in a given language corresponds to a concept, this concept is nec-
cessarily common to a rather large group, i.e. the speakers of the language in
question. The specific individual objects that we encounter in our daily life, such
as ‘my chair’, are not commonly known among all speakers. Accordingly there
exist no words that directly refer to these objects. This means we have to refer to
these objects as instances of a certain class, and try to point out the particular
object through a description of characteristic properties that are accessible to
the dialogue partner.

For the purposes of this paper it is not neccesary to elaborate the mapping
between language and Type Theory. We simply assume that for each agent (p)
there exists a partial mapping Tp �W between type variables in its knowledge
state and words in the vocabulary of the shared language. How this mapping
was formed (when the language was learned) is also outside the scope of our
model. Though the mapping between the knowledge states and the language in
our model is rather crude it still reflects the fact that words must necessarily
refer to general concepts, which are meaningful to the language community as
a whole: the mapping does not extend to the level of particular individuals and
proofs, i.e. the inhabitants of inhabitants of ∗p or ∗s.

3.2 Messages

Against the background of our unsophisticated account of the relation between
the knowledge states and the language spoken by the agents, we wish to un-
derstand how information can be exchanged between private type theoretical
knowledge states, using expressions in some public language. These expressions,
which we call ‘messages’, will somehow have to be meaningfully related to the
knowledge states of both agents; they express content that an agent can commu-
nicate to his dialogue partner.

We assume that there are two agents, A and B, that both have a subjective
knowledge state. If communication is to be possible, they must share a common
vocabulary W . To communicate the speaker (A) must encode a segment ∆A

which is meaningful within its own knowledge state into a public message, using
this vocabulary. This message is sent to the hearer, (B) which subsequently

Communication Modelling and Context-Dependent Interpretation 25

decodes it. If the communication is to be succesful, the result of decoding must
be meaningful to B, i.e. it must be an extending segment of B’s context.

How can segments be encoded and decoded? Obviously, both encoding and
decoding have to be based on the common vocabulary. The agent A uses the
mapping TA � W to encode a segment ∆A. Given the mapping , it simply
substitutes in the segment ∆A the words of the vocabulary for the types they
are related to. However, not every meaningful segment ∆A can be encoded suc-
cesfully. Obviously, we must ensure that the result of encoding, which is to be a
public message, does not contain any privately bound variables. Segments that
meet this requirement we call codeable.

All this is expressed formally in the following definitions:

Definition 3. A variable z occurs free in a segment ∆, ∆ ≡ x1 : T1, . . . , xn : Tn,
iff z occurs free in Ti (1 ≤ i ≤ n) and there is no statement xj : Tj with 1 ≤ j < i
such that z ≡ xj.

Definition 4. A segment ∆A is codeable if for all variables z occuring free
in ∆A there is a word w in W such that z � w.

Definition 5. A message µ is the result of coding a codable segment ∆A. I.e.
the result of replacing all variables that occur free in ∆A by the corresponding
words from the mapping TA �W

Thus, coding a codable segment yields a public message. Upon receiving such
a message, the recipient (B) can try to decode it. Basically, decoding is the in-
verse of encoding, using the recipients mapping, TB �W , in the direction from
words to types 5. Note that, if a non-codable segment were encoded, subsequent
decoding would yield a pseudo-context which contains unbound variables and
hence cannot be an extending segment of any context.

3.3 Example

Take a simple situation where the agents A and B assume that they share all
concepts related to their common vocabulary. This means that in the knowledge
state of each agent p, all types related to a word in the vocabulary (by Tp � W)
are declared in their common context (Ψp). We assume that the common vo-
cabulary consists of English words6, hence messages appear in a sort of ‘toy
English’; as segments where words have been substituted for some of their vari-
ables, e.g. b : bundle, p : primary(b). In the table below, which only lists the
5 Here we assume that the mapping is one to one, and that this is a simple matter.

In a more realistic setting, using natural language, such an assumption is no longer
justified as words can be ambiguous. But, even then, the requirement that the result
of decoding must be an extending segment of the receiver’s context can often be
used to disambiguate the message succesfully, see [6]

6 To construct a more realistic mapping, not only the vocabulary but the whole lan-
guage should be taken into account. For a mapping from type theory to English, see
([7]).

26 René Ahn and Tijn Borghuis

shared knowledge of A and B, we see that agents A and B have a shared vo-
cabulary that contains at least the words ‘bundle’,‘lens’, ‘primary’ and ‘enter’.
The type variables corresponding to these words are declared in their common
contexts ΨA and ΨB. Note that A and B have different type variables that cor-
respond to the same word: in A’s knowledge state the concept ‘lens’ is mapped
to by the type x3, in B’s knowledge state it is mapped to the type y5.

ΨA TA � W ΨB TB � W
x1 : ∗s, x1 � bundle . . . ,
x2 : x1 → ∗p, x2 � primary y5 : ∗s, y5 � lens
x3 : ∗s, x3 � lens y6 : y5,
x4 : x1 → x3 → ∗p, x4 � enter . . . ,
x5 : x1, y17 : ∗s, y17 � bundle
x6 : x3, y18 : y17
. . . y19 : y17 → y5 → ∗p, y19 � enter

. . . ,
y32 : y17 → ∗p, y32 � primary
. . .

In this setting A can, for instance, encode the segment: u : x1, v : x3, z :
x4(uv) (with z, u, v ΨA-fresh). This segment meaning ‘there is a bundle and
there is a lens, and the bundle enters the lens’ to A, encodes into the message:
u : bundle, v : lens, z : enter(uv). If the agent B decodes this, it ends up with the
segment: u : y17, v : y5, z : y19(uv) which is meaningful to it. The segment can be
shown to extend B’s common context as ΨB � y17 : ∗p, ΨB, u : y17 � y5 : ∗s,
and ΨB, u : y17, v : y5 � y19(uv) : ∗p.

4 Polarity and Information Flow

Depending on the situation, A and B may share more than just their vocabulary,
even at the beginning of a dialogue. There may be certain general knowledge
which they can correctly assume to share with their partner, or they may share
certain information as a result of a previous conversation. This information will
then also be represented in their common contexts. In our example, this is in
fact the case: apart from the types related to the vocabulary, each agent has a
representation for a particular bundle (x5 and y18 respectively) and a particular
lens (x6 and y6 respectively). In their messages, both agents need to be able
to refer to these individuals. To do so, they must make descriptions of these
objects that can be understood by their dialogue partners. Thus we also need a
mechanism that provides this possibility.

So far we have described only one way of dealing with extending segments
(Sect. 2.2): the agent simply appends the extending segment to his knowledge
state. This is passive in the sense that the agent makes no effort whatsoever to
connect the new information represented by the extending segment to the infor-
mation already present in his knowledge state. The new information is simply
stored as a set of additional ‘hypotheses’ or ‘assumptions’ (all justifications in

Communication Modelling and Context-Dependent Interpretation 27

the segment are atomic). However, the receiving agent can also digest a decoded
segment in a different, more active way by trying to find justifications (objects
and proofs) in his own current contexts to replace the dummy inhabitants of
the statements in the extending segment. In doing so, we say that the agent
constructs a ‘realization’ for the extending segment in his original context.

Definition 6. let ∆ ≡ x1 : T1, ..., xn : Tn be an extending segment of Γ , and let
Γ � D1 : T1 and
Γ � D2 : T2[x1 := D1], and
Γ � D3 : T3[x1 := D1, x2 := D2], and
... and
Γ � Dn : Tn[x1 := D1, ..., xn−1 := Dn−1] then we call
∆∗ ≡ x1 = D1 : T1, ..., xn = Dn : Tn a realization of ∆ in Γ under the
substitution [x1 := D1, ..., xn := Dn].

Processing a segment actively, the agent appends the realization∆∗ to its context
instead of the extending segment ∆. The point is that segments when used in
this way, act as selective ‘hooks’ with which the rest of the message is connected
to particular inhabitants in the knowledge state of the hearer. In fact, an actively
processed segment does not provide the hearer with new information. Formally,
this fact is reflected by the following proposition7, which shows that realizations
can be eliminated:

Proposition 1. Assume Γ,∆ � B : C Let ∆∗ be a realization of ∆ in Γ under
the substitution [S], then Γ,∆∗ � B : C and Γ � B[S] : C[S].
Thus, an extending segment ∆ of a context Γ can be used in two quite different
ways: either as hypothesis extending the current knowledge state, or as a require-
ment for which a realization is to be constructed in the current knowledge state.
We call the former use of segments ‘positive’, the latter ‘negative’. These two po-
larities determine the direction of the flow of information in our communication
model.

5 Communication

The previous sections have shown how content that is privately meaningful to
agent A can be encoded in a public message which can subsequently be decoded
by agent B. If this process is succesful, the result of this decoding is meaningful
to B; a segment extending its knowledge state. As we have seen, B can process
this segment in different ways (‘passive’ or ‘active’), and B’s knowledge state has
two parts (common context, and private context). In communication, the various
possibilities the receiving agent has for processing a message can be used by the
agent sending the message to achieve its communicative goals. By labelling (parts
of) the message with tags stating where and how it should be processed, the
sending agent can control the way the message is received by the other agent. As
7 This is simply an iterated version of the ‘Substitution Lemma’ for PTSs, see ([3]).

28 René Ahn and Tijn Borghuis

a consequence, the expressions exchanged between two communicating agents in
our model are labeled messages, rather than just messages. Using more traditional
terminology, we could say that a labeled message is the unit corresponding to an
utterance, where the message carries the content of the utterance and the labels
its pragmatic force.

The following definition introduces notation for the two pairs of epistemically
motivated labels we have encountered sofar, and describes their use:

Definition 7. If a (part of a) message µ ≡ zi : wi, ..., zj : wj (where wi, . . . , wj

are words from W , possibly followed by a number of arguments) is labelled

– positive, notation: zi : wi, ..., zj : wj [zi, . . . , zj]+, the receiving agent has to
append the segment resulting from decoding µ to one of the contexts repre-
senting its knowledge state.

– negative, notation: zi : wi, ..., zj : wj [zi, . . . , zj]−, the receiving agent has to
construct a realization for the segment resulting from decoding µ on one of
the contexts representing its knowledge state.

– common, notation: zi : wi, ..., zj : wj [zi, . . . , zj]Ψ , the location where the
receiving agent has to process the segment resulting from decoding µ is its
common context.

– private, notation: zi : wi, ..., zj : wj [zi, . . . , zj]Γ , the location where the
receiving agent has to process the segment resulting from decoding µ is its
private context.

As we will see, tags can apply to different variables within one message, specifying
for each part of this message on which location and with what polarity it is to
be processed by the receiving agent.

In the next subsections we show how the ingredients presented sofar can be
used by the agents in our model to perform two basic acts of communication:
providing information, and obtaining information.

5.1 Providing Information

Suppose that agent A wants to provide information to agent B. In fact, A wants
to tell B that the commonly known bundle,to which A itself refers as x5, enters
a lens, which at present A does not assume to be shared. In English, A might
express this by the sentence ‘The primary bundle enters a lens8’. Using labeled
messages, A can express this information as follows:

b : bundle, p : primary(b), l : lens, q : enter(b, l) [b, p]−Ψ [l, q]+Ψ (1)

This message (µ) is an encoding of the segment b : x1, p : x2(b), l : x3, q : x4(b, l).
The tags show that it has a positive and a negative part. The first, negative,
part (µ1) corresponds to description of the primary bundle:

b : bundle, p : primary(b) [b, p]−Ψ (2)

8 Note that in this sentence the commonly known bundle is referred to by a definite,
and the privately known lens by an indefinite.

Communication Modelling and Context-Dependent Interpretation 29

It instructs B to find a realization for b and p on its common context ΨB

for the segment (∆B1) resulting from decoding µ1. Assuming that A’s use of
the description was appropriate, B will find an object, say y34, representing
the bundle in its common context along with a proof that it is the primary
bundle, say N . Agent B extends its common context with this realization,
b = y34 : y17, p = N : y32(b), and proceeds by processing the second part of
the message. This part (µ2) contains the proposition asserted by A that for
some lens l the primary bundle enters l:

l : lens, q : enter(b, l) [l, q]+Ψ (3)

Note that the b that occurs free in µ2 is now bound in the extended common
context by the definition b = y34 : y17. The second part of the message is
tagged positively; B is supposed to ‘absorb’ the information in the segment
(∆B2 ≡ l : y5, q : (y19(b, l) resulting from decoding µ2, i.e. add the statements
in ∆B2 to its common context. The first statement in ∆B2 introduces a new
lens (l) into B’s common context. The second statement introduces a new ‘piece
of evidence’ into the common context, a proof object (q) for the proposition
that b enters l.

The processing of the entire tagged message therefore updates the common
context of B in two steps: ΨB ⇒ Ψ ′

B with Ψ ′
B ≡ ΨB, ∆

∗
B1 where ∆∗

B1 is a
realization of∆B1 in ΨB under substitution [S], followed by Ψ ′

B ⇒ Ψ ′′
B with Ψ ′′

B ≡
Ψ ′

B, ∆B2. According to proposition 1, ∆∗
B1 can be eliminated in favour of [S]

yielding Ψ ′′
B ≡ Ψ,∆B2[S] (where ∆B2[S] abbreviates the application of [S] to the

statements in ∆B2). From this point of view the net effect of the entire message
on the common context of B is an update with evidence for the proposition that
for some lens (l) the primary bundle (y34) enters that lens.

It should be noted that the reaction of agent B in this example is the simplest
or ‘most cooperative’ one possible; it adds the information provided byA without
questioning it in any way. Depending on factors in the dialogue situation not
considered here, this reaction could be more ‘cautious’9.

The succesful sending of labeled message by A not only affects the knowledge
state of B, but also that of A itself. The message was sent in public, and hence
affects the common context of A in the same way as the common context of B.
As we described above for B, this results in an extension of the common context:
ΨA ⇒ Ψ ′′

A with Ψ ′′
A ≡ ΨA, ∆

∗
A1, ∆A2, or equivalently Ψ ′′

A ≡ ΨA, ∆A2[S] (where [S]
substitutes A’s representation of the primary bundle for b).

Privately agent A will know more, we assumed it had some justification for
its message. In particular, A must have ‘evidence’ for the proposition expressed
by the positively tagged part of the message, µ2. The least we can assume about
this evidence is that there exists a realization of ∆A2 on its private context ΓA,
e.g.: ∆∗

A2 ≡ l = x35 : x3, q = M : x4(b, l). This realization shows in which
respects A can know more in its private context than in its common context:
9 For instance, the DenK-system will not accept all assertions made by the user,

because it is an expert on the domain whereas the user is a novice.

30 René Ahn and Tijn Borghuis

in ΓA it knows which lens the bundle enters (x35 : x3), rather than just ‘a
lens’ (l) in ΨA. Moreover, in ΓA it has a structured proof (M) for this rather
than a ‘dummy’ (q) in ΨA. Agent A can connect its ‘private’ justifications to
its ‘common’ justifications by updating its private context with the realization:
ΓA ⇒ Γ ′

A with Γ ′
A ≡ ΓA, ∆

∗
A2. By adding these definitions, x35 is linked to l

andM to q (b was already linked to A’s representation of the primary bundle by
the update of ΨA with ∆∗

A1). Without this link, A would be unable to combine
information about l and x35 in its private context.

5.2 Obtaining Information

Alternatively, one might suppose that A wants to obtain information from B.
If A did not know which the lens primary bundle enters, he might ask in English
‘Which lens does the primary bundle enter?’. To do this, A can use the same
message as in the previous case but tagged differently:

b : bundle, p : primary(b, l) : lens, q : enter(b, l) [b, p]−Ψ [l, q]−Γ (4)

The first part of the message (µ1) is tagged as before:

b : bundle, p : primary(b) [b, p]−Ψ (5)

Hence it will be processed by B in the previously described way yielding an
update of ΨB with ∆∗

B1; a realization for the primary bundle. The tags for the
second part of the message (µ2) differ from those in the previous example two
ways:

l : lens, q : enter(b, l) [l, q]−Γ (6)

Firstly, µ2 now has a negative polarity, instructing agent B to view it as re-
quirement. Secondly, µ2 has to be processed on the private context. In other
words, B is required to construct a realization on ΓB for the segment (∆B2)
resulting from decoding µ2; it has to find a lens and construct a proof that the
primary bundle enters this lens10. We assume that B is able to construct such a
realization, say l = y79 : y5, q =M : y19(l, b). At least one of the items in this re-
alization must be ‘strictly private’ in the sense that it is available on ΓB but not
on the subcontext ΨB, for the reason mentioned above: if the entire realization
could be constructed on ΨB, a realization could also be constructed on ΨA and
then A’s request for information would be superfluous. In this particular case,
the lens (y79) could be in ΨB but the proof object cannot be derived on ΨB. The
update of its private context with the realization, ΓB ⇒ Γ ′

B with Γ ′
B ≡ ΓB , ∆

∗
B2,

brings B in a position where it (privately) posseses all information needed to
answer A’s question.
10 Type theoretically this requirement is well-formed, ∆B2 is an extending segment of

ΓB : the variable b occurring free in ∆B2 is bound in ΓB after the update of ΨB with
∆∗B1 because of the inclusion ΨB ⊆ ΓB .

Communication Modelling and Context-Dependent Interpretation 31

Since the identity of objects cannot be communicated directly, B will have to
describe the lens y79 to A using common resources. For instance, if it is commonly
known among A and B that the microscope contain a number of condensor lenses
which are arranged in some order, B could send a labeled message to expressing
that the primary bundle enters the first condensor lens to describe the lens
to A. This labeled message, which again provides information, will update the
common contexts of both A and B, in the way described in Sect. 5.1, with the
information A wanted to obtain.

6 Conclusions

We have presented a simple model of communication for cases where two par-
ticipants exchange information about a shared environment. The model is based
on an explicit type-theoretical formalization of the knowledge states of the com-
municating agents, which stresses the subjective nature of these states. This
formalization of knowledge states by type theoretical contexts has an inherent
notion of meaningfulness: not only do these contexts show which propositions
and categories of objects an agent takes to be inhabitated at a given time, but
also which types are well-formed for this agent given its knowledge state, i.e. what
information is meaningful to it.

In the model, we show how an agent can communicate content which is
meaningful to itself to another agent by means of a shared (public) language,
despite the subjective nature of its knowledge state. The fact that the agents
share a language implies that each agent has an personal mapping between some
of the types in its knowledge state and the constructs in the shared language.
We show how an agent can encode content which is meaningful in its knowledge
state in a public message, and how the agent receiving this message can decode
it (using its own mapping) into information which is meaningful in its own
knowledge state. As the examples show, information can be exchanged between
agents and subsequently shared.

Our approach to communication is not centered around the notion of truth,
but tries to show how personal information becomes shared. Accordingly, it
emphasizes information flow. This is reflected in the notion of polarity, which
specifies the direction of the flow, and also in the importance that we attach
to the various locations where the information can reside. It seems that such
emphasis helps to get a computational understanding of various phenomena
in dialogue. In fact, the direction of information flow underlies the distinction
between questions and assertions, as well as that between definite and indefinite
descriptions.

Although the model is hardly elaborated here, we do show how utterances
can be interpreted within the knowledge of the receiver, and how communication
really leads to progress through an extension of that which is commonly known.
In our model all information is distributed over the participants, even if a part of
it is assumed to be shared. This realistic feature of the approach brings out the
difficulties involved in referring, even when referring to commonly known objects.

32 René Ahn and Tijn Borghuis

In fact, we do not see how such reference would be possible without a context-
dependent interpretation mechanism involving the construction of realizations,
similar to the one sketched here. Interestingly, type theory offers the possibility
to use this same mechanism to refer to reasons, i.e. justifications, as well. This
provides a direct handle on the argumentive structure of the dialogue.

A different matter is how all this works out in practice: actual agents in actual
dialogues. In the Denk-project we constructed a man-machine interface based on
the approach to communication sketched in this paper. The interface contains
an artificial agent that reasons in type theory and interprets the utterances of
user in a context-sensitive way ([2]). This shows that at least for a given domain
and a small fragment of English our approach is feasible ([6]).

We feel that our model could provide a point of departure for a computational
theory of dialogue. We are strengthened in this conviction by the mutually com-
patible theories of various linguistic phenomena that have already been formu-
lated in this framework, such as: presuppositions ([8]), the resolution of definite
descriptions (including anaphora and uses of deixis, ([4])) and question/answer
relations ([8]).

References

1. Ahn, R.: 1994, Communicating contexts: A pragmatic approach to information
exchange, in P. Dybjer, B. Nordström, and J. Smith (eds.), The proceedings of the
BRA workshop: Types of Proofs and Programs, Vol. 996 of Springer Lecture Notes
in Computer Science, Springer Verlag, Berlin

2. Ahn, R. et al.: 1994, The denk-architecture: A fundamental approach to user-
interfaces, Artificial Intelligence Review 5(8) 19, 32

3. Barendregt, H.: 1992, Lambda calculi with types, in S. Abramsky, D. Gabbay, and
T. Maibaum (eds.), Handbook of Logic in Computer Science, Oxford University
Press, Oxford 21, 27

4. Beun, R. and Kievit, L.: 1996, Resolving definite expressions in DenK, in Proceed-
ings of the 5th International Pragmatics Conference, Mexico City 32

5. De Bruijn, N.: 1980, A survey of the project automath, in J. Seldin and J.
Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalisms, pp 589–606, Academic Press 22

6. Kievit, L.:1998, Context-driven Natural Language Interpretation, Ph.D. thesis,
Tilburg University, Tilburg 25, 32

7. Mäenpää, P. and Ranta, A.: 1990, An implementation of intuitionistic categorial
grammar, in L. Kálmán and L. Pólos (eds.), Papers from the Second Symposium
on Logic and Language, Akademiai Kiado, Budapest 25

8. Piwek, P.: 1998, Logic, Information & Conversation, Ph.D. thesis, Eindhoven
University of Technology, Eindhoven 32

Gröbner Bases in Type Theory

Thierry Coquand and Henrik Persson

Department of Computing Science
Chalmers University of Technology and University of Göteborg

S-412 96 Göteborg, Sweden

Abstract. We describe how the theory of Gröbner bases, an impor-
tant part of computational algebra, can be developed within Martin-
Löf’s type theory. In particular, we aim for an integrated development
of the algorithms for computing Gröbner bases: we want to prove, con-
structively in type theory, the existence of Gröbner bases and from such
proofs extract the algorithms. Our main contribution is a reformulation
of the standard theory of Gröbner bases which uses generalised inductive
definitions. We isolate the main non–constructive part, a minimal bad
sequence argument, and use the open induction principle [Rao88,Coq92]
to interpret it by induction. This leads to short constructive proofs of
Dickson’s lemma and Hilbert’s basis theorem, which are used to give an
integrated development of Buchberger’s algorithm. An important point
of this work is that the elegance and brevity of the original proofs are
maintained while the new proofs also have a direct constructive content.
In the appendix we present a computer formalisation of Dickson’s lemma
and an abstract existence proof of Gröbner bases.

1 Introduction

This work is part of a project to develop computational algebra completely
within Martin–Löf’s type theory [NPS90], in an integrated fashion. Since the
birth of the subject, algorithms in computational algebra have usually been ex-
ternally developed: an algorithm is given and its correctness and termination is
proved using classical logic. A possible reason for this approach is that classical
abstract algebra is inherently non–constructive; e.g. existence–proof of primi-
tive objects like prime and maximal ideals require Zorn’s lemma, a highly non–
constructive principle. This makes the other approach difficult, the integrated de-
velopment, where an algorithm is extracted from a constructive existence proof.
The notion of integrated and external programming logics was introduced by
Girard [Gir86], for a comparison between the integrated and external approach
to program development, see [Dyb90].

Gröbner bases together with an algorithm for computing them, was intro-
duced by Buchberger [Buc65,Buc85]. It can be seen as a generalisation of the
Euclidian algorithm for computing the greatest common divisor (gcd) of poly-
nomials in several variables. In the case of polynomials in one variable, one can
easily decide whether a polynomial f is in the ideal generated by the set of poly-
nomials F = {f1, . . . , fn}: just compute the gcd of F , since it generates the ideal

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 33–46, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

34 Thierry Coquand and Henrik Persson

of F , it is enough to check whether it divides f . This gives many algorithmic
solutions to problems concerning polynomials in one variable.

However, in the case of polynomials in several variables, this technique does
not work. One problem is that F may not have a single generator of its ideal;
hence one needs to define when a polynomial is divided by a set of polynomials.
Another more important problem is that this technique is not complete: if F
divides f then f is in the ideal of F , but f might be in the ideal of F even
though F does not divide f . This is where Gröbner bases come into play; a
Gröbner basis G of F is a finite set of polynomials which generates the same
ideal and divides f if and only if f is in the ideal of F .

There are several thorough presentations of Gröbner bases and their applica-
tions [Buc85,Buc98,BW93,CLO97,Frö97]. However, these proofs are in general
not constructive, which makes their development hard to translate into type the-
ory. Our main contribution is a reformulation of the standard theory of Gröbner
bases which replaces the non–constructive arguments by the use of generalised
inductive definitions [Acz77]. A natural question is then whether the original
elegant arguments are lost forever in this constructive framework? We show that
this is not so by isolating the main non–constructive principle, a minimal bad
sequence argument, and use the open induction principle [Rao88,Coq92] to in-
terpret it by induction. This leads to short constructive proofs which follow the
original arguments, and which have been formalised on computer.

In Section 2, we present a constructive existence proof of Gröbner bases
for polynomial rings with field–coefficients. This proof uses a short constructive
proof of Dickson’s lemma [Dic13] which was extracted from a classical proof us-
ing open induction. During this work, we became aware of the work in [Thé98],
where Théry presents a formal verification in Coq [HKPM97] of Buchberger’s
algorithm for computing Gröbner bases for polynomial rings with field coeffi-
cients. This formal proof is constructive, except for a classical proof of Dickson’s
lemma [Pot96]. A difference is that Théry’s development is external; he starts
with a program for Buchberger’s algorithm and proves that it computes Gröbner
bases, whereas we prove the existence of Gröbner bases constructively in such a
way that Buchberger’s algorithm is contained in the proof.

In Section 3, we present a short constructive proof of Hilbert’s basis theorem,
also extracted from a classical proof using open induction. This theorem can
be used to prove termination of generalisations of Buchberger’s algorithm for
computing Gröbner bases for polynomials over principal ideal domains [BW93]
and other algebraic structures [JL91]. Another approach was taken by Jacobsson
and Löfwall [JL91] who proved constructively Hilbert’s basis theorem by using
Gröbner bases and a different definition of Noetherian.

This work is similar in spirit to Berger and Schwichtenberg [BS96], where an
algorithm for computing the gcd of natural numbers is extracted from a classical
existence proof. A difference is that they extract the proof automatically from a
formal classical proof, whereas we manually rephrase an informal classical proof.

Gröbner Bases in Type Theory 35

2 Gröbner Bases for Fields

In this section we assume K to be an arbitrary field with a decidable equality,
e.g. the rationals Q. We will consider the polynomial ringK[X1, . . . , Xm], i.e. the
set of polynomials in m variables with coefficients in K. A good suggestion on
how to define polynomial rings in type theory can be found in [Jac95], where
a formalisation in Nuprl [Con86] is described. We abbreviate monic monomi-
als Xk1

1 · · ·Xkm
m asXα, where α = (k1, . . . , km). We say that that Xα divides Xβ

if α ≤m β, where (k1, . . . , km) ≤m (l1, . . . , lm) = k1 ≤ l1 & · · ·& km ≤ lm.
When the m is clear from the context, we will omit it and write ≤. Note
that Xα ·Xβ = Xα+β , where α+ β = (k1 + l1, . . . , km + lm), and Xα

Xβ = Xα−β,
where α − β = (l1 − k1, . . . , lm − km) if Xβ divides Xα. We define the least
common multiple of α and β, lcm(α, β), as (max(k1, l1), . . . ,max(km, lm)), if
α = (k1, . . . , km) and β = (l1, . . . , lm).

We assume a total compatible well–founded order � on the monomials, that
is an order where α1 � α2 implies α1 + β � α2 + β. One possible order is:
first order in terms of total degree, then monomials with equal total degree are
ordered lexicographically. If f is a polynomial, c1 �= 0 and c1X

α1 is the highest
monomial in f w.r.t. this order, we define hd f = c1X

α1 . We define the multi–
degree of such f , mdeg(f), to be α1.

Next, we define a reduction algorithm in the ring K[X1, . . . , Xm]:

Definition 1. A reduction of f after reducing by a set of non-zero polynomials
G = {g1, . . . , gn}, RED(f ;G), is defined by �-recursion on mdeg(f):

RED(0;G) = 0,

RED(f ;G) =
{
RED(f − hd f

hd gi
gi;G), if ∃gi ∈ G.mdeg(gi) ≤ mdeg(f),

f, otherwise.

To make RED into a deterministic algorithm, one must decide on a strategy to
choose the gi in the above clause; for example to try g1 first, then g2, and so on.
One problem is that the choice of this strategy might affect the result; consider
e.g. f = XY 2 + Y 2 + X , g1 = XY − 1 and g2 = Y 2 − 1: if we always try to
reduce by g1 first, RED(f ; g1, g2) = X+Y +1, whereas if we always try g2 first,
RED(f ; g1, g2) = 2X+1. Another problem is that RED does not give a decision
procedure for membership in ideals; e.g. RED(X ;Y 2 +X,Y) = X �= 0 for any
strategy but X ∈ Idl (Y 2 + X,Y), where Idl(a1, . . . , an) is the ideal generated
by a1, . . . , an. We say that a finite set is a Gröbner basis, if we can use RED as
a decision procedure to decide the ideal it generates:

Definition 2. G is a Gröbner basis (for the ideal it generate), if
RED(f ;G) = 0 whenever f ∈ Idl (G).

One can prove that RED(f ;G) is unique and independent of strategy when G
is a Gröbner basis, see e.g. [BW93].

36 Thierry Coquand and Henrik Persson

2.1 Construction of Gröbner Bases

Rather than first giving an algorithm which constructs Gröbner bases for ideals
and then prove it correct, we will give a direct and constructive proof that for any
finitely generated ideal, there exists a corresponding Gröbner basis. Since this
proof is constructive, it will in particular contain an algorithm for constructing
Gröbner bases.

To motivate the development, consider the example set {Y 2 + X,Y }; this
is not a Gröbner basis as explained above, since X ∈ Idl(Y 2 + X,Y), but
RED(X ;Y 2+X,Y) �= 0. The first step is to find a systematic method to generate
all such possible counter–examples.

Definition 3. Given two polynomials f and g, their S-polynomial, spol(f, g),
is defined as

spol(f, g) =
Xα

hd f
· f − Xα

hd g
· g

where α = lcm(mdeg(f),mdeg(g)).

S-polynomials give a practical characterisation of Gröbner bases:

Theorem 4. G = {g1, . . . , gt} is a Gröbner basis if RED(spol(gi, gj);G) = 0
for all i < j ≤ t.

Proof. In this case we prove that the set of elements f such that RED(f ;G) = 0
is closed by addition. Since this set is clearly closed by multiplication by mono-
mials, this will imply that we have RED(f ;G) = 0 for all f in Idl(G), as desired.

We prove that if RED(f ;G) = RED(g;G) = 0 then RED(f + g;G) = 0
by induction on mdeg(f) and mdeg(g). The only case which is not direct is if
we have mdeg(f) = mdeg(g), RED(f ;G) = RED(f − migi;G), RED(g;G) =
RED(g−mjgj;G), where mi = riX

αi ,mj = rjX
αj are suitable monomials, and

mdeg(f −migi) ≺ mdeg(f), mdeg(g −mjgj) ≺ mdeg(g). We can write

gi = siX
βi + hi, gj = sjX

βj + hj

with mdeg(hi) ≺ mdeg(gi) and mdeg(hj) ≺ mdeg(gj). We have then

f + g − (ri +
rjcj
ci

)Xαigi = mspol(gi, gj) + f −migi + g −mjgj

for a suitable monomial m. By induction hypothesis the right hand side reduces
to 0, hence so does f + g.

A naive approach to compute a Gröbner basis for a set is to add counter–
examples (S-polynomials) to it until it satisfies the condition in Theorem 4.
Quite surprisingly, this process will always terminate. The proof of this relies on
a non–trivial combinatorial result known as Dickson’s lemma: for any sequence
of monic monomials Xα1 , Xα2 , . . ., there will eventually be i < j such that Xαi

divides Xαj .

Gröbner Bases in Type Theory 37

2.2 A Constructive Proof of Dickson’s Lemma

In this subsection, we present a constructive proof of Dickson’s lemma. The proof
is a translation of the classical proof in Appendix A; the main non–constructive
part, a minimal bad sequence argument, have been replaced by the open induc-
tion principle [Rao88,Coq92]. Dickson’s lemma says that for any infinite sequence
of n-tuples of natural numbers σ1, σ2, . . ., there exists i < j such that σi ≤n σj ,
where (a1, . . . , an) ≤n (b1, . . . , bn) if ∀0 < i ≤ n. ai ≤ bi. Classically, a relation
is called well1 if it satisfies the condition above.

Remark 5. The proofs in this section only require < to be a decidable relation
which is well–founded on its underlying set A, with a ≤ b defined as ¬(b < a).
However, we will only instantiate the theorems for < being the less-than relation
on N.

We want to express in type theory, extended with inductive definitions,
what it means for a relation R over a set B to be well. To this end, we de-
fine GoodR(b0 · · · bm) to be ∃i < j ≤ m. biRbj . We use an inductive definition
of bar [ML68] to express that for any infinite sequence b0b1 · · ·, GoodR(σ) will
eventually hold for an initial segment σ of b0b1 · · ·.
Definition 6. Given a set B and a predicate P over the lists of B, we define
inductively when the predicate P bars σ, written P | σ:

P (σ)
P | σ

∀b. P | σ.b
P | σ

This is a generalised inductive definition [Acz77], which comes with a transfinite
induction principle:

∀ρ. P (ρ) ⇒ Ψ(ρ),
∀ρ. (∀b. P | ρ.b) ⇒ (∀b. Ψ(ρ.b)) ⇒ Ψ(ρ)

P | σ ⇒ Ψ(σ)

Here σ.b is the list σ extended with the element b. Intuitively, P | σ means that P
will eventually hold for any extension of σ. Classically, assuming the axiom of
dependent choices, GoodR | [] is provable iff R satisfies the classical definition
of well. This justifies us to define R to be well iff GoodR | [] is provable.
Lemma 7. If ∀σ, ρ, γ. P (σρ) ⇒ P (σγρ), then ∀σ, ρ, γ. P | σρ ⇒ P | σγρ.
Proof. Immediate by induction on the proof of P | σρ.

Given two relations R and S over sets A and B respectively, the product
relation, R × S, over A × B is defined as (a, b) (R × S) (a′, b′) = aRa′ & b S b′.
Following [Coq92], we define a predicate M (σ), expressing that an initial se-
quence σ of pairs in A×B is minimal w.r.t. <, by recursion on σ:

M ([]) = �,
M (σ.(x, b)) = M (σ) & ∀y. y < x⇒ ∀b.Good≤×R | σ.(y, b).

1 in previous work, the relation was required to be a quasi-order (well-quasi order).

38 Thierry Coquand and Henrik Persson

The predicateM will play the rôle of the minimal bad sequence in Appendix A.1;
ifM (σ) holds, and ρ has a lexicographically smaller sequence of first components,
then Good≤×R | ρ should hold.

Raoult’s open induction principle can be expressed using these definitions:

Theorem 8 (Open Induction). For any finite sequence σ of pairs in A×B,
if M (σ) and ∀a, b.M (σ.(a, b)) ⇒ Good≤×R | σ.(a, b), then Good≤×R | σ.
Proof. Assume σ to be a finite sequence such thatM (σ) and ∀a, b.M (σ.(a, b)) ⇒
Good≤×R | σ.(a, b). We prove ∀x. ∀b.Good≤×R | σ.(x, b) by induction on x:
Assume ∀y. y < x ⇒ ∀b.Good≤×R | σ.(y, b). From this we directly obtain
M (σ.(x, b)), and by hypothesis, Good≤×R | σ.(x, b).
This theorem is a simplification of that in [Coq92] but it uses only generalised
inductive definitions iterated once [Acz77]. It will interpret the argument: if
Good≤×R | σ holds under the assumption that σ starts a minimal bad sequence,
then Good≤×R | σ holds without this assumption as well. Therefore, the classical
proof of Dickson’s lemma in Appendix A can be interpreted as:

Lemma 9. If GoodR | b1 · · · bm holds, then

∀x1, . . . , xm.M ((x1, b1) · · · (xm, bm)) ⇒ Good≤×R | (x1, b1) · · · (xm, bm).

Proof. By induction on the proof of GoodR | b1 · · · bm:

GoodR(b1 · · · bm): Then there exists a i < j ≤ m such that biR bj . Now, by
cases on the decidable <, we have either ¬(xi > xj), that means xi ≤ xj so
(xi, bi) (≤ ×R) (xj, bj) holds, hence Good≤×R((x1, b1) · · · (xm, bm)). Other-
wise, xi > xj , and since M ((x1,b1)· · ·(xm,bm)) implies M ((x1,b1)! · · ·(xi,bi)),
we get Good≤×R | (x1, b1) · · · (xi−1, bi−1)(xj , bj), and by Lemma 7, we are
done.

∀b.GoodR | (b1 · · · bmb): Immediate by Theorem 8 and IH.

Corollary 10 (Dickson’s lemma). For all n ∈ N, Good≤n | [].
Proof. By induction on n: the case n = 0 is trivial. Otherwise, n = m+ 1, and
Good≤m | [] holds. We instantiate the development above with R being ≤m, and
by Lemma 9 we are done.

Dickson’s lemma implies the existence of Gröbner bases for any finitely gen-
erated (f.g.) ideal in K[X1, . . . , Xm]:

Theorem 11. Every f.g. ideal F = Idl(f1, . . . , fn) has a Gröbner basis G.

Proof. We prove this using Dickson’s lemma. Let mi = mdeg(fi). Define Bad(σ)
as ¬Good(σ). We can assume that Bad(m1 · · ·mn) holds; if mi ≤ mj for i < j,
we repeatedly reduce F by dividing fj by fi. The result follows from Dickson’s
lemma and the following lemma:

Good≤ | m1 · · ·mk ⇒ ∀f1, . . . , fk. (∀i.mi = mdeg(fi)) ⇒
Bad(m1 · · ·mk) ⇒ ∃G.G is a Gröbner basis for f1, . . . , fk,

which is proved by induction on the proof of Good≤ | m1 · · ·mk:

Gröbner Bases in Type Theory 39

Good(m1 · · ·mk): This contradicts with Bad(m1 · · ·mk).
∀m.Good≤ | m1 · · ·mkm: Assume f1, . . . , fk with mdeg(fi) = mi for all i. Con-

sider RED(spol(fi, fj); f1, . . . , fk) for i �= j. If all are zero, {f1, . . . , fk} is
already a Gröbner basis by Theorem 4. Otherwise, let fk+1 be the first
RED(spol(fi, fj); f1, . . . , fk) �= 0. Then ml �≤ mdeg(fk+1) for all l ≤ k, so if
Bad(m1 · · ·mk), then Bad(m1 · · ·mkmdeg(fk+1)). Hence, by IH, we have a
Gröbner basis for F ∪{fk+1}, and since fk+1 is in Idl(F), this is a Gröbner
basis for F . ��

This is an integrated version of Buchberger’s algorithm: while F is not a Gröbner
basis, add normalised S-polynomials to F . Optimisations of the algorithm can
be made by changing the proof, e.g. the order in which to compute the S-
polynomials.

3 Hilbert’s Basis Theorem

In this section we prove constructively Hilbert’s Basis Theorem (HBT). This
is used to prove termination of generalisations of Buchberger’s algorithm for
computing Gröbner bases for polynomials over principal ideal domains [BW93]
and other algebraic structures [JL91].

In these more general cases, there are similar notions of reductions and ways
of generating counter–examples and to decide whether the set is a Gröbner basis.
As in the previous section, we need to prove that the process of adding counter–
examples to the ideal ends. This follows from HBT, which concerns Noetherian
rings. There are several classically equivalent definitions of Noetherian:

Definition 12. A ring R is Noetherian, if either of the following classically
equivalent conditions holds:

1. every ideal in R is finitely generated,
2. there exists no infinite strictly increasing sequence of ideals,
3. for every infinite sequence a0, a1 . . . of elements in R, there exists an m such

that am ∈ Idl (a0, . . . , am−1).

HBT says that if R is a Noetherian ring, so is R[X1, . . . , Xm].

3.1 A Constructive Proof of Hilbert’s Basis Theorem

In this subsection, we present a constructive proof of HBT. Again, the proof is
a translation of the classical proof in Appendix A; as in the previuos section,
the open induction principle [Rao88,Coq92] can be used to replace the minimal
bad sequence argument. Contrary to the constructive proofs of HBT previously
known to us [Ric74,MRR88,JL91], the proof extracted does not require decid-
ability of the equality in the ring or its ideals.

We want to express in type theory, extended with inductive definitions,
the notion of Noetherian rings. To this end, we define GoodR(a0 · · · am) to

40 Thierry Coquand and Henrik Persson

be ∃k ≤ m. ak ∈ Idl(a0, . . . , ak−1) for any ring R. The inductive definition
of bar gives a good constructive definition of Noetherian: classically, assuming
the axiom of dependent choices, GoodR | [] is provable iff R satisfies the second
condition in Definition 12. This justifies us to define a ring R to be Noetherian
iff GoodR | [] is provable.
Lemma 13. If GoodR | a0 · · · akσ, then GoodR | a0 · · · ak−1(ak +

∑k−1
i=0 riai)σ.

Proof. By induction on the proof of GoodR | a0 · · · akσ: If GoodR(a0 · · ·akσ),
then it is direct since any

∑k−1
i=0 riai is in Idl(a0, . . . , ak−1). Otherwise, we have

∀a.GoodR | a0 · · · akσa, and the result follows by IH.

To prove HBT, it is enough to prove that for any finitely generated R-module
R[X], if R is Noetherian, then R[X] is Noetherian. In the rest of this section,
we assume R[X] to be a finitely generated R-module. To interpret the minimal
bad sequence argument in Appendix A.2, we define a predicateM (σ), expressing
that the finite sequence σ of lists of R is minimal, and prove a corresponding
open induction principle for it.

M ([]) = �
M (σ.f) = M (σ) & ∀g. |g| < |f | ⇒ P (σ.g)

where |f | is the length of the list f , and P (f1 · · · fk) = GoodR[X] | ϕ(f1) · · ·ϕ(fk)
where ϕ(a0 · · · ak) = a0 + a1X + · · · + akX

k. If we write δf = 0.f , where 0.f
is the list f with 0 put in front, then ϕ(δf) = Xϕ(f). We use lists here rather
than elements of R[X] to avoid a decidable equality in R in the proof of HBT.

Theorem 14 (Open Induction). For any sequence σ of lists of R, if M(σ)
and ∀f.M(σ.f) ⇒ P (σ.f), then P (σ).

Proof. Assume σ such that M(σ) and ∀f.M(σ.f) ⇒ P (σ.f). We prove
∀f. P (σ.f) by induction on the degree of f : Assume ∀g. |g| < |f | ⇒ P (σ.g).
This directly implies M (σ.f), and by hypothesis, P (σ.f).

The classical proof of Hilbert’s Basis Theorem in Appendix A.2 becomes:

Lemma 15. Given a0, . . . , am of R such that GoodR | (a0 · · ·am) holds, and a
sequence f0, . . . , fm of lists of R, M ((f0.a0) · · · (fm.am)) ⇒ P ((f0.a0) · · · (fm.am)).

Proof. By induction on the proof of GoodR | a0 · · ·am:

GoodR(a0 · · · am): Then there exists a k ≤ m such that ak ∈ Idl (a0, . . . , ak−1),
hence ak = r0a0 + · · · + rk−1ak−1 for r0, . . . , rk−1 ∈ R. Let gi = fi.ai.
Either there exists 0 ≤ i < k such that |gi| > |gk|. In that case, since we
have M (g0 · · · gi), we obtain P (g0 · · · gi−1gk) and by Lemma 7 repeatedly,
P (g0 · · · gi−1gi · · · gk . . . gm). In the other case, |gi| ≤ |gk| for all i < k, and
we construct

g∗ = gk −
k−1∑
i=0

ri(δ|gk|−|gi|gi),

Gröbner Bases in Type Theory 41

where summation of lists of equal lenght are just pointwise addition, and
scalar multiplication is taken pointwise. Since |g∗| < |gk| andM (g0 · · · gk), we
have P (g0 · · · gk−1g

∗). Note that ϕ(g∗) = ϕ(gk) −
∑k−1

i=0 ri(X |gk|−|gi|ϕ(gi)),
so by Lemma 13, P (g0 · · · gk−1gk), and by Lemma 7, we are done.

∀a.GoodR | a0 · · ·ama: By IH, we get for any a ∈ R and sequence f0, . . . , fm, f
of lists of R, M ((f0.a0) · · · (fm.am)(f.a)) ⇒ P ((f0.a0) · · · (fm.am)(f.a)).
This also holds if f.a is replaced by the empty list, so by Theorem 14,
P (f0 · · · fm).

Corollary 16 (Hilbert’s Basis Theorem). GoodR | [] ⇒ GoodR[X1,...,Xm] | [].

Proof. By induction on m and Lemma 15, since R[X] is a ring if R is.

4 Conclusions

This work shows how a non–trivial part of classical mathematics can be trans-
lated into constructive type theory by using the open induction principle. The
constructive proofs share the elegance and brevity of the original proofs, and has
a direct formalisation in type theory. This is shown in Appendix B below, where
a computer formalisation of Dickson’s lemma and an abstract existence proof of
Gröbner bases is presented.

This can be seen as a general and integrated development of Buchberger’s al-
gorithm in a functional language. To be able to execute this program, one needs
to formalise a polynomial ring over a field, the reduction function, and Theo-
rem 4. For the remaining formalisation, one should be able to use the already
existing work of Jackson [Jac95] and Théry [Thé98].

A Classical Proofs

A.1 A Classical Proof of Dickson’s Lemma

Dickson’s lemma has a short classical proof which uses a minimal bad sequence
argument [NW63]:

Proposition 17 (Dickson’s lemma). For all n ∈ N, ≤n is well.

Proof. By induction on n: If n = 0, it is trivial, so assume n = m + 1 and ≤m

is well. We prove that if < is well–founded and R is well, then ≤ ×R is also
well, where a ≤ b is defined as ¬(b < a). The proof is by contradiction: if ≤
×R is not well, then there exists an infinite sequence u1, u2, . . . which is bad,
i.e. for no i < j, ui (≤ ×R)uj. Using the axiom of dependent choices, we can
construct a minimal bad sequence v1, v2, . . . in the following way: choose v1 =
(x1, w1) with x1 minimal among the first components of those pairs which starts
a bad sequence. When v1, . . . , vk has been chosen, choose vk+1 = (xk+1, wk+1)
with xk+1 minimal among the first components of those tuples continuing a bad

42 Thierry Coquand and Henrik Persson

sequence from v1, . . . , vk. The existence of such minimal bad sequence is the
main non–constructive part of the proof.

Since R is well by assumption, there exists i < j such that wi Rwj . But by
construction, we must have xi ≤ xj , otherwise xjwi would continue a smaller
bad sequence. Hence (xi, wi) (≤ ×R) (xj , wj), which contradicts that v1, v2, . . .
is a bad sequence.

A.2 A Classical Proof of Hilbert’s Basis Theorem

We give a short classical proof of HBT taken from [BW93], which uses two of
the equivalent conditions in Definition 12:

Proposition 18. If R is a noetherian ring, then so is R[X1, . . . , Xn].

Proof. Since R[X] is a ring if R is, it is enough to consider the case n = 1, the
other cases follow by induction. Assume for a contradiction that I is an ideal of
R[X] and I is not finitely generated. Then I is not the zero ideal. We construct
an infinite sequence (fi)i∈N of polynomials in I using the axiom of dependent
choices:

1. f0 is a non-zero polynomial in I of minimal degree.
2. fi+1 is a polynomial in I \ Idl (f0, . . . , fi) of minimal degree.

It is clear that deg fj ≤ deg fk if j < k. We denote the (non–zero) head co-
efficient of fi by ai. Since R is noetherian, there exists an m such that am ∈
Idl (a0, . . . , am−1), i.e. am = r0a0+ · · ·+ rm−1am−1 where r0, . . . , rm−1 ∈ R. But
then the polynomial

f∗ = fm −
m−1∑
i=0

Xdeg fm−deg firifi

must be in I \ Idl (f0, . . . , fm−1) since otherwise fm ∈ Idl (f0, . . . , fm−1). But
deg f∗ < deg fm, contradicting the minimality of fm.

B Formal Proofs in Agda

Here we present some formal proofs in Agda [Coq98], a type–checker in the
ALF–family for a variant of Martin-Löf’s type theory. This type theory is very
similar to Cayenne [Aug98], a functional programming language with dependent
types.

Gröbner Bases in Type Theory 43

B.1 Dickson’s Lemma in Agda

-- Theory of Dickson’s lemma, takes a wellfounded relation gt and a well relation R
-- and proves leq x R (product of the two relations) to be a well relation.
--
package thDickson (A,B::Set)(gt::Rel A)(R::Rel B)

(wfgt::WF A gt)(dgt::decRel A gt)(gR::WR B R) =
let
leq (a,b::A) :: Set = Not (gt a b)
leqxR (x,y::A*B) :: Set = (leq x.fst y.fst) & (R x.snd y.snd)

GBarlR :: Pred (List (A*B)) = GRBar (A*B) leqxR
in
open OpenIndGoodRel (A*B) (fstR A B gt) leqxR (WFlem1 A gt wfgt (A*B) (fstR A B gt)

(Fst A B) (\(x,y::A*B) -> \(h::gt x.fst y.fst) -> h))
use Min, open_ind

in
struct
(:) (x::A*B)(l::List (A*B)) :: List (A*B) = @Cons x l
sndL :: Fun (List (A*B)) (List B) = let {f (a::A*B) :: B = a.snd} in map (A*B) B f

lem0 (l::List (A*B))(a::A*B)(h1::ExistsL B (\(x::B) -> R x a.snd) (sndL l))(h::Min l)
:: GBarlR (a:l) =

let lem (vs::List (A*B))(h::ExistsL B (\(x1::B) -> R x1 a.snd) (sndL vs))(h1::Min vs)
:: GBarlR (a:vs) =

case vs of
(Nil) -> case h of { }
(Cons a1 as) -> case h of

(Inl x) -> case dgt a1.fst a.fst of
(No no) -> @Base (@Inl (@Inl

(struct{fst :: leq a1.fst a.fst = no;
snd :: R a1.snd a.snd = x })))

(Yes a’) -> GRBarmon (A*B) leqxR (a:@Nil) as
(h1.fst a a’) (a1:@Nil)

(Inr y) -> GRBarmon (A*B) leqxR (a:@Nil) as
(lem as y h1.snd) (a1:@Nil)

in lem l h1 h

lem1 (us::List (A*B))(h1::GoodR B R (sndL us))(h::Min us) :: GBarlR us =
case us of
(Nil) -> case h1 of { }
(Cons a as) -> case h1 of

(Inl x) -> case as of
(Nil) -> case x of { }
(Cons a’ as’) -> lem0 (a’:as’) a x h.snd

(Inr y) -> GRBarmon (A*B) leqxR @Nil as
(lem1 (append (A*B) @Nil as) y h.snd) (a:@Nil)

keylem (us::List (A*B))(h::GRBar B R (sndL us)) :: (h1::Min us)-> GBarlR us =
case h of

(Base h1) -> lem1 us h1
(Ind f) -> \(h1::Min us)->open_ind us h1 (\(u::A*B) -> keylem (u:us) (f u.snd))

keylem_cor :: WR (A*B) leqxR = keylem @Nil gR @tt

-- This is the general version of Dickson’s lemma.
--
Dickson (A::Set)(gt::Rel A)(wfgt::WF A gt)(dgt::decRel A gt)(n::Nat)
:: WR (Vec A n) (VecRel A (NotR A gt) n) =
case n of
(Zero) -> @Ind (\(a::Vec A @Zero)->

@Ind (\(a1::Vec A @Zero)-> @Base (@Inl (@Inl @tt))))
(Succ n1) -> let package thD = thDickson A (Vec A n1) gt (VecRel A (NotR A gt) n1)

wfgt dgt (Dickson A gt wfgt dgt n1)
in thD.keylem_cor

44 Thierry Coquand and Henrik Persson

B.2 Abstract Existence Proof of Gröbner Bases

Below is a formal proof of the existence of Gröbner bases for ideals in an arbitrary
polynomial ring (Poly). We do not need to assume any properties of a polynomial
ring at this level. The development is general and captures the reasoning in
Section 2; for instance the assumption bars::GBar @Nil can be instantiated by
the formal proof of Dickson’s lemma above. Some parts of the proof terms were
omitted to improve the presentation, these are denoted by “...”.

package GB0 (Poly::Set)
(Z::Poly)
(plusP, timesP::BinOp Poly)
((==)::Rel Poly)
(P::Poly->Pred (List Poly)) =

let LP :: Set = List Poly
ForallLP :: Pred Poly -> Pred LP = ForallL Poly
ExistsLP :: Pred Poly -> Pred LP = ExistsL Poly
Good::Pred (List Poly) = GoodP Poly P
GBar :: Pred LP = Bar Poly Good
Bad :: Pred LP = NotP LP Good
(:) (f::Poly)(fs::LP) :: LP = @Cons f fs

in
open pkIdeal Poly (==) plusP timesP Z use Ideal, eqI, eqvI, congI, ilem1, ilem2
in
struct
package GB1 (spols::LP -> LP)

(GB::Pred LP)
(RED::Poly -> LP -> Poly)
(deceq::decRel Poly (==))
(ispol::(fs::LP)->ForallLP (\(g::Poly)-> Ideal fs g) (spols fs))
(iRED::(f::Poly)->(fs::LP)->Ideal (f:fs) (RED f fs))
(iREDP::(g::Poly)->(gs::LP)->P (RED g gs) gs -> RED g gs == Z)
(Pprop::(f::Poly)->(fs::LP)->Exists Poly (\(g::Poly) ->

eqI (f:fs) (g:fs) & Not (P g fs)))
(gbchar::(gs::LP)->ForallLP (\(g’::Poly) -> RED g’ gs == Z)

(spols gs) -> GB gs)
(bars::GBar @Nil)

= open eqvI use ire, isy, itr
in
struct
lem1 (fs::LP) :: Or (ExistsLP (\(h :: Poly) -> Not (RED h fs == Z)) (spols fs))

(ForallLP (\(h :: Poly) -> RED h fs == Z) (spols fs))
= existsLlem1 Poly (\(h :: Poly) -> RED h fs == Z)

(\(x :: Poly) -> deceq (RED x fs) Z) (spols fs)

badlem (gs::LP)(g::Poly)(h1::Not (RED g gs == Z))(b::Bad gs)::Bad ((RED g gs):gs) =
\(x :: Good ((RED g gs):gs)) -> case x of

(Inl x’) -> h1 (iREDP g gs x’)
(Inr y) -> b y

remEq1 (fs::LP)::ForallLP (\(g’ :: Poly) -> eqI ((RED g’ fs):fs) fs) (spols fs) =
let l1 (sfs::LP)

(f1::ForallLP (\(g::Poly)-> Ideal fs g) sfs)
:: ForallLP (\(g’::Poly) -> eqI ((RED g’ fs):fs) fs) sfs =
case sfs of
(Nil) -> @tt
(Cons a as) -> ...

in l1 (spols fs) (ispol fs)

GBof (F,G::LP) :: Set = eqI G F & GB G

thm (fs::LP)(gb::GBar fs)(b::Bad fs) :: Exists LP (GBof fs) =
case gb of
(Base h) -> elimN0 (Exists LP (GBof fs)) (b h)
(Ind f) ->

Gröbner Bases in Type Theory 45

case lem1 fs of
(Inl x) -> let l1 (sgs::LP)

(f2::ExistsLP (\(g’::Poly) -> Not (RED g’ fs == Z)) sgs)
(f3::ForallLP (\(g’::Poly) -> eqI ((RED g’ fs):fs) fs) sgs)
:: Exists LP (GBof fs) =

case sgs of
(Nil) -> case f2 of { }
(Cons a as) -> ...

in l1 (spols fs) x (remEq1 fs)
(Inr y) -> struct fst :: LP = fs

snd :: GBof fs fs = struct fst :: eqI fs fs = ire fs
snd :: GB fs = gbchar fs y

badprop (f::Poly)(fs::LP)(b::Bad fs)(np::Not (P f fs)) :: Bad (f:fs) =
\(x :: Good (f:fs)) -> case x of

(Inl x’) -> np x’
(Inr y) -> b y

exbad (fs::LP) :: Exists LP (\(gs::LP) -> Bad gs & eqI fs gs)
= case fs of

(Nil) -> struct fst :: LP = @Nil
snd :: Bad fst & (eqI @Nil fst) = ...

(Cons a as) -> ...

cor (fs::LP) :: Exists LP (GBof fs) = let gs :: LP = (exbad fs).fst
bad :: Bad gs = (exbad fs).snd.fst
eq :: eqI fs gs = (exbad fs).snd.snd
th :: Exists LP (GBof gs) = ...

in ...

References

Acz77. P. Aczel. An Introduction to Inductive Definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 739–782. North-Holland Publishing
Company, 1977. 34, 37, 38

Aug98. L. Augustsson. Cayenne - a language with dependent types. Technical re-
port, Department of Computing Science, Chalmers University of Technol-
ogy, 1998. Homepage: http://www.cs.chalmers.se/˜ augustss/cayenne/. 42

BS96. U. Berger and H. Schwichtenberg. The greatest common divisor: a case
study for program extraction from classical proofs. In Proceedings of the
Workshop TYPES ’95, Torino, Italy, June 1995, number 1158 in Lecture
Notes in Computer Science. Springer-Verlag, 1996. 34

Buc65. B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring
of a Zero-Dimensional Polynomial Ideal (German). PhD thesis, University
of Innsbruck, 1965. 33

Buc85. B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal
theory. In N. K. Bose, editor, Multidimensional systems theory, pages 184–
232. Reidel Publ. Co., 1985. 33, 34

Buc98. B. Buchberger. Introduction to Gröbner bases. In B. Buchberger and
F. Winkler, editors, Gröbner bases and applications, pages 3–31. Cambridge
University Press, 1998. 34

BW93. T. Becker and V. Weispfenning. Gröbner bases, volume 141 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1993. In cooperation
with H. Kredel. 34, 35, 39, 42

CLO97. D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Under-
graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1997. 34

46 Thierry Coquand and Henrik Persson

Con86. R. L. Constable et al. Implementing Mathematics with the NuPRL Proof
Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986. 35

Coq92. Th. Coquand. Constructive topology and combinatorics. In proceeding of
the conference Constructivity in Computer Science, San Antonio, LNCS
613, pages 28–32, 1992. 33, 34, 37, 38, 39

Coq98. C. Coquand. The homepage of the Agda type checker. Homepage:
http://www.cs.chalmers.se/˜ catarina/Agda/, 1998. 42

Dic13. L. E. Dickson. Finiteness of the odd perfect and primitive abundant num-
bers with n distinct prime factors. Am. J. Math., 35:413–422, 1913. 34

Dyb90. P. Dybjer. Comparing integrated and external logics of functional programs.
Science of Computer Programming, 14:59–79, 1990. 33

Frö97. R. Fröberg. An introduction to Gröbner bases. John Wiley & Sons, 1997.
34

Gir86. J-Y Girard. Linear logic and parallelism. In M. Venturini Zilli, editor,
Mathematical Models for the Semantics of Parallelism, number LNCS 280,
pages 166–182. Springer-Verlag, September 1986. 33

HKPM97. G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq proof assistant: A
tutorial. Technical report, Rapport Technique 204, INRIA, 1997. 34

Jac95. P. B. Jackson. Enhancing the Nuprl proof development system and applying
it to computational abstract algebra. PhD thesis, Cornell University, 1995.
35, 41

JL91. C. Jacobsson and C. Löfwall. Standard bases for general coefficient rings and
a new constructive proof of Hilbert’s basis theorem. J. Symbolic Comput.,
12(3):337–371, 1991. 34, 39

ML68. P. Martin-Löf. Notes on Constructive Mathematics. Almqvist & Wiksell,
1968. 37

MRR88. R. Mines, F. Richman, andW. Ruitenburg. A course in constructive algebra.
Universitext. Springer-Verlag, New York, 1988. 39

NPS90. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-
Löf ’s Type Theory. An Introduction. Oxford University Press, 1990. 33

NW63. C. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the
Cambridge Philosophical Society, 59:833–835, 1963. 41

Pot96. Löıc Pottier. Dixon’s lemma. URL: ftp://www.inria.fr/safir/pottier/MON,
1996. 34

Rao88. J-C. Raoult. Proving open properties by induction. Information processing
letters, 29:19–23, 1988. 33, 34, 37, 39

Ric74. F. Richman. Constructive aspects of noetherian rings. In Proc. AMS 44,
pages 436–441, 1974. 39

Thé98. L. Théry. Proving and computing: A certified version of the Buchberger’s
algorithm. In proceeding of the 15th International Conference on Automated
Deduction, Lindau, Germany, LNAI 1421, 1998. 34, 41

A Modal Lambda Calculus with Iteration and

Case Constructs

Joëlle Despeyroux and Pierre Leleu

INRIA
2004 Route des Lucioles, B.P. 93

F-06902 Sophia-Antipolis Cedex, France
Joelle.Despeyroux@sophia.inria.fr

LeleuP@wanadoo.fr

Abstract. An extension of the simply-typed λ-calculus, allowing itera-
tion and case reasoning over terms of functional types that arise when
using higher order abstract syntax, has recently been introduced by F.
Pfenning, C. Schürmann and the first author. This thorny mixing is
achieved thanks to the help of the operator ‘ ’ of modal logic S4. Here
we give a new presentation of their system, with reduction rules, instead
of evaluation judgments, that compute the canonical forms of terms.
Our presentation is based on a modal λ-calculus that is better from the
user’s point of view. Moreover we do not impose a particular strategy
of reduction during the computation. Our system enjoys the decidabil-
ity of typability, soundness of typed reduction with respect to typing
rules, the Church-Rosser and strong normalization properties and it is a
conservative extension over the simply-typed λ-calculus.

1 Introduction

Higher order abstract syntax ([PE88]) is a representation technique which proves
to be useful when modelizing in a logical framework a language which involves
bindings of variables. Thanks to this technique, the formalization of an (object-
level) language does not need definitions for free or bound variables in a term. Nor
does it need definitions of notions of substitutions, which are implemented using
the meta-level application, i.e. the application available in the logical framework.
Hypothetical judgments are also directly supported by the framework.

On the other hand, inductive definitions are frequent in mathematics and
semantics of programming languages, and induction is an essential tool when
developing proofs. Unfortunately it is well-known that a type defined by means
of higher order abstract syntax cannot be defined as an inductive type in usual
inductive type theories (like CCI [Wer94,PM92], or Martin-Löf’s Logical Frame-
work [NPS90] for instance).

In a first step towards the resolution of this dilemma, Frank Pfenning, Carsten
Schürmann and the first author have presented ([DPS97]) an extension of the
simply-typed λ-calculus with recursive constructs (operators for iteration and
case reasoning), which enables the use of higher order abstract syntax in an

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 47–62, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

48 Joëlle Despeyroux and Pierre Leleu

inductive type. To achieve that, they use the operator ‘ ’ of modal logic IS4 to
distinguish the types ‘A→ B’ of the functional terms well-typed in the simply-
typed λ-calculus from the types ‘ A → B’ of the functional terms possibly
containing recursive constructs.

In this paper, we present an alternative presentation of their system that we
claim to be better in several aspects. We use the same mechanism as theirs to mix
higher order abstract syntax and induction but our typing and reduction rules
are quite different. Indeed there are several presentations of modal λ-calculus IS4
([BdP96,PW95], [DP96]). We have chosen the variant by Frank Pfenning and
Hao-Chi Wong ([PW95]), which has context stacks instead of simple contexts.
This peculiarity creates some difficulties in the metatheoretical study but the
terms generated by the syntax are simpler than those of [DPS97] (no ’let box’
construction), and so this system is more comfortable to use.

Moreover, instead of introducing an operational semantics which computes
the canonical form (η-long normal form) using a given strategy, our system
has reduction rules, which allow a certain nondeterminism in the mechanism
of reduction. We have been able to adapt classic proof techniques to show the
important metatheoretic results: decidability of typability, soundness of typing
with respect to typing rules, Church-Rosser property (CR), Strong Normaliza-
tion property (SN) and conservativity of our system with respect to the simply-
typed λ-calculus. The main problems we encountered in the proofs are on one
hand due to the use of functional types in the types of the recursive construc-
tors, and on the other hand due to the use of η-expansion. To solve the problems
due to η-expansion, we benefit from previous works done for the simply-typed
λ-calculus ([JG95]) and for system F ([Gha96]).

In the second section of the paper, we introduce our version of the modal
inductive system, its syntax, its typing and reduction rules. Then in the third sec-
tion, we prove its essential properties (soundness of typing, CR, SN) from which
we deduce that it is a conservative extension of the simply-typed λ-calculus.
Finally, we discuss related works and outline future work. A full version of this
paper with complete technical developments is available in [Lel97].

2 The System

In this section, we present the syntax, the typing rules and the semantics of our
system. First, let us briefly recall our motivations.

2.1 Higher-Order Abstract Syntax

The mechanics of higher order abstract syntax (HOAS) has already been exposed
in many places, for example in [HHP93]. Let us introduce here a simple example
of representation using HOAS, that will be useful later when we illustrate the
mechanism of the reduction rules.

A Modal Lambda Calculus with Iteration and Case Constructs 49

Suppose we want to represent the untyped λ-terms in the simply-typed λ-
calculus with no extra equations. We introduce the type L of untyped λ-terms
together with two constructors lam : (L → L)→ L and app : L → L → L.

It is well-known ([HHP93]) that the canonical forms (β-normal η-long) of
type L are in one-to-one correspondence with the closed untyped λ-terms and
that this correspondence is compositional. For instance the term of type L
(lam λx : L.(app x x)) represents the untyped λ-term λx.(x x).

Now, these constructors do not define an inductive type in usual inductive
type theories like the Calculus of Inductive Constructions ([Wer94]) or the Ex-
tended Calculus of Constructions ([Luo94]) because of the leftmost occurence
of L in the type of constructor lam. If we allowed this kind of inductive defini-
tion, we would be confronted with two serious problems. First, we would lose the
one-to-one correspondence between the objects we represent and the canonical
forms of type L→ · · · → L. For instance, if we have a Case construct (definition
of a function by case over inductive terms), the term (lam λx : L.Case x of . . .)
does not represent any untyped λ-term. Moreover we would lose the important
property of strong normalization; more precisely we could write terms which
would reduce to themselves. Our goal is to introduce a system which repairs
these deficiencies.

Following [DPS97], we will use the modal operator ‘ ’ of modal logic IS4
to distinguish the types ‘A → B’ of the functional terms well-typed in the
simply-typed λ-calculus from the types ‘ A → B’ of the functional terms pos-
sibly containing recursive contructs. For instance, in our system, a term such
as ‘λx : L.Case xof . . . ’ will have type L → L whereas constructor ‘lam’ will
have type (L → L) → L. Thus, our typing judgment will rule out undesirable
terms such as ‘(lam λx : L.Case x of . . .)’.

2.2 Syntax

The system we present here is roughly the simply-typed λ-calculus extended by
pairs, modality IS4 and recursion. We discuss the addition of polymorphism and
dependent types in the conclusion.

Types To describe the types of the system, we consider a countable collection
of constant types Lj (j ∈ IN), called the ground types. In our approach, they
play the role of inductive types. The types are inductively defined by:

Types : T := Lj | T1 → T2 | T1 × T2 | T

A type is said to be pure if it contains no ‘ ’ operator and no product.

Context stacks Following the presentation of [PW95], we have context stacks
instead of simple contexts. As usual a context Γ is defined as a list of unordered
declarations x : A where all the variables are distinct. A context stack ∆ is
an ordered list of contexts, separated by semi colons Γ1; . . . ;Γn. ‘.’ denotes the
empty context as well as the empty stack.

50 Joëlle Despeyroux and Pierre Leleu

Notations. A context stack is said to be valid if all the variables of the stack are
distinct. We call local context of a stack ∆ = Γ1; . . . ;Γn the last context of the
stack: Γn. The notation ‘∆,Γ ’, where ∆ is a stack Γ1; . . . ;Γn and Γ is a context,
is the stack Γ1; . . . ;Γn, Γ . Similarly, the notation ‘∆,∆′’, where ∆ is the stack
Γ1; . . . ;Γn and ∆′ is the stack Γ ′

1; . . . ;Γ ′
m, is the stack Γ1; . . . ;Γn, Γ

′
1; . . . ;Γ ′

m.
If ∆ is a valid stack of m contexts Γ1; . . . ;Γm and n is an integer, ∆n denotes
the stack∆ where the last n contexts have been removed: Γ1; . . . ;Γm−n if n < m,
and the empty stack ‘.’ if n ≥ m.

Terms We view open terms of type L, depending on n variables of type L, as
functional terms of type Ln = L → · · · → L → L, as in [DH94]. For example,
terms in the untyped λ-calculus given in Section 2.1 will have three possible
forms, envolving what we called higher-order constructors, written with vectorial
notations:

app : λ−→x : −→L .(app P Q)
lam : λ−→x : −→L .(lam P)
var : λ−→x : −→L .xi

In general of course, the type of a constructor of a pure type L contains
other types than L. Before describing the set of the terms, we consider a finite
collection of constant terms (the constructors) Cj,k, given with their pure type:(
Bj,k,1 → · · · → Bj,k,nj,k

)
→ Lj , where each Bj,k,l is a pure type and Lj is a

ground type. If nj,k = 0, the type of Cj,k is simply Lj .
The terms are inductively defined by:

Terms : M := x | Cj,k | (M N) | λx : A.M | ↑M | ↓M | 〈M1,M2〉
| fst M | snd M | 〈σ〉Case M of (Mj,k) | 〈σ〉It M of (M ′

j,k)

where σ is a function mapping the ground types Lj(j ∈ IN) to types, (Mj,k)
and (M ′

j,k) are collections of terms indexed by the indexes of the constructors.
We delay till Section 2.7 the explanation of the arguments of operators ‘Case’

and ‘It’. The modal operator ‘↑’ introduces an object of type A while the oper-
ator ‘↓’ marks the elimination of a term of type A. As usual, terms equivalent
under α-conversion are identified.

2.3 Typing Rules for Case and It on a Simple Example

We give here the typing rules for Case and It for the untyped λ-calculus example
of Section 2.1. Except for the use of the operator, and the use of Ln instead
of L, there are pretty standard for the app case. Note how the use of Ln enables
us to extend the usual case (app) to the fonctional case (lam) in an intuitive
manner:

∆ �M : Ln ∆ �Mapp : Ln → Ln → A ∆ �Mlam : Ln+1 → A

∆ � 〈σ〉Case M of Mapp Mlam : An

A Modal Lambda Calculus with Iteration and Case Constructs 51

∆ �M : Ln ∆ �M ′
app : A→ A→ A ∆ �M ′

lam : (A→ A)→ A

∆ � 〈σ〉It M of M ′
app M

′
lam : An

where A = σ(L) is the resulting type of the case or iteration process on M .
The Case and It functions take as arguments the resulting values for the n

variables of the term M being analysed; hence the resulting type An for both
operators in the above rules.

2.4 Examples

Let us assume that we have defined the types of the integers ‘Nat’ by declaring
two constructors ‘0 : Nat’ and ‘S : Nat → Nat’. We can informally define the
function which counts the number of bound variables in an untyped λ-term by:

– Count(app M N) = Count(M) + Count(N)
– Count(lam λx : L.(M x)) = Count(M x), where Count(x) = 1

This function can be implemented in our system using the It construct, where
σ = {L �→ Nat}. Count has type L→ Nat:

Count := (〈σ〉It λm, n : Nat..(plus m n) λp : Nat→ Nat.(p ↑ (S 0)))

The function ‘Form’ of type (L→ L)→ Nat, which returns 0 if its argument
is a free variable, 1 if it is an abstraction term and 2 if it is an application, can
be defined as follows:

Form M := (〈σ〉Case M of λu, v : (L→ L)..2 λf : (L→ L→ L).1 0)

2.5 Typing Rules

The typing rules are a combination of the rules for simply-typed λ-calculus, for
pairs and projections, for modal λ-calculus IS4 ([PW95]) and the new rules for
the recursive constructs ‘Case’ and ‘It’. Due to lack of place we do not give the
rules for pairs and projections in this extended abstract. The rules are written
in Figure 1 with the following notations:
Notations Bj,k,1, . . . , Bj,k,nj,k

are pure types. Lj is an inductive type.
(Ti)i=1,...,p is a collection, possibly empty, of pure types. Each Ti can be de-
composed as Ti

1 → · · · → Ti
ri → Li, where Li is a ground type and each Ti

j is
a pure type.

Given the types C, D1, . . . , Dp, we denote D1 → · · · → Dp → C by
i=p

Π
i=1
Di.C.

We define T ′
z by:

T ′
z := (T1 → · · · → Tp → T 1

z)→ · · · → (T1 → · · · → Tp → T rz
z)→ σ(Lz)

The map σ from ground types to types is extended over pure types by the
equation: σ(A→ B) = σ(A)→ σ(B).

52 Joëlle Despeyroux and Pierre Leleu

(Var)
x : A ∈ local context of ∆

∆ � x : A
∆ valid

(λ)
∆, x : A � M : B

∆ � λx : A.M : A → B
(App)

∆ � M : A → B ∆ � N : A

∆ � (M N) : B

(↑) ∆; . � M : A

∆ �↑ M : A
(↓) ∆ � M : A

∆ �↓ M : A
(Pop)

∆ � M : A

∆;Γ � M : A
∆;Γ valid

(Cj,k)
∆ � Cj,k : Bj,k,1 → · · · → Bj,k,nj,k

→ Lj
∆ valid, nj,k ∈ IN

(Case)

∆ � M :

�
i=p

Π
i=1

Ti.Ln

�
∆ � Mj,k :

q=nj,k

Π
q=1

�
i=p

Π
i=1

Ti.Bj,k,q

�
.σ(Lj)

∆ � 〈σ〉Case M of (Mj,k) :
z=p

Π
z=1

T ′z.σ(Ln)

(It)

∆ � M :

�
i=p

Π
i=1

Ti.Ln

�
∆ � M ′j,k :

q=nj,k

Π
q=1

σ(Bj,k,q).σ(Lj)

∆ � 〈σ〉It M of (M ′j,k) :
i=p

Π
i=1

σ(Ti).σ(Ln)

Fig. 1. Typing rules

These typing rules may seem complex at first sight but they are naturally
derived from the behaviour of the Case and It operators with respect to reduction
(sections 2.7, 2.8).

Although expressed differently, our typing rules are similar to those
in [DPS96] (in which one can find many examples), with a more user friendly
modal core.

2.6 Basic Properties

The system allows the same basic stack manipulations as the modal λ-calculus
IS4 without Case and It ([PW95]). In particular, as usual, the typing judgments
are preserved by thinning and strengthening. Later, these properties will still be
true for typed reduction and the interpretations of types.

The substitution rule is still admissible.
The inversion lemmas are not totally trivial because our typing rules are

not syntax-driven. If we try to type a term of type A, we can always apply
rule (Pop) as well as the structural rule for M . Nevertheless, they remain fairly
simple (see [Lel97]).

2.7 Reduction Rules for Case and It on a Simple Example

Now, we turn to the reduction rules of our system. They are inspired by the re-
duction rules for Case and It that have been suggested to us by Martin Hofmann

A Modal Lambda Calculus with Iteration and Case Constructs 53

as a means to describe the evaluation mechanism of [DPS97]. These reduction
rules are also the ones underlying the terms and induction principles presented
in [DH94] in the Calculus of Inductive Constructions. Indeed this research was
undertaken with this main idea in mind: our approach to HOAS (i.e. considering
terms in Ln = L → · · · → L instead of terms of type L ([DH94])) should lead
to a much more elegant system than the usual approach. The result seems to
confirm our intuition.

First we show the reduction rules for Case and It in the simple setting of the
example of Section 2.1. For the sake of simplicity we introduce some notations.

Notations. For any type B, the type Bn (n ∈ IN) is defined by B0 := B
and Bn+1 := B → Bn. We consider a map σ from the inductive types to types
such that σ(L) = A, terms Mapp of type Ln → Ln → A, Mlam of type
Ln+1 → A, M ′

app of type A→ A→ A and M ′
lam of type (A→ A)→ A. We

define two macros ’case’ and ’it’ by:

case M := 〈σ〉Case M of Mapp Mlam
it M := 〈σ〉It M of M ′

app M
′
lam

Reduction rules. In our example, the reduction rules for Case and It are the
following ones:

(case ↑ λ−→x : −→L .(app P Q)) ↪→ λ−→u : −→A .(Mapp ↑ λ−→x : −→L .P ↑ λ−→x : −→L .Q)
(case ↑ λ−→x : −→L .(lam P)) ↪→ λ−→u : −→A .(Mlam ↑ λ−→x : −→L .P)

(case ↑ λ−→x : −→L .xi) ↪→ λ−→u : −→A .ui

(it ↑ λ−→x : −→L .(app P Q)) ↪→ λ−→u : −→A .(M ′
app ((it ↑ λ−→x : −→L .P) −→u)

((it ↑ λ−→x : −→L .Q) −→u))
(it ↑ λ−→x : −→L .(lam P)) ↪→ λ−→u : −→A .(M ′

lam ((it ↑ λ−→x : −→L .P) −→u))
(it ↑ λ−→x : −→L .xi) ↪→ λ−→u : −→A .ui

The first argument of the Case and It constructs,M , is the inductive term to an-
alyze (representing an untyped λ-term in our example). The second one, Mapp,
is the function which processes the case of constructor ‘app’. The third ar-
gument, Mlam, is the function which processes the case of constructor ‘lam’.
Roughly speaking the ‘Case’ construct computes its result by applying Mapp
or Mlam to the sons of its main argument. For iteration, the mechanism of re-
duction is a bit different: the terms M ′

app and M ′
lam are applied to the result

of ‘It’ on the sons of the main argument. Operationally, the effect of ‘It’ on a
termM amounts to replacing the constructors lam and app by the termsM ′

lam
and M ′

app in M (see [DPS97]).
Now since we want to benefit from higher order declarations, the main argu-

ment of Case/It may have a functional type. In particular we also want to be able
to compute Case/It of a projection λ−→x : −→L .xi without a leftmost constructor.
That is the reason for the functional type of Case/It constructs : they take as
input the values of the computation for the projections (see [DPS97]).

54 Joëlle Despeyroux and Pierre Leleu

2.8 Reduction Rules

Now we describe the whole set of reduction rules. Given a term of our calculus,
what we want to obtain at the end of the computation is the term of the object
language it represents. As we have seen earlier (Section 2.1), the canonical forms
(β-normal η-long) are in one-to-one correspondence with the object terms. Thus
we want the computation to return canonical forms. That means our reduction
rules will incorporate η-expansion.

The η-expansion reduction rule has been thoroughly studied
(see [CK93,Aka93,JG95]). Adopting it forces us to restrict the reduction rules
in some way if we still want Strong Normalization. Thus the reduction we will
consider will not be a congruence (more precisely it will not be compatible with
the application) and this will induce slight changes in the usual schemes of the
proofs of the Church-Rosser and Strong Normalization properties.

The choice of η-expansion also means we have to keep track of the types of
the terms. Indeed a term can only be η-expanded if it has type A → B. Thus
we will define a notion of typed reduction.

The reduction relation is defined by the inference rules in Figures 2 (simple
types and modality) and 3 (Case and It). We have omitted the product rules
and the compatibility rules other than (Appl), which are straightforward.

(β)
∆ � (λx : A.P Q) : B

∆ � (λx : A.P Q) ↪→ P [Q/x] : B
(β)

∆ �↓↑ M : A

∆ �↓↑ M ↪→ M : A

(η)
∆ � M : A → B M not an abstraction x fresh

∆ � M ↪→ λx : A.(M x) : A → B
(η)

∆ �↑↓ M : A

∆ �↑↓ M ↪→ M : A

(Appl)
∆�M ↪→M ′ :A→B(= η-step) ∆�N :A

∆� (M N) ↪→ (M ′ N) :B
(Pop)

∆�M ↪→N :! A

∆;Γ �M ↪→N : A

Fig. 2. Reduction rules. Simple types and modality

As usual we define the relations ↪→∗ and = (conversion) respectively as the
reflexive, transitive and the reflexive, symmetric, transitive closures of ↪→.

3 Metatheoretical Results

The classic properties of subject reduction, confluence and strong normaliza-
tion have already been established for a modal λ-calculus IS4 without induction
([Lel98a]). Here we extend these results to the recursive operators Case and It.

3.1 First Results

First, we state soundness of typed reduction with respect to typing rules. It is
easily proved by induction on the derivation of the first hypothesis.

A Modal Lambda Calculus with Iteration and Case Constructs 55

(Case Cj,k)
∆ � 〈σ〉Case ↑ λ−→x :

−→
T .(Cj,k M1 . . . Mnj,k) of (Mj,k) :

z=p

Π
z=1

T ′z.σ(Ln)

∆ � 〈σ〉Case ↑ λ−→x :
−→
T .(Cj,k M1 . . . Mnj,k) of (Mj,k) ↪→

λ−→u :−→T ′ .(Mj,k ↑λ−→x :−→T .M1 . . . ↑λ−→x :−→T .Mnj,k) :
z=p

Π
z=1

T ′z.σ(Ln)

(Case xk)
∆ � 〈σ〉Case ↑ λ−→x :

−→
T .(xk M1 . . . Mrk) of (Mj,k) :

z=p

Π
z=1

T ′z.σ(Ln)

∆ � 〈σ〉Case ↑ λ−→x :
−→
T .(xk M1 . . . Mrk) of (Mj,k) ↪→

λ−→u :
−→
T ′ .(uk ↑ λ−→x :

−→
T .M1 . . . ↑ λ−→x :

−→
T .Mrk) :

z=p

Π
z=1

T ′z.σ(Ln)

(It Cj,k)
∆ � 〈σ〉It ↑ λ−→x :

−→
T .(Cj,k M1 . . . Mnj,k)of(M

′
j,k) :

i=p

Π
i=1

σ(Ti).σ(Ln)

∆ � 〈σ〉It ↑ λ−→x :
−→
T .(Cj,kM1 . . . Mnj,k)of(M

′
j,k) ↪→

λ−→u :
−−→
σ(T).(M ′j,k(〈σ〉It ↑ λ−→x :

−→
T .M1of (M

′
j,k) −→u) . . .

(〈σ〉It ↑ λ−→x :
−→
T .Mnj,k of (M ′j,k) −→u)) :

i=p

Π
i=1

σ(Ti).σ(Ln)

(It xk)
∆ � 〈σ〉It ↑ λ−→x :

−→
T .(xk M1 . . . Mrk) of (M

′
j,k) :

i=p

Π
i=1

σ(Ti).σ(Ln)

∆ � 〈σ〉It ↑ λ−→x :
−→
T .(xk M1 . . . Mrk) of (M

′
j,k) ↪→

λ−→u :
−−→
σ(T).(uk (〈σ〉It ↑ λ−→x :

−→
T .M1 of (M ′j,k) −→u) . . .

(〈σ〉It ↑ λ−→x :
−→
T .Mrk of (M ′j,k) −→u)) :

i=p

Π
i=1

σ(Ti).σ(Ln)

Fig. 3. Reduction rules for Case and It

Theorem 1 (Soundness of reduction).
If ∆ �M ↪→M ′ : A then ∆ �M : A and ∆ �M ′ : A.

The relationship between substitution and typed reduction is not as easy
as in the simply-typed λ-calculus. If P ↪→∗ P ′ and Q ↪→∗ Q′ then we do not
have any more P [Q/x] ↪→∗ P ′[Q′/x] because of the side-conditions of reduction
rules (η) and (Appl). Thus we only prove weak forms of the usual results. For
instance, if ∆,x : A � P : B and ∆ � Q ↪→ Q′ : A, we only state that there
is a term R such that ∆ � P [Q/x] ↪→∗ R : B and ∆ � P [Q′/x] ↪→∗ R : B.
Nevertheless, these results enable us to prove the local confluence property:

Lemma 1 (Local Confluence).
If ∆ � M ↪→ N : A and ∆ � M ↪→ P : A then there is a term Q such that

∆ � N ↪→∗ Q : A and ∆ � P ↪→∗ Q : A.

3.2 Strong Normalization

Now we briefly sketch our proof of the Strong Normalization theorem for our
system. The proof follows the idea of normalization proofs ‘à la Tait’ and is
inspired by [Wer94] (for the inductive part) and [Gha96] (for the η-expansion
part).

56 Joëlle Despeyroux and Pierre Leleu

Reducibility Candidates
First we give a definition of the reducibility candidates ([GLT89]) adapted

to our setting. Let us call Λ the set of our terms, defined in Section 2.2.

Definition 1 (Reducibility Candidates).
Given a type A, the reducibility candidates CRA are sets of pairs (∆,M) of

a context stack and a term. They are defined as follows:

CR1 ∀(∆,M) ∈ C, M is strongly normalizing in ∆ (i.e. there is no infinite
sequence of reductions starting from M in ∆).

CR1’ C ⊂ {(∆,M) | ∆ �M : A}
CR2 ∀(∆,M) ∈ C such that ∆ �M ↪→M ′ : A, we have (∆,M ′) ∈ C.
CR3 If M ∈ NT , ∆ � M : A and ∀M ′ such that ∆ � M ↪→ M ′ : A (�=

η-expansion), (∆,M ′) ∈ C then we have (∆,M) ∈ C.
CR4 If A = B → C and (∆,M) ∈ C then (∆,λz : B.(M z)) ∈ C, where z is a

fresh variable.

where NT = Λ \ ({λx : A.M |M ∈ Λ} ∪ {↑M |M ∈ Λ} ∪ {〈M,N〉|M,N ∈ Λ}).

Note that instead of taking sets of terms, we consider sets of pairs of a
stack and a term. Indeed, since, because of η-expansion, our reduction is typed,
it is convenient for the reducibility candidates to contain well-typed terms. In
rule CR3, the restriction “∆ � M ↪→ M ′ : A is not an η-expansion” comes
from [JG95]. It has been introduced to cope with η-expansions. The rule CR4 is
also needed because of the η-expansions ([Gha96]).

As usual, if C and D belong to CRA then C ∩ D belong to CRA. Thus CRA

is an inf-semi lattice. Next, we define the sets C → D, C ×D, C where C and D
are two reducibility candidates:

Definition 2 (C → D, C, C × D).

– C → D := {(∆,M) | ∆ �M : A→ B and ∀Γ, ∀((∆,Γ), N) ∈ C,
((∆,Γ), (M N)) ∈ D}

– C := {(∆,M) | ∆ �M : A and ∀∆′ stack s.t. (∆,∆′) is valid, ((∆,∆′),
↓M) ∈ C}.

– C × D := {(∆,M) | ∆ �M : A×B and ∀Γ context s.t. (∆,Γ) is valid,
((∆,Γ), fst M) ∈ C and ((∆,Γ), snd M) ∈ D}.

In the definition of C, we need to extend the stack of contexts ∆ with ∆′

in order to get ((∆,∆′),M) ∈ C whenever (∆,M) ∈ C (similarly to the case
of C → D).

In the definition of C → D, the context Γ added to the stack is essential; In
the intermediate lemmas, it allows us to add fresh variables to the context.

Proposition 1. If C and D are C.R., then C → D, C × D and C are C.R..

A Modal Lambda Calculus with Iteration and Case Constructs 57

Interpretation of types and contexts
Following the sketch of normalization proofs ’à la Tait’, we define the inter-

pretations of types.

Definition 3 (Interpretations of types).

– [[Lj]] := {(∆,M) | ∆ �M : Lj and M is SN in ∆ },
– [[A→ B]] := [[A]]→ [[B]],
– [[A×B]] := [[A]] × [[B]],
– If A is not pure, [[A]] := [[A]]

All the above interpretations are obviously C.Rs., except, maybe, for the first
case:

Proposition 2 ([[Lj]] is a C.R.).
The set [[Lj]] is a reducibility candidate.

In order to define [[A]] in the case A is pure, we have to take into account
the fact that A may be the type of the inductive argument of Case/It. The
definition of [[A]] in this case involves the smallest fixpoint of a function we do
not give here, because of space limitation (see [Lel97]).

At this point, we have defined the interpretation of type [[A]] for all the
types A. The following theorem stems from the definitions of the interpretations
of types.

Theorem 2 ([[A]] is a C.R.).
Given any type A, the set [[A]] is a C.R.

Then we define the notion of interpretation of context stack. Like in the
classic case of the simply-typed λ-calculus, the interpretation [[∆]]Ψ of stack ∆
in stack Ψ is a set of substitutions from ∆ to Ψ but the definition is a bit more
complex here because we have to deal with context stacks, instead of simple
contexts. Thus we use a non standard notion of substitution.

Definition 4 (Pre-substitution).
A pre-substitution ρ from a stack ∆ to a stack Ψ is a mapping from the set of

the variables declared in ∆ into the set of the terms with all their free variables
in Ψ .

A pre-substitution ρ can be applied to a term M with all its free variables
in ∆. The result of this operation, denoted by ρ(M), is equal to term M where
all its free variables x have been replaced by their images under ρ, ρ(x).

Notations. Given two stacks ∆ and Ψ , a pre-substitution ρ from ∆ to Ψ ,
a variable x not declared in ∆ and M a term with all its free variables in Ψ ,
we denote by ρ[x �→ M] the pre-substitution from ∆,x : A to Ψ such that
ρ[x �→M](y) = ρ(y) if y is declared in ∆ and ρ[x �→M](x) =M .

Given a stack ∆′ such that ∆;∆′ is valid and a substitution ρ′ from ∆′ to Ψ ,
‘ρ; ρ′’ denotes the pre-substitution from ∆;∆′ to Ψ such that (ρ; ρ′)(x) = ρ(x)
if x is declared in ∆ and (ρ; ρ′)(x) = ρ′(x) if x is declared in ∆′.

58 Joëlle Despeyroux and Pierre Leleu

Definition 5 (Interpretation of context stack).
Given two stacks ∆ and Ψ , the interpretation of ∆ in Ψ , [[∆]]Ψ , is a set of

pre-substitutions from ∆ to Ψ . It is defined by induction on ∆:

– [[.]]Ψ is the singleton whose only element is the empty pre-substitution from .
to Ψ .

– [[Γ, x : A]]Ψ is the set of the pre-substitutions ρ[x �→ M], where ρ belongs to
[[Γ]]Ψ and (Ψ,M) is in [[A]].

– [[∆;Γ]]Ψ is the set of pre-substitutions ρ; ρ′ such that ρ belongs to [[∆]]Ψn

(n ∈ IN) and ρ′ belongs to [[Γ]]Ψ .

where the notation Ψn has been previously defined in Section 2.2.

In the definition of [[∆;Γ]]Ψ , the requirement that ρ belongs to [[∆]]Ψn , more
flexible than the requirement that ρ belongs to [[∆]]Ψ , enables us to cope with the
context stacks in the proofs. For example, we will have that ρ belongs to [[∆; .]]Ψ,Ψ ′

whenever ρ belongs to [[∆]]Ψ .

Soundness of Typing The following lemma is proved by induction on the
derivation of ∆ �M : A. The most difficult case occurs for rule (↑). It is solved
by using the typing restrictions imposed by modality (see [Lel97]).

Lemma 2 (Soundness of Typing).
If ∆ �M : A and ρ ∈ [[∆]]Ψ , then (Ψ, ρ(M)) ∈ [[A]].

The strong normalization theorem is then an easy corollary, using the fact
that for any stack ∆, the pre-substitution identity from∆ to ∆ belongs to [[∆]]∆.

Theorem 3 (Strong Normalization).
There is no infinite sequence of reductions.

3.3 Confluence and Conservative Extension

The confluence property is a corollary of the strong normalization (Theorem 3)
and the local confluence results (this fact is often called “Newman’s Lemma”,
after [New42]).

Theorem 4 (Confluence). If ∆ �M ↪→∗ N : A and ∆ �M ↪→∗ P : A then
there is a term Q such that ∆ � N ↪→∗ Q : A and ∆ � P ↪→∗ Q : A.

As usual, the ‘uniqueness of normal forms’ property is a corollary of the
strong normalization and confluence theorems.

Corollary 1 (Uniqueness of normal forms).
If ∆ �M : A then M reduces to a unique canonical form in ∆.

The conservative extension property uses the strong normalization result
together with a technical lemma, that defines the possible forms of a canonical
term [Lel97].

A Modal Lambda Calculus with Iteration and Case Constructs 59

Theorem 5 (Conservative extension).
Our system is a conservative extension of the simply-typed λ-calculus, i.e. if

∆ � M : A with ∆ pure context stack and A pure type then M has a unique
canonical form N which is pure.

4 Related Works

Our system has been inspired by [DPS97]. The main difference is that the un-
derlying modal λ-calculus is easier to use and seems to be better adapted to
a future extension to dependent types. Splitting the context in two parts (the
intuitionistic and the modal parts) would most probably make the treatment
of dependent types even more difficult: how should we represent a modal type
which depends on both non-modal and modal types?

We also provide reduction rules, instead of a particular strategy for evalu-
ation. Finally, due to that latter point and the fact that we have adapted well
known proof methods, our metatheoretic proofs are much more compact and
easier to read.

Raymond McDowell and Dale Miller have proposed [MM97] a meta-logic
to reason about object logics coded using higher order abstract syntax. Their
approach is quite different from ours, less ambitious in a sense. They do not give
a typing system, supporting the judgments-as-types principle, but two logics:
one for each level (object and meta). Moreover they only have induction on
natural numbers, which can be used to derive other induction principles via the
construction of an appropriate measure.

Frank Pfenning and Carsten Schürmann have also defined a meta-logic ‘M2’,
which allows inductive reasoning over HOAS encodings in LF([PS98]). It was
designed to support automated theorem proving. This meta-logic has been im-
plemented in the theorem prover Twelf, which gives a logical programming in-
terpretation of M2. Twelf has been used to automatically prove properties such
as type preservation for Mini-ML.

From our definition of valid terms in an object language Ln = L → · · · →
L → L implemented in the Calculus of Inductive Constructions, we derived
an induction principle, that we claimed to be more natural, and more pow-
erful, than the usual ones ([DH94]). Martin Hofmann recently formalized this
induction principle in a modal meta-logic, using categorical tools [Hof99]. In this
paper, he very nicely formalizes and compares, on the categorical level, several
representations of terms using HOAS, and several induction principles currently
used, sometimes without justifications, for fonctional terms.

5 Conclusion and Future Work

We have presented a modal λ-calculus IS4 with primitive recursive constructs
that we claim to be better than the previous proposition [DPS97]. The con-
servative extension theorem, which guarantees that the adequacy of encodings

60 Joëlle Despeyroux and Pierre Leleu

is preserved, is proved as well as the Church-Rosser and strong normalization
properties.

Our main goal is now to extend this system to dependent types and to poly-
morphic types. This kind of extension is not straightforward but we expect our
system to be flexible enough to allow it. We have already proposed an extension
of our system to dependent types, only with a “non-dependent” rule for elimi-
natin for the moment [DL99,Lel98b]. A full treatment of dependent types would
have given an induction principle that we did not succeed in justifying in our
setting. The work by Martin Hofmann [Hof99] suggests that we should be able
to go further in this direction.

Another interesting direction of research consists in replacing our recur-
sive operators by operators for pattern-matching such as those used in the
ALF [MN94] system, implementing Martin-Löf’s Type Theory [NPS90]. Some
hints for a concrete syntax for that extension have been given in [DPS97]. F.
Pfenning and C. Schürmann are currently working on the definition of a meta-
logic along these lines.

Acknowledgments

Thanks are due to Martin Hofmann for his suggestion for reduction rules which,
stengthening us in the intuitions we had in previous works, make it possible the
present results. We also thank André Hirschowitz for many fruitful discussions.

References

Aka93. Y. Akama. On Mints’ reduction for ccc-calculus. In Proceedings TLCA, pages
1–12. Springer-Verlag LNCS 664, 1993. 54

BdP96. Gavin Bierman and Valeria de Paiva. Intuitionistic necessity revisited. In
Technical Report CSRP-96-10, School of Computer Science, University of
Birmingham, June 1996. 48

CK93. R. Di Cosmo and D. Kesner. A Confluent Reduction for the Extensional
Typed λ-calculus. In Proceedings ICALP’93. Springer-Verlag LNCS 700, 1993.
54

DH94. J. Despeyroux and A. Hirschowitz. Higher-order syntax and induction in coq.
In F. Pfenning, editor, Proceedings of the fifth Int. Conf. on Logic Program-
ming and Automated Reasoning (LPAR 94), Kiev, Ukraine, July 16–21, 1994,
volume 822. Springer-Verlag LNAI, 1994. 50, 53, 59

DL99. Joëlle Despeyroux and Pierre Leleu. Primitive recursion for higher-order ab-
stract syntax - dependant types. Draft, submitted for publication, 1999. 60

DP96. Rowan Davies and Frank Pfenning. A modal analysis of staged computa-
tion. In Jr. Guy Steele, editor, Proceedings of the 23rd Annual Symposium on
Principles of Programming Languages, pages 258–270, St. Petersburg Beach,
Florida, January 1996. ACM Press. 48

DPS96. Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive re-
cursion for higher-order abstract syntax. Technical Report CMU-CS-96-172,
Carnegie Mellon University, September 1996. 52

A Modal Lambda Calculus with Iteration and Case Constructs 61

DPS97. Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive Re-
cursion for Higher-Order Abstract Syntax. In J.R. Hindley and P. de Groote,
editors, Int. Conf. on Typed lambda calculi and applications - TLCA’97, pages
147–163, Nancy, France, April 1997. Springer-Verlag LNCS 1210. 47, 48, 49,
53, 59, 60

Gha96. Neil Ghani. Eta Expansions in System F. Technical Report LIENS-96-10,
LIENS-DMI, Ecole Normale Superieure, 1996. 48, 55, 56

GLT89. Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cam-
bridge University Press, 1989. 56

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993. 48, 49

Hof99. Martin Hofmann. Semantical analysis of higher-order abstract syntax. In
IEEE, editor, Proceedings of the International Conference on Logic In Com-
puter Sciences, LICS, 1999. 59, 60

JG95. C.B. Jay and N. Ghani. The Virtues of Eta-Expansion. Journal of Functional
Programming, 5(2):135–154, April 1995. 48, 54, 56

Lel97. Pierre Leleu. A Modal Lambda Calculus with Iteration and Case Con-
structs. Technical Report RR-3322, INRIA, France, December 1997.
http://www.inria.fr/RRRT/RR-3322.html. 48, 52, 57, 58

Lel98a. Pierre Leleu. Metatheoretic Results for a Modal Lambda Calculus . Techni-
cal Report RR-3361, INRIA, France, 1998. http://www.inria.fr/RRRT/RR-
3361.html. 54

Lel98b. Pierre Leleu. Syntaxe abstraite d’ordre supérieur et récursion dans les théories
typées. Phd thesis, Ecole Nationale des Ponts et Chaussées (ENPC), Decem-
ber 1998. In French. 60

Luo94. Zhaohui Luo. Computation and Reasoning. Oxford University Press, 1994.
49

MM97. Raymond McDowell and Dale Miller. A logic for reasoning with higher-order
abstract syntax. In Proceedings of LICS’97, pages 434–445, Warsaw, 1997.
59

MN94. Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof
engine. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and
Programs, pages 213–237. Springer-Verlag LNCS 806, 1994. 60

New42. M.H.A. Newman. On theories with a combinatorial definition of ‘equivalence’.
Ann. Math., 43(2):223–243, 1942. 58

NPS90. Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-
Löf ’s Type Theory: An Introduction. Oxford University Press, 1990. 47,
60

PE88. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceed-
ings of the ACM SIGPLAN ’88 Symposium on Language Design and Imple-
mentation, pages 199–208, Atlanta, Georgia, June 1988. 47

PM92. Ch. Paulin-Mohring. Inductive definitions in the system coq. rules and prop-
erties. In J.F. Groote M. Bezem, editor, Proceedings of the Int. Conf. on Typed
Lambda Calculi and Applications, TLCA’93, Springer-Verlag LNCS 664, 1992.
47

PS98. F. Pfenning and C. Schürmann. Automated Theorem Proving in a Simple
Meta Logic for LF. In Proceedings of the CADE-15 Conference, Lindau -
Germany, July 1998. 59

62 Joëlle Despeyroux and Pierre Leleu

PW95. Frank Pfenning and Hao-Chi Wong. On a modal λ-calculus for S4. In
S. Brookes and M. Main, editors, Proceedings of the Eleventh Confer-
ence on Mathematical Foundations of Programming Sematics, New Orleans,
Louisiana, March 1995. To appear in Electronic Notes in Theoretical Com-
puter Science, Volume 1, Elsevier. 48, 49, 51, 52

Wer94. Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis,
Université Paris 7, 1994. 47, 49, 55

Proof Normalization Modulo

Gilles Dowek and Benjamin Werner

INRIA-Rocquencourt
B.P. 105, 78153 Le Chesnay Cedex, France

{Gilles.Dowek,Benjamin.Werner}@inria.fr
http://coq.inria.fr/~{dowek,werner}/

Abstract. We consider a class of logical formalisms, in which first-order
logic is extended by identifying propositions modulo a given congruence.
We particularly focus on the case where this congruence is induced by
a confluent and terminating rewrite system over the propositions. We
show that this extension enhances the power of first-order logic and that
various formalisms, including Church’s higher-order logic (HOL) can be
described in our framework.
We conjecture that proof normalization and logical consistency always
hold over this class of formalisms, provided some minimal conditions
over the rewrite system are fulfilled. We prove this conjecture for some
subcases, including HOL.

1 Introduction

1.1 Motivations

A proof-system implements a given logical formalism. The choice of this for-
malism is important, since in the field of actually mechanically checked formal
proofs, logical formalisms are required not only to be expressive (logical com-
plexity), but also practicable. More precisely, some important issues are:

– The conciseness of proofs: in recent practical developments, it clearly ap-
peared that the size of the proof-object and thus its handling and the prac-
ticability of proof-checking can become critical; and the formalism in which
this proof is expressed is an important factor to that respect.

– A side-effect of the latter is also that smaller proofs often reflect more closely
the mathematical intuition. In other words, this allows the user to better
grasp the mathematical object he/she produces.

– Last but not least, automatic proof-search and more generally computer-
provided user-help depend upon the chosen formalism. It is well-known that
proof synthesis algorithms are expressed more or less clearly in different
logics.

In this respect, a particular attention has often been given to the distinc-
tion between calculation and reasoning steps. Schematically, the first can be
unambiguously and mechanically performed and reproduced; whereas the latter

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 62–77, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Proof Normalization Modulo 63

correspond to the application of a logical inference rule, whose choice is the re-
sponsibility of the author/user. As a consequence, the calculation steps can be
omitted in the proof objects. A typical instance is the conversion rule of type
theories; a typical application is recent work using computational reflection like,
for instance, [1].

1.2 Systems Modulo

Theorem proving modulo is a way to remove computational arguments from
proofs by reasoning modulo a congruence on propositions. This idea is certainly
not new. For instance, in a language containing an associative binary function
symbol +, Plotkin [11] proposes to identify propositions such as P ((a + b) + c)
and P (a + (b + c)) that differ only by a rearrangement of brackets. Similarly,
the conversion rule of type theories [9,2,10] a.o. identifies propositions w.r.t.
generalized β-reduction: the propositions 1 + 1 = 2 and 2 = 2 are logically
identical.

In [3], we have proposed to use this idea in the definition of first-order logic
itself. In the simplest cases, we can define first a congruence on terms (e.g. iden-
tifying the term (a + b) + c with the term a + (b + c)) and then extend this
congruence to propositions. However, in some cases, we want to define directly
the congruence on propositions. A striking point is that adding well-chosen con-
gruences enhances the logical expressivity of the formalism; typically, it leads to
a first-order and axiom-free presentation of Church’s higher-order logic (HOL).
A interesting application is that enforcing the distinction between calculation
and reasoning leads to a very nice clarification of higher-order resolution. See [3]
for details.

1.3 About this Work

In this paper, we study theorem proving modulo from the proof-theoretic view-
point and more particularly the properties of cut-elimination and consistency.
Proof normalization for such proof systems does not always hold and we present
several counter-examples below; but we conjecture that proofs always normal-
ize for congruences that can be defined by a confluent and terminating rewrite
system, which rewrites terms to terms and atomic propositions to arbitrary ones.

In this paper we show some particular cases of this conjecture: we show
that proof normalization holds for our presentation of higher-order logic, for all
congruences defined by a confluent and terminating rewriting system rewriting
terms to terms and atomic propositions to quantifier free propositions and for
positive rewrite systems i.e. ones in which the right hand side of each rewrite
rule contains only positive occurrences of atomic propositions.

2 Deduction Modulo

As already mentioned, the class of systems we consider here, are all built on top of
the logical rules of first-order logic. The actual expressive power being determined

64 Gilles Dowek and Benjamin Werner

solely by the choice of the congruence. In this present version, we only consider
the natural deduction presentation and restrict ourselves to intuitionistic logic;
our results can be extended to classical sequent calculus, but this requires some
more attention and space. We refer to [4] for extensive details as well as for
detailed proofs.

2.1 Natural Deduction Modulo

We place ourselves in many-sorted first-order logic. The definitions below are
well-known and thus not too detailed.

We consider a countable set of sorts, whose elements will be denoted by
s, s′, s1 The set of object variables is numerable, and every variable has an
associated sort; we write xs, ys′ We give ourselves a set of function symbols
and of predicate symbols. Each of these comes with its rank. The formation rules
for objects and propositions are the usual ones:

– If f is a function symbol of rank (s1, . . . , sn, s
′) and t1, . . . , tn are respectively

objects of sort s1, . . . , sn, then f(t1, . . . , tn) is a well-formed object of sort s′.
– If P is a predicate symbol of rank (s1, . . . , sn) and t1, . . . , tn are respec-
tively objects of sort s1, . . . , sn, then P (t1, . . . , tn) is a well-formed atomic
proposition.

Well-formed propositions are built-up from atomic propositions, from the usual
connectors ⇒,∨,∧,⊥, and the quantifiers ∀ and ∃. Remark that, implicitly,
quantification in ∀xsP or ∃xsP is restricted over the sort s.

In what follows, we will often omit the sort of variables, simply writing x, y,
etc.

In order for proof-checking to be decidable, we assume that various relations
are decidable (equality over variables, the sort of variables, the rank of symbols,
etc).

Finally, let ≡ be a decidable congruence on propositions.
Figure 1 gives the rules of natural deduction modulo this congruence. As

mentioned above, proof checking is decidable, since we provided the necessary
assumptions and the needed information in the quantifier rules.

2.2 Equivalence

Proposition 1. (Equivalence) For every congruence ≡, there exists a theory T
such that

T Γ 	 P if and only if Γ 	≡ P

Proof. Take the theory T containing all the propositions P ⇔ Q where P ≡ Q.

Proof Normalization Modulo 65

(axiom)
Γ �≡ A′ A ∈ Γ and A ≡ A′

(⇒-intro)
Γ, A �≡ B

Γ �≡ C
C ≡ (A ⇒ B) (⇒-elim)

Γ �≡ C Γ �≡ A

Γ �≡ B
C ≡ (A ⇒ B)

(∧-intro)
Γ �≡ A Γ �≡ B

Γ �≡ C
C ≡ (A ∧ B)

(∧-elim1)
Γ �≡ C

Γ �≡ A
C ≡ (A ∧ B) (∧-elim2)

Γ �≡ C

Γ �≡ B
C ≡ (A ∧ B)

(∨-intro1)
Γ �≡ A

Γ �≡ C
C ≡ (A ∨ B) (∨-intro2)

Γ �≡ B

Γ �≡ C
C ≡ (A ∨ B)

(∨-elim)
Γ �≡ D Γ, A �≡ C Γ, B �≡ C

Γ �≡ C
D ≡ (A ∨ B)

(⊥-elim)
Γ �≡ B

Γ �≡ A
B ≡ ⊥

(∀-intro)
Γ �≡ A

Γ �≡ B
B ≡ (∀x A) and x not free in Γ

(∀-elim)
Γ �≡ B

Γ �≡ C
B ≡ (∀x A) and C ≡ ([t/x]A)

(∃-intro)
Γ �≡ C

Γ �≡ B
B ≡ (∃x A) and C ≡ ([t/x]A)

(∃-elim)
Γ �≡ C Γ, A �≡ B

Γ �≡ B
C ≡ (∃x A) and x is not free in Γ, B

Fig. 1. Natural deduction modulo

2.3 Rewriting

The framework we have defined up to here is extremely general. In the following,
and to study proof-theoretic properties, we mainly deal with the case where the
congruence ≡ is generated by a rewriting relation. The definition is straight-
forward.

Definition 1. We say that a congruence ≡ is defined by a confluent and termi-
nating rewriting system R rewriting terms to terms and atomic propositions to
arbitrary ones when P ≡ Q if and only if P and Q have the same normal form
for the system R. In this case, the congruence ≡ is decidable.

Remark 1. The definition above can be slightly generalized allowing non-
oriented equations relating terms to terms and atomic propositions to atomic
propositions (for instance commutativity). To this end we consider a class rewrite
system RE formed with a rewrite system R rewriting atomic propositions to
propositions and a set E of equations equating atomic propositions with atomic
propositions and terms with terms and defining a congruence written =E .

66 Gilles Dowek and Benjamin Werner

Given a system RE , the term t RE-rewrites to t′, if t =E u[σ(l)]ω and
t′ =E u[σ(r)]ω , for some rule l → r ∈ R, some term u, some occurrence ω
in u and some substitution σ.

2.4 Examples

For matters of space, we only provide two examples here.

Example 1. (Simplification) In an integral ring, we can use the usual simplifica-
tion rules over objects like a × 0 → 0, a× (b + c) → a × b + a × c, etc. But we
can also add the following rule for simplifying equalities:

a× b = 0 → a = 0 ∨ b = 0

or the rule
a× b = a× c → a = 0 ∨ b = c

Example 2. (Higher-order logic) As mentioned above, deduction modulo allows
to capture formalisms which go beyond the usual field of first-order logic; here
is a faithful encoding of Church’s higher-order logic.

The sorts are Simple types inductively defined by

– ι and o are simple types,
– if T and U are simple types then T → U is a simple type.

The language L is composed of the individual symbols

– ST,U,V of sort (T → U → V) → (T → U) → T → V ,
– KT,U of sort T → U → T ,
– ⇒̇, ∧̇, ∨̇ of sort o → o → o, ⊥̇ of sort o,
– ∀̇T and ∃̇T of sort (T → o) → o,

the function symbols

– αT,U of rank (T → U, T, U),

and the predicate symbol

– ε of rank (o).

As can be guessed, ST,U,V and KT,U are typed combinators and used to rep-
resent the functions which are the objects of HOL. The objects and functions
⇒̇, ∧̇, ∨̇, ⊥̇, ∀̇T and ∃̇T allow to represent propositions as objects of sort o. Fi-
nally, the predicate ε allows to transform such an object t : o into the actual
corresponding proposition ε(t). This typical reflection operation appears clearly
in the rewrite rules:

Proof Normalization Modulo 67

α(α(α(S, x), y), z) → α(α(x, z), α(y, z))
α(α(K,x), y) → x

ε(α(α(⇒̇, x), y)) → ε(x) ⇒ ε(y)
ε(α(α(∧̇, x), y)) → ε(x) ∧ ε(y)
ε(α(α(∨̇, x), y)) → ε(x) ∨ ε(y)

ε(⊥̇) → ⊥
ε(α(∀̇, x)) → ∀y ε(α(x, y))
ε(α(∃̇, x)) → ∃y ε(α(x, y))

3 Reduction and Cut-Elimination

We now turn to the study of cut-elimination. Since we here place ourselves
in a natural deduction framework, this result boils down to the normalization
property with respect to β-reduction. It is possible to define what is a normal
(or cut-free) proof directly on the natural deduction derivations. For matters of
space, we omit this here, and go directly to defining the typed λ-terms underlying
proofs.

3.1 Proof-Terms

Following Heyting semantics and Curry-Howard isomorphism we write proofs
as λ-terms typed by propositions of first-order logic. These terms can contain
both variables of the first-order language (written x, y, z...) and proof variables
(written α, β, ...). Terms of the first-order language are written t, u, v, ... while
proof-terms are written π, ρ, ...

Definition 2 (Proofs).

π ::= α

| λα π | (π π′)
| (π, π′) | fst(π) | snd(π)
| i(π) | j(π) | (δ π1 απ2 βπ3)
| (botelim π)
| λx π | (π t)
| (t, π) | (exelim π xαπ′)

As it is now usual, λ-abstraction models the ∀-intro and ⇒-intro rule, ap-
plication the corresponding elimination rules, the pair construct models the ∧-
introduction, etc.

68 Gilles Dowek and Benjamin Werner

Γ �≡ α : A′ (axiom if α : A ∈ Γ and A ≡ A′)

Γα : A �≡ π : B

Γ �≡ λα π : C
(⇒-intro if C ≡ (A ⇒ B))

Γ �≡ π : C Γ �≡ π′ : A

Γ �≡ (π π′) : B
(⇒-elim if C ≡ (A ⇒ B))

Γ �≡ π : A Γ �≡ π′ : B

Γ �≡ (π, π′) : C
(∧-intro if C ≡ (A ∧ B))

Γ �≡ π : C

Γ �≡ fst(π) : A
(∧-elim if C ≡ (A ∧ B))

Γ �≡ π : C

Γ �≡ snd(π) : B
(∧-elim if C ≡ (A ∧ B))

Γ �≡ π : A

Γ �≡ i(π) : C
(∨-intro if C ≡ (A ∨ B))

Γ �≡ π : B

Γ �≡ j(π) : C
(∨-intro if C ≡ (A ∨ B))

Γ �≡ π1 : D Γα : A �≡ π2 : C Γβ : B �≡ π3 : C

Γ �≡ (δ π1 απ2 βπ3) : C
(∨-elim if D ≡ (A ∨ B))

Γ �≡ π : B

Γ �≡ (botelim π) : A
(⊥-elim if B ≡ ⊥)

Γ �≡ π : A

Γ �≡ λx π : B
(∀-intro if x is not free in Γ and B ≡ (∀x A))

Γ �≡ π : B

Γ �≡ (π t) : C
((A, t) ∀-elim if B ≡ (∀x A) and C ≡ ([t/x]A))

Γ �≡ π : C

Γ �≡ (t, π) : B
((A, t) ∃-intro if B ≡ (∃x A) and C ≡ ([t/x]A))

Γ �≡ π : C Γα : A �≡ π′ : B

Γ �≡ (exelim π xαπ′) : B
(∃-elim if x is not free in ΓB and C ≡ (∃x A))

Fig. 2. Typing rules

Figure 2 gives the typing rules of this calculus. As can easily be seen, we have
a typed λ-calculus, with dependent products. The only originality is that types
are identified modulo ≡.

Remark 2. An alternative presentation of this type system would thus be to take
simply the usual λΠ-calculus extended with dependent pair types (or Σ-types),
but with a generalized conversion rule:

Γ 	≡ t : A
Γ 	≡ t : B

(if A ≡ B)

Obviously a sequentA1, ..., An 	≡ B is derivable in natural deduction modulo
if and only if there is a proof π such that the judgment α1 : A1, ..., αn : An 	≡
π : B is derivable in this system.

Proof Normalization Modulo 69

3.2 Proof Reduction Rules

As usual, the process of cut elimination is modeled by (generalized) β-reduction.
The following reductions are usual:

Definition 3.

(λα π1 π2) → [π2/α]π1

fst(π1, π2) → π1

snd(π1, π2) → π2

δ(i(π1), απ2, βπ3) → [π1/α]π2

δ(j(π1), απ2, βπ3) → [π1/β]π3

(λx π t) → [t/x]π
(exelim (t, π1) αxπ2) → [t/x, π1/α]π2

A proof is said to be normal (respectively normalizing or strongly normalizing)
if and only if the corresponding λ-term is normal (respectively normalizing or
strongly normalizing). We write SN for the set of strongly normalizing proofs.

Theorem 1. Provided ≡ is defined from a rewrite system verifying the condi-
tions of definition 1, there is no normal proof of the sequent [] 	≡ ⊥.

Proof. A normal closed proof can only end by an introduction rule. Thus, we
should have a congruence like ⊥ ≡ A ∧B of ⊥ ≡ A ∨B, which is impossible.

3.3 Counter-Examples to Termination

To illustrate the subtle link between the combinatorial properties of the rewrite
system R (termination, confluence,. . .) and the logical properties of the induced
formalism (consistency, cut elimination), we here provide two systems where
these properties do not hold.

Example 3. (Russell’s paradox)
Consider the following rewriting system

R → R ⇒ S

Modulo this rewriting system, the proof λα : R (α α) λα : R (α α) has type S.
The only way to reduce this proof is to reduce it to itself and hence is not
normalizable.

An instance of this rule is skolemized naive set theory. In naive set set theory
we have the following axiom scheme

∀x1 ... ∀xn ∃y ∀z (z ∈ y ⇔ P)

for any propositional expression P .

70 Gilles Dowek and Benjamin Werner

Skolemizing this scheme, we introduce for each proposition P a
symbol fx1,...,xn,z,P and an axiom

∀x1 ... ∀xn ∀z (z ∈ fx1,...,xn,z,P (x1, ..., xn) ⇔ P)

This axiom can be turned into the rewrite rule

z ∈ fx1,...,xn,z,P (x1, ..., xn) → P

In particular, we have a rewrite rule

z ∈ fz,(z∈z)⇒⊥ → (z ∈ z) ⇒ ⊥

and hence writing R for the proposition fz,(z∈z)⇒⊥ ∈ fz,(z∈z)⇒⊥ and S for the
proposition ⊥ we have

R → R ⇒ S.

We thus reconstructed Russell’s counter-example to consistency and cut elimi-
nation for naive set theory.

Example 4. (Crabbé’s counter-example)
Even if Zermelo’s set theory (Z) is considered to be consistent, it is well-

known that cut elimination is problematic and does generally not hold. The proof
of non-normalization is called Crabbé’s counter-example (see [8,5] for details).
Again, it is here illustrated by the fact that the straightforward encoding of Z
as a deduction modulo necessitates a non-terminating rewrite system.

Consider the following rewriting system

C → E ∧ (C ⇒ D)

Modulo this rewriting system, the proof

λα : C (snd(α) α) (β, λα : C (snd(α) α))

is a proof of D in the context E. The only way to reduce this proof is to reduce
it to

(snd(β, λα : C (snd(α) α)) (β, λα : C (snd(α) α)))

and then to itself

(λα : C (snd(α) α) (β, λα : C (snd(α) α)))

Hence it is not normalizable.
An instance of this example is skolemized set theory. In set set theory we

have an axiom scheme

∀x1 ... ∀xn ∀w ∃y ∀z (z ∈ y ⇔ (z ∈ w) ∧ P)

skolemizing this scheme, we introduce for each proposition P a
symbol fx1,...,xn,z,P and an axiom

∀x1 ... ∀xn ∀z (z ∈ fx1,...,xn,z,P (x1, ..., xn, w) ⇔ (z ∈ w ∧ P))

Proof Normalization Modulo 71

This axiom can be turned into the rewrite rule

z ∈ fx1,...,xn,z,P (x1, ..., xn, w) → z ∈ ∧P

In particular, we have a rewrite rule

z ∈ fz,(z∈z)⇒⊥(w) → z ∈ w ∧ ((z ∈ z) ⇒ ⊥

and hence writing C for the proposition fz,(z∈z)⇒⊥(w) ∈ fz,(z∈z)⇒⊥(w), D for
the proposition ⊥ and E for the proposition fz,(z∈z)⇒⊥(w) ∈ w we have

C → E ∧ (C ⇒ D)

In these examples the rewriting system itself is not terminating, asR (resp.)C
reduces to a proposition where it occurs. We conjecture that this non termination
is responsible for the non termination of reduction of proofs.

Conjecture 1. If R is a confluent and normalizing rewrite system (resp. class
rewrite system), then proof reduction modulo R is normalizing.

An obvious consequence is that deduction modulo R is consistent, by theo-
rem 1.

4 Proving Normalization

Now we want to prove some particular cases of the conjecture. First that proofs
normalize for the definition of higher-order logic given above. Then, that proofs
normalize for all rewrite systems reducing terms to terms and atomic proposi-
tions to quantifier-free propositions (as in the simplification example above). At
last, that proofs normalize modulo all positive rewrite systems i.e. ones in which
the right hand side of each rewrite rule contains only positive occurrences of
atomic propositions.

We first define a notion of pre-model and prove that when a congruence
bears a pre-model then proofs normalize modulo this congruence. Then we shall
construct premodels for our particular cases.

4.1 Reducibility Techniques

The basic tools used hereafter are the ones of reducibility proofs, whose main
concepts are due to Tait [12] and Girard [6,7]. In particular, since we want to
treat the case of higher-order logic, we need some form of reducibility candidates.
We here take a definition similar to [7], but other ones like Tait’s saturated sets
would also apply.

Definition 4 (Neutral proof).
A proof is said to be neutral if its last rule is an axiom or an elimination,

but not an introduction.

72 Gilles Dowek and Benjamin Werner

Definition 5 (Reducibility candidate).
A set R of proofs is a reducibility candidate if

– if π ∈ R, then π is strongly normalizable,
– if π ∈ R and π → π′ then π′ ∈ R,
– if π is neutral and if for every π′ such that π →1 π′, π′ ∈ R then π ∈ R.

Mostly, we follow the main scheme of reducibility proofs. That is we try, for
every proposition P , to exhibit a set of terms RP such that:

– All elements of RP are strongly normalizing.
– If Γ 	 t : P holds, then t ∈ RP (that is modulo some closure condition w.r.t.
substitution).

The first condition is ensured by verifying that all RP are reducibility can-
didates. The second one is proved by induction over the derivation of Γ 	 t : P
using closure conditions due to the definition of RP . Typically, for instance: if
π ∈ RA⇒B then for each proof π′ element of RA, (π π′) is an element of RB.

Most important, and like for other calculi with dependent types, we will need
the condition that if A ≡ B then RA = RB .

The closure condition above for RA⇒B can be viewed as a partial defini-
tion; the situation is similar for the other connectors and quantifiers. Thus, we
understand that the crucial step will be to choose the right sets for RA in the
case where A is an atomic proposition (that is potentially a redex w.r.t. R).
In other words, to define the family RA, it will be enough to define for each
predicate symbol P the sets RP (t1,...,tn), or equivalently to give, for each n-ary
predicate symbol P , a function P̃ that maps n-uples of terms to some well-chosen
reducibility candidate.

It is well-know that a reducibility proof essentially boils down to the construc-
tion of a particular syntactical model. This comparison is particularly striking
here since, in first-order logic, to define a model, we also need to provide, for
each predicate symbol P a function P̃ that maps every n-tuple of terms to a
truth value.

We can pursue this comparison. If two terms t1 and t′1 are congruent then
the sets P̃ (t1, ..., tn) and P̃ (t′1, ..., tn) must be identical. The function P̃ is then
better defined as a function from an abstract object (for instance, the class of t1
and t′1) that t1 and t′1 denote.

Then the condition that two congruent propositions must have the same
denotation can be expressed as the fact that the rewrite rules are valid in the
model.

4.2 Pre-model

Formalizing the discussion above, we end-up with the following notion.

Definition 6 (Pre-model). Let C be the set of all reducibility candidates.
Let L be a (many sorted) first-order language. A pre-model for L is given by:

Proof Normalization Modulo 73

– for each sort T a set MT ,
– for each function symbol f (of rank (s1, ..., sn, s

′)) a function

f̃ ∈ MMs1×...×Msn

s′

– for each predicate symbol P (of rank (s1, ..., sn)) a function

P̃ ∈ CMs1×...×Msn .

Definition 7. Let t be a term and ϕ an assignment mapping all the free vari-
ables of t of sort T to elements of MT . We define the object |t|ϕ by induction
over the structure of t.

– |x|ϕ = ϕ(x),
– |f(t1, . . . , tn)|ϕ = f̃(|t1|ϕ, . . . , |tn|ϕ).

Definition 8. Let A be a proposition and ϕ an assignment mapping all the free
variables of A of sort T to elements of MT . We define the set |A|ϕ of proofs by
induction over the structure of A.

– A proof π is an element of |P (t1, . . . , tn)|ϕ if it belongs to P̃ (|t1|ϕ, . . . , |tn|ϕ)
(and is thus strongly normalizable).

– A proof π is element of |A ⇒ B|ϕ if it is strongly normalizable and when π
reduces to a proof of the form λαπ1 then for every π′ in |A|ϕ, [π′/α]π1 is an
element of |B|ϕ.

– A proof π is an element of |A ∧B|ϕ if it is strongly normalizable and when
π reduces to a proof of the form (π1, π2) then π1 and π2 are elements of |A|ϕ
and |B|ϕ.

– A proof π is an element of |A ∨B|ϕ if it is strongly normalizable and when
π reduces to a proof of the form i(π1) (resp. j(π2)) then π1 (resp. π2) is an
element of |A|ϕ (resp. |B|ϕ).

– A proof π is an element of |⊥|ϕ if it is strongly normalizable1.
– A proof π is an element of |∀x A|ϕ if it is strongly normalizable and when π

reduces to a proof of the form λxπ1 then for every term t of sort T (where T
is the sort of x) and every element E of MT , the proof [t/x]π1 is an element
of |A|ϕ+(x,E).

– A proof π is an element of |∃x A|ϕ if it is strongly normalizable and there
exists an element E of MT (where T is the sort of t) such that when π
reduces to a proof of the form (t, π1), then π1 is an element of |A|ϕ+(x,E).

Looking at the two last clauses of this definition, we may notice that no cor-
relation is required between the interpretation of the proof variables ϕ and the
instantiations of object variables. This simplifies the proof, and is possible since
instantiating object variables in proof terms does not create new (proof-)redexes.
This is somewhat similar to the situation in typed λ-calculi, where the substitu-
tion of type variables does not create redexes in terms (see [7] for instance).
1 As usual, we could chose about any other reducibility candidate for the definition of
|⊥|ϕ.

74 Gilles Dowek and Benjamin Werner

Definition 9. A pre-model is a pre-model of ≡ if when A ≡ B then for every
assignment ϕ, |A|ϕ = |B|ϕ.

The following usual conditions are easily proved by induction over the propo-
sition A; the two last ones require a little more case analysis.

Proposition 2. For any proposition A, term t, variable x and assignment ϕ:

– |[t/x]A|ϕ = |A|ϕ+(x,|t|ϕ)

– If π is an element of |A|ϕ then π is strongly normalizable.
– If π is an element of |A|ϕ and π → π′, then π′ is an element of |A|ϕ.
– If π is neutral and if for every π′ such that π →1 π′, π′ ∈ |A|ϕ then π ∈ |A|ϕ.

¿From the three last properties, we deduce:

Lemma 1. For every proposition A and assignment ϕ, |A|ϕ is a reducibility
candidate.

4.3 The Normalization Theorem

We can now prove that if a system has a pre-model then proofs modulo this
system normalize. The proofs of this section are a little long and tedious but
bears no essential novelty. We omit them for matter of space and again refer
to [4] for details.

Theorem 2. Let A be a proposition and π a proof of A modulo ≡. Let θ be a
substitution mapping the free variables of sort T of A to terms of sort T , ϕ be an
assignment mapping free variables of A to elements of MT and σ a substitution
mapping proof variables of propositions B to elements of |B|ϕ. Then σθπ is an
element of |A|ϕ.

Corollary 1. Every proof of A is in |A|∅ and hence strongly normalizable

4.4 Pre-model Construction

Constructing the pre-model for a given theory, is the part of the consistency
proof that bears the logical complexity; i.e. it is the part of the proof that
cannot be done in the theory itself. The construction for HOL follows essentially
the original proof. The two other ones we present are more typical of deduction
modulo.

Proposition 3. Higher-order logic has a pre-model, hence proofs normalize in
higher-order logic.

Proof. We construct a pre-model as follows. The essential point is that we an-
ticipate the fact that objects of sort o actually represent propositions, by in-
terpreting them as reducibility candidates. Thus quantification over o becomes

Proof Normalization Modulo 75

impredicative in the model.

Mo = C S̃ ≡ a �→ (b �→ (c �→ a(c)(b(c))))
Mι = {0} K̃ ≡ a �→ (b �→ a)

MT→U = MMT

U α̃(a, b) = a(b)
ε̃(a) = a

˜̇⇒(a, b) ≡ {π ∈ SN |π →∗ λαπ1 ⇒ ∀π′ ∈ a.[π′/α]π1 ∈ b}
˜̇∧(a, b) ≡ {π ∈ SN |π →∗ (π1, π2) ⇒ π1 ∈ a ∧ π2 ∈ b}
˜̇∨(a, b) ≡ {π ∈ SN |(π →∗ i(π1) ⇒ π1 ∈ a) ∧ (π →∗ i(π2) ⇒ π2 ∈ b)}

˜̇⊥ ≡ SN
˜̇∀T (a) ≡ {π ∈ SN |π →∗ λxπ1 ⇒ ∀t : T.∀E ∈ MT .[t/x]π1 ∈ a(E)}
˜̇∃T (a) ≡ {π ∈ SN |∃E ∈ MT .π →∗ (t, π1) ⇒ π1 ∈ a(E)}

We do not detail the proof that if A ≡ B then |A|θ = |B|θ.

In this last case, it is the presence of the quantifier ∀ on the right hand part
of one of the rewrite schemes that is responsible for the impredicativity of the
resulting logic. We can give a generic proof of cut elimination for the predicative
case:

Proposition 4. A quantifier-free confluent terminating rewrite systems has a
pre-model, hence proofs normalize modulo such a rewrite system.

Proof. To each normal closed quantifier-free proposition A, we associate a set of
proofs Ψ(A).

Ψ(A) ≡ SN if A is atomic
Ψ(A ⇒ B) ≡ {π ∈ SN |π →∗ λα.π1 ⇒ ∀π′ ∈ Ψ(A).[π′/α]π1 ∈ Ψ(B)}
Ψ(A ∧B) ≡ {π ∈ SN |π →∗ (π1, π2) ⇒ π1 ∈ Ψ(A) ∧ π2 ∈ Ψ(B)}
Ψ(A ∨B) ≡ {π ∈ SN |π →∗ i(π1) ⇒ π1 ∈ Ψ(A) ∧ π →∗ i(π2) ⇒ π2 ∈ Ψ(B)}

Ψ(⊥) ≡ SN

Then we define a pre-model as follows. Let MT be the set of normal closed
terms of sort T .

f̃(t1, . . . , tn) ≡ f(t1, . . . , tn) ↓
P̃ (t1, . . . , tn) ≡ Ψ((P (t1, . . . , tn)) ↓).

where let t ↓ (resp. A ↓) stand for the normal form of t (resp. A).
Again, we leave out the proof that if A ≡ B then |A|θ = |B|θ.

Remark 3. In this normalization proof we use the fact that some sets are re-
ducibility candidates, but we never quantify on all reducibility candidates, re-
flecting that fact that we here deal with predicative systems.

Finally, since the interpretation |A|ϕ of an arbitrary proposition A is deter-
mined by the choice of the interpretation for normal atomic propositions, it is
tempting to define the latter by a fix-point construction. This is possible if the
rewrite system induces a monotone interpretation function.

76 Gilles Dowek and Benjamin Werner

Definition 10. Let R be a terminating and confluent rewrite system, rewrit-
ing atomic to non-atomic propositions. This system is said to be positive if the
right hand side of each rewrite rule contains only positive occurrences of atomic
propositions.

Proposition 5. A positive rewrite system bears a pre-model, and thus the in-
duced deduction system enjoys proof normalization and consistency.

We again refer to [4] for details about the fix-point construction of the pre-model.

5 Conclusion

We have defined generically a wide range of deductive systems. Every system
is defined by a given rewrite system over first-order propositions. We have seen
that the systems so defined go further than first-order logic.

We conjecture that simple combinatorial conditions on the rewrite system
imply the proof elimination property and thus logical consistency. This conjec-
ture implies the consistency of Church’s higher-order logic. It is also interesting
to remark that, provided this conjecture holds, its logical strength is not yet
clear. In other words, we do not know which is the strongest logical system de-
finable as a deduction modulo. We have seen though, that naive attempts to
encode set theory do not succeed.

In any case, it seems that studying rewrite systems from their logical prop-
erties is a new, promising and interesting subject.

Acknowledgements

We thank an anonymous referee for pointing out an error in the normalization
proof, and for helpful comments.

References

1. S. Boutin, Réflexion sur les quotients, Doctoral thesis, Université de Paris 7 (1997).
63

2. T. Coquand and G. Huet, The Calculus of constructions, Information and Com-
putation, 76 (1988) pp. 95-120. 63

3. G. Dowek, Th. Hardin and C. Kirchner, Theorem proving modulo, Rapport de
Recherche INRIA 3400 (1998). 63

4. G. Dowek, B. Werner, Proof normalization modulo, Rapport de recherche INRIA
3542 (1998). 64, 74, 76

5. J. Ekman, Normal proofs in set theory, Doctoral thesis, Chalmers university of
technology and University of Göteborg (1994). 70

6. J. Y. Girard, Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur, Thèse de Doctorat d’État, Université de Paris
VII (1972). 71

Proof Normalization Modulo 77

7. J. Y. Girard, Y. Lafont and P. Taylor. Proofs and Types, Cambridge University
Press (1989). 71, 73

8. L. Hallnäs, On normalization of proofs in set theory, Doctoral thesis, University of
Stockholm (1983). 70

9. P. Martin-Löf, Intuitionistic type theory, Bibliopolis, Napoli (1984). 63
10. Ch. Paulin-Mohring, Inductive definitions in the system COQ, Rules and Proper-

ties, Typed Lambda Calculi and Applications, Lecture Notes in Computer Science
664 (1993) pp. 328-345. 63

11. G. Plotkin, Building-in equational theories Machine Intelligence, 7 (1972), pp. 73–
90 63

12. W. W. Tait, Intensional interpretation of functionals of finite type I, Journal of
Symbolic Logic, 32, 2 (1967) pp. 198-212. 71

Proof of Imperative Programs in Type Theory

Jean-Christophe Filliâtre�

LRI, URA CNRS 410, Bât. 490, Université Paris Sud
91405 ORSAY Cedex, France

Jean-Christophe.Filliatre@lri.fr

www.lri.fr/~filliatr

Abstract. We present a new approach to certifying functional programs
with imperative aspects, in the context of Type Theory. The key is a
functional translation of imperative programs, based on a combination
of the type and effect discipline and monads. Then an incomplete proof
of the specification is built in the Type Theory, whose gaps would corre-
spond to proof obligations. On sequential imperative programs, we get
the same proof obligations as those given by Floyd-Hoare logic. Com-
pared to the latter, our approach also includes functional constructions
in a straight-forward way. This work has been implemented in the Coq
Proof Assistant and applied on non-trivial examples.

Introduction

The methods for proving programs developed in the last decades (see [4] for a
survey), based on Floyd-Hoare logic [8,6] or on Dijkstra’s calculus of weakest
preconditions [5], certainly experienced a great success. But the specification
languages involved were usually low expressive first-order predicate logics which
surely contributed to their relative failure in real case studies. More recent meth-
ods try to fill this gap, as for instance the B method [2], whose specification
language includes a rather large part of first-order set-theory. Type Theory also
provides expressive logics, well understood in theory and relatively easy to im-
plement since they are based on a small set of rules. The Calculus of Inductive
Constructions (Cic for short) is one of the most powerful logical framework of
this kind, and the Coq Proof Assistant [1] is one of its implementations. Type
Theory is naturally well-suited for the proof of purely functional programs. We
show that it is also a good framework to specify and prove imperative programs.

There are already some formalizations of Floyd-Hoare logic in higher order
logical frameworks, as for instance the work of T. Schreiber in LEGO [15] or
M. Gordon in HOL [7]. Nevertheless, those formalizations still have the disad-
vantages of Floyd-Hoare logic: well-understood on small imperative languages,
they appeared to be difficult to extend to real programming languages. For exam-
ple, the few base datatypes (integers, booleans, . . .) are usually not sufficient and
the programmer quickly has to construct new datatypes using arrays, records,
� This research was partly supported by ESPRIT Working Group “Types”.

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 78–92, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Proof of Imperative Programs in Type Theory 79

pointers or a primitive notion of recursive datatypes. Then the extensions of
Floyd-Hoare logic become painful (see [4], page 931).

For all those reasons, we think that we have to start with a more realistic
language and to propose a more extensible method. We chose to consider a pro-
gramming language with both functional features (functions as first-class objects,
higher-order functions,. . .) and imperative ones (references, while loops,. . .). The
base objects will be the ones of the Type Theory, which gives immediately a huge
panel of datatypes (for instance lists, trees,. . . defined as inductive types in the
Cic). References will be limited to purely functional values. Notice that such a
language already includes FORTRAN, Pascal without an explicit use of pointers,
and a rather large subset of ML.

In the traditional approach of Floyd-Hoare logic, programs are seen as state-
transformers, where a state maps variables to values. Then the total correctness
of a program M can be expressed in the following way:

{P} M {Q} ≡ ∀s. P (s)⇒ ∃s′. ([[M]](s, s′) ∧Q(s, s′))
where [[M]] is the semantic interpretation of M as a relation between input and
output states. It is easy to define the type of these states when they only contain
integers and booleans for instance. But this becomes difficult as soon as states
may contain objects of any type. Moreover, in real case studies one has to express
in post-conditions that some parts of the state are not modified by the program.
This is not natural.

Thinking of a variable x as an index in a global store is very close to the
implementation of imperative languages, where x is a pointer in the heap. It is
necessary when there is possible aliasing in programs i.e. when two variables
may point to the same object. But in practice, most programs considered do
not contain aliased variables. Then we can directly represent the contents of
a variable x of the program by a variable of the logic. Predicates about the
program’s variables become predicates about the logic’s variables, and not about
some accessed values in a global store.

Consequently, we propose to express the semantics of an imperative pro-
gram M by a functional program M taking as argument a tuple x of the values
of the variables of M and returning a tuple y of the values of the variables
(possibly) modified by M , together with the result v of the evaluation. Then,
the correctness may be written

{P} M {Q} ≡ ∀x. P (x)⇒ ∃(y, v). ((y, v) =M(x) ∧Q(x,y, v)) (1)

The functional translation relies on a static analysis of effects, following
J.-P. Talpin and P. Jouvelot’s Type and Effect Discipline [16], and on the use of
monads [11,17].

Then we propose a method to establish the correctness formula (1). To do
that, we construct an incomplete proof M̂ of this proposition. By “incomplete”
we mean that the proof term M̂ still contains gaps, whose types are known. Those
gaps will give the proof obligations. Our work may be seen as an extension of the
work of C. Parent [13] to imperative programs. Her approach to proving purely

80 Jean-Christophe Filliâtre

functional programs, based on realizability, consists in building an incomplete
proof of the specification whose skeleton is the program itself. We extend this
idea using a functional translation of imperative programs.

This paper is organized as follows. In the first section, we introduce a pro-
gramming language with functional and imperative aspects, and we define a
notion of typing with effects for this language. This allows us to define a func-
tional translation of programs, which is proved to be semantically correct. In the
next section, we introduce annotations in programs (pre- and post-conditions,
variants) and we define an incomplete proof associated to each program, whose
proof obligations establish the total correctness when proved. In the third sec-
tion, we shortly describe the implementation of this work, which is already part
of the Coq Proof Assistant [1]. At last, we will discuss related works and propose
some possible extensions.

1 Effects and Functional Translation

Preliminary definitions and notations. In this paper we are going to consider
two different kinds of programs: purely functional ones and imperative ones.
Let T be the type system of purely functional programs and Γ � e : t the
corresponding typing judgment, where Γ is a typing environment i.e. a mapping
from variables to types. We assume that T contains at least the type of booleans
and a type unit which has only one value, the constant void. The type system
of imperative programs will be Tref ::= T | T ref, where T ref is the type of
references over objects of type T . The corresponding typing judgment will be
written Γ �r e : t. Dereferencing will be written !x and assignment x := e, as
usual in ML languages.

The abstract syntax of programs is given in Figure 1. The nonterminal sym-
bol E stands for a purely functional expression, including possible dereferenc-
ing of variables. For the moment, we only consider call-by-value application,
written (f e) — call-by-name will be considered at the end of this section. To
simplify the presentation, we chose to restrict boolean expressions appearing in
if and while statements to be purely functional expressions. The precise meaning
of V in the abstraction fun (x : V)→M will be explained in the next paragraph.

1.1 Effects

The functional translation of imperative programs that we are going to define
relies on a keen analysis of their effects. We do not intend to present new ideas
or results to the existing theory of static analysis and its application to effects
inference. Actually, we are only interested in determining the sets of variables
possibly accessed or modified by a given program. In the general case, this would
require a complex analysis of regions, as defined by J.-P. Talpin and P. Jouvelot
in [16], or some similar technique, but since we have eliminated alias possibilities
in our programs, the solution is here much simpler.

Proof of Imperative Programs in Type Theory 81

M ::= E
| x := M
| M ; M
| if E then M else M
| while E do M done
| let x = ref M in M
| fun (x : V) → M
| (M M)

Fig. 1. Abstract syntax of programs

The effect ε of a program expression will be a pair (R,W) of two sets of
variables, R being the set of all the references involved in the evaluation of the
expression and W the subset of R of references which are possibly modified
during this evaluation. If ε1 = (R1,W1) and ε2 = (R2,W2) are two effects, then
ε1� ε2 will denote their union i.e. the effect (R1 ∪R2,W1 ∪W2). Finally ε\x will
denote the effect obtained by removing the occurrences of x in the effect ε.

To do type inference with effects, we introduce a new type system composed
from a type system for values, V , and a type system for computations, C. They
are mutually recursively defined as follows:

V ::= T | T ref | V → C (2)

C ::= (V, ε) (3)

In definition (2), we express the fact that functions are first-class values and that,
since we chose call-by-value semantics, functions take values as arguments to
produce computations. In definition (3), we express that a computation returns a
value together with an effect. Those definitions are clearly driven by the semantic
and would have been different with call-by-name semantics.

To type programs with effects, we must now consider environments mapping
variables to types of values, i.e. to expressions of the type system V . If Γ is such
an environment, then Γ � M : C will denote the typing judgment expressing
that a programM has the type of computation C. This judgment is established
by the inference rules given in Figure 2. It is clear that this judgment is decidable
and that the type of computation of a program is unique.

1.2 Functional Translation

The functional translation we are going to define is based on the idea of monads.
Monads were introduced by E. Moggi [11] and P. Wadler [17], in rather different
contexts. They are used by Moggi to give semantics to programming languages.
The motivations of Wadler are more pragmatic and closest to ours: he uses
monads to incorporate imperative aspects (stores, exceptions, input-output, . . .)
in purely functional languages. A monad is composed of a type operator µ and

82 Jean-Christophe Filliâtre

Γ �r E : T R = {x ∈ dom(Γ) | !x in E }
Γ � E : (T, (R, ∅)) (exp)

x : T ref ∈ Γ Γ � M : (T, (R, W))

Γ � x := M : (unit, ({x} ∪ R, {x} ∪ W))
(assign)

Γ � M1 : (unit, ε1) Γ � M2 : (V, ε2)

Γ � M1 ; M2 : (V, (ε1 	 ε2))
(seq)

Γ � B : (bool, ε0) Γ � M1 : (V, ε1) Γ � M2 : (V, ε2)

Γ � if B then M1 else M2 : (V, (ε0 	 ε1 	 ε2))
(cond)

Γ � B : (bool, ε0) Γ � M : (unit, ε)

Γ � while B do M done : (unit, (ε0 	 ε))
(loop)

Γ � M1 : (T1, ε1) Γ, x : T1 ref � M2 : (T2, ε2)

Γ � let x = ref M1 in M2 : (T2, (ε1 	 ε2)\x)
(letref)

Γ, x : V � M : C

Γ � fun (x : V) → M : ((V → C), (∅, ∅)) (abs)

Γ � M1 : ((V → (V1, ε1)), ε0) Γ � M2 : (V, ε2)

Γ � (M1 M2) : (V1, (ε0 	 ε1 	 ε2))
(app)

Fig. 2. Typing with effects

two operators
unit : A→ µ(A)
star : µ(A)→ (A→ µ(B))→ µ(B)

satisfying three identities (which it is not necessary to give here). The main idea
is that µ(A) is the type of the computations of type A. The unit operator is an
injection of values into computations. The star operator takes a computation,
evaluates it and passes its result to a function which returns a new computation.
If we consider references, a possible monad is the one defined by µ(A) = S →
S ×A, where S represents the store, and where unit and star are defined by

unit v = λs.(s, v)
star m f = λs.let (s′, v) = (m s) in (f v s′)

In our case, such a monad is too coarse, mainly because a global store does not
allow proofs of programs to be modular (you have to express that some parts of
the store are left unchanged by the program, which is not natural and painful).
So we use local stores i.e. tuples of values directly representing the values of input
and output variables given by the inference of effects. For instance, a computation
involving the references x and y of type int ref which can modify the value of x
will be translated into a function taking the values of x and y as input and
returning the new value of x together with the result of the computation.

Proof of Imperative Programs in Type Theory 83

As noticed by Moggi, the star operator really acts as the let in operator
of ML. In the following we will use a let in notation to make programs more
readable, but the reader should have in mind the use of the monad operator to
understand the generality of the discourse.

Notations. To define the functional translation of programs, we need to manip-
ulate collections of values and in particular to define functions taking an n-tuple
representing the input of a program and returning an m-tuple representing its
output. Instead of using tuples, we will rather use records which are easier to
manipulate. The type of a record will be written { x1 : X1; . . . ; xn : Xn } and a
particular record of that type will be written { x1 = v1; . . . ; xn = vn }, where xi

is a label, Xi its type and vi a value of that type. Records will be written x,y, . . .
for convenience and x.l will denote the field of label l in record x. We define the
operation ⊕ on records as follows: the record x⊕ y = { z1 = w1; . . . ; zk = wk }
contains all the labels of x and y, and wi is equal to y.zi if zi is a label of y
and to x.zi otherwise. In other words, it is the update of the record x by the
record y i.e. the record made with the fields of y when they exist and of x in the
other case. At last, x\l will denote the record x in which the field l is removed
and x[l ← l′] will denote the record x where the label l is renamed into l′.

First, we give the interpretation of types with effects as purely functional
types.

Definition 1. The functional translation of types of values and types of com-
putations are mutually recursively defined as follows:

values T = T
V → C = V → C

computations (V, (R,W)) = R→W × V

effects {x1, . . . , xn} = {x1 : T1; . . . ;xn : Tn}
where xi has type Ti ref

If Γ is a typing environment mapping the xi’s to the types Vi, then Γ will denote
the environment mapping the xi’s to the types Vi.

Note, there is no translation for the types T ref: indeed, there is no program
expression of such type and therefore there is no counterpart in the functional
world. References, seen as pointers, do not exist anymore after the translation
since we only manipulate the values they contain.

We are now in the position to define the functional translation itself. In the
following we will use a slight abuse of notations: we will write (M x) even when
the record x should be restricted to a subset of its fields (Another possibility is
to consider that we have sub-typing on records).

Definition 2. LetM be a program of type C in a context Γ . Then the functional
translation of M , written M , is a functional program of type C in the context Γ ,
which is defined by induction on the structure of M as follows:

84 Jean-Christophe Filliâtre

– M ≡ E :
M = λx.({}, E[!x← x.x])

– M ≡ x0 := M1 :

M = λx.let (x1, v) = (M1 x) in (x1 ⊕ { x0 = v }, void)

– M ≡M1 ; M2 :

M = λx. let (x1,) = (M1 x) in
let (x2, v) = (M2 (x⊕ x1)) in
(x1 ⊕ x2, v)

– M ≡ if E then M1 else M2 :

M = λx. if (E x) then
let (x1, v) = (M1 x) in (x⊕ x1, v)

else
let (x1, v) = (M2 x) in (x⊕ x1, v)

It is clear now why we impose the condition on output variables to be in-
cluded in the input variables: indeed, in both branches of the if we must
return values for the same set of variables. So, when a variable is not modi-
fied by a branch, we have to return its initial value: therefore it must belong
to the input values.

– M ≡ while E do M1 done :
To translate a loop, we use the following semantic equivalence:

M ≈ (Y (λw : unit→ unit.if E then (M1 ; (w void)) else void) void)

where Y is a fixpoint operator. Then

M = (Y λw : C.λx. if (E x) then
let (x1,) = (M1 x) in (w (x⊕ x1))

else
(x, void))

Here we assume that we have a fixpoint operator Y in the Calculus of Con-
structions, which is not the case usually. This need will disappear when we
are in position to establish termination, as it is the case in the next section.

– M ≡ let x0 = ref M1 in M2 :

M = λx. let (x1, v1) = (M1 x) in
let (x2, v2) = (M2 (x⊕ x1 ⊕ { x0 = v1 })) in
(x1 ⊕ (x2\x0), v2)

– M ≡ fun (x : V)→M1 :
M = λx : V .M1

Proof of Imperative Programs in Type Theory 85

– M ≡ (M1 M2)

M = λx. let (x1, a) = (M2 x) in
let (x2, f) = (M1 (x⊕ x1)) in
let (x3, v) = (f a (x⊕ x1 ⊕ x2)) in
(x1 ⊕ x2 ⊕ x3, v)

Notice that we chose a semantics where the function is evaluated after its
argument; therefore multiple arguments are evaluated from right to left.

✷

To justify this definition, we have to prove that M preserves the semantics
ofM . We chose the formal semantics introduced by A. K.Wright andM. Felleisen
in [18] to prove type soundness of SML with references and exceptions. The idea
is to introduce a syntactic distinction between values and expressions and to
extend the syntax of programs with a new construction ρθ.M , where θ is a map-
ping from variables to values representing the store. Then small-step reductions
are introduced on extended programs, as rewriting rules driven by the syntax,
and the evaluation relation M ❀ ρθ′.v is defined as the transitive closure of
those reductions.

The preservation of the semantics can be expressed by the following theorem:

Theorem 1. Let Γ be a well-formed environment whose references are
x1 : T1 ref, . . . , xn : Tn ref and M a program such that Γ � M : (V, (R,W)).
Let vi be values of types Ti and θ the store mapping the xi’s to the vi’s. Then

ρθ.M ❀ ρθ′.v ⇐⇒ M(θ(R)) = (θ′(W), v)

Proof. We won’t enter here the details of this proof. The if part is proved by in-
duction on the derivation of the evaluation relation and the only if part is proved
by induction on the program M . In both cases the proof is rather systematic
since the semantic relation is driven by the syntax of programs. The reader may
consult [18] to get the formal semantics of ML with references, which is greatly
simplified in our case since we do not have polymorphism. ✷

Call-by-Variable

Until now, we did not consider call-by-variable arguments i.e. the passing of
references to functions, because their treatment is rather complex when com-
bined with partial application (it requires the use of painful explicit coercions to
re-organize elements in tuples). But if we do not allow partial application of func-
tions doing side-effects, we can simply deal with call-by-variable. To give an idea
of this method, let us consider the simple case of a functionM taking a first argu-
ment by-value and a second one by-variable i.e. of type V1 → (x : T2 ref)→ (T, ε).
Its second argument is given a name, x, since it may appear in ε. Then the typing
rule for the application (M M1 z) is the following

Γ �M : ((V1 → (x : T2 ref)→ (T, ε)), ε0) Γ �M1 : (V1, ε1) z : T2 ref ∈ Γ
Γ � (M M1 z) : T, (ε0 � ε1 � ε[x← z])

86 Jean-Christophe Filliâtre

During the functional translation, the second argument ofM disappears: indeed,
the functional programM does not manipulate references, but only their values,
and consequently M has type V1 → R → W × T , where ε = (R,W). The
reference x now appears as a field of R and W . So the functional translation of
the application (M M1 z) will be

λx. let (x1, v1) = (M1 x) in
let (x2, f) = (M (x⊕ x1)) in
let (x3, v) = (f v1 (x⊕ x1 ⊕ x2)[z ← x]) in
(x1 ⊕ x2 ⊕ x3[x← z], v)

This example is easily generalized to arbitrary numbers of call-by-value and
call-by-variable arguments.

2 Program Correctness

We now come to the main point, proofs of programs, and the first thing to
do is to define how to specify the programs. In almost all the literature about
Floyd-Hoare logic and related systems, the programs are purely imperative and
therefore can be seen as sequences of statements with separated notions of state-
ments and expressions. Typically we have an abstract syntax of the kind

S ::= skip | x := E | S ; S | if E then S else S | while E do S done

where E is a pre-defined notion of expressions. Then it is natural to specify them
by inserting logical assertions between the successive evaluations i.e. between the
statements.

But in our case, following the tradition of functional programming languages,
the notions of programs and expressions are identified. For instance, we can write
programs like

x := (x := !x+ 1 ; !x)

x := (if B then . . . else . . .)

This may appear superfluous but we claim that this is the key to deal with
functions without difficulty. Take for instance a statement like

x := (f a)

where f is a function which possibly has side-effects. Since our abstract syntax
already includes statements of the form x := M where M is an arbitrary pro-
gram, the above assignment does not change the effects. In other words, inlining
the function f would give a correct program, which is not the case in traditional
frameworks.

Since the notions of programs and expressions are identified, we propose a
more general way to specify programs, where each sub-expression of a program
may be annotated with a pre- and a post-condition. A pre-condition will be a

Proof of Imperative Programs in Type Theory 87

predicate over the current values of variables, as usual. For the post-conditions,
we will use before-after predicates i.e. predicates referring to the current values
of variables and to their values before the evaluation of the expression, as it is
done in VDM. The current value of a variable x will be written x in both pre-
and post-conditions and its value before the evaluation will be written ←−x in a
post-condition. Moreover, a post-condition must be able to express properties of
the result of the evaluation, which will be given a name in post-conditions. The
abstract syntax of programs is extended as follows:

M ::= {P} S {v | Q}
S ::= E | x := M | M ; M | . . . (as formerly)

where {P} stands for a pre-condition and {x | Q} for a post-condition in which
the result is referred as x. The type systems V and C for values and computations
are enriched consequently:

V ::= T | T ref | (x : V)→ C (4)

C ::= (v : V, ε, P,Q) (5)

Note that function arguments are given names since they may now appear in
annotations.

As previously, we have to give first an interpretation of types in the target
language, the Calculus of Inductive Constructions. Those interpretations are
written V̂ and Ĉ, Ĉ being the correctness formula. A first idea for Ĉ could be

∀x. P (x)⇒ ∃(y, v). (y, v) =M(x) ∧Q(x,y, v) (6)

But M is usually not a total function and therefore is not definable in the Cic.
Thus, we choose to define Ĉ just as

∀x. P (x)⇒ ∃(y, v). Q(x,y, v) (7)

and we will construct a particular proof of (7), M̂ , which has the property to have
a computational contents equal to M . Therefore, the realizability theorem [14]
will exactly express (6), which is the expected result.

Definition 3. The interpretation in Cic of the types of values and the types of
computations are defined as follows:

if V = T then V̂ = T
if V = (x : V0)→ C then V̂ = ∀x : V̂0. Ĉ

if C = (r : V, (R,W), P,Q)
then Ĉ = ∀x : R.P (x)⇒ ∃(y, v) :W × V̂ . Q(x,y, v)

If Γ is a typing environment mapping the xi’s to the types Vi, then Γ̂ will denote
the environment mapping the xi’s to the types V̂i.

88 Jean-Christophe Filliâtre

Before giving the translation of the programs themselves, we have to solve a
last problem: since functions in the Cic are necessarily total, a loop cannot be
simply translated using a general fixpoint operator. Moreover, we are interested
in proving total correctness and therefore we have to justify the termination of
loops. Thus, loops will be annotated with a well-foundedness argument:

whileφ,R E do M done

where φ is a term and R a relation over the type of φ. Then such a loop will be
translated using a well-founded induction over φ.

In the following, an incomplete proof term of the Cic is a term where some
sub-terms are still undefined and written “?”. We assume that those gaps are
typed, but we will not write the corresponding types for a greater clarity.

Definition 4. Let M be a program of type C in a context Γ . Then the inter-
pretation of a program M in the Cic, written M̂ , is an incomplete proof term
of type Ĉ in the context Γ̂ , which is defined by induction on the structure of M
as follows:

– M ≡ {P} E {Q} :
M̂ = λx.λh : P.({}, E[!x← x.x], ?)

– M ≡ {P} x0 := M1 {Q} :
M̂ = λx.λh : P.let (x1, v, q1) = (M̂1 x ?) in (x1 ⊕ { x0 = v }, void, ?)

– M ≡ {P} M1 ; M2 {Q} :
M̂ = λx.λh : P. let (x1, , q1) = (M̂1 x ?) in

let (x2, v, q2) = (M̂2 (x⊕ x1) ?) in
(x1 ⊕ x2, v, ?)

– M ≡ {P} if E then M1 else M2 {Q} :
M̂ = λx.λh : P. if (Ê x) then

let (x1, v, q) = (M̂1 x ?) in (x⊕ x1, v, ?)
else

let (x1, v, q) = (M̂2 x ?) in (x⊕ x1, v, ?)

– M ≡ {P} whileφ,R E do M1 done {Q} :
To construct the proof term corresponding to this loop, we are going to use
a well-founded induction over φ. The well-founded recursor YR,π is a higher-
order term taking a relation R and a proof π that R is well-founded. In our
case, the proof π is replaced by a proof obligation.

M̂ = λx.((YR,? λw.λx.λψ.λh : P.
if (Ê x) then

let (x1, , q) = (M̂1 x ?) in (w (x⊕ x1) φ(x⊕ x1) ? ?)
else
(x, void, ?)) x φ(x))

Proof of Imperative Programs in Type Theory 89

Here we have used P as the loop invariant. There are four proof obligations
related to that loop: to prove that R is well-founded; to prove that φ strictly
decreases inM1; to prove thatM1 preserves P ; and to prove that P implies Q
when the test is negative.

– M ≡ {P} let x0 = ref M1 in M2 {Q} :

M̂ = λx.λh : P. let (x1, v1, q1) = (M̂1 x ?) in

let (x2, v2, q2) = (M̂2 (x⊕ x1 ⊕ { x0 = v1 }) ?) in
(x1 ⊕ (x2\x0), v2, ?)

– M ≡ {P} fun (x : V)→M1 {Q} :

M̂ = λh : P.((λx : V̂ .M̂1), ?)

Notice that here P and Q are the pre- and post-conditions of the function
and not of the result of its application. Usually they are empty.

– M ≡ {P} (M1 M2) {Q}
M̂ = λx.λh : P. let (x1, a, q1) = (M̂2 x ?) in

let (x2, f, q2) = (M̂1 (x⊕ x1) ?) in
let (x3, v, q3) = (f a (x⊕ x1 ⊕ x2) ?) in
(x1 ⊕ x2 ⊕ x3, v, ?)

✷

To justify the validity of the proof obligations we obtain, we have to prove
that they apply to the right values. It directly results from Theorem 1 and from
the following proposition (which is immediate by construction of M̂):

Proposition 1. For any program M the following equality holds

E(M̂) =M (8)

where E is the extraction operator, which computes the informative contents of
a proof (extraction in the Calculus of Inductive Constructions was introduced by
C. Paulin in [14]).

Examples and Comparison to Floyd-Hoare Logic

Example 1. Let us consider the classical case of assignment where the right hand
side has no effect and no annotation i.e.

M ≡ {P} x0 := E {Q}
Then the proof term M̂ reduces to λx.λh : P (x).(x⊕ { x0 = E }, void, ?) where
the gap has type Q(x,x⊕{ x0 = E }, void). So we get only one proof obligation,
which is the following, with some abuses of notation:

P ⇒ Q[x0 ← E]
This is exactly the one we get in Floyd-Hoare logic (with the combination of the
consequence rule and the assignment rule). ✷

90 Jean-Christophe Filliâtre

Example 2. Let us consider again an assignment, but where the expression as-
signed is now the result of a function call, that is M ≡ {P} x0 := (f E) {Q}.
The function f has a type V of the form V0 → (v : V1, ε, Pf , Qf). Therefore, we
can see the program M as annotated this way:

M ≡ {P} x0 := {Pf} (f E) {v | Qf} {Q}

Then if we look at the proof term M̂ , we find two gaps, the first one correspond-
ing to the pre-condition Pf and the second one to the post-condition Q. More
precisely, the two proof obligations are the following:

P ⇒ Pf and P ⇒ Pf ⇒ Qf ⇒ Q[x0 ← v]
Contrary to the previous case, the expression assigned is no more substituted in
the post-condition but abstracted through the variable v. ✷

3 Implementation

This work has been implemented in the Coq Proof Assistant [1] and is currently
released with the system, together with a documentation and a few examples.
The user gives an annotated imperative program to a tactic, and a set of proof
obligations are produced, which must be proved to complete the correctness
proof. As explained at the end of the first section, we have call-by-variable but
without partial application (so it is closer to Pascal than ML regarding this
point). The implementation also includes some additional features, namely ar-
rays and a way to eradicate the use of auxiliary variables.

Arrays. When dealing with arrays, we face a potential source of aliasing prob-
lems, since t[i] and t[j] may refer to the same cell of an array, while it is not
possible to decide statically if i is equal to j or not. A standard solution is to
consider the whole array as a mutable data, like any reference (see [4], page 931).
Consequently, programs manipulating arrays become functions taking arrays as
arguments and returning new arrays. Arrays are axiomatized in the Cic in the
very simplest way, and proof obligations are produced to check that indexes are
always within the bounds of arrays.

The case of auxiliary variables. Auxiliary variables, sometimes called logical
variables, are used in specifications to relate values of variables at different mo-
ments of the execution of a program. Indeed, the before-after predicates used
in post-conditions are not always powerful enough to express the specifications
(see for instance [4], page 940). Although it is possible to give a formal inter-
pretation to auxiliary variables, as shown by T. Schreiber in [15], we propose
another way to solve this problem. The idea is very simple: since our functional
translation define names for each new value of a variable (at each application of
the monad let in operator), we just have to allow the user to access those names.
So we added the possibility to put labels inside programs (like the ones used for

Proof of Imperative Programs in Type Theory 91

the goto statement in old programming languages), and the user may refer to
the value of a given variable at a particular moment using the associated label.
Then the substitution inside pre- and post-conditions is performed during the
construction of M̂ . This is a rather technical point, but it appeared to be very
useful in practice, and the proof obligations generated are simpler to prove since
they do not require rewriting.

Case studies. The first case study we did with our implementation is the program
find, a quite complex algorithm which was proved correct by Hoare using his
axiomatic logic in 1971 [9]. Applied to that annotated program, our method
generated exactly the same proof obligations than the ones given in Hoare’s
paper. We also did a correctness proof of the quicksort algorithm and of the
Knuth-Pratt-Morris string searching algorithm. Another case study is a proof
of insertion sort, which was done recently by a novel user with the Coq system.
Those case studies cover all the functionalities of the method, including loops,
procedures and recursive functions.

4 Discussion and Future Work

We have set out in this paper a method to establish the total correctness of im-
perative programs in Type Theory. It shares the goals of traditional Floyd-Hoare
logic, regarding programs annotations and proof obligations we expect to get,
but this method uses a completely different approach, based on the construc-
tion of an incomplete proof of its correctness, itself built on top of a functional
translation of the imperative program. On sequential imperative programs, we
get in practice the same proof obligations as Floyd-Hoare logic, which was the
expected result.

Compared to the B method of J.-R. Abrial [2], our method, even if it has not
the same level of maturity, offers some benefits. First, it is based on Type Theory,
a framework which is small, powerful and well-understood on a theoretical point-
of-view. Secondly, we are able to express the correctness of a program and its
proof in the logic, which is not the case in traditional methods where programs,
their specifications and their proofs live in different worlds and where correctness
depends on the correctness of the tools relating those parts. The B method
was recently partly formalized in Isabelle/HOL by P. Chartier [3]. But such
a formalization has the same drawbacks as Floyd-Hoare logic formalizations
already mentioned [7,15]: they may be useful to prove theoretical properties of
the framework but can not be applied in practice because of painful encodings.

Closest to our approach is the one of C. Muñoz [12], who formalized the B
abstract machines in PVS. As we do, he directly manipulates objects of the
Type Theory, which extends the range of datatypes of B, and uses record de-
pendent types to define the states of abstract machines (a collection of variables
with a global invariant). Then operations are seen as functions on states, and
the preservation of the invariant is expressed by typing, proof obligations being
generated by the type-checking conditions mechanism of PVS.

92 Jean-Christophe Filliâtre

Regarding future works, we would like to incorporate pattern-matching and
exceptions to reach a more realistic language. While pattern-matching is only
technical — semantically, it can be viewed as a combination of tests and ac-
cess functions — the treatment of exceptions needs an extension of the notion
of effects and of the specification. However, we think that our framework is
well-suited for such an extension, since the only thing to do is to define the
corresponding monad.

References

1. The Coq Proof Assistant. http://coq.inria.fr/. 78, 80, 90
2. J. R. Abrial. The B-Book. Assigning programs to meaning. Cambridge University

Press, 1996. 78, 91
3. P. Chartier. Formalization of B in Isabelle/HOL. In Proceedings of the Second B

International Conference, Montepellier, France, April 1998. Springer Verlag LNCS
1393. 91

4. P. Cousot. Handbook of Theoretical Computer Science, volume B, chapter Methods
and Logics for Proving Programs, pages 841–993. Elsevier Science Publishers B.
V., 1990. 78, 79, 90

5. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 78
6. R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathe-

matical Aspects of Computer Science, Proceedings of Symposia in applied Mathe-
matics 19, pages 19–32, Providence, 1967. American Mathematical Society. 78

7. Mike Gordon. Teaching and Learning Formal Methods, chapter Teaching hardware
and software verification in a uniform framework. Academic Press, 1996. 78, 91

8. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580,583, 1969. Also in [10] 45–58. 78

9. C. A. R. Hoare. Proof of a program : Find. Communications of the ACM, 14(1):39–
45, January 1971. Also in [10] 59–74. 91

10. C. A. R. Hoare and C. B. Jones. Essays in Computing Science. Prentice Hall, New
York, 1989. 92

11. E. Moggi. Computational lambda-calculus and monads. In IEEE Symposium on
Logic in Computer Science, 1989. 79, 81

12. C. Muñoz. Supporting the B-method in PVS: An Approach to the Abstract Ma-
chine Notation in Type Theory. Submitted to FSE-98, 1998. 91

13. C. Parent. Developing certified programs in the system Coq – The Program tactic.
Technical Report 93-29, Ecole Normale Supérieure de Lyon, October 1993. Also in
Proceedings of the BRA Workshop Types for Proofs and Programs, May 93. 79

14. C. Paulin-Mohring. Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, January 1989. ACM. 87, 89

15. T. Schreiber. Auxiliary variables and recursive procedures. In TAPSOFT’97:
Theory and Practice of Software Development, volume 1214 of Lecture Notes in
Computer Science, pages 697–711. Springer-Verlag, April 1997. 78, 90, 91

16. J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and
Computation, 111(2):245–296, 1994. 79, 80

17. P. Wadler. Monads for functional programming. In Proceedings of the Marktober-
dorf Summer School on Program Design Calculi, August 1992. 79, 81

18. A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Infor-
mation and Computation, 115:38–94, 1994. 85

An Interpretation of the Fan Theorem

in Type Theory�

Daniel Fridlender��

BRICS
Department of Computer Science, University of Aarhus

Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
daniel@brics.dk

Abstract. This article presents a formulation of the fan theorem in
Martin-Löf’s type theory. Starting from one of the standard versions of
the fan theorem we gradually introduce reformulations leading to a final
version which is easy to interpret in type theory. Finally we describe a
formal proof of that final version of the fan theorem.

Keywords: type theory, fan theorem, inductive bar.

1 Introduction

In informal constructive mathematics, the fan theorem is an easy consequence
of the rule of bar induction. Both are about infinite objects which makes their
interpretation in Martin-Löf’s type theory non trivial. Bar induction can be
represented in type theory, as proposed in [Mar68] and shown also in this article.
But still from this interpretation it is not clear how to formulate and prove the
fan theorem formally in type theory.

This is because, whereas the usual informal language to treat bar induction
and the fan theorem is the same, the formal treatment of the fan theorem in type
theory is technically more involved than that of bar induction. The concept of
finiteness is difficult to handle simultaneously in an elegant, completely formal
and constructive way; and it seems hard to avoid dealing explicitly with fans,
whereas spreads are avoided in the type-theoretic interpretation of bar induction.

The fan theorem is very important in constructive mathematics since it makes
possible to reconstruct large parts of traditional analysis. For explanations of
the fan theorem and its role in constructive analysis see for instance [Dum77]
and [TvD88].

The goal in this article is to present a formulation and a proof of the fan
theorem in type theory. The type-theoretic version of the fan theorem presented
here has been used in [Fri97] to interpret in type theory an intuitionistic proof
of Higman’s lemma which uses the fan theorem [Vel94]. However, in [Fri97] the
� Partially developed during the author’s affiliation to Göteborg University, Sweden.
�� Basic Research in Computer Science, Centre of the Danish National Research Foun-

dation.

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 93–105, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

94 Daniel Fridlender

type-theoretic fan theorem is only mentioned and the proof is omitted. The
importance of the fan theorem justifies this more extended presentation.

Type theory here means Martin-Löf’s type theory, of which there exist dif-
ferent formulations (for example, [Mar75], [Mar84], [NPS90] and [Tas97]). The
exposition here should suit all of them. The proof of the fan theorem presented
here has been written down in full detail with the assistance of the proof-editor
ALF [Mag94] which is an implementation of the formulation of type theory given
in [Tas97].

The rest of this article is organized as follows. Section 2 introduces some
notations and definitions to be used in the whole article, and gives an informal
presentation of bar induction and the fan theorem.

Section 3 shows a type-theoretic interpretation of bar induction and illus-
trates its use by proving some of its properties which are useful for the rest of
the article.

Section 4 formulates and proves the fan theorem in type theory.
Finally, Section 5 presents a result by Veldman [Vel98] related to the formu-

lations of the fan theorem given in Section 2.
The contributions of this article are the alternative informal formulations of

the fan theorem in Section 2 and the formalization of the fan theorem in type
theory, in Section 4.

2 Bar Induction and the Fan Theorem

This section introduces the notations to be used in the whole article and gives
an informal presentation of bar induction and the fan theorem. Several refor-
mulations of the fan theorem are introduced leading to Theorem 5, which is the
version that is formalized in type theory in Section 4.

2.1 Preliminaries

Notations:

N the set of the natural numbers. Variables: n, m, k.
A∗ the set of the lists (finite sequences) of elements of the set A. Variables: u,

v, w. Even u, v, w when A is a set of lists.
<a1, . . . , an> is the notation for lists.
u ∗ v is the concatenation between lists.
u • a is a notation for concatenations of the form u∗ <a>.

The variables α, β are used to denote infinite sequences of natural numbers.
An initial segment <α(0), . . . , α(n−1)> of α is denoted α(n). Given a set S of
finite sequences of natural numbers, if ∀n [α(n) ∈ S], then we write α ∈ S. We
denote by Sc the set N ∗ \ S.

An Interpretation of the Fan Theorem in Type Theory 95

Definition 1 (tree). A tree is a set T of finite sequences of natural numbers
(intuitively, a set of finite branches) which satisfy

<>∈ T T is inhabited
∀u [u ∈ T ∨ u �∈ T] T is decidable
∀u, n [u • n ∈ T ⇒ u ∈ T] T is closed under predecessor.

Definition 2 (finitely branching). A finitely branching tree is a tree T which
satisfy

∀u ∈ T ∃m ∀n [u • n ∈ T ⇒ n < m].

Definition 3 (spread, fan). A spread is a tree in which every node has at
least one successor, that is, a tree S satisfying

∀u ∈ S ∃n [u • n ∈ S].

A finitely branching spread is called a fan.

Definition 4 (bar). Given a set U ⊆ N ∗ and a spread S, U is a bar on S if

∀α ∈ S ∃n [α(n) ∈ U].

When S = N ∗, S is called the universal spread and U is said to be a bar.

Proposition 1. Given a spread S and a bar U on S, then V = U ∪ Sc is a bar.

We can prove that V is a bar by letting α be an arbitrary infinite sequence
of natural numbers and finding n such that α(n) ∈ V . To this end, we determine
a sequence of natural numbers β whose initial segments are the same as those
of α as long as they belong to S. As soon as an initial segment of α does not
belong to S, β deviates from α. From that point, the initial segments of β are
arbitrary segments in S. That is,

β(i) =
{

α(i) if α(i+1) ∈ S
k if α(i+1) �∈ S, for some k such that β(i) • k ∈ S

As β ∈ S, and U is a bar on S, we can obtain n such that β(n) ∈ U . Now,
either α(n) ∈ S, in which case α(n) = β(n) ∈ U ⊆ V , or α(n) �∈ S, hence
α(n) ∈ Sc ⊆ V . Therefore, V is a bar.

2.2 Bar Induction

Bar induction is the following rule, which is an axiom of intuitionistic logic

∀u ∈ X u ∈ Y X is included in Y
∀u ∈ X ∀n [u • n ∈ X] X is monotone
∀u {[∀n u • n ∈ Y]⇒ u ∈ Y} Y is hereditary
∀α ∃n [α(n) ∈ X] X is a bar

<>∈ Y BI

for X ,Y ⊆ N ∗. For other formulations of the rule of bar induction and their
justification see [Dum77].

96 Daniel Fridlender

2.3 Fan Theorem

The most important consequence of the rule of bar induction is the fan theorem.

Theorem 1 (fan theorem). Given a fan F , and a monotone bar U on F , then

∃n ∀α ∈ F [α(n) ∈ U].

Intuitively, the fan theorem states that for any finitely branching tree all
whose branches are finite, there is an upper bound on the length of the branches.
The tree, not explicit in the statement of the theorem, is the set F \ U (when U
is decidable and <>�∈ U).

The fan theorem can also be read as stating that every finitely branching
tree all whose branches are finite is itself finite, that is, has a finite number of
nodes. This is so, since for a finitely branching tree, the existence of an upper
bound on the length of the branches is equivalent with it being finite.

A proof of the fan theorem can be obtained using the rule of bar induction
with X = U ∪ Fc and Y = {u | ∃n ∀α ∈ F [α starts with u ⇒ α(n) ∈ U]}.
Proposition 1 guarantees that X is a bar. The monotonicity of X follows from
those of U and Fc. The inclusion of X in Y can be proved by letting u ∈ X be
arbitrary and choosing n as the length of u. To prove that Y is hereditary we
assume that, for an arbitrary u, ∀k u • k ∈ Y holds, and prove that u ∈ Y also
holds. If u �∈ F , then u ∈ Y clearly holds, since no α ∈ F starts with u. Otherwise,
as F is finitely branching there exists m such that for all k, u • k ∈ F ⇒ k < m.
As for each k, u • k ∈ Y, it is possible to determine n0, . . . nm−1 such that for
each k < m and α ∈ F if α starts with u • k, then α(nk) ∈ U . To show that
u ∈ Y, we choose n to be max {nk | k < m} and use the monotonicity of U .

2.4 Other Formulations of the Fan Theorem

So far, we have used the terminology which is standard in the literature. It is
possible to give alternative presentations of the fan theorem, some of which,
are actually not formulated in terms of fans but in terms of arbitrary finitely
branching trees.

In this section, we explore other formulations of the fan theorem with the
purpose of obtaining one which is easier to represent in type theory. We shall see
that there is no need to introduce notions like fan or tree in type theory, since
the fan theorem can be reformulated without explicit use of those notions.

Some of the formulations that we will introduce are in terms of a special kind
of tree, which we call independent-choice trees.

Definition 5 (independent-choice). An independent-choice tree is a tree I
such that for all u, v ∈ I of equal length,

∀n [u • n ∈ I ⇔ v • n ∈ I].

An Interpretation of the Fan Theorem in Type Theory 97

There is a one-to-one correspondence between independent-choice fans and infi-
nite sequences of nonempty finite subsets of N . An independent-choice fan I is
uniquely determined by a sequence I0, I1, . . . of nonempty finite subsets of N .
The branches of I of length n are obtained by choosing one element from each of
the sets I0, I1, . . . , In−1 in that order. Every choice is independent of the other
choices done to determine the branch. Similarly, there is a one-to-one correspon-
dence between independent-choice finitely branching trees and (not necessarily
infinite) sequences of nonempty finite subsets of N .

The notion of independent-choice tree turns out to be very useful for obtain-
ing a reformulation of the fan theorem easier to interpret in type theory.

We list first a few statements equivalent to Theorem 1.

Theorem 2 (alternatives to fan theorem). The fan theorem is equivalent
to the validity of

∀ monotone bar U ∃n ∀α ∈ T [α(n) ∈ U]

in any of the following cases:

1. for all fan T ,
2. for all finitely branching tree T ,
3. for all independent-choice fan T ,
4. for all independent-choice finitely branching tree T .

The only difference between the fan theorem and item 1 is that in the lat-
ter U runs over bars on the universal spread, rather than over bars on the fan.
With this modification, the fan theorem can be formulated for finitely branching
trees as well (item 2). On the other hand, it is enough to restrict attention to
independent-choice fans or trees (items 3 and 4).

To prove Theorem 2 notice that the domain on which T ranges in item 2
includes the one on which it ranges in item 1, and so item 2 ⇒ item 1. Anal-
ogously, item 2 ⇒ item 4, item 1 ⇒ item 3, and item 4 ⇒ item 3. Similarly,
the domain on which U ranges in the fan theorem includes the one on which it
ranges in Theorem 2, so Theorem 1 ⇒ item 1.

To finish the proof of Theorem 2 it is enough to prove that item 3 ⇒ item 2
and item 1⇒ Theorem 1. For the former, let T be an arbitrary finitely branching
tree and U an arbitrary monotone bar. Let I be the least independent-choice fan
containing T . Determine n such that ∀α ∈ I [α(n) ∈ U]. As α ∈ T ⇒ α ∈ I,
we obtain ∀α ∈ T [α(n) ∈ U].

Finally, to prove that item 1 ⇒ Theorem 1, let F be an arbitrary fan and U
an arbitrary bar on F . Define V = U∪Fc. By Proposition 1, V is a bar. Then, by
item 1 there is an n such that for all α ∈ F , α(n) ∈ V . As α(n) ∈ F , α(n) ∈ U .

Observe how letting U run only over bars on the universal spread rather than
over bars on T , opens the possibility of a number of alternatives to the original
formulation of the fan theorem. Indeed, Veldman showed that the same kind of
alternatives do not hold intuitionistically if U is taken to be an arbitrary bar
over T . This is further explained in Section 5.

98 Daniel Fridlender

The next theorem says that more formulations can be obtained, where quan-
tification over infinite sequences of natural numbers is avoided.

Theorem 3 (more alternatives to fan theorem). The fan theorem is equiv-
alent to the validity of

∀ monotone bar U ∃n ∀u ∈ T [length(u) = n ⇒ u ∈ U]

in any of the following cases:

5. for all fan T ,
6. for all finitely branching tree T ,
7. for all independent-choice fan T ,
8. for all independent-choice finitely branching tree T .

Just as in the proof of Theorem 2, it is easy to obtain that item 6 ⇒ item 5,
item 6 ⇒ item 8, item 5 ⇒ item 7, and item 8 ⇒ item 7. Item 6 follows from
item 7 in the same way as item 2 followed from item 3 in Theorem 2.

Finally, the equivalence between item 5 and item 1 of Theorem 2 is also easy,
since given a fan T , every u ∈ T of length n is equal to α(n), for some α ∈ T .

Theorem 4 (one more alternative to fan theorem). For all monotone
bar U and all infinite sequence I0, I1, . . . of finite subsets of N ,

∃n [I0 × . . .× In−1 ⊆ U],

where I0 × . . .× In−1 = {<a0, . . . , an−1> | ∀i ai ∈ Ii}.

Theorem 4 is equivalent to the fan theorem.
Let T be the set

⋃
{I0× . . .×Ii−1 | i ∈ N}. Clearly, T is a finitely branching

tree. By item 6 of Theorem 3, there is a natural number n such that all the
sequences in T of length n belong to U . Those sequences are exactly the elements
in the set I0 × . . .× In−1.

Conversely, to prove that item 8 of Theorem 3 follows from Theorem 4, let T
be an arbitrary independent-choice finitely branching tree. Let Ii be the set
{k ∈ N | ∃u [length(u) = i ∧ u • k ∈ T]}. Given u ∈ T of length n, we have
u ∈ I0 × . . .× In−1 ⊆ U .

The advantage of the formulation of the fan theorem as in Theorem 4 is that
it avoids the notions of fan and finitely branching tree. Also, if we extend the
definition of bar to sets of finite sequences of finite subsets of natural numbers,
rather than only sets of finite sequences of natural numbers, then we may write
the fan theorem in the following way.

Let I range over finite sequences of finite subsets of N , and
⊗

denote the
operation to obtain the Cartesian product of such a finite sequence, that is,⊗

<I0, . . . , In−1> = I0 × . . .× In−1.

Theorem 5 (final reformulation of fan theorem). Given a monotone set U
of finite sequences of natural numbers, if U is a bar, then so is {I |

⊗
I ⊆ U}.

This is the formulation which is represented in type theory by Theorem 6, in
Section 4.

An Interpretation of the Fan Theorem in Type Theory 99

3 Inductive Bars

Following the Curry-Howard isomorphism ([CF58] and [How80]) every proposi-
tion is formally represented in type theory by the set of its proofs. Predicates,
subsets and families of sets are identified with each other, in the sense that every
predicate over the elements of a set A, every subset of A, and every family of sets
indexed by the elements of A, is represented by a function which when applied
to an element of A returns a set.

Given a predicate U over a set A and a list u in A∗, we let
∧

u U or
∧
u

U

mean that all the elements in the list u satisfy U . In type theory, it can be defined
inductively with the following introduction rules.

∧
<> U

∧
u U U(a)∧

u•a U

Notice that
∧

u∗v U is equivalent to
∧

u U ∧
∧

v U . Associated to the definition of∧
u U we have the following principle of induction, for every predicate X overA∗.

∧
u U X (<>) ∀v [X (v) ∧ U(a)⇒ X (v • a)]

X (u)

When using this principle we refer to it as induction on “the” proof that
∧

u U ,
where “the” proof is the proof of

∧
u U available at that moment.

In type theory, we formulate the definition of bar for predicates over lists of
elements of an arbitrary set, rather than only for predicates over lists of natural
numbers. The following definition is a variation of an idea taken from [Mar68].

Definition 6 (inductive bars). Given a set A and a predicate U over A∗, U
is an inductive bar if U | <> (to be read U bars the empty sequence), where this
is inductively defined with the following introduction rules.

U(u)
U | u

U | u
U | u • a

∀a ∈ A [U | u • a]
U | u

Observe that if U(u)⇒ V(u) for every u ∈ A∗, then also U | u⇒ V | u for every
u ∈ A∗. Associated to the definition of U | u we have the following principle of
induction, for every predicate Y over A∗.

U | u
∀v ∈ A∗ [U(v)⇒ Y(v)]
∀v ∈ A∗ ∀a ∈ A [Y(v)⇒ Y(v • a)]
∀v ∈ A∗ {[∀a ∈ A Y(v • a)]⇒ Y(v)}

Y(u)

100 Daniel Fridlender

When using this principle we refer to it as induction on “the” proof that U | u,
where “the” proof is the proof of it available at that moment.

With this principle of induction it is possible to prove in type theory that
the rule BI —with inductive bars instead of bars, and arbitrary sets instead of
natural numbers— is derivable. That is, that the rule BITT, below, is derivable.

∀u ∈ A∗ [X (u)⇒ Y(u)] X is included in Y
∀u ∈ A∗ ∀a ∈ A [X (u)⇒ X (u • a)] X is monotone
∀u ∈ A∗ {[∀a ∈ A Y(u • a)]⇒ Y(u)} Y is hereditary
X | u X bars u

Y(u)
BITT

This rule can be derived by showing ∀v ∈ A∗ Y(u ←↩ v) by induction on the
proof that X | u, where←↩ is a combination of the reverse and append functions,
and is defined as follows.

u←↩ <> = u
u←↩ (v • a) = (u • a)←↩ v

Observe that whereas BI is an axiom of intuitionistic logic, BITT can actually
be proved in type theory. This is because of the definition of inductive bar,
whose equivalence with the standard notion of bar in Definition 4 —in the case
of sequences of natural numbers— is essentially the content of BI itself. More
precisely, for any predicate U over N ∗, U | <> implies that U is a bar, but the
converse is the content of the axiom BI.

In a type-theoretic context, by bar induction we refer to the rule BITT.
When applying bar induction we will refer by monotonicity condition (of X),
hereditary condition (of Y), and inclusion condition (that is, X ⊆ Y) to the
instances corresponding to the premises of the rule.

Proposition 2. Given a set A, a monotone predicate U over A∗ and a list u
of elements of A, then

U | u ⇐⇒ Vu | <>,

where Vu = λv U(u ∗ v).

The ⇐ part is easy, and is left to the reader. Hint: use bar induction
with X = Vu and Y = λv [U | u ∗ v]; or, for another proof which does not
use monotonicity of U , by induction on the proof that Vu | <>.

We sketch a proof of the ⇒ part, which is by bar induction with X = U
and Y = λu [Vu | <>]. The monotonicity condition is hypothesis of the propo-
sition and the inclusion condition is trivial. It remains to prove the hereditary
condition. Assume that for all a ∈ A, Vu•a | <>. We have to show Vu | <>. In
order to do so, we prove that for all a ∈ A, Vu | <a>. Now, this follows from
Vu•a | <> by bar induction with X = Vu•a and Y = λv [Vu | <a> ∗ v].

An Interpretation of the Fan Theorem in Type Theory 101

Proposition 3. Given a set A, two monotone predicates U ,V over A∗ and a
list u of elements of A, then

U | u ∧ V | u =⇒ W | u,

where W = λu [U(u) ∧ V(u)].

We sketch a proof by bar induction with X = U and Y = λu [V | u⇒W | u].
The monotonicity condition is hypothesis of the proposition. The hereditary
condition follows from the facts that λu [W | u] is hereditary and λu [V | u] is
monotone. Finally, the inclusion condition can be proved by bar induction with
X = V and Y = λu [U(u) ⇒ W | u], repeating the previous reasoning, except
that the new inclusion condition is trivial.

4 Fan Theorem in Type Theory

The result we present here is a type-theoretic version of the fan theorem as
formulated in Theorem 5, except that it will be expressed for an arbitrary set A
rather than only for natural numbers. Finite subsets Ii of A will be represented
by lists ui of elements of A. Finite sequences I of such subsets, by lists u of lists.
The function

⊗
occurring in the statement of Theorem 5 will be represented

by a function which when applied to a list of lists <u1, . . . , un−1> computes
another list representing the Cartesian product I1 × . . .× In−1.

To define
⊗

we first define the binary Cartesian product ×f parametrized
with a function f . Then, the finite Cartesian product

⊗f
b also parametrized.

Finally we instantiate it to obtain
⊗

.
Given a function f : A → B, we denote by f : A∗ → B∗ the function which

maps f on every element of its argument.

f(<>) = <>

f(u • a) = f(u) • f(a)

Example 1. f(<a0, . . . , an−1>) =<f(a0), . . . , f(an−1)>.

Now, the function ×f , which given a function f : A → B → C, and two lists
u ∈ A∗ and v ∈ B∗ returns a variation of the Cartesian product of u and v.
Instead of returning a list in (A× B)∗, it returns a list in C∗ by applying the
function f to the components of each possible pair.

<> ×f v = <>

(u • a) ×f v = u×f v ∗ f(a)(v)

Example 2. u ×f <> = <> , for every u.

Example 3. <a0, a1> ×f <b0, b1> = <f(a0, b0), f(a0, b1), f(a1, b0), f(a1, b1)>.

102 Daniel Fridlender

The function
⊗f

b , given a function f : B → A → B, a base value b ∈ B, and
u ∈ A∗∗, returns a list in B∗, each of whose values is the result of iterating the
function f along one tuple, assigning b to the empty tuple. Each tuple consists
of one element from the first list of u, one from the second, etc. in the style of
the Cartesian product.

⊗f
b (<>) = ⊗f
b (u • u) =

⊗f
b (u)×f u

Example 4.

⊗f
b (<<a0, a1>, <b0, b1>>)

= <f(f(b, a0), b0), f(f(b, a0), b1), f(f(b, a1), b0), f(f(b, a1), b1)> .

Finally, the Cartesian product is obtained by giving • as the function to
iterate, and <> as the base value.

⊗
(u) =

⊗•
<> (u)

Example 5.
⊗

(<>) = <<>>.

Example 6.
⊗

(u • <>) = <> , for every u.

Example 7.
⊗

(<<a0, a1>, <b0, b1>>)= <<a0, b0>, <a0, b1>, <a1, b0>, <a1, b1>>.

The set {I |
⊗
I ⊆ U} in Theorem 5 can be interpreted as a predicate P on

lists u of lists which is true when
⊗

(u) is “included” in U . As
⊗

(u) is actually
not a set but a list, by it being “included” in U we mean that every element
in the list

⊗
(u) satisfies U , that is,

∧⊗
(u)
U . Thus, the predicate P is in fact

interpreted by the function λu
[∧⊗

(u)
U

]
. Hence, in type theory Theorem 5

becomes:

Theorem 6 (fan theorem in type theory). Given a set A and a monotone
predicate U over A∗, then if U is an inductive bar, so is the predicate

λu

 ∧

⊗
(u)

U

 .

Lemma 1. The following properties hold for every u, v, w, and u

1. u ∗ v ×f w = (u×f w) ∗ (v ×f w)
2. <a> ×f u ∗ v = (<a>×fu) ∗ (<a>×fv)
3.

⊗
(<w • a> ∗u) =

⊗
(<w> ∗u) ∗

⊗
(<<a>> ∗u)

4.
∧⊗

(u) [λu U(<a> ∗u)] =⇒
∧⊗

(<<a>>∗u) U

An Interpretation of the Fan Theorem in Type Theory 103

Item 1 can be proved by induction on v. Item 2 follows from the fact that
g(u ∗ v) = g(u) ∗ g(v) (letting g be f(a)), which can also be proved by induction
on v. Item 3 can be proved by induction on u, using Example 6 in the base case
and item 1 in the inductive case.

Though technically laborious, item 4 is intuitively clear since all the tuples
in

⊗
(<<a>> ∗u) are of the form <a> ∗u with u a tuple in

⊗
(u). We omit that

proof here.
For the proof of Theorem 6, we define, for u ∈ A∗,

Vu = λu

 ∧
⊗

(u)

(λv U(u ∗ v))

 .

We present a proof by bar induction with X = U and Y = λu {Vu | <>}.
The inclusion condition is U(u) ⇒ Vu | <>, which is easy, since when U(u)

holds, even Vu(<>) holds because
⊗

(<>) = <<>> by Example 5. The
monotonicity condition is hypothesis of the theorem. The hereditary condition
is (∀a ∈ A [Vu•a | <>])⇒ Vu | <>. We assume

∀a ∈ A [Vu•a | <>] (1)

and given an arbitrary v we prove Vu | <v> by induction on v.
If v = <> , then Vu | <<>> is direct since Vu(<<>>) holds because of the

facts that
⊗

(<<>>) = <> holds by Example 6 and that
∧

<> is trivially true
regardless of the predicate.

If v = w • a for some w ∈ A∗ (such that Vu | <w>) and a ∈ A, then we
know by (1) that

Vu•a | <> and Vu | <w>

and still have to prove
Vu | <w • a> .

By Proposition 2 it can be written like this: we know

Vu•a | <> and
[
λu Vu(<w> ∗u)

]
| <>,

(hence, by Proposition 3 we know also that[
λu [Vu•a(u) ∧ Vu(<w> ∗u)]

]
| <> (2)

holds) and have to prove [
λu Vu(<w • a> ∗u)

]
| <> . (3)

To prove that (2)⇒ (3), it is enough to prove that for every u ∈ A∗∗,

Vu•a(u) ∧ Vu(<w> ∗u) =⇒ Vu(<w • a> ∗u)

holds, because of the observation made after Definition 6. By the definition of
Vu and item 3 of Lemma 1, the right-hand side is equivalent to

Vu(<w> ∗u) ∧ Vu(<<a>> ∗u)

which follows from the left-hand side because, by item 4 of Lemma 1, Vu•a(u)
implies Vu(<<a>> ∗u).

104 Daniel Fridlender

5 Concluding Remarks

The main contribution of this article is the formalization of a version of the fan
theorem in type theory. That is, the formulation of Theorem 6 and its proof.

However, obtaining a version of the fan theorem which admits a direct in-
terpretation in type theory turned out to enrich the content of the article by
presenting a variety of equivalent formulations of the fan theorem.

The key to obtain such variety was letting U range over bars on the universal
spread rather than over bars on the fan T , in Theorem 2. Indeed, Veldman [Vel98]
showed that analogous variations do not hold intuitionistically if U is taken to
range over bars on T . In that case, for instance, item 2 of Theorem 2 fails to
hold.

Veldman proved this by providing a counterexample which relies on the
Brouwer-Kripke-principle (see for instance [Vel81] for the statement of the prin-
ciple). The construction of the counterexample is as follows.

Let P be some unsolved problem, and stable that is, such that the double
negation of P implies P . The Brouwer-Kripke-principle, yields an infinite se-
quence of bits β such that

P ⇐⇒ ∃n β(2n) = 1, and
¬P ⇐⇒ ∃n β(2n + 1) = 1.

Let 0(m) and 1(m) denote

0(m) =<

m︷ ︸︸ ︷
0, . . . , 0> 1(m) =<

m︷ ︸︸ ︷
1, . . . , 1> .

Let T be the tree consisting of the following finite sequences of bits: as long
as β(0) = β(1) = . . . = β(m − 1) = 0, the sequences 0(m) and 1(m) belong
to T . As soon as β(n) = 1 for the first time, then either such an n is odd, in
which case 0(m) belongs to T for every m > n, or n is even, in which case 1(m)
belongs to T for every m > n. And these are all the sequences belonging to T .

Let U be the set of all finite sequences u such that there exists n < length(u)
such that β(n) = 1. The set U is clearly monotone.

Extending the notion of bar in Definition 4 in the natural way to arbitrary
trees, rather than spreads, we prove first that U is a bar on T . This is so since
given any α ∈ T , either α(0) = 0 (and α(n) = 0 for all n) or α(0) = 1 (and
α(n) = 1 for all n). In either case, thanks to the stability of P , P is solved. Thus,
α ∈ T implies that P is solved, in which case U is a bar, hence ∃n α(n) ∈ U .

On the other hand, determining n such that ∀α ∈ T [α(n) ∈ U] amounts to
solving P , which by assumption is unsolved.

Therefore, this gives a counterexample to the statement

U monotone bar on T =⇒ ∃n ∀α ∈ T [α(n) ∈ U].

An Interpretation of the Fan Theorem in Type Theory 105

Acknowledgements

I am very grateful to Marc Bezem, Thierry Coquand, Monika Seisenberger, Jan
Smith and Wim Veldman for fertile discussions about the fan theorem, especially
to Wim Veldman for the counterexample of Section 5. This article benefited also
from the comments and constructive criticism of two anonymous referees.

References

CF58. H. Curry and R. Feys. Combinatory Logic, volume I. North-Holland, 1958. 99
Dum77. M. Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977. 93,

95
Fri97. D. Fridlender. Higman’s Lemma in Type Theory. In Types for proofs and

programs, Lecture Notes in Computer Science 1512, 1997. 93
How80. W. Howard. The Formulae-as-Types Notion of Construction. In J. Seldin

and J. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic Press, London, 1980. 99

Mag94. L. Magnusson. The Implementation of ALF - a Proof Editor Based on Martin-
Löf ’s Monomorphic Type Theory with Explicit Substitution. PhD thesis, Depart-
ment of Computing Science, Chalmers University of Technology and University of
Göteborg, 1994. 94

Mar68. P. Martin-Löf. Notes on Constructive Mathematics. Almqvist & Wiksell, 1968.
93, 99

Mar75. P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloquium 1973, pages 73–118, Ams-
terdam, 1975. North-Holland Publishing Company. 94

Mar84. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984. 94
NPS90. B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s Type

Theory. An Introduction. Oxford University Press, 1990. 94
Tas97. A. Tasistro. Substitution, Record Types and Subtyping in Type Theory, with

Applications to the Theory of Programming. PhD thesis, Department of Computing
Science at Chalmers University of Technology and University of Göteborg, 1997.
94

TvD88. A. Troelstra and D. van Dalen. Constructivism in Mathematics, An Introduc-
tion, Volume I. North-Holland, 1988. 93

Vel81. W. Veldman. Investigations in intuitionistic hierarchy theory. PhD thesis,
Katholieke Universiteit te Nijmegen, 1981. 104

Vel94. W. Veldman. Intuitionistic Proof of the General non-Decidable case of Higman’s
Lemma. Personal communication, 1994. 93

Vel98. W. Veldman. Personal communication, 1998. 94, 104

Conjunctive Types and SKInT

Jean Goubault-Larrecq�

G.I.E. Dyade, INRIA
Inria bâtiment 30, F-78153 Le Chesnay Cedex

Jean.Goubault@inria.fr

1 Introduction

The λ-calculus and its typed versions are important tools for studying most fun-
damental computation and deduction paradigms. However, the non-trivial na-
ture of substitution, as used in the definition of λ-reduction notably, has spurred
the design of various first-order languages representing λ-terms, λ-reduction and
λ-conversion, where computation is simple, first-order rewriting, and substitu-
tion becomes an easy notion again. Let us cite Curry’s combinators [7], Curien’s
categorical combinators [5], the myriad of so-called λ-calculi with explicit substi-
tutions, among which λσ [1], λσ⇑ [12], λυ [17], λζ [19], etc. Unfortunately, each
one of these calculi has defects: Curry’s combinators do not model λ-conversion
fully, categorical combinators, λσ and λσ⇑ do not normalize strongly in the
typed case [18], λυ is not confluent in the presence of free variables (a.k.a. meta-
variables), λζ models λ-conversion but not λ-reduction, etc.

SKInT [9] is a first-order language and rewrite system that does not have
these defects. In particular, SKInT models reduction in the λ-calculus, in the
sense that there is a mapping L∗ from λ-terms to SKInT such that whenever u
rewrites to v in the λ-calculus, then L∗(u) rewrites to L∗(v) in SKInT. SKInT is
confluent even on open terms, i.e. terms with meta-variables; L∗ defines a con-
servative embedding of the λ-calculus inside SKInT, in that u and v are λ-
convertible if and only if L∗(u) and L∗(v) are convertible in SKInT; reduction in
SKInT standardizes; L∗ preserves weak normalization, i.e., if u is a weakly nor-
malizing λ-term, then L∗(u) is a weakly normalizing SKInT-term. SKInT also
enjoys a simple type discipline corresponding to that of the λ-calculus, that is,
if u is a λ-term of type τ , then L∗(u) is a SKInT-term of some type L∗(τ) eas-
ily computed from τ ; reduction in SKInT obeys subject reduction, and every
simply-typed SKInT-term normalizes strongly [9].

The aim of this paper is to extend our result on preservation of weak normal-
ization to show that SKInT, like λυ and λζ, also preserves strong normalization,
and also solvability; this is done by showing that, just like in the λ-calculus,
strongly normalizing, weakly normalizing and solvable terms are characterized
as terms that are typable in various conjunctive type disciplines [20,4].

The plan of the paper is as follows: we introduce the required notions and
notations in Section 2, then we attack our goal in Section 3. We show that any
� This work has been done in the context of Dyade (Bull/Inria R&D joint venture).

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 106–120, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Conjunctive Types and SKInT 107

reasonable translation from the λ-calculus to SKInT preserves solvability, weak
normalization and strong normalization (Corollary 1), where “reasonable” means
that it preserves typability in certain systems of conjunctive types; this holds
in particular for the translations of [9]. In turn, this result follows from a result
stating that all terms that are typable in particular systems of conjunctive types
(to be defined in Section 3) have the corresponding normalization properties
(Theorem 1). The converse also holds (Corollary 2), just as in the λ-calculus.

The proofs have been reduced to keep the paper short and reasonably legible.
Full proofs can be found in [11].

2 SKInT and the λ-Calculus

Recall that the syntax of the λ-calculus is [3]:

t ::= x | tt | λx · t
where x ranges over an infinite set of so-called variables, and terms s and t
that are α-equivalent are considered equal; we denote λ-terms by s, t, . . . , and
variables by x, y, z, etc. α-equivalence is the compatible closure of λx ·(t[x/y]) =
λy · t and t[s/x] denotes the usual capture-avoiding substitution of s for x in t.
We shall write = for α-equivalence; in the first-order calculi to come, = will
denote syntactic equality.

The basic computation rule is β-reduction, the compatible closure of:

(β) (λx · t)s → t[s/x]

The relation −→ is the compatible closure of this relation, −→∗ is the reflexive-
transitive closure of the latter, and −→+ is its transitive closure. We shall use
−→, −→∗, −→+ ambiguously in other calculi as well, taking care to make clear
which is intended.

We shall also add the following η-reduction rule:

(η) λx · tx→ x (x not free in t)

to the λ-calculus, yielding the so-called λη-calculus. The corresponding compat-
ible closure relation will sometimes be noted −→η to distinguish it from −→,
and similarly for the calculi to come and their respective η rules.

The terms of SKInT, and of its companion calculus SKIn [9], on the other
hand, are defined by the grammar:

u ::= x | I� | S�(u, u) | K�(u)

where � ranges over IN. This is an infinitary first-order language. The reduction
rules of SKInT are shown in Figure 1, thus defining an infinite rewrite system.
The semantical idea behind SKInT, or SKIn, will be made clear by stating an
informal translation from SKInT (or SKIn) to the λ-calculus. Intuitively:

I� ∼ λx0 · . . . · λx�−1 · λx� · x�

S�(u, v) ∼ λx0 · . . . · λx�−1 · ux0 . . . x�−1(vx0 . . . x�−1)
K�(u) ∼ λx0 · . . . · λx�−1 · λx� · ux0 . . . x�−1

108 Jean Goubault-Larrecq

So I�, S�, K� generalize Curry’s combinators I, S and K respectively.
SKIn is defined as SKInT, except that rule (K�SL+1) is replaced by (K�SL):

K�(SL−1(u, v))→ SL(K�(u),K�(v)); conversely, SKInT is as SKIn, except that
rule (K�SL) is restricted to the case � < L − 1.

(SI�) S�(I�, w)→ w (SK�) S�(K�(u), w)→ u

(S�IL) S�(IL, w)→ IL−1

(S�KL) S�(KL(u), w)→ KL−1(S�(u, w))
(S�SL) S�(SL(u, v), w)

→ SL−1(S�(u, w), S�(v, w))

(K�IL) K�(IL−1)→ IL
(K�KL) K�(KL−1(u))→ KL(K�(u))
(K�SL+1) K�(SL(u, w))

→ SL+1(K�(u), K�(w))

Fig. 1. SKInT reduction rules (for every 0 ≤ � < L)

Both SKIn and SKInT are confluent and standardize. (See Section 3 for the
definition of standard reductions.)

We can split SKInT in two: the set of all rules (SI�), � ≥ 0, corresponds
somehow to the actual β-reduction rule of the λ-calculus, or more precisely to βI-
reduction (the notion of reduction of λI), and we shall call this group of rules βI.
All other rules essentially correspond to the propagation of substitutions in the
λ-calculus, and we call the set of these rules ΣT . Similarly, Σ is SKIn minus βI.
It turns out that both Σ and ΣT are confluent, but ΣT terminates while Σ only
normalizes weakly (even in a typed setting, see [9]).

We shall also consider SKInTη, which is SKInT plus the following group η:

(ηS�) S�+1(K�(u), I�)→ u (� ≥ 0)

SKInTη is also confluent, and η-reductions can be postponed after all other
reductions, just like in the λ-calculus.

The natural translation from the λ-calculus to SKInT, resp. SKIn, is t 	→ t∗,
defined in Figure 2. Whenever u −→ v in the λ-calculus, u∗ −→+ v∗ in SKIn,
but not in SKInT. In the case of SKInT, we have to use a more complicated
translation, like L∗: then u −→ v implies L∗(u) −→+ L∗(v). L∗(s) is defined
as (L(s))∗, where L(s) is λz · Lz(s) with z a fresh variable, and Lz(x) =df

xz, Lz(λx ·s) =df λx ·Lz(s), Lz(st) =df Lz(s)(L(t)) (see [9] for an explanation).
The simple type discipline for the λ-calculus is defined by judgments Γ
 t : τ ,

where t is a λ-term, τ is a simple type, i.e. a term in the following language:

τ ::= B | τ → τ

where B is a given non-empty set of so-called base types. Finally, Γ is a context,
namely a finite map from variables to types; Γ, x : τ denotes Γ enriched by
mapping x to τ , where x is outside the domain of Γ .

Conjunctive Types and SKInT 109

x∗ = x
(st)∗ = S0(s

∗, t∗)
(λx · t)∗ = [x](t∗)

[x]x = I0

[x]y = K0(y) (y �= x)
[x](I�) = I�+1

[x](S�(u, v)) = S�+1([x]u, [x]v)
[x](K�(u)) = K�+1([x]u)

Fig. 2. Translation from the λ-calculus to SKIn

The typing rules for the λ-calculus are:

Γ, x : τ
 x : τ

Γ
 s : τ1 → τ2 Γ
 t : τ1

Γ
 st : τ2

Γ, x : τ1
 s : τ2

Γ
 λx · s : τ1 → τ2

Those for SKInT are shown in Figure 3. Notice that in typing K�(u), the
new type τ ′ is always inserted before an arrow type: this is intentional (see [9]),
and is related to insights in proof systems for the modal logic S4.

Γ, x : τ � x : τ Γ � I� : τ0 → . . . → τ�−1 → τ� → τ�

Γ � u : τ0 → . . . → τ�−1 → τ� → τ
Γ � v : τ0 → . . . → τ�−1 → τ�

Γ � S�(u, v) : τ0 → . . . → τ�−1 → τ

Γ � u : τ0 → . . . → τ�−1 → τ� → τ

Γ � K�(u) : τ0 → . . . → τ�−1 → τ ′ → τ� → τ

Fig. 3. Simple types for SKInT

Both the λ-calculus and SKInT enjoy subject reduction and normalize
strongly on simply-typed terms. Moreover, we have the following meta-theorem
on SKInT. Call a context Γ arrowed if and only if Γ maps every variable in its
domain to an arrow type (of the form τ1 → τ2); then for every arrowed con-
text Γ , if Γ, x : τ1
 u : τ2, then Γ
 [x]u : τ1 → τ2. The restriction to arrowed
contexts is necessary: consider the case where u is a variable other than x.

3 Conjunctive Types

We now turn to the relationship between conjunctive type systems for SKInT and
termination properties, à la Sallé-Coppo [20,4]. We first recall a few notions
from [9]. Define the spines S by the grammar:

S ::= x | I� | S�S | K�S (� ≥ 0)

110 Jean Goubault-Larrecq

The arity of a spine is the number of operators of the form S�, � ≥ 0, in it. If n
is the arity of S, and v1, . . . , vn are n SKInT-terms, then the term S[v1, . . . , vn]
is defined by:

x[] =df x (S�S)[v1, . . . , vn] =df S�(S[v1, . . . , vn−1], vn)
I�[] =df I� (K�S)[v1, . . . , vn] =df K�(S[v1, . . . , vn])

Every term u can be written in a unique way as S[v1, . . . , vn]: the spine S is the
sequence of operators occurring along the leftmost branch of u, read top-down.
Then the terms v1, . . . , vn are the second arguments of operators of the form
S�, � ≥ 0, on the spine, read bottom-up. The terms v1, . . . , vn are called the
arguments of u. Iterating this decomposition of terms in spine and arguments
allows us to see terms as trees of spines.

Call a one-step spine reduction u −→s v any one-step reduction of a redex
occurring on the spine of u. A spine reduction u −→s∗ v is a sequence of one-
step spine reductions. A term that has no one-step spine contractum is called
spine-normal. Spine reductions play the role of head reductions in the λ-calculus.
(However, spine reductions are not unique.)

Define standard reductions u −→std∗ v by induction on v viewed as a tree
of spines, if and only if u −→s∗ S[u1, . . . , un], and v = S[v1, . . . , vn], where
ui −→std∗ vi for each i, 1 ≤ i ≤ n. SKInT standardizes [9], in that u−→∗ v(in
SKInT) implies u −→std∗ v. In particular, a SKInT-term u is weakly normaliz-
able if and only if it has a normalizing standard reduction.

Definition 1 u is solvable if any of the following equivalent conditions hold:

(i) All SKInT-spine reductions starting from u terminate;
(ii) Some SKInT-spine reduction starting from u terminates.

Proof. That (i) implies (ii) is clear. Conversely, write u ⇒ v when u is ΣT -
normal, has a spine βI-redex S�(I�, w), and v is the unique ΣT -normal form of
the spine βI-contraction of u. (Notice that any term has at most one spine βI-
redex, hence ⇒-reductions are unique.) By examining how rules commute, we
can show that if u −→s∗ v by using βI n times, then ΣT (u) ⇒∗ ΣT (v) in
exactly n steps (see the appendices to [11]). It follows that, if (ii) holds (with
termination in n spine βI-steps), then any ⇒-reduction starting from u termi-
nates (in exactly n steps), and therefore all spine reductions do exactly n spine
βI-steps; as ΣT terminates, all these spine reductions must be finite. �

We wish to characterize solvable, weakly normalizing and strongly normaliz-
ing as terms that can be typed in some systems of conjunctive types. It will be
profitable to use a simplified format for conjunctive types, due to S. van Bakel [2]
(see also [21]), where the type of any given term is unique—modulo the choice
of types for occurrences of variables—and has a well-defined arity: this is in con-
trast with the usual sort of conjunctive types (see e.g. [15,8]). Define the strict
intersection types τ by:

τ ::= B | µ → τ µ ::= [τ1, . . . , τn] (n ≥ 0)

Conjunctive Types and SKInT 111

where [τ1, . . . , τn] is the multiset of types τ1, . . . , τn. Intuitively, [τ1, . . . , τn]
denotes the intersection of τ1, . . . , τn. If n = 0, [] denotes the set of all terms.
We shall also write ω for [], and µ1 ∧ µ2 for the multiset union of µ1 and µ2.

Strongly normalizing λ-terms are those that are typable in system S, defined
as follows. Call S-types the types generated by the grammar:

τ ::= B | µ → τ µ ::= [τ1, . . . , τn] (n ≥ 1)

That is, multisets of types are now restricted to be non-empty. We define sys-
tem S as the system of Figure 4 (again), but where τ and µ-types are restricted
to be S-types.

Γ, x : µ ∧ τ � x : τ

Γ � u : [τ1, . . . , τn]→ τ
Γ � v : τ1 . . . Γ � v : τn

Γ � uv : τ

Γ, x : µ � u : τ

Γ � λx · u : µ → τ

Fig. 4. Conjunctive types for the λ-calculus

Correspondingly, we endow SKInT with the typing rules of Figure 5, yielding
a typing system that we call Sω (when types are Sω-types), or S (when types
are S-types).

Γ, x : µ ∧ τ � x : τ Γ � I� :µ0 → . . .→ µ�−1 → µ� ∧ τ → τ

Γ � u : µ0 → . . . → µ�−1 → [τ1, . . . , τn]→ τ
Γ � v : µ0 → . . . → µ�−1 → τ1

. . .
Γ � v : µ0 → . . . → µ�−1 → τn

Γ � S�(u, v) : µ0 → . . . → µ�−1 → τ

Γ � u : µ0 → . . . → µ�−1

→ µ� → τ

Γ � K�(u) : µ0 → . . . → µ�−1

→ µ → µ� → τ

Fig. 5. The system of conjunctive types for SKInT

Call an Sω-type τ definite positive if and only if ω only occurs negatively in τ .
More formally, the definite positive types τ+ and the definite negative types τ−

are defined by the grammar:

τ+ ::= B | µ− → τ+ µ+ ::= [τ+
1 , . . . , τ

+
n] (n ≥ 1)

τ− ::= B | µ+ → τ− µ− ::= [τ−1 , . . . , τ
−
n] (n ≥ 0)

A context Γ is definite negative if and only if every binding in Γ is of the form
x : µ− with µ− definite negative. We say that the typing judgement Γ
 s : τ is
definite positive if and only if Γ is definite negative and τ is definite positive.

112 Jean Goubault-Larrecq

We first have the following, which we leave to the reader to check:

Lemma 1 (Subject Reduction). If Γ
 u : τ in Sω, resp. S, and u −→∗ v
in SKInT or SKInTη, then Γ
 v : τ in Sω, resp. S.

Theorem 1 (Normalization). The following holds:

(i) If Γ
 u : τ is derivable in system Sω, then u is solvable;
(ii) If Γ−
 u : τ+ is definite positive and derivable in system Sω, then u is

weakly normalizing in SKInT and in SKInTη;
(iii) If Γ
 u : τ is derivable in system S, then u is strongly normalizing in

SKInT and even in SKInTη.

Proof. The idea is to translate the term u to a λ-term, and to use the correspond-
ing results for the λ-calculus. We modify the u 	→ [[u]](s0, . . . , sn1) translation
of [9] to map SKInT-terms to λ⊕ε-terms: the idea is that instead of dropping
some arguments (like s� in the definition of [[K�(u)]](s0, . . . , sn−1) for n ≥ �),
we shall keep them on the left of some binary operator ⊕ such that s ⊕ t is
semantically equivalent to t alone.

The λ⊕ε-calculus is defined by the grammar:

t ::= x | tt | λx · t | εt | t⊕ t

and its reduction rules are βη-reduction plus:

(ε) εt → t (⊕−) t1 ⊕ t2 → t2 (⊕) (t1 ⊕ t2)⊕ t3 → t1 ⊕ (t2 ⊕ t3)

We define type systems that we call again Sω, resp. S, defined on Sω-types,
resp. S-types, and whose typing rules are those of Figure 4, plus:

Γ
 t : τ

Γ
 εt : τ

[Γ
 t1 : τ1] Γ
 t2 : τ2

Γ
 t1 ⊕ t2 : τ2

where the bracketed premise Γ
 t1 : τ1 is included in S, but omitted in Sω.
There is an erasing translation t 	→ |t| from λ⊕ε to the λ-calculus (with β-

reduction): |εt| = |t|, |t1 ⊕ t2| = |t2|, |x| = x, |t1t2| = |t1| |t2|, |λx · tx| = |t| if x
is not free in t, and |λx · t| = λx · |t| if t is not of the form t′x with x not free
in t′. λ⊕ε has the subject reduction property, and for every λ⊕ε-term t:

(a) If Γ
 t : τ in Sω, then t is solvable, i.e., all head-reductions starting from t
terminate. We call head-reduction in λ⊕ε any (ε), (⊕−), (⊕) or (η)-step, or
any (β)-reduction step s −→ t such that |s| −→ |t| by a head (β)-reduction
step in the λ-calculus (i.e., the λ⊕ε-redex does not get erased).

(b) If Γ
 t : τ in S, then t is strongly normalizing.
The proofs are by appealing to the same properties in the λ-calculus, using the
erasing translation above (see [11]), or by reducibility methods (for (b)): see [10].

Define the dimension dimu of a SKInT-term u by:

dim x =df −1 dim I� =df �
dimK�(u) =df max(�, dimu) + 1 dimS�(u, v) =df max(�, dimu)− 1

Conjunctive Types and SKInT 113

[[u]]⊕(s0, . . . , sn−1) =df

xs0 . . . sn−1 if u = x
ε(s0 ⊕ . . . ⊕ s�−1 ⊕ s�)s�+1 . . . sn−1 if u = I�

[[v]]⊕(s0, . . . , s�−1, s� ⊕ s�+1, s�+2, . . . , sn−1) if u = K�(v)
[[v]]⊕(s0, . . . , s�−1,

[[w]]⊕(s0, . . . , s�−1), s�, . . . , sn−1) if u = S�(v, w)
when n > dimu

[[u]]⊕(s0, . . . , sn−1) =df λxn · . . . · λxm−1 · [[u]]⊕(s0, . . . , sn−1, xn, . . . , xm−1)
when n < m = dimu+ 1

Fig. 6. Interpretation of SKInT-terms as λ⊕ε-terms

The new translation u 	→ [[u]]⊕(s0, . . . , sn−1), parameterized by a list s0, . . . , sn−1

of λ⊕ε-terms, is described in Figure 6.
By abuse of language, say that Γ
 s : µ is derivable in Sω, resp. S, where

µ = [τ1, . . . , τk], if and only if Γ
 s : τi is derivable in Sω, resp. S, for every i,
1 ≤ i ≤ k. An easy structural induction on u (see [11]) shows that, if Γ
 u :
µ0 → . . .→ µn−1 → τ in Sω, resp. S, and Γ
 si : µi in Sω, resp. S, for every i,
0 ≤ i < n, then Γ
 [[u]]⊕(s0, . . . , sn−1) : τ in Sω, resp. S.

A tedious check now shows that whenever u −→ v in SKInTη, then for every
sequence s0, . . . , sn−1 of λ⊕ε-terms, [[u]]⊕(s0, . . . , sn−1) −→∗ [[v]]⊕(s0, . . . , sn−1)
in λ⊕ε, resp. −→+ in the case of (SI�), (ηS�) and a few other rules (see [11]).

By (b), any reduction R in SKInT, resp. SKInTη, starting from a typable
term in system S uses only finitely many instances of rules (SI�) and (ηS�),
� ≥ 0. But since ΣT terminates, there are finitely many reduction steps (in ΣT)
inbetween two (SI�) or (ηS�)-steps. So R is finite, proving (iii).

To show (i), first notice that if u −→s v in SKInT (or SKInTη), then
[[u]]⊕(s0, . . . , sn−1) −→∗ [[v]]⊕(s0, . . . , sn−1) (resp. −→+ if u −→s v by (SI�),
(ηS�) and a few other rules) by head-reductions in λ⊕ε. By (a), any spine-
reduction step in SKInT, resp. SKInTη, starting from a typable term in Sω
has only spine-reductions that use finitely many instances of (SI�) or (ηS�),
� ≥ 0. Since ΣT terminates, (i) follows.

To show (ii), we would like to use a similar argument, but any λ⊕ε-term with
a definite positive typing normalizes only weakly, and then we need to show that
we can lift back the given normalization strategy in λ⊕ε to some normalization
strategy in SKInT; this is not easy. Instead, we observe the following. Let u′ be a
spine-normal SKInT-term, and write u′ as S[u1, . . . , uk]. We may then write S as
a word of the form Ki01 . . .Ki0n0

Sj1Ki11 . . .Ki1n1
Sj2Ki21 . . .Ki2n2

. . . Sjk
Kik1 . . .

Kiknk
L, with L = Ij or L a variable (in which case we let j =df −1), with:

i01 > . . . > i0n0 ≥ j1 > i11 > . . . > i1n1 ≥ j2 > . . . ≥ jk > ik1 > . . . > iknk
> j ≥ −1

and k ≥ 0, n0 ≥ 0, n1 ≥ 0, . . . , nk ≥ 0, and when ni = 0, the notation ji >
ii1 > . . . > iini ≥ ji+1 means ji ≥ ji+1. If n > dim u′, then we have:

114 Jean Goubault-Larrecq

|[[u′]]⊕(s0, . . . , sn−1)| (1)

= L′|sj+1| . . . ̂|siknk
| . . . ̂|sik1 | . . . |sjk−1|

|[[u1]]⊕(s0, . . . , sjk−1)||sjk
| . . . ̂|si(k−1)nk−1

| . . . ̂|si(k−1)1 | . . . |sjk−1−1|
|[[u2]]⊕(s0, . . . , sjk−1−1)| . . .
. . .

|[[uk]]⊕(s0, . . . , sj1−1)||sj1 | . . . ̂|s0n0 | . . . |̂s01| . . . sn−1

where L′ = |sj | if L = Ij , or L′ = x if L is a variable x, and si . . . ŝi1 . . . ŝip . . . sj

denotes the sequence of terms si, . . . , sj from which the terms si1 , . . . , sip

have been omitted. If n ≤ dimu′, then |[[u′]]⊕(s0, . . . , sn−1)| is the η-normal
form of λsn · . . . · λsdim u′ · |[[u′]]⊕(s0, . . . , sdim u′)|, and is therefore of the form
λsn · . . . · λsm−1 · |[[u′]]⊕(s0, . . . , sm−1)|.

As far as types are concerned, let u′ have a definite positive typing. Any (def-
inite positive) Sω-type of u′ must be of the form µ0 → . . .→ µi01 → µi01+1 → τ ,
and the typing derivation leading to this type must map each ui, 1 ≤ i ≤ k, to
the types µ0 → . . . → µjn+1−i−1 → τip, 1 ≤ p ≤ mi, for some types τip. Let µ′

i

be [τi1, . . . , τimi]. Then this typing derivation also gave L the type:

µ0 → . . .→ µ̂iknk
→ . . .→ µ̂ik1 → . . .→ µjk−1 (2)

→ µ′
1 → µjk

→ . . .→ µ̂i(k−1)nk−1
→ . . .→ µ̂i(k−1)1 → . . .→ µjk−1−1

→ . . .

→ µ′
k−1 → µj2 → . . .→ µ̂i1n1

→ . . .→ µ̂i11 → . . .→ µj1−1

→ µ′
k → µj1 → . . .→ µ̂i0n0

→ . . .→ µ̂i01 → µi01+1 → τ

If L is a variable, since the typing context is definite negative, the type above
must be definite negative, so in particular every µ′

i, 1 ≤ i ≤ k, is definite positive.
Since the type of u′ was assumed definite positive, every µj is definite negative,
so the types µ0 → . . . → µjn+1−i−1 → τip of ui are definite positive. Similarly,
if L is Ij , then recall that j < iknk

(if nk �= 0) or j < jk (if nk = 0 and
k �= 0), and by the form of the typing rule for Ij , every µ′

i, 1 ≤ i ≤ k must occur
negatively in µ�, hence is definite positive (if k �= 0; this is trivial if k = 0), hence
again the types assigned to ui are all definite positive.

Having made these remarks, let u be a SKInT-term with a definite positive
Sω-typing. Then |[[u]]⊕(s0, . . . , sn−1)| is a λ-term with a definite positive Sω-
typing, for any sequence s0, . . . , sn−1 of the right types, hence it β-normalizes
weakly. Recall that a weakly normalizing λ-term t has a finite Böhm tree: let h(t)
be the height of this tree. We show that, under the assumption that u has a defi-
nite positive Sω-typing and that |[[u]]⊕(x0, . . . , xn−1)| normalizes weakly for some
sequence of variables x0, . . . , xn−1, then u SKInT-normalizes weakly. This is by
induction on h(t), where t = |[[u]]⊕(x0, . . . , xn−1)|. First, by (i) and since u has
an Sω-typing, u is SKInT-solvable: let u′ =df S[u1, . . . , uk] be any spine-normal
form of u. Since u −→s∗ u′, as in case (i), |[[u]]⊕(x0, . . . , xn−1)| head-rewrites to

Conjunctive Types and SKInT 115

|[[u′]]⊕(x0, . . . , xn−1)|, and the latter is head-normal, since xj is a variable (by
inspection of Equation 1). By the remark on the types of spine-normal forms
(Equation 2), each ui, 1 ≤ i ≤ k, also has a definite positive typing. Let now ti
be |[[ui]]⊕(x0, . . . , xj′

k+1−i
)|: by Equation 1, h(ti) < h(|[[u′]]⊕(x0, . . . , xn−1)|) =

h(|[[u]]⊕(x0, . . . , xn−1)|). So the induction hypothesis applies: each ui SKInT-
normalizes weakly, say to some term vi. Therefore u SKInT-normalizes weakly
to S[v1, . . . , vk]. This proves (ii) in the case of SKInT-reduction.

For SKInTη-reduction, notice that every SKInT-normalizable term is also
SKInTη-normalizable. Indeed, observe that if u −→ v by the η-rule (ηS�), and u
is SKInT-normal, then so is v. �

The Normalization Theorem has an important corollary. Recall that a trans-
lation from λ-terms to a given language (say, SKInT) preserves strong normal-
ization (resp. weak normalization, solvability) if and only if the translation of
every strongly normalizing λ-term (resp. weakly normalizing, resp. solvable) is
strongly normalizing (resp. weakly normalizing, resp. solvable).

Corollary 1 (Preservation of Normalization Properties). Every transla-
tion mapping S-typable λ-terms to S-typable SKInT-terms preserves strong nor-
malization. Every translation mapping Sω-typable λ-terms to Sω-typable SKInT-
terms preserves solvability. Every translation mapping λ-terms having a definite
positive typing in Sω to SKInT-terms having a definite positive typing in Sω
preserves weak normalization.

Proof. Notice that these translations need not map λ-terms to SKInT-terms
of the same type: we just need to preserve typability, not the types themselves.
Every strongly normalizing (resp. weakly normalizing, solvable) λ-term is typable
in system S (resp. in Sω, in Sω with a definite positive typing) [2,21]; the result
then follows from Theorem 1. �
It follows that the L∗ translation of [9], in particular, preserves strong normal-
ization, weak normalization and solvability. This works also in the presence of
η-rules. Also, Corollary 1 is stronger: essentially, any reasonable translation from
the λ-calculus to SKInT will preserve all three normalization properties.

Corollary 1 depends on the fact that strongly normalizing, resp. weakly nor-
malizing, resp. solvable terms in the λ-calculus are all characterized in terms of
types. We end this section by showing that the same holds in SKInT.

First, define S, resp. Sω-type substitutions θ as finite maps from type vari-
ables, a.k.a. base types in B, to S, resp. Sω-types. For any type or context a, aθ
denotes the result of applying θ to a; [τ/b] denotes the substitution mapping b
to τ . The following is easy:

Lemma 2. If Γ
 u : τ is derivable in S, then for every S-type substitution θ,
Γθ
 u : τθ is derivable in S.

If Γ
 u : τ is derivable in Sω, then for every Sω-type substitution θ, Γθ

u : τθ is derivable in Sω.

If Γ−
 u : τ+ is definite positive and derivable in Sω, then for every S-type
substitution θ, Γ−θ
 u : τ+θ is definite positive and derivable in Sω.

116 Jean Goubault-Larrecq

Lemma 3. Every SKInT-normal term u has a typing in system S. Every spine-
normal SKInT-term u has a typing in Sω.

Proof. We first observe that every type can be written uniquely µ0 → . . . →
µn−1 → b, where b ∈ B. We call n the arity of the type. By extension, we call
arity of a typing Γ
 u : τ the arity of τ . We call a typing as above S-normal
if n ≥ 1 and µn−1 = [b′] with b′ a base type other than b; we call it Sω-normal
if n ≥ 1 and µn−1 = ω.

Let the degree d(u) of a SKInT-term u be defined by: d(x) =df 0, d(I�) =df

�+ 1, d(S�(v, w)) =df �, d(K�(v)) =df �+ 1. We show the more general claims
that: (i) every SKInT-normal term u has a normal S-typing of arity d(u) + 1,
and: (ii) every spine-normal term u has a normal Sω-typing of arity d(u) + 1.
This is by structural induction on u.

Notice first that: (∗) whenever a term u has an S-normal, resp. Sω-normal
typing, then it also has S-normal, resp. Sω-normal typings Γ
 u : τ of arbitrary
higher arities in the same system: indeed, if u has a normal typing Γ
 u : τ of
arity n as above (with b the base type at the end), then it also has a normal
typing of arity n+1, namely Γθ
 u : τθ, by Lemma 2, with θ =df [[b′′]→ b′/b],
b′′ �= b′ in the case of system S, θ =df [ω → b′/b] in the case of Sω. Claim (∗)
then follows by an easy induction on n.

If u is a variable, then the normal typing x : [b′]→ b
 x : [b′]→ b establishes
(i), and x : ω → b
 x : ω → b establishes (ii). If u is of the form I�, then we can
choose the typing
 I� : µ0 → . . . → µ�−1 → [[b′] → b] → [b′] → b with µ0, . . . ,
µ�−1 any S-types and b′ �= b for (i), and
 I� : µ0 → . . . → µ�−1 → [ω → b] →
ω → b for (ii).

When u is of the form S�(v, w), then, first, define the conjunction Γ ′ ∧Γ ′′ of
two contexts Γ ′ and Γ ′′ as the collection of bindings x : µ′∧µ′′ (when x : µ′ ∈ Γ ′

and x : µ′′ ∈ Γ ′′), x : µ′ (if x : µ′ ∈ Γ ′ but x does not appear in Γ ′′), and x : µ′′

(if x : µ′′ ∈ Γ ′′ but x does not appear in Γ ′). Notice also that (by examination of
the reduction rules), if u is spine-normal (in particular, normal), then d(v) ≤ �.
We show claim (i) as follows: by induction, v has an S-normal typing of arity
d(v) + 1 ≤ �+ 1, hence by (∗) it has an S-normal typing of arity exactly �+ 1,
say Γ ′
 v : µ′

0 → . . . → µ′
�−1 → [b′] → b; by induction hypothesis again, w

has an S-typing, hence by (∗) we may assume w.l.o.g. that w has an S-typing
of arity at least �, say Γ ′
 w : µ′′

0 → . . . → µ′′
�−1 → τ ′′; then, we can derive

Γ ′[τ ′′/b′]
 v : µ0 → . . . → µ�−1 → [τ ′′]→ b, where µi =df µ
′
i[τ

′′/b′], 0 ≤ i < n,
by Lemma 2; then Γ ′[τ ′′/b′] ∧ Γ ′′
 u : µ0 → . . . → µ�−1 → b is an S-typing of
arity d(u) = �; substituting b for, say, [b′′] → b′′′ (using Lemma 2), we get the
required S-normal typing of arity d(u)+1. Showing (ii) is easier: by induction, v
has an Sω-normal typing of arity d(v) + 1 ≤ � + 1, hence by (∗) it has an Sω-
normal typing of arity � + 1, say Γ ′
 v : µ′

0 → . . . → µ′
�−1 → ω → b; then

Γ
 u : µ0 → . . . → µ�−1 → ω → b′ is the required Sω-normal typing of arity
�+ 1, where Γ =df Γ

′[ω → b′/b], and µi =df µ
′
i[ω → b′/b], 0 ≤ i < �.

When u is of the form K�(v), then observe that (by examination of the
reduction rules), if u is spine-normal (or normal), then d(v) ≤ �. We show (i) as
follows: by induction v has an S-normal typing of arity d(v) + 1, hence by (∗)

Conjunctive Types and SKInT 117

an S-normal typing Γ ′
 v : µ′
0 → . . . → µ′

�−1 → [b′] → b of arity � + 1; then
Γ ′
 K�(v) : µ′

0 → . . . → µ′
�−1 → µ → [b′] → b is the required S-normal typing

for u, for any S-type µ. And (ii) follows by a similar construction, replacing [b′]
by ω and letting µ be any Sω-type. �

Contrarily to what happens in the λ-calculus, types in Sω are not preserved
by the inverse of SKInT-reduction. However:

Lemma 4. If u −→∗ v in SKInTη, and Γ
 v : τ in Sω, then Γθ
 u : τθ for
some S-type substitution θ.

Proof. More concisely, we shall say that whenever v has some Sω-type τ , then u
has type τθ for some S-substitution θ (where the contexts Γ and Γθ are under-
stood). We first show this when u = l, v = r, and l → r is any of the reduction
rules. There are only three interesting rules:

– (SI�): l = S�(I�, w), r = w. If τ has arity n ≥ �, then τ is of the form µ0 →
. . . → µ�−1 → τ ′, and we can take I� of type µ0 → . . . → µ�−1 → [τ ′] → τ ′,
so that l has type τ . If τ has arity n < �, then let τ be µ0 → . . .→ µn−1 → b,
and θ be [τ ′/b], where τ ′ is any S-type of arity at least �−n: by Lemma 2, r
has type τθ, and since τθ has arity at least �, then as above l has type τθ.

– (SK�): l = S�(K�(u), w), r = u. If τ has arity n ≥ � + 1, then write τ as
µ0 → . . . → µ�−1 → µ� → τ ′: we can give K�(u) the Sω-type µ0 → . . . →
µ�−1 → ω → µ� → τ ′, and therefore l has type τ as well (notice that we
need not give w a type). Otherwise, as in the (SI�) case, r and l have type
τθ for some S-substitution θ of arity �+ 1− n.

– (ηS�): l = S�+1(K�(u), I�), r = u. If the type τ of r has arity n ≥ �+1, then
write τ as µ0 → . . .→ µ� → τ ′, and µ� as [τ1, . . . , τk]. We can give I� all the
types µ0 → . . . → µ�−1 → µ� → τi, 1 ≤ i ≤ k, and we can give K�(u) the
type µ0 → . . . → µ�−1 → µ� → [τ1, . . . , τk] → τ ′, so l can be given type τ
again. If n < �+ 1, then, if τ is of the form µ0 → . . . → µn−1 → b, let θ be
[τ ′/b] for any S-type τ ′ of arity at least �+ 1− n: then l has type τθ.

For all the other rules, we can choose the identity substitution for θ (see [11]).
We now claim that whenever u −→ v—namely, when u = C[l], v = C[r],

and l → r is some reduction rule—and v has type τ in Sω, then u has some
type τ θ in Sω, where θ is an S-substitution. This is a straightforward structural
induction on C, using Lemma 2. The Lemma then follows by induction on the
length of the reduction u −→∗ v. �
Theorem 2. Every solvable SKInT-term has an Sω-typing. Every
SKInT-weakly normalizing, resp. SKInTη-weakly normalizing term has a defi-
nite positive Sω-typing.

Proof. Let u be solvable. Then u −→s∗ v, where v is spine-normal; by Lemma 3, v
has an Sω-typing Γ
 v : τ ; by Lemma 4, u has a typing of the form Γθ
 u : τθ,
where θ is an S-substitution. This is clearly an Sω-typing.

On the other hand, if u is weakly normalizing (in SKInT or in SKInTη), then
u −→∗ v for some SKInT-normal term v; by Lemma 3, v has a definite positive

118 Jean Goubault-Larrecq

Sω-typing Γ−
 v : τ+; by Lemma 4, u has a typing of the form Γ−θ
 u : τ+θ,
where θ is an S-substitution. By Lemma 2, this typing is therefore not only an
Sω-typing, but is also definite positive. �

In fact, the proof even shows that every weakly normalizing term, whether
in SKInT or in SKInTη, has an Sω-typing where ω does not occur at all (but ω
may occur in the typing derivation). This is similar to [8], Theorem 6.12.

Theorem 3. If u is strongly normalizing in SKInT, resp. SKInTη, then it has
an S-typing.

Proof. As u is strongly normalizing, any normalization strategy terminates.
Choose any innermost strategy, i.e. any strategy that reduces only redexes whose
strict subterms are all normal. (In particular, the redex S�(K�(u1), u2) can only
be reduced when u1 and K�(u1) are normal.) Let ν(u) denote the length of the
longest reduction sequence in SKInT starting from u according to this strategy.

We show the claim by induction on ν(u). If ν(u) = 0, then this is by Lemma 3.
Otherwise, assume that u −→ v (so that ν(v) < ν(u), hence by induction v has
an S-typing Γ
 v : τ). If the reduction from u to v is by any rule except (SK�),
� ≥ 0, then u has an S-typing Γθ
 u : τθ, where θ is an S-substitution: this is
as in the proof of Lemma 4.

In case u −→ v by (SK�), this does not work any longer, since we cannot use ω
(not an S-type). Instead, observe that u can be written as C[S�(K�(u1), u2)], and
that v = C[u1]. By induction hypothesis, and since ν(u2) < ν(u), u2 has an S-
typing Γ2
 u2 : τ2, and w.l.o.g. we may assume that τ2 has arity at least �,
i.e. that τ2 = µ′′

0 → . . . → µ′′
�−1 → τ ′′. Since the chosen reduction strategy is

innermost, u1 is normal, and by Lemma 3 (more precisely, by Claim (i) in its
proof), u1 has an S-normal typing of degree exactly d(u1) + 1; but since the
reduction is innermost again, K�(u1) is normal as well, so d(u1) ≤ �, and (by
Remark (∗) in the proof of Lemma 3) therefore u1 has an S-normal typing of
arity � + 1, say v Γ1
 u1 : µ′

0 → . . . → µ′
�−1 → [b′] → b. So we may now

derive Γ
 S�(K�(u1), u2) : µ0 → . . . → µ�−1 → b, where Γ =df Γ1[τ ′′/b′] ∧ Γ2,
µi =df µ

′
i[τ

′′/b′]∧µ′′
i for each i, 0 ≤ i < �. It follows that u itself has an S-typing

(which is an instance of the latter), by a straightforward induction on C.
The case of SKInTη-strongly normalizing terms is completely similar. �

Corollary 2. The following equivalences hold, for any SKInT-term u:

– u solvable ⇔ u typable in Sω
– u SKInT-weakly normalizing ⇔ u SKInTη-weakly normalizing

⇔ u has a definite positive Sω-typing
– u SKInT-strongly normalizing ⇔ u SKInTη-strongly normalizing

⇔ u typable in S.

4 Conclusion

We have shown that SKInT enjoyed exactly the same properties as the λ-
calculus, as far as the relationship between conjunctive types and various normal-
ization properties is concerned. This implies that SKInT preserves solvability,

Conjunctive Types and SKInT 119

weak normalization and strong normalization, for any reasonable, i.e. typability-
preserving translation from the λ-calculus to SKInT, in particular for the L∗

translation of [9].
It is then interesting to compare SKInT with other calculi of explicit substi-

tutions. Indeed, although SKInT was not presented as a calculus of explicit sub-
stitutions in [9], it is definitely so: I� is de Bruijn index � ≥ 0, and the de Bruijn
substitution [0 := v0, . . . , n := vn] applied to u is (. . . ((u ◦0 v0) ◦1 v1) . . .) ◦n vn,
where the ◦� operator is defined by: u ◦� v =df S�+1(K�(u), v), as the reader is
invited to check. Then ΣT plays the role of the substitution calculus, and βI
(i.e., (SI�)) more or less plays the role of the β rule (the connection is not as
direct as in more traditional calculi of explicit substitutions, though).

Together with the results of [9], this advances the table of properties of calculi
with explicit substitutions proposed by Lang and Rose [16]1 to the following
(⊇ β means “simulates β-reduction”, CRM is “is Church-Rosser in the presence
of meta-variables”, SSN is “has a strongly normalizing substitution subcalculus”,
PSN means “preserves strong normalization”).

Name # ⊇ β first-order? unconditional? CRM SSN PSN Reference
λσ 11 yes yes yes no yes no [1]
λσ⇑ 21 yes yes yes yes yes no [6]
λυ 8 yes yes yes no yes yes [17]
λs ∞ yes yes yes no yes yes [13]
λse ∞ yes yes yes yes ? no [14]
λζ 13 no yes yes yes yes [19]
λxci ∞ yes no no yes yes ? [16]
λxBci ∞ yes yes no no yes ? [16]
SKIn ∞ yes yes yes yes no no [9]
SKInT∞ yes yes yes yes yes yes [9]
λβ ∞ yes no yes yes Church, see [3]

The only defect we know of SKInT is that it encodes the λ-calculus in a
slightly complicated, and non-unique way [9]: e.g., you may wish to use the L∗

translation, or any other. We believe that this drawback is offset by the fact
that SKInT has basically all the properties of the λ-calculus: confluence, even
on open terms; standardization; strong normalization of simply-typed terms; a
conservative extension of the λ-calculus with β, resp. βη-conversion (see [9]);
preservation of solvability, weak and strong normalization; characterization of
solvable, weakly and strongly normalizable terms by conjunctive typings (this
paper); all this in an infinite but regular first-order equational formulation.

Further work should investigate whether easier, direct proofs of the results
presented here are possible, using variants of the reducibility method [15,8].

1 F. Lang notes that some of the results of this paper are wrong, and we have followed
his remarks in the table (see http://www.ens-lyon.fr/~flang/papiers.html).

120 Jean Goubault-Larrecq

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In
POPL’90, pages 31–46, 1990. 106, 119

2. S. van Bakel. Complete restrictions of the intersection type discipline. Theoretical
Computer Science, 102(1):135–163, 1992. 110, 115

3. H. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1984. 107,
119

4. F. Cardone and M. Coppo. Two extensions of Curry’s type inference system. In
P. Odifreddi, editor, Logic and Computer Science, volume 31 of The APIC Series,
pages 19–76. Academic Press, 1990. 106, 109

5. P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming. Pitman, London, 1986. 106

6. P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong
calculi of explicit substitutions. J. ACM, 43(2):362–397, 1996. 119

7. H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, 1958. 106
8. J. Gallier. Typing untyped λ-terms, or reducibility strikes again! Annals of Pure

and Applied Logic, 91(2–3):231–270, 1998. 110, 118, 119
9. H. Goguen and J. Goubault-Larrecq. Sequent combinators: A Hilbert system for
the lambda calculus. Mathematical Structures in Computer Science, 1999. 106,
107, 108, 109, 110, 112, 115, 119

10. J. Goubault-Larrecq. On computational interpretations of the modal logic S4 IIIb.
Confluence and conservativity of the λevQH -calculus. Research report, Inria, 1997.
112

11. J. Goubault-Larrecq. A few remarks on SKInT. Research report RR-3475, Inria,
1998. 107, 110, 112, 113, 117

12. T. Hardin and J.-J. Lévy. A confluent calculus of substitutions. In France-Japan
Artificial Intelligence and Computer Science Symposium, 1989. 106

13. F. Kamareddine and A. Ŕıos. A λ-calculus à la de Bruijn with explicit substitu-
tions. In PLILP’95, pages 45–62. Springer Verlag LNCS 982, 1995. 119

14. F. Kamareddine and A. Ŕıos. Extending a λ-calculus with explicit substitution
which preserves strong normalisation into a confluent calculus on open terms. Jour-
nal of Functional Programming, 7:395–420, 1997. 119

15. J.-L. Krivine. Lambda-calcul, types et modèles. Masson, 1992. 110, 119
16. F. Lang and K. H. Rose. Two equivalent calculi of explicit substitution with con-

fluence on meta-terms and preservation of strong normalization (one with names
and one first-order). Presented at WESTAPP’98, 1998. 119

17. P. Lescanne and J. Rouyer-Degli. From λσ to λυ: a journey through calculi of
explicit substitutions. In POPL’94, 1994. 106, 119

18. P.-A. Melliès. Typed lambda-calculi with explicit substitutions may not terminate.
In TLCA’95, pages 328–334. Springer Verlag LNCS 902, 1995. 106

19. C. A. Muñoz Hurtado. Confluence and preservation of strong normalization in an
explicit substitutions calculus. In LICS’96. IEEE, 1996. 106, 119

20. P. Sallé. Une extension de la théorie des types en λ-calcul. In 5th ICALP, pages
398–410. Springer Verlag LNCS 62, 1978. 106, 109

21. É. Sayag. Types intersections simples. PhD thesis, Université Paris VII, 1997. 110,
115

Modular Structures as Dependent Types in

Isabelle

Florian Kammüller

Computer Laboratory, University of Cambridge

Abstract. This paper describes a method of representing algebraic
structures in the theorem prover Isabelle. We use Isabelle’s higher or-
der logic extended with set theoretic constructions. Dependent types,
constructed as HOL sets, are used to represent modular structures by
semantical embedding. The modules remain first class citizen of the logic.
Hence, they enable adequate formalization of abstract algebraic struc-
tures and a natural proof style. Application examples drawn from ab-
stract algebra and lattice theory — the full version of Tarski’s fixpoint
theorem — validate the concept.

1 Introduction

The initial aim of this research was to find a module system for the theorem
prover Isabelle where modules are first class citizens, i.e. have a representation
in the logic. This seems important when we want to formalize (mathematical)
theories in which abstract entities are contained. Examples for such theories are
common in abstract algebra. For example, in group theory we define groups as
abstract objects. A group can be represented by a signature and axioms, but it
is at the same time a logical formula; we say “G is a group”. Other examples
include formal methods of computer science where we have abstract notions like
schemas or abstract machines.

In classical approaches modules for theorem provers are outside the logic:
they do not have a logical representation, instead serve an efficient organization
of theories. Nevertheless, most of the theorem provers that have powerful module
systems (e.g.[OSR93,FGT93,GH93]) suggest to use their modules as represen-
tations for (algebraic) structures. Although the encapsulation and abstraction
achieved by packaging structures into modules is sensible, it does not constitute
an adequate representation. This becomes obvious once one leaves the scope of
toy examples [KP99].

We try to combine the convenience of the representation of algebraic struc-
tures as modules with a sound logical treatment of modular structures avoiding
any restrictions of reasoning. Using an extension of Isabelle HOL with a no-
tion of sets we define dependent types as sets in order to find an embedding of
signatures in the logic. Using this embedding we can represent abstract alge-
braic structures as such dependent “types”. Furthermore, we use the very recent
concept of record types in Isabelle [NW98] to represent the element patterns of

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 121–133, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

122 Florian Kammüller

algebraic structures. For example, we represent a group as a record with four
fields: the carrier set, the binary operation, the inverse, and the unit element.
The class of all groups is represented by a HOL set over this record type.

This paper first explains our notion of algebraic structures and gives examples
in Sect. 2. In Sect. 3 dependent types and their formalization as sets in Isabelle
HOL are introduced. Their application to represent structures is described. Ex-
amples of abstract algebra and the full form of Tarski’s fixpoint theorem validate
the construction of the concept of algebraic structures in Sect. 4. Finally, we dis-
cuss some related work and draw some conclusions in Sect. 5.

2 Algebraic Structures

By an algebraic structure we mean a set of concrete mathematical objects that
are described as an abstract object. That is, an algebraic structure is a set
of concrete entities which are considered to be similar according to a bunch
of characterizing rules and a general pattern of appearance, while abstracting
from other concrete characteristics. Examples for algebraic structures are groups,
rings, homomorphisms, etc. The algebraic structure of groups, say, is the class
of all concrete examples of groups. Hence, the structure is formed by abstracting
over elements of similar appearance that fulfill common properties.

We understand program specifications, definitions of formal languages, finite
automata, and the like, also as algebraic structures. Certainly, logical theories
can as well be seen as algebraic structures, but it is not our aim to express logics
like that. In some respects our view of algebraic structures corresponds to the
notion of “Little Theories” [FGT93] in IMPS, but does not try to capture the
notion of a logical theory.

In this section we characterize our notion of simple algebraic structure and
higher order structure. We use an informal notion of signature instead of modules
because that is what the latter basically are. We do not use a separate syntactical
description language for those signatures because we think that for the encoding
of mathematical structures our method of direct encoding in HOL sets plus
dependent types is sufficiently self explanatory.

In the following we will talk about structures as sets of objects. We are using
the set notion of Isabelle HOL as a foundation for this work. This notion is
defined in terms of predicates and is thus — in a set-theoretic sense — rather a
notion of classes than sets.

2.1 Simple and Higher Order Structures

An algebraic structure is a set of mathematical objects. They can be syntactically
represented by their signature, i.e. by the arities of their elements and the rules
which hold for the elements of the structure. An object matching the arities and
fulfilling the rules is an element of a structure. A syntactical description of a
structure S by its signature and related rules is of the form:

Modular Structures as Dependent Types in Isabelle 123

signature S(x1, . . . , xn)
x1 ∈ A1

. . .
xn ∈ An

P1

. . .
Pm

where the Ai are the arities of the parameters, i ∈ {1, . . . k}. The Pk are proper-
ties in which the parameters xi can occur, k ∈ {1, . . . ,m}. The arities can denote
types or sets depending on the framework. This syntax is a simplified form of
the style of modules as seen in other theorem provers [OSR93,FGT93,GH93].

The associated meaning of this syntactical description of signature S is what
we consider as an algebraic structure

[[S]] ≡ {(x1, . . . , xn) ∈ A1 × . . .×An | P1 ∧ . . . ∧ Pm}

where in Pi any of {x1, . . . , xn} can occur. We call the elements x1, . . . , xn pa-
rameters of the structure S.

Structures may possibly be parameterized over other structures. We call such
structures higher order structures in contrast to simple structures. To identify
the structures that are parameters of higher order structures, we use the term
parameter structures, and the structure, which is defined by the higher order
structure itself, we call image structure.

For the definition of simple structures, we use sets of extensible records.
Record types are used as a template for the pattern of appearance of the struc-
ture’s elements. They give us the selectors, which are projection functions en-
abling reference to the constituents of a simple structure. Although we use exten-
sion of record types to describe how more complex types are built from simpler
ones, e.g. rings from groups, we do not use the extensibility. The latter is a
feature of extensible record types that enables to model “late binding” [NW98]
which is not needed in the way we model structures.

The definition of higher order structures needs a device to refer to the formal
parameters. Here we employ the set theoretic construction of dependent types.
It enables the use of constraints on parameter structures in the definition of an
image structure. The selectors of the parameter structures admit to refer to their
constituents.

For the parameter tuple par ≡ (x1, . . . , xn) of a simple structure we define a
record α par-sig as1

record α par-sig ≡
.〈x1〉 :: A1 (postfix)
.
.〈xn〉 :: An (postfix)

1 We assume here syntax definition possibilities that are planned for records though
not yet available

124 Florian Kammüller

The underscore defines the argument positions of the field selectors of this record.
For example, if T is a term of appropriate record type, i.e. a suitable n-tuple,
we can select the field xj of T by T.〈xj〉. In general, the elements of the tuple
will have names like carrier, or inverse, so the naming discipline of the record
field selectors that we chose, is more informative than indexing by numbers.

The representation of a simple structure is given as a set of records; the
record type defines the element pattern of the structure.

2.2 Example: Groups and Homomorphisms

A group is constituted by a carrier set and a binary function ◦ on that set,
such that the function ◦ is associative, and for every element x in the carrier
there exists an inverse x. The carrier set also contains a neutral element e. The
syntactical representation of a group by a signature is

signature Group (cr, ◦, inv, e)
◦ ∈ cr × cr → cr
inv ∈ cr → cr
e ∈ cr

∀ x ∈ cr. x ◦ e = x
∀ x ∈ cr. x ◦ (inv x) = e
∀x, y, z ∈ cr. x ◦ (y ◦ z) = (x ◦ y) ◦ z

According to Sect. 2.1, the mathematical meaning that we associate to this
example is

[[Group]] ≡ {(| cr, ◦, inv, e |) | ◦ ∈ cr × cr → cr ∧ inv ∈ cr → cr ∧ e ∈ cr ∧
(∀x ∈ cr. x ◦ e = x) ∧ (∀x ∈ cr. x ◦ inv(x) = e) ∧
(∀x, y, z ∈ cr. x ◦ (y ◦ z) = (x ◦ y) ◦ z)}

The notation (| cr, ◦, inv, e |) of the elements of this set stands for an extensible
record term. In this context it is sufficient to understand them as products. The
base type of the set Group is defined by the following record definition2.

record α group-sig ≡
.〈cr〉 :: α set (postfix)
.〈f〉 :: [α, α]⇒ α (postfix)
.〈inv〉 :: α ⇒ α (postfix)
.〈e〉 :: α (postfix)

The structure Group is of type (α group-sig) set. In the following example of a
higher order structure for group homomorphisms, we see how the field selectors
are used to refer to the constituents of a group.

A homomorphism of groups is a map from one group to another group that re-
spects group operations. The parameters of a structure Hom for homomorphisms
are groups themselves, i.e. we have a higher order structure. The following syn-
tactical form encloses the parameter structures in square brackets.
2 In the remainder of this paper we name the group operation f , instead of ◦, because
we need to refer to the group G and in prefix notation G.〈f〉 looks more natural. An
improvement of syntax for such implicit references is given by locales (c.f. Sect. 5)

Modular Structures as Dependent Types in Isabelle 125

signature Hom [G, H ∈ Group] (Φ)
Φ ∈ G.〈cr〉 → H.〈cr〉
∀x, y ∈ G.〈cr〉. Φ(G.〈f〉 x y) = H.〈f〉 Φ(x) Φ(y)

In the definition of the mathematical structure we have to add “where G and H
are elements of the structure Group”. That is, a mathematical object represent-
ing a homomorphism between groups has to carry also the two groups in itself. It
is a triple (G,H,Φ) of two groups and a homomorphism between them. The ho-
momorphism depends on the elements G and H . In the image structure we need
to refer to the parameter structures G and H . Hence, we choose a dependent
type, the Σ-type, to define the structure for homomorphisms.

Hom ≡ ΣG∈Group ΣH∈Group {Φ | Φ ∈ G.〈cr〉 → H.〈cr〉 ∧
(∀x, y ∈ G.〈cr〉. Φ(G.〈f〉 x y) = H.〈f〉 Φ(x) Φ(y))}

Now the parameter groups G and H are bound by the Σ operator and we can
refer to them, and their constituents by using the projections, e.g. G.〈f〉. In
the following section, we explain the notion of dependent types, and how we
represent them using set theoretic constructions.

3 Dependent Types as Structure Representation

The textbook introduction to type theory [NPS90, page 52] explains the main
reason for the introduction of the Π-set as the interpretation of the universal
quantifier. The Heyting interpretation of this quantifier is [Hey56]

∀x ∈ A.B(x) is true if we can construct a function which when applied
to an element a in the set A, yields a proof of B(a).

The dependent sum Σ enables to deal with the existential quantifier, i.e. ∃ can
be defined as

∃x ∈ A.B(x) ≡ Σx∈AB(x)

We use the dependent sets in the same sense, but restrict the use to the descrip-
tion of structures. We consider A and B as structures, and not general formulas.
So, we use the dependent sets as type theory uses them, but in a more näıve way
restricting ourselves to the statements x ∈ A and not interpreting this as “x is
a proof of formula A”.

The idea is to use the syntactical signature description of the structure as a
set B(x) — with a formal parameter x. This formal parameter is an element of
the first set A. In case of more than one parameter structure the nesting of the
dependent type constructors Σ and Π just accumulates.

We show in this section how dependent types are formalized in HOL and
how this formalization can be used to represent higher order structures.

3.1 Isabelle Representation

The system Isabelle HOL implements a simple type theory [Chu40] and has
no dependent types. The object logic HOL of Isabelle is extended by a notion
of sets. Sets are here essentially predicates, rather than “built-in” by ZF-style
axioms. We use this extension to define dependent types as sets in Isabelle.

126 Florian Kammüller

Set Representation One can consider the Σ-type as a general form of the
Cartesian Product. If we represent Σx∈AB(x) as a set, it is thus

Σx∈AB(x) ≡
⋃

x∈A

⋃

y∈B(x)

{(x, y)}

This representation of the Σ-type is used in HOL.
The Π-type is the type of dependent functions. It is related to the Σ-type.

We can express this type as a set by considering the subsets of Σ which can be
seen as functions

Πx∈AB(x) ≡ {f ∈ P(Σx∈AB(x)) | ∀x ∈ A. ∃! y ∈ B(x).f(x) = y} (1)

where P denotes the powerset.

Implementation in Isabelle In the distribution of Isabelle HOL the Σ-type
is already defined in terms of HOL sets, the Π-type not.

The most natural way to define Π seems to be to use definition 1 defining Π
in terms of Σ. But, then the functions we would get would be sets of pairs and
we would develop a new domain of functions inside HOL, when there are already
functions.

The existing functions in HOL are the elements of the function type α ⇒ β,
where α and β indicate arbitrary types, and ⇒ is the function type construc-
tor. There is a notation for λ-abstraction available, which allows to define new
functions. We would like to define function sets, i.e. sets of elements of the HOL
type α ⇒ β, and on top of that we want to have that the co-domain of these
functions β may depend on the input to the function. Ideally, the type β should
depend on some x of type α. Since HOL does not have dependent types, it is
impossible to integrate the dependency at the level of types. But, we can define
a non-dependent type for the constructor Π as

[α set, α ⇒ βset] ⇒ (α ⇒ β)set

Then, we can assign the above type to a constant Π in HOL and add the idea
of dependency to the definition of this constructor.

Πx∈AB(x) ≡ {f | ∀x. if x ∈ A then f(x) ∈ B(x) else f(x) = (@y.True)}
By using the more explicit language of sets we achieve that the codomain is a
set which depends on the argument to the function. The “else” case is necessary
to achieve extensionality for the Π-sets.

The non-dependent function sets are a special case of this definition of Π .
Using Isabelle’s pretty printing facilities, we get a nice syntactical representation
for that and can now write A → B for the set of functions from a set A to a
set B.

What we are doing here is classification. Equality compares functions accord-
ing to their behavior on the set A. That is, we do not care about what a function

Modular Structures as Dependent Types in Isabelle 127

in Πx∈AB(x) does outside A. We want to think of all functions which behave
alike on A as the same function.

To reassure ourselves that the definition of Π is sound we have established
a bijection ΠBij between the classical definition from Equation 1 and the above
HOL function set as

ΠBijAB ≡ λf ∈ Πx∈AB. {(x, y) | x ∈ A ∧ y = fx}
We proved in Isabelle that this map is actually a bijection.

3.2 Algebraic Formalization with Π and Σ

We concentrate here on the representation of higher order structures. As already
pointed out in Sect. 2 we use sets of records for simple structures. We use the
dependent type constructors Σ and Π to represent higher order structures, that
is, to express structures, where the parameters are elements of structures them-
selves. Roughly speaking, the Σ-types are used for general relations between
parameter and image structure. When this relation is a function, i.e. the con-
struction of the image structure is unique and defined for all elements of the
parameter structure, then we can construct elements of the higher order struc-
ture using the λ-notation. In that case, the higher order structure is a set of
functions, i.e. a Π-type structure.

Use of Σ The interpretation of the Σ-type is that of a relation between pa-
rameter and image structure. Higher order structures whose image structures
are defined for certain input parameters, but not necessarily for all, can be rep-
resented by Σ. So, the elements of these higher order structures are pairs of
parameter and image structure elements; for a structure as Struc ≡ Σx∈AB(x),
we can write this membership as (a, b) ∈ Struc.

But, we also want to instantiate the structure By Struc ↓ a we annotate
the instantiation or application of the structure. What we are interested in is to
get an instance of the image structure B, where a is substituted for the formal
parameter x. That is, we want to derive B(a) for a ∈ A, or apply the entire
structure generally to an element of the parameter structure. For a ∈ A we
construct an operator ↓ such that (Σx∈AB(x)) ↓ a evaluates to B(a). We can
define ↓ in terms of the image of a relation Im, so it reduces to

Struc ↓ a ≡ (Σx∈AB(x)^^({a}) ≡ {y | ∃x ∈ {a}.(x, y) ∈ Σx∈AB(x)}
Then we can use the theorem

(a, b) ∈ Σx∈AB(x) ⇒ b ∈ B(a)

to derive
a ∈ A ⇒ Struc ↓ a = B(a)

This theorem enables us now to build the instance of a higher order structure
with an element a of the parameter structure A.

128 Florian Kammüller

Use of Π Elements of higher order structures which are uniquely defined — like
FactGroup in Sect. 4.2 — can be represented by a function definition in the typed
λ-calculus from Sect. 3.1. These λ functions are elements of the corresponding
Π-set. Let elem ≡ (λx ∈ A. t(x)), then

elem ∈ Πx∈AB(x) iff ∀a ∈ A. t(a) ∈ B(a)

The function body t of the element elem constructs elements of the image struc-
ture of the higher order structure to which elem belongs. For the application or
instantiation we do not need an extra operator as for Σ. Since we have defined
the Π type as sets of functions we can use the HOL function application elem(a).
If a ∈ A then this evaluates to t(a).

The proof that the body t(a) for a ∈ A is actually in some image struc-
ture B(a), can be nontrivial. For the examples in Sect.s 4.2 we have to show
that the constructed images are groups.

In principle one can define structures that are universally applicable to pa-
rameters directly by Πx∈AB(x). For example, we may use Π instead of Σ to
encode the structure of group homomorphisms, because for all groups G and H
there is always a homomorphism between G and H . This idea is discussed else-
where. The use of Π as general representation for higher order structures in the
described sense is more complicated than Σ.

4 Application Examples

In this section we present some examples of abstract algebra and lattice theory
which we performed in Isabelle to validate the concept introduced in this paper.
We give outlines of the corresponding definitions of the algebraic structures and
present the results. We do not display the proofs because they are too long.

4.1 Definitions

We start from the definition of groups and homomorphisms as sets of records
given in Sect. 2.2. The notion of a subgroup uses dependent types. It is a higher
order structure, because we define subgroups as subsets of a group which are
themselves groups. This way of definition in terms of the structure Group is
only possible because structures are first class citizens and can hence be used in
formulas.

consts
subgroup :: (α group-sig × αset)set

defs
subgroup ≡ ΣG∈Group{H.H ⊆ G.〈cr〉 ∧

(| H,λx ∈ H.λy ∈ H. G.〈f〉 x y, λx ∈ H. G.〈inv〉 x, G.〈e〉 |) ∈ Group}
From this definition of the structure subgroup we can derive classical theorems
about subgroups. For example, we derive that it is sufficient to show that a
subset H of a group G is closed under the group operations, in order to infer

Modular Structures as Dependent Types in Isabelle 129

that H is a subgroup of G (subgroup introduction rule). Using the pretty printing
facilities of Isabelle we define the abbreviation H <<= G to annotate that H is
a subgroup of G.

Rings are defined in a similar manner as groups. Assuming the definition of
group homomorphisms Hom from Sect. 2.2, group automorphisms can now be
defined as homomorphisms from one group to the same group such that these
functions are injective on the carrier of the group.

consts
GroupAuto :: (α group-sig × (α ⇒ α))set

defs
GroupAuto ≡ ΣG∈Group.{Φ | (G, G, Φ) ∈ Hom ∧

inj on G.〈cr〉Φ ∧ Φ(G.〈cr〉) = G.〈cr〉}

4.2 Proof Examples

Group of Bijections We define the set of bijections Bij and a record BijGroup
consisting of the set of bijections over a set S, the composition of these bijections,
the inverse of a bijection and the identical bijection.

Bij S ≡ {f | f ∈ S → S ∧ f(S) = S ∧ inj onSf}
BijGroup S ≡ (| BijS, λg ∈ BijS.λf ∈ BijS.g ◦S f,

λf ∈ BijS.λx ∈ S.(InvSf) x, λx ∈ S.x |)
We can show that this record is in the set Group, i.e. that the bijections together
with the listed operations on them are a group.

BijGroup S ∈ Group

Group of Ring Automorphisms We use a definition of ring automorphisms
RingAuto similar to group automorphisms (c.f. Sect. 4.1) as a higher order struc-
ture. With this we show that the set of ring automorphisms is a subgroup of the
group of bijections over the carrier of the ring. This proof is much simpler than
showing that ring automorphisms are a group. That is, due to the subgroup in-
troduction rule we derived in Sect. 4.1 it suffices to show closedness of the subset
RingAuto ↓ R to derive

R ∈ Ring =⇒ RingAuto ↓ R <<= BijGroup(R.〈cr〉)
Using the result that the set BijGroup is indeed a group, by unfolding the def-
inition of subgroups, we obtain immediately from the former theorem that the
ring automorphisms together with the appropriate operations are a group.

R ∈ Ring =⇒ (| RingAuto ↓ R,
λx ∈ RingAuto ↓ R.λy ∈ RingAuto ↓ R.(BijGroup (R.〈cr〉).〈f〉) x y,
λx ∈ RingAuto ↓ R.(BijGroup(R.〈cr〉).〈inv〉) x,
BijGroup(R.〈cr〉).〈e〉 |) ∈ Group

The Isabelle proof code that produces this result is short; the proof is a one line
command connecting the previously derived results. This theorem illustrates
nicely how the first class representation of structures allows the reduction of the
proposition and hence improves the proof process.

130 Florian Kammüller

Factorization of a Group We define the factorization of a group by one of
its normal subgroups as

FactGroup ≡ λG ∈ Group.λH ∈ {H | H C G}.
(| set r cosGH,
(λX ∈ set r cosGH.λY ∈ set r cosGH.set prodGXY),
(λX ∈ set r cosGH.set invGX),
H |)

We use the abbreviations set r cosGH for the set of all right cosets of H in G.
The terms set prodG and set invG stand for the lifting of the group operation
and inverse to functions on sets. The notation H � G abbreviates that H is a
normal subgroup of G. Furthermore, we define the convenient syntax G/H for
the factorization FactGroup G H . With these preparations, we can prove that
this factorization is again a group.

G ∈ Group ∧ H � G =⇒ G/H ∈ Group

This is equivalent to the structural proposition that the factorization of a group
is a function mapping a group and an element of the set of normal subgroups of
this group to another group.

FactGroup ∈ (ΠG∈Group{H | H � G} → Group)

Direct Product of Groups Similar to the previous example we define the
direct product of two groups as

ProdGroup ≡ λG1 ∈ Group.λG2 ∈ Group.
(| G1.〈cr〉 × G2.〈cr〉,

λ(x1, y1) ∈ G1.〈cr〉 × G2.〈cr〉.λ(x2, y2) ∈ G1.〈cr〉 × G2.〈cr〉.
(G1.〈f〉 x1 x2, G2.〈f〉 y1 y2),

λ(x, y) ∈ G1.〈cr〉 × G2.〈cr〉. (G1.〈inv〉 x, G2.〈inv〉 y),
(G1.〈e〉,G2.〈e〉) |)

We define the syntax 〈| G1, G2 |〉 for this direct product of two groups and derive
that it builds again a group.

G1 ∈ Group ∧ G2 ∈ Group =⇒ 〈| G1, G2 |〉 ∈ Group

Full Tarski The fixpoint theorem of A. Tarski [Tar55] is well known in computer
science. Yet the form of the theorem which is usually proved is an older version
from 1928. This theorem says that the least upper bound of all fixpoints P
of a monotonic function f over a complete lattice (A,�) can be obtained as∨{x ∈ A | x � f(x)}. The dual is true for the greatest lower bound

∧
. Besides

proving that, Tarski showed in the later paper that the set of all fixpoints P
of f is itself a complete lattice. This second result is very well suited to illustrate
the need for a proper structural representation, because it is proved by applying
the first part of the theorem to the interval sublattice [

∨
Y, 1] for any subset Y

Modular Structures as Dependent Types in Isabelle 131

of P . So, our mechanized proof illustrates again the advantages of the present
approach.

The proof of this full version was first formalized by R. Pollack in
LEGO [Pol90]. There partial equivalence relation have to be used, which make
the proof quite hard to read.

5 Discussion

The approach to use dependent types as modular structures is a well known one
(e.g. [Mac86]), but to represent these types as sets is new. The advantage lies in
the first class property of the structures. As we have seen in Sect. 3.2, we can
now define operations on modular structures in the logic. Others, like forgetful
functors, theory interpretations, can be expressed in terms of those. This should
be further illustrated in future work.

LEGO [Bur90,LP92], an implementation of the Extended Calculus of Con-
structions [Luo90b] uses dependent types as theories [Luo90a]. Our work is simi-
lar to this. Since we are constructing these types as sets our approach is different.

One difference is that our dependent structures are terms of the logic not
types as in ECC. The discussion section of [Luo90a, Sect. 4.4] mentions the
possibility of a combination of two ideas: one is to have dependent structures as
a representation of theories, done by ECC. The other idea is to have operations
on theories, that is theories are values and there are operations that can be
performed on those values. These concepts were examined in the specification
language CLEAR [SB83]. Since the dependent types are values of the logic in
our semantical embedding of theory structures, it is possible to define operations
on theories as HOL functions. This has been illustrated in this paper by defining
the operation of instantiation by the structure instance operation (c.f. Sect. 3.2).

The other difference is that we are following the LCF-style of not considering
proof objects. Thus, the actual proof construction leading to the results is inde-
pendent of the type structure of the formalization. Nevertheless, the structures
we use contain enough information to produce the instances one is interested in,
as is illustrated by the example proof for the group of ring automorphisms in
Sect. 4.2.

Another experiment, worth examining, is to extend Isabelle’s meta logic —
which is a fragment of higher order logic — to the extent that the structures
presented in this paper exist generically and not just for the object logic HOL.

In an earlier version of this work we used products as base type for simple
structures. Due to a suggestion of P. Martin-Löf at the TYPES 98 workshop we
now employ records, although only in addition to sets.

Although the syntax definition possibilities in Isabelle are remarkably good
they still can be improved. For example terms like G.〈f〉 x y should be expressible
as x ◦ y. This is nontrivial because the reference to the element G is crucial.
Nevertheless, we succeeded in designing a concept of locales for Isabelle[KW98],
realizing this feature. Locales enable definitions depending on local assumptions.
The additional use of locales with the structural concepts presented in this paper

132 Florian Kammüller

achieves a satisfying style of abstract algebraic reasoning. Difficulties with Σ-
types as theory representation, pointed out in [Polar], are overcome by this
additional feature.

References

Bur90. R. Burstall. Computer Assisted Proof for Mathematics: an Introduction using
the LEGO Proof System. Technical Report ECS-LFCS-91-132, University of
Edinburgh, 1990. 131

Chu40. A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, pages 56–68, 1940. 125

FGT93. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: an Interactive Math-
ematical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.
121, 122, 123

GH93. John V. Guttag and James J. Horning, editors. Larch: Languages and
Tools for Formal Specification. Texts and Monographs in Computer Science.
Springer-Verlag, 1993. With Stephen J. Garland, Kevin D. Jones, Andrés
Modet, and Jeannette M. Wing. 121, 123

Hey56. A. Heyting. Intuitionism: An Introduction. North Holland, Amsterdam, 1956.
125

KP99. F. Kammüller and L. C. Paulson. A Formal Proof of Sylow’s First Theorem –
An Experiment in Abstract Algebra with Isabelle HOL. Journal of Automated
Reasoning, 1999. To appear. 121

KW98. F. Kammüller and M. Wenzel. Locales – a Sectioning Concept for Isabelle.
Technical Report 449, University of Cambridge, Computer Laboratory, 1998.
131

LP92. Z. Luo and R. Pollack. Lego proof development system: User’s manual. Tech-
nical Report ECS-LFCS-92-211, University of Edinburgh, 1992. 131

Luo90a. Z. Luo. A Higher-order Calculus and Theory Abstraction. Information and
Computation, 90(1), 1990. 131

Luo90b. Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990. Also as Report CST-65-90. 131

Mac86. D. B. MacQueen. Using Dependant Types to Express Modular Structures.
In Proc. 13th ACM Symp. Principles Programming Languages. ACM Press,
1986. 131

NPS90. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s
Type Theory — An Introduction. Oxford Science Publications. Clarendon
Press, Oxford, 1990. 125

NW98. W. Naraschewski and M. Wenzel. Object-oriented Verification based on
Record Subtyping in Higher-Order Logic. In 11th International Conference
on Theorem Proving in Higher Order Logics, volume 1479 of LNCS, ANU,
Canberra, Australia, 1998. Springer-Verlag. 121, 123

OSR93. S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification Language
(Beta Release). Technical report, SRI International, 1993. 121, 123

Pol90. R. Pollack. The Tarski Fixpoint Theorem. e-mail to: proof-sci@se.chalmers.cs,
1990. 131

Polar. R. Pollack. Theories in Type Theory. Slides, available on the Web as
http://www.brics.dk/pollack, unknown year. 132

Modular Structures as Dependent Types in Isabelle 133

SB83. D. T. Sannella and R. M. Burstall. Structured Theories in LCF. In CAAP’83:
Trees in Algebra and Programming, volume 159 of LNCS, pages 377–91.
Springer-Verlag, 1983. 131

Tar55. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955. 130

Metatheory of Verification Calculi in LEGO�

To What Extent Does Syntax Matter?

Thomas Kleymann

LFCS Edinburgh
King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland

Abstract. Investigating soundness and completeness of verification cal-
culi for imperative programming languages is a challenging task. Incor-
rect results have been published in the past. We take advantage of the
computer-aided proof tool LEGO to interactively establish soundness
and completeness of both Hoare Logic and the operation decomposition
rules of the Vienna Development Method with respect to operational
semantics. We deal with parameterless recursive procedures and local
variables in the context of total correctness.
In this paper, we discuss in detail the role of representations for ex-
pressions, assertions and verification calculi. To what extent is syntax
relevant? One needs to carefully select an appropriate level of detail in
the formalisation in order to achieve one’s objectives.

1 Introduction

We have taken advantage of the LEGO system [1] to produce machine-checked
soundness and completeness proofs for Hoare Logic and the operation decomposi-
tion rules of the Vienna Development Method (VDM). Our imperative program-
ming language includes (parameterless) recursive procedures and local variables.
We consider static binding and total correctness. This is one of the largest devel-
opments in LEGO to date. Building on a comprehensive library it additionally
consists of more than 800 definitions, lemmata and theorems.

Our message to the designers and researchers of verification calculi is that
conducting computer-aided soundness and completeness proofs is both a feasi-
ble and profitable task. Our fundamental contribution has been to highlight the
role of auxiliary variables in Hoare Logic. Usually, assertions are interpreted as
predicates on states where free variables denote the value of program variables
in a specific state. Variables which are unaffected by the program under consid-
eration then take on the role of auxiliary variables. They are required to relate
the value of program variables in different states.

Our view of assertions emphasises the pragmatic importance of auxiliary
variables. We have followed a proposal by Apt & Meertens to consider assertions
as relations on states and auxiliary variables [2]. Furthermore, we stipulate a new
structural rule to adjust auxiliary variables when strengthening preconditions
� An earlier version appeared as LFCS Technical Report ECS-LFCS-98-393.

c© Springer-Verlag Berlin Heidelberg 1999
T. Al te n k i rch e t al. (E d s.): TYP E S ’ 98, LNCS 1657, p p . 133– 149 , 1999.

134 Thomas Kleymann

and weakening postconditions. This rule is stronger than all previously suggested
structural rules, including Hoare’s consequence rule [3] and rules of adaptation.
As a direct consequence of the new treatment of auxiliary variables,

– we were able to show that Soko:lowski’s calculus for recursive procedures [4]
is sound and complete if one replaces Hoare’s rule of consequence with ours.
In particular, none of the other structural rules introduced by Apt [5] (which
lead to a complete but unsound system) are required.

– We have clarified the relationship between Hoare Logic and its variant VDM.
We were able to show that, contrary to common belief, VDM is more re-
strictive than Hoare Logic in that every derivation in VDM can be naturally
embedded in Hoare Logic.

Deep versus Shallow Embedding. Traditionally, one defines syntax for ex-
pressions and relative to this setup, one characterises syntax of a programming
language and syntax of an assertion language. Then, one describes the meaning
of every syntactic construct. This approach is known as deep embedding. Alter-
natively one may shortcut this process and identify the syntactic representation
with its denotation. This technique is known as shallow embedding.

Related Work. The pioneering work on machine-checked soundness for Hoare
Logic by Gordon [6] rests entirely on shallow embedding. Homeier [7] extends the
soundness proof to a setting with mutually recursive procedures. His encoding is
based exclusively on deep embedding. Nipkow [8] has been the first to conduct
a machine-checked completeness proof for Hoare Logic dealing with simple im-
perative programs in the context of partial correctness. This contains a mixture
of shallow and deep embedding. Using similar representation techniques we have
extended this work to recursive procedures and local variables.

1.1 To What Extent Does Syntax Matter?

Before deciding on the embedding technique, one ought to clarify the objectives
of the machine-assisted development. This induces the level of detail in which
one needs to analyse involved concepts. One of the central issues in formalising
metatheory is to what extent syntax needs to be formalised. Technically, one has
a choice of deep versus shallow embedding.

A shallow embedding cuts down the work load and is therefore, at least for
machine-checked developments, often the preferred approach. The drawbacks of
shallow embedding are that

1. one cannot exploit the inductive (syntactic) structure to prove properties.
2. The representation of concrete examples is often more difficult to compre-
hend.

As the main contribution of this paper, we clarify the role of deep versus
shallow embedding. In the setting of Hoare Logic, the choice of the level of em-
bedding has a major influence in the work involved in setting up an appropriate

Metatheory of Verification Calculi in LEGO 135

theory of substitutions. One needs substitutions on states, expressions and as-
sertions. With a shallow embedding of expressions and assertions, substitutions
can be expressed in terms of substituting the state space.

We have investigated the metatheory of verification calculi. It was not our
aim to show that a proof tool such as the LEGO system is suitable to verify
concrete programs. Therefore, the second drawback was of little concern to us.
Our strategy has been to employ a shallow embedding whenever possible.

However, one needs to pursue soundness by induction on the structure of
programs whereas completeness is conducted by induction of the derivation of
correctness formulae. Hence, in light of the first drawback of a shallow embed-
ding, one needs to insist on a deep embedding for programs and the notion of
deriving correctness formulae. The main benefit of employing a shallow embed-
ding for investigating the metatheory of verification calculi are that

– we did not have to worry at all about substitutions in assertions; an otherwise
daunting prospect [9,7].

– Completeness can only be established for an assertion language which is suf-
ficiently expressive to denote all intermediate properties such as invariants.
Employing a deep embedding of assertions, one would need to additionally
explicitly construct syntactic representations for all possible intermediate
assertions.

1.2 Overview

The outline of this paper is as follows. We first formalise the notion of a state
space. We then sketch our embedding of expressions, assertions and imperative
programs. In Sect. 7 we discuss semantics and derivability of Hoare Logic. We
motivate new rules for loops and adjusting auxiliary variables. We argue that
in investigating soundness and completeness of verification calculi, one should
gloss over the syntactic details of expressions and assertions. Formalising substi-
tutions is irrelevant. We will show in Sect. 6.3 that, at least for simple imperative
programs, in the soundness and completeness proof, one does not need to appeal
to any property of a substitution function.

In Sect. 7 we show that the metatheory for verification calculi dealing with
local variables is more subtle. Not only is it essential to have an adequate sub-
stitution function (on the level of states), it is also necessary to employ an
extensional notion of equality. This requires some attention, as type-theoretic
systems such as Coq and LEGO are tailored to an intensional type theory. The
case of VDM is similar and not covered in this paper.

2 The State Space

The state space records the value of every program variable. Let VAR be the
type of program variables. In a type-theoretic setting, it seems natural to investi-
gate multiple sorts. We identify the universe of data types with the universe of all

136 Thomas Kleymann

types expressible in LEGO. The type of variables can be declared by providing
a function

sort : VAR → Type .

A state σ for a type environment sort is a function mapping program variables x
to values of type sort(x). The state space itself is therefore a dependent function
space:

Definition 1 (State Space). Σ
def= ∏x : VAR · sort(x)

We have implemented a substitution operation on dependent functions which
satisfies the specification

σ [x �→ t] (y) =

{
t if x = y,
σ(x) otherwise.

(1)

This requires quite sophisticated type theory. See [10] for details.
Alternatively, one could exploit that only a finite number of a priori deter-

mined variables x1, . . . , xn are usually1 employed in any concrete program. Thus,
the dependent type space Σ degenerates into the finite product sort(x1)× · · ·
× sort(xn) [11,12].

3 Expressions

Boolean expressions occur in loops and conditional statements. Other types of
expressions depend on the data types expressible in the language and occur both
as subexpressions of boolean expressions and in the assignment statement. One
may define the syntax of expressions by a BNF grammar.

Example 1 (Syntax of Expression). Homeier & Martin [13] define two classes of
expressions

e ::= n | x | ++x | e1 + e2 | e1 − e2

b ::= e1 = e2 | e1 < e2 | b1 ∧ b2 | b1 ∨ b2 | ¬b

We will only consider expressions without side-effects2 and do not deal with
the expression ++x. The semantics can thus be easily fixed denotationally and
is determined by an interpretation function I and a state σ. An interpretation
determines the value of constants such as 0, +, ∧ and (free) variables in express-
ions and logical formulae e.g., [[x]](I(σ)) def= I

(
σ(x)

)
. Whenever we come across a

boolean expression in a loop or a conditional statement, we are only interested
in the value it evaluates to, true or false. Similarly, in an assignment, we treat
evaluation of the expression as atomic, merely a value depending on the state
1 An exception is e.g., Lisp.
2 Such a strict distinction between expressions and commands is one of the fundamen-
tal principles underlying idealised Algol [14].

Metatheory of Verification Calculi in LEGO 137

space. We are not interested in syntactic properties such as whether one express-
ion is a subterm of another expression. Ignoring the syntax of expressions paves
the way towards a reasonable level of abstraction when investigating properties
of verification calculi for imperative programs without side-effects in expressions.

Furthermore, we are only interested in the standard interpretation3 of con-
stants. Hence, the state space alone determines the semantics. We only consider
expressions at this semantic level:

Definition 2 (Expressions – Shallow Embedding). Given an arbitrary
type T , we represent expressions by

expression(T : Type) def= Σ → T .

Let e : expression(T) be any expression. Its evaluation depends on a concrete
snapshot of the state space σ : Σ We define eval(σ)(e) def= e(σ).

A benefit of adopting shallow embedding is that we do not have to worry
about formalising the syntax in a logical framework. Working on the metatheory,
one never encounters a concrete expression! Moreover, substitutions are much
easier to deal with at the semantic level. It can be defined in terms of updating
states:

Definition 3 (Updating Expressions – Shallow Embedding).

e [x �→ t] (σ) def= e(σ [x �→ t])

In a deep embedding, one would need to define an interpretation and substitution
function by induction on the structure of expressions and prove the substitution
lemma

[[e [x �→ t]]](σ) = [[e]](σ [x �→ t]) .

An advantage of deep embedding is that, for concrete expressions, substitutions
are more palatable. Consider the syntactic substitution (x ∗ y) [x �→ 3]. Due to
the recursive definition of updating, this should reduce to 3 ∗ y. In the shallow
embedding, we would instead have

λσ ·
((

λσ · σ(x) ∗ σ(y)︸ ︷︷ ︸
[[x∗y]]

)
(σ [x �→ 3])

)
(2)

which (β-)reduces to λσ · (σ [x �→ 3] (x) ∗ σ [x �→ 3] (y)
)
. This is equivalent to

λσ · 3 ∗ σ(y) (3)

Unfortunately, the LEGO system offers little support for reducing (2) to (3). In
concrete examples, this leads to excessively large proof obligations. Computer-
aided verification becomes unfeasible4.
3 This not only simplifies the encoding, it also avoids the problematic issue of how
to axiomatise the class of acceptable interpretations. In particular, incompleteness
results of Hoare Logic e.g., [15], exploit setups with non-standard interpretations.

4 In a verification of the recursive algorithm Quicksort we had not manually inter-
vened in reducing substitutions. For the correctness proof, LEGO had to run for

138 Thomas Kleymann

4 Assertions

Traditionally, assertions are considered to be simply formulae of first-order logic,
which are interpreted in the usual way, except that the value of variables is de-
termined by a state. Semantically, from a type-theoretic point of view, assertions
are the particular class of expressions over propositions i.e., expression(Prop).
Instead of first-order logic it is convenient to exploit the native logic of the
theorem prover. This encoding has been adopted in [6,8].

Our novel approach to Hoare Logic has been to give a more rigorous treat-
ment of auxiliary variables. They are required at the level of specifications to
relate the value of variables in different states as assertions may otherwise only
relate the value of program variables in a single state.

At the syntactic level, one would need to (formally) distinguish between
program variables and auxiliary variables. One could for example enforce that
program variables have to start with a lower-case letter, whereas auxiliary vari-
ables must start with an upper-case letter. To be well-formed, programs may
only refer to program variables.

Semantically, program variables are, as before, interpreted according to the
state space. However, auxiliary variables are interpreted freely. Let T be the
domain of this interpretation.

Definition 4 (Assertions – Shallow Embedding).

Assertion(T : Type) def= (T × Σ)→ Prop

Example 2. Let T = {X, Y } → int. Relative to an interpretation Z : T and a
state σ, we interpret [[0 ≤ y ∧ x = X ∧ y = Y]](Z, σ) = 0 ≤ σ(y)∧σ(x) = Z(X)∧
σ(y) = Z(Y).

Due to the shallow embedding we may update assertions analogue to express-
ions by relaying the work to updating the state space. In practice we only need
to update the value of program variables but not auxiliary variables. Let p be
an assertion.

Definition 5 (Updating Assertions – Shallow Embedding).

p [x �→ t] (Z, σ) def= p(Z, σ [x �→ t]) .

Analogue to expressions, in a deep embedding, one would need to additionally
represent syntax for assertions, define an interpretation and a syntactic substi-
tution function. Then, one would need to prove the substitution lemma

[[p [x �→ t]]](Z, σ) = [[p]](Z, σ [x �→ t]) .

more than 37 hours requiring more than 80MB on a SUN SPARC station 20 with
sufficient physical memory to avoid swapping. In comparison, on the same architec-
ture, the completeness proof for Hoare Logic dealing with recursive procedures and
local variables could be dealt with in less than 15 minutes requiring less than 25MB.
In both cases, we started LEGO in the empty environment.

Metatheory of Verification Calculi in LEGO 139

5 Imperative Programs

A shallow embedding of a non-trivial imperative programs is problematic for
a strongly-typed proof system such as LEGO. An imperative program S may
not terminate. Hence, the denotation of S is a partial functions on the state
space, [[S]] : Σ ⇁ Σ. However, LEGO only supports total functions. To avoid
partiality, one may move to relational denotational semantics [[S]] : (Σ × Σ)
→ bool, see [6] for an example.

In any case, to formally prove soundness within a logical framework, one
needs to pursue induction on the structure of programs. Thus, one has to select
a deep embedding strategy for the imperative programming language. For the
purpose of this section, we consider a (very) simple imperative programming
language consisting of assignments and loops.

Definition 6 (Syntax of Imperative Programs – Deep Embedding). Im-
perative programs S : prog are defined by the BNF grammar S ::= x := e |
while b do S where x : VAR, e : expression (sort(x)) and b : expression(bool).

We employ structural operational semantics which provides a clean way to
specify the effect of each language constructor in an arbitrary state. It relates a
program with its initial and final state.

Definition 7 (Structural Operational Semantics). The operational seman-

tics is defined as the least relation .
. ✲ . ⊆ Σ × prog× Σ satisfying

σ
x := e✲ σ [x �→ eval(σ)(e)] (4)

σ
while b do S✲ σ provided eval(σ)(b) = false .

σ
S ✲ η η

while b do S✲ τ

σ
while b do S✲ τ

provided eval(σ)(b) = true .

Intuitively, σ
S ✲ τ denotes that the program S when invoked in the

state σ will terminate in the state τ .

6 Semantics and Derivability of Hoare Logic

Hoare Logic is a verification calculus for deriving correctness formulae of the
form {p} S {q} for assertions p, q and programs S. We consider total correct-
ness. Intuitively {p} S {q} specifies that, provides S is executed in a state such
that the precondition p holds, it terminates in a state τ where the postcon-
dition q is satisfied. One distinguishes between the semantics of a correctness
formulae |=Hoare {p} S {q} (which formalises the above intuition) and the no-
tion of deriving a correctness formulae �Hoare {p} S {q} (which is employed in
order to verify concrete programs) [16].

140 Thomas Kleymann

Definition 8 (Semantics of Hoare Logic). Parametrised by an arbitrary
type T , let |=Hoare {.} . {.} ⊆ Assertion(T)× prog×Assertion(T) be a new
judgement defined in terms of the operational semantics

|=Hoare {p} S {q} def= ∀Z · ∀σ · p(Z, σ)⇒ ∃τ · σ S ✲ τ ∧ q(Z, τ) .

Based on work of Floyd [17], Hoare [3] proposed a verification calculus for partial
correctness, now referred to as Hoare Logic. For every constructor of the imper-
ative programming language, Hoare Logic provides a rule which allows one to
decompose a program. The precondition of the assignment axiom

{p [x �→ e]} x := e {p}

is, at least for simple imperative programs, the sole reason for having to bother
about updating assertions!

Programs mentioned in the premisses are strict subprograms of the programs
mentioned in the conclusions. Unlike the operational semantics, this also holds
for loops.

{p ∧ b} S {p}
{p} while b do S {p ∧ ¬b} (5)

One also needs a structural rule to weaken the precondition and strengthen the
postcondition is a proof obligation.This is particularly useful when one wants to
apply the rule for loops as the precondition must remain invariant with respect
to the body of the loop.

{p1} S {q1}
{p} S {q} provided p ⇒ p1 and q1 ⇒ q. (6)

6.1 Total Correctness

To ensure termination, the rule for loops (5) needs to be modified. We introduce
a termination measure u : expression(W) for some well-founded structure (W, <)
which is decreased whenever the body is executed:

∀t : W · {p ∧ b ∧ u = t} S {p ∧ u < t}
{p} while b do S {p ∧ ¬b}

A similar rule for verification calculi where postconditions may explicitly refer
to the value of program variables in the initial state e.g., VDM, has been put
forward by Manna & Pnueli [18]. Variants of this rule tailored for W = nat [19]
orW = int [20] have also been published previously. We prefer the well-founded
version, because it simplifies the completeness proof without any impact on the
soundness proof [10]. It is well known that in practice, it is often easier to reason
about termination using well-founded sets rather than being restricted to natural
numbers [21].

Metatheory of Verification Calculi in LEGO 141

6.2 Auxiliary Variables

Furthermore, we have strengthened the rule of consequence (6) so that one may
adjust auxiliary variables when strengthening preconditions and weakening post-
conditions. Let x be the list of all program variables and Z the list of all auxiliary
variables occurring in the assertions p1, q1, p and q. We propose the new rule

{p1} S {q1}
{p} S {q}
provided ∀Z · ∀x · p ⇒

(
∃Z1 · (p1 [Z �→ Z1]) ∧

(∀x · (q1 [Z �→ Z1])⇒ q
))
.

Example 3 (Auxiliary Variables). With this rule (but not Hoare’s (6)), the two
correctness formulae {X = x} S {X = x} and {X = x+ 1} S {X = x+ 1},
where all variables denote integer values and X is an auxiliary variable, are
interderivable.

The new rule of consequence plays a crucial role in deriving the Most General
Formula (MGF), the key theorem to establish completeness for Hoare Logic
dealing with recursive procedures [22,10,23].

Definition 9 (Derivability of Hoare Logic – Deep Embedding). A veri-
fication calculus for Hoare Logic is defined as the least relation

�Hoare {.} . {.} ⊆ Assertion(T)× prog×Assertion(T)

indexed by an arbitrary type T such that

�Hoare

{
λ(Z, σ) · p(

Z, σ [x �→ eval(σ)(e)]
)}

x := e {p} (7)

∀t : W · �Hoare {λ(Z, σ) · p(Z, σ) ∧ eval(σ)(b) = true ∧ eval(σ)(u) = t}
S

{λ(Z, τ) · p(Z, τ) ∧ eval(τ)(u) < t}
�Hoare {p} while b do S {λ(Z, τ) · p(Z, τ) ∧ eval(τ)(b) = false}

where (W, <) is well-founded.

�Hoare {p1} S {q1}
�Hoare {p} S {q}
provided ∀Z · ∀σ · p(Z, σ)⇒

(
∃Z1 · p1(Z1, σ) ∧

(∀τ · q1(Z1, τ)⇒ q(Z, τ)
))
.

(8)

142 Thomas Kleymann

6.3 Soundness

Formally, one needs to show that whenever a correctness formulae �Hoare

{p} S {q} is derivable, the proposition |=Hoare {p} S {q} holds. Soundness is
best pursued by induction on the derivation of the correctness formula. For the
discussion of deep versus shallow embedding, the case of an assignment is of
particular interest.

Lemma 1 (Soundness of Assignment Axiom).

|=Hoare

{
λ(Z, σ) · p(

Z, σ [x �→ eval(σ)(e)]
)}

x := e {p}

Proof: Expanding the definition of |=Hoare, given Z, σ, one needs to establish

p(Z, σ [x �→ eval(σ)(e)])⇒ ∃τ · σ x := e✲ τ ∧ p(Z, τ) .

The operational semantics uniquely determines the final state τ . Appealing to
the axiom (4), it suffices to show

p(Z, σ [x �→ eval(σ)(e)])⇒ p(Z, σ [x �→ eval(σ)(e)]) .

�
As expected, due to a shallow embedding, we only have one notion of substitution
(on the level of states). But perhaps surprisingly, soundness holds regardless of
the details of the actual substitution function5.

If one is only interested in establishing soundness (and not completeness),
there is no need for any deep embeddings. Induction on the structure of programs
is not required. Hence, there is no need for a deep embedding of imperative
programs e.g., Gordon [6] represents programs by their relational denotational
semantics.

A Shallow Embedding of Hoare Logic. Moreover, if one externalises the
induction of the soundness proof to the meta-level as opposed to the proof tool,
one can give a shallow embedding for Hoare Logic. Without a notion of derivabil-
ity as given in Definition 9, soundness can be established by showing that axioms
are valid with respect to |=Hoare and that all rules preserve soundness. This ap-
proach has been pursued by Gordon [6], Homeier [7], Homeier & Martin [13]
and Norrish [24].

One must however be clear about the limitations of this approach. For exam-
ple, Homeier & Martin [13] erroneously claim that the soundness of a (complete)
Verification Condition Generator (VCG) has been established by appealing to
the axioms and rules of an (incomplete) presentation of Hoare Logic6. But since
they employ a shallow embedding of Hoare Logic, correctness of the VCG has
instead been established by appealing to the definition of operational semantics.
5 This observations has already been reported in [8].
6 A consequence rule is missing. Thus, one can e.g. not derive {x = 1} skip {true}.

Metatheory of Verification Calculi in LEGO 143

6.4 Completeness

In an incomplete formal system, one may only verify a strict subset of all true
formulae. A naive definition of completeness is bound to fail in the context of
verification calculi. On the one hand, if the chosen underlying logical language
is too weak, e.g., pure first-order logic together with the boolean constants false
and true, some intermediate assertions cannot be expressed. Hence, derivations
cannot be completed. On the other hand, if the logical language is too strong,
e.g. Peano Arithmetic, it itself is already incomplete and the verification calculus
inherits incompleteness.

To avoid this problem, Cook has proposed that one investigates relative com-
pleteness in an attempt to separate the reasoning about programs from the rea-
soning about the underlying logical language [25]. One only considers expressive
first-order logics. Furthermore, rules of the verification calculus may be applied in
a derivation if the logical side-condition is valid rather than derivable. In partic-
ular, completeness no-longer compares a proof-theoretic with a model-theoretic
account.

In practice, achieving relative completeness of verification calculi is highly
desirable. In logic, finding valid formulae which can not be derived is often
somewhat esoteric. A different story has to be told for the notion of relative
completeness in verification calculi e.g., in Soko:lowski’s calculus [4], it is very
difficult to come up with any non-contrived correctness formula of a recursive
procedure which can be derived!

In a machine-checked development, it is convenient to interpret Cook’s pro-
posal by employing the native (expresssive) logic of the theorem prover to inter-
pret assertions. A shallow embedding of assertions automatically blurs the model
and proof-theoretic aspect of assertions. As an important aspect in the complete-
ness proof, one needs to be able to formulate an assertion which expresses the
weakest precondition relative to an arbitrary program and postcondition. With
a shallow embedding, this is straight-forward:

Definition 10 (Weakest Precondition – Shallow Embedding).

wp(S, q)(Z, σ) def= ∃τ · σ S ✲ τ ∧ q(Z, τ) .

With a deep embedding of assertions, one would have to derive a syntactic rep-
resentation which denotes the weakest precondition. This is considerably more
challenging7.

One may prove completeness directly by induction on the structure of S.
Instead, we follow a technique developed by Gorelick, which, previously, has
only been applied to the scenario of Hoare Logic dealing with recursive proce-
dures [27]:

1. By induction on the structure of an arbitrary program S, one establishes that
a specific correctness formula MGFHoare(S) is derivable in the verification
calculus.

7 If the assertion language is Peano Arithmetic, this construction is not for the faint-
hearted as one has to work on the level of Gödel numbers [26].

144 Thomas Kleymann

2. Given the assumption |=Hoare {p} S {q}, one may derive �Hoare {p} S {q} by
applying structural rules to �Hoare MGFHoare(S). All side-conditions which
arise will be dealt with by the assumption.

In other words, instead of directly deriving |=Hoare {p} S {q} ⇒
�Hoare {p} S {q}, one considers the stronger property �Hoare MGFHoare(S) for
which induction goes through more easily. In particular, the direct proof cannot
be applied when one considers recursive procedures, because the induction
hypotheses are not strong enough.

The proposition �Hoare MGFHoare(S) asserts that, provided that one only
considers input states in which the program S terminates, one may derive a
correctness formula in which the postcondition relates all inputs with the ap-
propriate outputs according to the underlying operational semantics of the pro-
gramming language. At the semantic level, |=Hoare MGFHoare(S) holds trivially.

Definition 11 (MGF – Shallow Embedding).

MGFHoare(S)
def=

{
λ(Z, σ) · σ S ✲ Z

}
S {λ(Z, τ) · Z = τ}

Notice that the precondition is equivalent to the weakest precondition relative
to the postcondition λ(Z, τ) · Z = τ .

Analogue to the proof of soundness, in deriving the MGF for assignment, one
again encounters the phenomenon that the details of the substitution function
are irrelevant.

7 Extensional Equality and Local Variables

In the previous section, we have seen that, for soundness (and completeness),
details of substitutions can be neglected. Catering for local initialised variables
new x := e in S is however more demanding, because one needs to reinstate the
previous value of x after the block. Based on an idea by Sieber [28], Olderog [29]
captures the semantics of blocks by

σ [x �→ eval(σ)(e)]
S ✲ τ

σ
new x := e in S✲ τ [x �→ σ(x)]

.

To verify programs containing blocks, we have proposed the rule

∀v · {p [x �→ v] ∧ x = e [x �→ v]} S {q [x �→ v]}
{p} new x := e in S {q} .

Taking into account a shallow embedding of assertions, this corresponds formally
to

∀v· �Hoare {λ(Z, σ) · p(Z, σ [x �→ v]) ∧ σ(x) = eval(σ [x �→ v])(e)} S {q [x �→ v]}
�Hoare {p} new x := e in S {q}

(9)

Metatheory of Verification Calculi in LEGO 145

It is an improvement over Apt’s version [5] in that it deals with initialised blocks.
Furthermore, no side-conditions are required8. In the soundness and complete-
ness proof, we need to appeal to the following two extensional properties of
substitutions:

σ [x �→ σ(x)] = σ (10)
σ [x �→ t1] [x �→ t2] = σ [x �→ t2] (11)

We restrict our attention to the crucial step of the completeness proof:

Lemma 2 (MGF for Blocks).Whenever one can derive �Hoare MGFHoare(S),
one may also establish �Hoare MGFHoare(new x := e in S).

Proof: Given an arbitrary v : sort(x), we apply the (stronger) rule of
consequence (8) to the hypothesis �Hoare MGFHoare(S) in order to derive

�Hoare

{
λ(Z, σ) · σ [x �→ v]

new x := e in S✲ Z ∧ σ(x) = eval(σ [x �→ v])(e)
}

S
{λ(Z, τ) · Z = τ [x �→ v]}

.

(12)

From (12), the rule for blocks (9) renders the proof obligation. As a side-
condition, given states Z and σ such that

σ [x �→ v]
new x := e in S✲ Z (13)

σ(x) = eval(σ [x �→ v])(e) (14)

we have to find a state τ such that σ
S ✲ τ and Z = τ [x �→ v]. Inverting

the derivation of (13), there must be such a state τ which satisfies

σ [x �→ v] [x �→ eval(σ [x �→ v])(e)]
S ✲ τ (15)

and Z = τ [x �→ σ [x �→ v](x)]. Courtesy of (14), the property (15) can be sim-

plified to σ [x �→ v] [x �→ σ(x)]
S ✲ τ . To complete the proof, one needs to

appeal to the substitution properties (10) and (11) in order to replace the state
σ [x �→ v] [x �→ σ(x)] by the extensionally equal function σ. �
It follows from the specification of the update operation on states (1) that we
may derive the extensional counterparts of (10) and (11)

σ [x �→ σ(x)] (y) = σ(y)
σ [x �→ t1] [x �→ t2] (y) = σ [x �→ t2] (y)

whereas (10) and (11) themselves do not hold for the standard equality concepts
such as Leibniz or Martin-Löf equality, because they distinguish between inten-
sionally distinct functions. We therefore need to axiomatise extensionality [30].
8 Scoping of the implicitly universally quantified p, S and q ensures that v /∈
free(p, S, q).

146 Thomas Kleymann

8 Conclusions

To prove completeness, one needs to be able to construct assertions which express
semantic properties of the programming language. On paper, one usually simply
assumes that the assertion language is sufficiently expressive. Both, soundness
and completeness proofs can be simplified if one does not worry about the actual
syntactic representation of assertions.

Moreover, a thorough treatment of syntax has the unpleasant side-effect that
substantial amount of formal detail is required to deal with substitutions at
the level of states, expressions and assertions. This seems redundant as far as
metatheory is concerned. Specifically, for simple imperative programs, the proofs
of soundness and completeness can be conducted irrespective of the chosen sub-
stitution function. Semantically, the assignment axiom in Hoare Logic simply
lifts substitutions pointwise from the level of states to predicates on states.

Syntax does however matter if, instead of metatheory, one wishes to use the
axioms and rules to verify concrete programs or generate verification conditions.
With a shallow embedding, assertions are functions mapping states to propo-
sitions. Not only are they more difficult to comprehend than their syntactic
counterpart. Without syntactic structure, the proof tool has little guidance on
how to best reduce substitutions in assertions. Verifying the Quicksort algorithm
based on a shallow embedding, we found that the resulting proof obligations
arising from the side-condition of the rule of consequence became too large for
the LEGO system to efficiently process. Having to deal with dependent types,
type-checking involves expensive calculations.

One ought to clarify the objectives of employing a theorem prover. There are
two orthogonal problems in verifying imperative programs.

1. Establishing soundness and completeness for verification calculi is a challeng-
ing task. Incorrect results based on doing proofs by hand have been published
in the past. The metatheory relates semantics and derivability. Syntax of as-
sertions is not an issue. In fact, the whole idea of relative completeness is to
factor out the issue of semantics versus derivability of assertions.

2. Verifying concrete programs is a labour-intensive task for which computer-
aided support is vital.

We feel a reasonable approach would be to employ a shallow embedding for
metatheory and a deep embedding for concrete examples. The calculus for ver-
ifying concrete programs can informally build on the axioms and rules investi-
gated in the meta-theoretical analysis. Relating the two formalisations centres
mostly on the issue of how expressive the assertion language is. We are somewhat
sceptical whether this deserves a machine-checked proof.

But perhaps, there is an alternative. Today’s proof tools are equipped with a
powerful native logic e.g., LEGO supports intuitionistic higher-order logic with
a rich universe of data types [31]. However, this cannot be directly employed for
a deep embedding because its syntax is not inductively defined at the level of the
proof system. But one could consider to treat syntax at a more informal level.

Metatheory of Verification Calculi in LEGO 147

Specifically, based on a shallow embedding, one could employ parsing and pretty-
printing of the theorem prover to convert between the internal representation
and the user interface. Moreover, one could tailor the prover’s tactics engine to
better deal with substitutions. At the code level of the theorem prover, it is easier
to implement a suitable substitution function for a particular class of terms.

Acknowledgements

Thanks to Martin Hofmann for helpful comments on an earlier version of this
report. I would also like to acknowledge the financial support of EPSRC (Ap-
plications of a Type Theory Based Proof Assistant), the British Council (ARC
Project Co-Development of Object-Oriented Programs in LEGO) and the Eu-
ropean Commission (Marie Curie Fellowship).

References

1. Randy Pollack. The Theory of LEGO, A Proof Checker for the Extended Calculus
of Constructions. PhD thesis, Laboratory for Foundations of Computer Science,
University of Edinburgh, 1994. 133

2. Krzysztof R. Apt and Lambert G. L. T. Meertens. Completeness with finite sys-
tems of intermediate assertions for recursive program schemes. SIAM Journal on
Computing, 9(4):665–671, November 1980. 133

3. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969. 134, 140

4. Stefan SokoLlowski. Total correctness for procedures. In J. Gruska, editor, Sixth
Mathematical Foundations of Computer Science (Tatranská Lomnica), volume 53
of Lecture Notes in Computer Science, pages 475–483. Springer-Verlag, 1977. 134,
143

5. Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – part I. ACM Transactions
on Programming Languages and Systems, 3(4):431–483, October 1981. 134, 145

6. Michael J. C. Gordon. Mechanizing programming logics in higher order logic.
In G. Birtwhistle and P. A. Subrahmanyam, editors, Current Trends in Hard-
ware Verification and Automated Theorem Proving (Banff, Alberta), number 15 in
Workshops in Computing, pages 387–439. Springer-Verlag, 1989. 134, 138, 139,
142

7. Peter Vincent Homeier. Trustworthy Tools for Trustworthy Programs: A Mechan-
ically Verified Verification Condition Generator for the Total Correctness of Pro-
cedures. PhD thesis, University of California, Los Angeles, 1995. 134, 135, 142

8. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-
book. Formal Aspects of Computing, 10:171–186, 1998. 134, 138, 142

9. Ian A. Mason. Hoare’s logic in the LF. Technical Report 32, Laboratory for
Foundations of Computer Science, University of Edinburgh, June 1987. 135

10. Thomas Kleymann. Hoare Logic and VDM: Machine-checked soundness and com-
pleteness proofs. PhD thesis ECS-LFCS-98-392, Laboratory for Foundations of
Computer Science, University of Edinburgh, September 1998. 136, 140, 141

11. Arnon Avron, Furio A. Honsell, and Ian A. Mason. Using typed lambda calculus
to implement formal systems on a machine. Technical Report 31, Laboratory for
Foundations of Computer Science, University of Edinburgh, 1987. 136

148 Thomas Kleymann

12. J. von Wright, J. Hekanaho, P. Luostarinen, and T. L̊angbacka. Mechanizing some
advanced refinement concepts. Formal Methods in System Design, 3:49–81, 1993.
136

13. Peter V. Homeier and David F. Martin. Mechanical verification of mutually recur-
sive procedures. In M. A. McRobbie and J. K. Slaney, editors, Automated Deduction
– CADE-13, volume 1104 of Lecture Notes in Artificial Intelligence, pages 201–215,
New Brunswick, NJ, USA, July/August 1996. Springer-Verlag. 13th International
Conference on Automated Deduction. 136, 142

14. John C. Reynolds. Idealized Algol and its specification logic. In D. Néel, editor,
Tools & Notions for Program Construction. Cambridge University Press, 1982. 136

15. Edmund Melson Clarke Jr. Programming language constructs for which it is im-
possible to obtain good Hoare axiom systems. Journal of the ACM, 26(1):129–147,
January 1979. 137

16. Patrick Cousot. Methods and logics for proving programs. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B: Formal Models and
Semantics, chapter 15, pages 841–993. Elsevier, 1990. 139

17. Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19–32, 1967. 140

18. Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs.
Acta Informatica, 3:243–263, 1974. 140

19. David Harel. Proving the correctness of regular deterministic programs: A unifying
survey using dynamic logic. Theoretical Computer Science, 12:61–81, 1980. 140

20. Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequential and Con-
current Programs. Texts and Monographs in Computer Science. Springer, New
York, 1991. 140

21. Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-
ings. Communications of the ACM, 22(8):465–475, August 1979. 140

22. Thomas Schreiber. Auxiliary variables and recursive procedures. In Michel Bidoit
and Max Dauchet, editors, Proceedings of TAPSOFT ’97, volume 1214 of Lecture
Notes in Computer Science, pages 697–711, Lille, France, April 1997. Springer-
Verlag. 141

23. Thomas Kleymann. Hoare Logic and auxiliary variables. Technical Report ECS-
LFCS-98-399, Laboratory for Foundations of Computer Science, University of Ed-
inburgh, October 1998. Submitted to Formal Aspects of Computing. 141

24. Michael Norrish. Derivation of verification rules for C from operational definitions.
In Joakim von Wright, Jim Grundy, and John Harrison, editors, Supplementary
Proceedings of the 9th International Conference on Theorem Proving in Higher
Order Logics: TPHOLs’96, number 1 in TUCS General Publications, pages 69–75.
Turku Centre for Computer Science, August 1996. 142

25. Stephen A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM Journal on Computing, 7(1):70–90, February 1978. 143

26. Jaco de Bakker. Mathematical Theory of Program Correctness. Prentice Hall, 1980.
143

27. Gerald Arthur Gorelick. A complete axiomatic system for proving assertions about
recursive and non-recursive programs. Technical Report 75, Department of Com-
puter Science, University of Toronto, 1975. 143

28. Kurt Sieber. A new Hoare-calculus for programs with recursive parameterless
procedures. Technical Report A 81/02, Fachbereich 10 – Informatik, Universität
des Saarlandes, Saarbrücken, February 1981. 144

29. Ernst-Rüdiger Olderog. Sound and complete Hoare-like calculi based on copy rules.
Acta Informatica, 16:161–197, 1981. 144

Metatheory of Verification Calculi in LEGO 149

30. Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis,
Laboratory for Foundations of Computer Science, University of Edinburgh, 1995.
145

31. Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, 1994. 146

Bounded Polymorphism for Extensible Objects

Luigi Liquori�

Dipartimento di Matematica ed Informatica, Università di Udine
Via delle Scienze 206, I-33100 Udine, Italy

liquori@dimi.uniud.it

Abstract. In the ECOOP’97 conference, the author of the present pa-
per investigated a conservative extension, called Ob+1<:, of the first-order
Object Calculus Ob1<: of Abadi and Cardelli, supporting method exten-
sion in presence of object subsumption. In this paper, we extend that
work with explicit variance annotations and selftypes. The resulting cal-
culus, called Ob+s<:, is a proper extension of Ob+1<:. Moreover it is proved
to be type sound.

Categories: Type systems, design and semantics of object-oriented lan-
guages.

1 Introduction

In the last few years, the problem of designing safe and expres-
sive type-systems for object-based languages (also called prototype-
based languages) has been widely addressed. The seminal works of
[US87,CU89,Mic90,Aba94,FHM94,AC96a] share the same object-oriented
philosophy, where the main entity is the one of object instead of the one of
class. In those papers, classes can be easily codified by appropriate objects, fol-
lowing the “classes-as-objects” analogy of Smalltalk-80 [GR83]. In object-based
languages, objects are modified directly from other objects (the latter called
prototypes) by adding new methods, or by rewriting old method bodies with
new ones. A primitive operation of method call is given, to send a message to
(i.e. invoke a method on) an object. In functional calculi, adding or rewriting a
method produces a new object that inherits all the properties of the original
one.

Another key issue in object-based languages is the one of subsumption, i.e.
the capability to use an object with a longer (or more refined) interface in every
context expecting objects with a smaller (or less refined) interface. This feature
has been showed to be fundamental in object-oriented paradigm, since it allows
a significant reuse of code. Unfortunately, as clearly stated in [FM94,AC96a],
adding object subsumption in presence of object extension make the type system
very often unsound.
� Current Address: LIP, École Normale Supérieure de Lyon, 46, Allée d’Italie, F-69364
Lyon Cedex 07, France, Luigi.Liquori@ens-lyon.fr

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 149–165, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

150 Luigi Liquori

As a simple example of this problem, let us suppose to have a diagonal
point dpoint composed by two fields, x (holds 1) and y (holds self.x). The
type of this object is [x:nat, y:nat]. If we “hide”, by subsumption, the x field,
and we add again x with a new value −1 of type int, and we call y on the
object dpoint, then we lose the subject reduction property, since the evalu-
ation of dpoint.y, of type nat, yields the value −1 of type int. Other works
by [FM95,BL95,Rém95,BBDL97,Rém98,RS98], have addressed the issue of in-
tegrating object subsumption in presence of object extension.

This paper starts from the Abadi & Cardelli’s (first-order) Object Calculus,
called Ob1<: [AC96b]. We briefly recall its features.

– it supports “fixed size” objects (no object extension is provided);
– it supports method override;
– it supports object subsumption;
– its type system catches run-time errors such as message-not-understood.

In [Liq97b], the Ob1<: calculus was extended by allowing object extension com-
patible with object subsumption, by providing a sound static type system and
a typed equational theory on objects. This (conservative) extension was called
Ob+1<:. This paper completes the work of [Liq97b] by extending the type system
of Ob+1<: with selftypes and explicit variance annotations.

Selftypes has been showed to be fruitful in a development of flexible type-
systems for object oriented programming languages (e.g. Eiffel [Mey92], Poly-
TOIL [BSvG95]). Selftypes allow one to give a type to methods that return self
or an update of self (for instance, a move method of a point object will have
type int→selftype, where selftype refers to the type of self). Adding self-
types to object-calculi is not only an exercise of style: in fact we can give a type
to a considerably number of programs that are not typable within the first-order
fragment of Ob+1<:.

Explicit variance annotations, instead, support flexible subtyping, and a di-
rect protection tool from unwanted “read” or “write” operations. More precisely,
an explicit variance annotation is a “label” attached to a method name and de-
fined together with the method body; it could be one of the following: private,
public, read only, and write only. The meaning of explicit variance anno-
tations is straightforward: they denote the access privileges of fields/methods
belonging to the object. Having explicit variance annotations inside the calculus
allows a more disciplined use of methods and fields, and enforces object encap-
sulation.

The addition of selftypes fits well into the type system of [Liq97b], where we
distinguish between two “kinds” of objects-types, namely the saturated object-
types, and the diamond object-types. Shortly, if an object can be typed by a
saturated object-type, then it can receive messages and override the methods
that it contains. Instead, if an object can be typed by a diamond object-type,
then it can receive messages, override some methods, and it can be extended by
new methods. On both types, a subtyping relation is defined.

The subtyping relation on saturated object-types can be commonly found
in the literature: at first approximation, an object typed with a “longer” (i.e.

Bounded Polymorphism for Extensible Objects 151

with more methods) object-type can be used in any context expecting an object
typed with a “shorter” (i.e. with less methods) object-type. At this level, object
extension is forbidden since we can first “hide”, by subsumption, a method m of
type σ, and then extend the object with the same method m of type τ , σ being
incompatible with τ .

For diamond object-types, instead, the subtype relation behaves as follows: it
is still possible to hide a method, but its type is recorded in the diamond object-
type. Since object extension is only allowed on objects typed with diamond
object-types, the hidden methods can be re-added again only with the same
type.

The Ob+s<: calculus that we present in this paper is a conservative extension
of the first-order one Ob+1<:. In summary, our calculus exhibits the following
features:

– extendible objects with appropriate method specialization of inherited meth-
ods,

– a (mytype-covariant) subtyping relation compatible with object extension,
– explicit variance annotations;
– override of explicit variance annotations;
– static detection of run-time errors, such as message-not-understood.

This paper is organized as follows: in Section 2 we will present the Extended
Object Calculus à la Curry (i.e. without type decorations). In Section 3 we will
introduce the types, decorate our Ob+s<: calculus with types, and present the
type system. A number of examples which are meant to give an insight of the
power of Ob+s<: will be provided in Section 4. The last section will be devoted to
a comparison with the paper of Abadi and Cardelli [AC95], the paper of Didier
Rémy [Rém98], and the paper of Riecke and Stone [RS98]. Part of this material
appeared in two technical reports [Liq97a], and [Liq99].

Acknowledgement The author is grateful the anonymous referees to their
helpful comments on this work.

2 The Extended Primitive Object Calculus

The untyped syntax of the Extended Object Calculus is defined by the following
grammar:

o ::= s | [miΥi = ς(si)oi] i∈I | o.m | o.m := ς(s)o | o.m := Υ | o.m := Υς(s)o
Υ ::= private | public | read only | write only.

Here the := operator can be intended as an operator on objects which over-
rides method m in case this method is already present in the object, otherwise it
extends the object with m. The grammar for Υ denotes explicit variance annota-
tions that are introduced to support a clear form of encapsulation and protection
from unwanted “read” or “write” operations. The expression o.m := Υ modifies

152 Luigi Liquori

(i.e. overrides) the explicit variance annotation for m. The explicit variance an-
notations have the following intuitive meaning:

– public: methods that have both read/write privilege;
– read only: methods that only have read privilege;
– write only: methods that only have write privilege;
– private: methods that do not have read/write privilege, i.e. “encapsulated”.

Let o
�
= [miΥi = ς(si)oi{si}] i∈I

(Sel) o.mj
ev→ oj{o} (j ∈ I) (a) (1)

(Over) o.mj := ς(sj)o
′ ev→ [miΥi = ς(si)oi, mjΥj = ς(sj)o

′]i∈I\{j} (j ∈ I) (b) (2)

(Ann) o.mj := Υ
ev→ [miΥi = ς(si)oi, mjΥ = ς(sj)oj]

i∈I\{j} (j ∈ I) (c) (3)

(Ext) o.mj := Υ ς(sj)o
′ ev→ [miΥi = ς(si)oi, mjΥ = ς(sj)o

′]i∈I (j �∈ I) (4)

Table 1. Small-step Untyped Operational Semantics

2.1 Small-Step Operational Semantics

Let o{s} denote an object where the variable s can freely occur, let o{o′} denote
the substitution of the object o′ for every free occurrence of s in o when o{s}
is present in the same context, and let, for i, j ∈ I, with i �= j, mi and mj

be distinct methods. The small-step operational semantics can be given as the
reflexive, transitive and contextual closure of the reduction relation defined in
Table 1. Note that the original semantics of [AC96a] was build from the reduction
rules (1) and (2). As usual, we do not make error conditions explicit. Let →ev→
be the general many-step reduction. We remark that the (Ann) rule overrides
the explicit variance annotation, leaving the method body unchanged; orthog-
onally, the (Over) rule modifies the method body, leaving the explicit method
annotation unchanged. The condition (a), (b), (c) are the following ones:

(a) �
= Υj ∈ {public, read only}

(b) �
= Υj ∈ {public, write only}

(c) �
= Υj : υj , Υ : υ, and υj <: υ.

The condition (a) allows message selection only for fields/methods that are pub-
lic or readable from the outside (i.e. annotated with public, or read only).
The condition (b) allows overriding only for fields/methods that are public or
writable from the outside (i.e. annotated with public, or write only). The con-
dition (c) can be explained as follows. A variance annotation (or variance type υ)
can be assigned to an explicit variance annotation (Υ) via a simple “type” sys-
tem proving judgments of the shape Υ : υ, where υ ∈ {+,− ,◦ ,• }. The type rules
are:

public : ◦ private : • read only : + write only : −.

Bounded Polymorphism for Extensible Objects 153

σ, τ ::=
t, u type-variables
ω the biggest type
obj t.[miυi : σi{t}] i∈I saturated object-type, mi distinct
obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I

j∈J diamond object-type, υj ∈{◦,− }, I∩J=∅

Table 2. Syntax of Types

Given that, the (c) condition assures that the new explicit variance annotation Υ
will override the original one Υj only if their variance types are compatible.
Compatibility is assured by a partial order relation (<:) on variance types,
given by the following “chains”:

◦ <: + <: •, and ◦ <: − <: •.

As a remark, we observe that we could, in principle, build a simpler and more
liberal small-step semantics by dropping the side conditions (a), (b), and (c).
The type system always guarantees the soundness of well-typed expressions.

For the small-step operational semantics, we can derive an untyped equa-
tional theory (whose judgment is 	 o ev= o′) from the reduction rules, by simply
adding rules for symmetry, transitivity and congruence, and reformulating the
reduction rules as equalities. We can also define quite simply a big-step opera-
tional semantics that also induces a “lazy” strategy of evaluation, via a natural
proof deduction system à la Plotkin. This semantics maps every closed expression
into a normal form, i.e. an irreducible term (for a presentation of the big-step
semantics and of the equational theory see [Liq99]).

3 The Type System

In the Ob+s<: type system, the set of legal types is defined by the grammar of Ta-
ble 2. The type-constant ω is the supertype of every type. We omit how to encode
basic data-types which can be treated as in [AC96a]. The bound type-variable t
can (freely) occur in the σi, σj ’s, and it is constrained to be covariant. As ex-
plained in many papers, (among others [Cas95,Cas96,BCC+96,AC96a,Liq98])
the covariance of selftype is necessary if we want to have a statically typed
calculus with subtyping. As such, binary methods (i.e. methods that receive as
input an argument of the same type of self) are lost. When a method mj (j ∈ I)
is invoked, the result will have a type σj{t} in which every free occurrence of t
is replaced with the type τ of the receiver of the message, i.e. σj{τ}, therefore
showing the “recursive” nature of that type.
Explicit Variance Annotations. As we have sketched in the previous sec-
tion, each υi, υj inside object-types is a variance annotation, i.e. one of the sym-
bols +, −, ◦, or •, standing, respectively, for covariance, contravariance, public-
invariance, and private-invariance. Any omitted υ’s are taken to be equal to ◦.
Covariant methods allow covariant subtyping, but prevent update

154 Luigi Liquori

(see [FM94,AC96a]). Symmetrically, contravariant methods allow contravariant
subtyping, but prevent invocation. Public-invariant methods, instead, can be in-
voked and updated. By subtyping, public-invariant methods can be regarded as
either covariant or contravariant. Private-invariant methods cannot be invoked
nor updated: these methods are typically introduced (and hence type-checked)
being public, or readable, or writable, but are later “sealed” (implicitly via sub-
typing, or explicitly via annotation override) as private methods that cannot
be accessed nor updated from the outside. The “compatibility” relation between
variance annotations is depicted below (where υ→υ′ means υ<:υ′, i.e. a method
annotated with υ can be also annotated with υ′), together with all possible forms
of protection from the outside of the object performed by variance annotations.

+

-

Variance Read? Write?

◦ Yes Yes

+ Yes No

− No Yes

• No No

Saturated-types. The saturated-types obj t.[miυi : σi{t}] i∈I are the ordinary
object-types of [AC96a]; shortly, objects assigned to saturated-types can receive
messages and can be rewritten.
Diamond-types. The diamond-types obj t.[miυi : σi{t}
 mjυj : σj{t}] i∈I

j∈J are
directly derived from the one of [Liq97b]. Diamond-types can be assigned to
objects which can be extended and overridden. The symbol
 distinguishes the
two parts of that object-type, i.e. the interface-part and the subsumption-part;
the former part describes all methods (with their types) that may be invoked
(if not private or write-only), the latter conveys, instead, information about
(the types of) methods that are subsumed in the type-checking phase. When a
method is subsumed in a diamond-type it simply moves from the interface-part
to the subsumption-part. This “shift” guarantees that any future addition of that
method will be type-consistent with the previous one. The subsumption-part is
also used as a infinite “container” of unused method types; this is important
when we need to add a “fresh” method, in order to not loose the full flexibility
of rapid prototyping. The shifting and the stocking of methods are performed
using a suitable subtype system, presented in the Appendix.

Variance annotations are elegantly integrated within object-types. Since a
method can also “migrate” from the subsumption-part to the interface-part by
object extension, and since subsumed methods cannot be invoked, it follows that
the occurrence of mυ : σ in the subsumption-part of a diamond-type is allowed
only if υ ∈ {◦,− }, i.e. for public or write-only methods (an object extension of
a previously subsumed method behaves, operationally, as an object override).

3.1 Types and Judgments

The judgments we set about to prove have the forms:

Γ 	 ok, Γ 	 σ, Γ 	 o : σ, Γ 	 σ<: τ , Γ 	 υσ<:υτ ,

Bounded Polymorphism for Extensible Objects 155

where Γ is a context which gives meaning to the free variables of o, σ, and τ ,
generated by the grammar: Γ ::= ε | Γ, s : σ | Γ, u<:σ. In contexts, we often
write s : u<:σ, to denote u<:σ, s : u. By deriving the first two judgments we
check the well-formation of the context Γ and of the type σ, respectively; while
with the third one, we assign a type σ to the expression o. The last two judgments
are the usual subtyping judgments between types (with variance annotations)
of [AC96a]. As shown in Section 2, in order to override an explicit method
annotation, we need the auxiliary judgment Υ : υ, that assigns a variance type υ
to an explicit variance annotation υ.
Cova/Contravariance. Formally, σ{t+} stands for a type where the type-
variable t occurs only covariantly. Intuitively, σ{u+} means that u occurs at
most positively in σ; similarly, σ{u−} means that u occurs at most negatively
in σ. The formal definition of covariance follows in Table 3.

Covariance
t{u+} always
ω{u+} always

obj t.[miυi : σi{t}] i∈I{u+} if t = u or for all i ∈ I :

if υi ≡+, then σi{u+}
if υi ≡−, then σi{u−}
if υi ≡◦, then u �∈ FV (σi)
if υi ≡•, always

Contravariance
t{u−} if t �= u
ω{u−} always

obj t.[miυi : σi{t}] i∈I{u−} if t = u or for all i ∈ I :

if υi ≡+, then σi{u−}
if υi ≡−, then σi{u+}
if υi ≡◦, then u �∈ FV (σi)
if υi ≡•, always

Private/Public Invariance
σ{u•} if σ{u+} or σ{u−}
σ{u◦} if neither σ{u+} nor σ{u−} nor σ{u•}
Variance & �-types
obj t.[miυi : σi{t}�

mjυj : σj{t}] i∈I
j∈J{uυ} if obj t.[miυi : σi{t}] i∈I{uυ} and

obj t.[mjυj : σj]
j∈J{uυ}

Table 3. Variance Occurrences
The type rules for well-formed contexts and types are routine, and can be

found in Appendix. We only remark that in the (T−
) rule, we require that, for
all j ∈ J , the type annotations υj , must belong to {◦,− }, so allowing a method
to be “writable”.

3.2 Subtyping

The more important subtyping rules are presented in Table 4; the full set can
be found in Appendix. The subtyping rules that deal with diamond-types and
variance types are the same as in [Liq97b], and [AC95], respectively (see Ap-
pendix). Moreover we need some extra rules, for instance the rules (S−V ar�)

156 Luigi Liquori

(S−V ar)
Γ, u<: obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I

j∈J � υkσk{u}<:υ′
kσ

′
k{u} ∀ k ∈ I ∪ J

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J <: obj t.[miυ

′
i : σ

′
i{t} � mjυ

′
j : σ

′
j{t}] i∈I

j∈J

(S−V ar)
Γ, u<: obj t.[miυi : σi{t}] i∈I � υkσk{u}<: υ′

kσ
′
k{u} ∀ k ∈ I

Γ � obj t.[miυi : σi{t}] i∈I <: obj t.[miυ
′
i : σ

′
i{t}] i∈I

Γ � σ υ ∈ {◦,• }
Γ � υσ<: υσ

(S−Inv1)
Γ � σ υ ∈ {+,− }

Γ � υσ<: •σ
(S−Inv2)

Table 4. Some Subtyping Rules

and (S−V ar) to deal with variance types for object-types of the same length,
and the rule (S−Inv2) to say that a read-only or write-only component can be
regarded as a private one. The rule (S−Inv1) is simply a reformulation of reflex-
ivity. As a side remark, observe that the condition ∀ k ∈ I ∪J in rule (S−V ar�)
allows to apply this rule also in the subsumption-part of the diamond-type. This
condition is more liberal than the simpler ∀ k ∈ I, since it allows one to re-add
a forgotten method with a type different from the one we have forgotten (in
accordance to its variance type), without losing type soundness.

3.3 Type Rules

We decorate our Extended Object Calculus with types as follows:

o ::= s | [miΥi = ς(si:u<: τi)oi] i∈I | o.m | o.m := ς(s:u<: τ)o |
o.m := Υ | o.m := Υς(s:u<: τ)o.

The ς-binder scopes over the object-variable s, referring to self, and the type-
variable u, referring to the type of self (i.e. selftype). The method bodies
could be intended, in the F<: jargon, as the polymorphic lambda abstrac-
tion Λu<:σi.λs:u.oi. We analyze in detail the most important type rules of
Ob+s<:(presented in Table 5); see Appendix for the full set of rules.

[(V−Sel)] This rule gives a type for a message send; in order for a message
send to be type correct, the host object o must contain the method name mk

in its type. Moreover, the substitution of t with τ reflects the recursive nature
of object-types. The host object o can also be an object-variable s: in this case
the type τ will be a type-variable u. Method selection is permitted only on
public-invariant or covariant components.

[(V−Over)] This rule overrides the method mk provided that mk belongs to
the interface of the object o, (i.e. k ∈ I), and that the new body for mk uses
the methods already present in o; this last condition is ensured by the second
subtyping judgment of the premises, and corresponds to say that those methods

Bounded Polymorphism for Extensible Objects 157

are present in the interface-part of the type τ . Object override is allowed only on
public-invariant or contravariant components. We also observe that τ can also be
a type-variable, and, as such, method override is allowed inside method bodies.

[(V−Ann1)] This rule overrides the explicit variance annotation for
method mk (already present in the type of o), only if the new annotation υ has a
variance type compatible with the variance type of mk present in the object-type
assigned to o. In this rule, the type of the object o is a saturated-type but can
be a diamond-type as well, as in rule (V−Ann2). The second premise guarantees
the presence of method m and the compatibility of its variance type with the new
one.

[(V−Ext)] This rule extends an object o with a method mk. Firstly, one can
see that we cannot extend an object whose object-type is saturated. Secondly,
this rule extends an object with a new (fresh) method if and only if that method
is present in the subsumption-part of the diamond-type assigned to the object to
be extended. But this condition can always be satisfied by a diamond-type thanks
to the subtyping rule (S−Ext�). Of course we have Υ : υk. The condition H ⊆ I
guarantees that the methods which are essential to type the body o′ are already
present in the interface-part of the type obj t.[miυi : σi{t}
 mjυj : σj{t}] i∈I

j∈J .
Note that this rule can also be applied when the method belongs to o but has

been already subsumed via an application of a subtyping rule (S−Shift�). In
this case, operationally, is a method override. Moreover observe that, since object
extension modifies from the outside the object, it follows that we can extend
an object only with public or write only components. In fact, by looking at the
subtyping rules, we can see that all variance annotations inside the subsumption-
part are public-invariant or contravariant.
As minor remarks on object extension, observe that:

– a “self-extension” operation is forbidden inside method bodies: in other
words, the object o �= [m = ς(s)s.n := ς(s)1], where n does not belong to
o, cannot be type-decorated, because we are not able to give any correct
type for the method m.

– inside method bodies, the ς-bound variables si (referring to self) in the same
object o have different bound object-types. As an example consider the ob-
ject [m = ς(s:u<: [m:int])1, n = ς(s′:u<: [m:int, n:int])s′.m]of type[m:int, n:int].
This fits well with the semantics of the message send thanks to the presence
of the subtyping rule (S−Width).

– if we override the method n of o′ with a new body (e.g. ς(s:u<: [n:int])1),
the new bound for u in n does not need to be related with the older one;
this is sound because the bound depends on the methods useful to type the
new body.

– thanks to our sophisticated subtyping system we are not obliged to know
“a priori” (in advance) all the future extensions of an object; in fact, the
saturated-part of a diamond-type can always be filled with fresh methods
thanks to the rule (S−Ext�).

The type system enjoy the subject reduction property.

158 Luigi Liquori

Γ � o : τ Γ � τ <: obj t.[mkυk : σk{t}] υk ∈ {◦,+ }
Γ � o.mk : σk{τ}

(V−Sel)

Γ � o : τ Γ � τ <: obj t.[miυi : σi{t}] i∈I k ∈ I
Γ, sk : u<: obj t.[miυi : σi{t}] i∈I � o′ : σk{u} υk ∈ {◦,− }

Γ � o.mk := ς(sk:u<: obj t.[miυi : σi{t}] i∈I)o′ : τ
(V−Over)

Γ � o : obj t.[miυi : σi{t}] i∈I

Γ � obj t.[miυi : σi{t}] i∈I <: obj t.[mkυ : σk{t}] Υ : υ

Γ � o.mk := Υ : obj t.[miυi : σi{t}, mkυ : σk{t}]i∈I\{k}
(V−Ann1)

(Let τk
�
= obj t.[mhυh : σh{t}]h∈H∪{k}).

Γ � o : obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J k ∈ J

Γ, sk : u<: τk � o′ : σk{u} Υ : υk H ⊆ I

Γ � o.mk := Υ ς(sk:u<: τk)o
′ : obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I∪{k}

j∈J\{k}

(V−Ext)

Table 5. Some Term Typing Judgments

Theorem 1 (Subject Reduction for Ob+s<:).
If Γ 	 o : σ and o

ev→ o′, then Γ 	 o′ : σ.

4 Applications

In this section, we present a number of examples that help to illustrate the
features of Ob+s<:. Any unspecified υ and υ are taken to be equal to public
and ◦ respectively.

Method Specialization. The following extendible point

point
�
= [x = ς(s:u<:σ1)1, plus1 = ς(s:u<:σ2)s.x := ς(s′:u′<:σ1)s.x+ 1],

is typable with obj t.[x:int, plus1:t �], being σ1≡[x:int], and σ2≡obj t.[x:int, plus1:t].

Subtyping. Let point be as before, and let c point be obtained by extending
point with a col field. By an inspection of the typing rules for Ob+s<: we derive
	 point : P�, and 	 c point : CP�, where

P
�
= obj t.[x:int, plus1:t] CP

�
= obj t.[x:int, col:colors, plus1:t]

P�
�
= obj t.[x:int, plus1:t
] CP�

�
= obj t.[x:int, col:colors, plus1:t
].

Bounded Polymorphism for Extensible Objects 159

Now consider the following programs and related (derivable) types, where we
introduce λ-binders to denote functions:

f1
�
= λ(s:P)s.x : P→int

f2
�
= λ(s:P)s.x := ς(s′:u<: [x:int])2 : P→P

f3
�
= λ(s:P�)s.col := ς(s′:u<: [col:colors])red : P�→CP�.

Again, by inspecting the typing rules, we find that the following judgments are
derivable:

	 f1 (point) : int 	 f1 (c point) : int
	 f2 (point) : P 	 f2 (c point) : P
	 f3 (point) : CP� (�	 f3 (c point) : CP�).

The last judgment is correctly false since CP� �<:P�.

Method Annotations for Encapsulation. Consider an object p with a field x
and two methods, namely set and get, invokable from the outside which, re-
spectively, return and modify the value of x. It is natural to give the following
saturated-type to p:

Point
�
= obj t.[x◦ : int, get◦ : int, set◦ : int→t].

Then, in order to make the local field x protected against external access, and
the get and set methods not writable, we could override p as follow:

prot p
�
= ((p.x := private).get := read only).set := read only,

of type
ProtPoint

�
= obj t.[x• : int, get+ : int, set+ : int→t],

being that Point<:ProtPoint. So, the x variable becomes protected from the
outside, and the get and set methods can be only invoked but not updated.
As such, we obtain a neat distinction between public messages (i.e. the interface
visible outside the object) and private variables (i.e. variables or local methods
not accessible from the outside).

Classes as Collection of Pre-methods. In [Liq97b] a first-order encoding
of classes-as-objects was given. As the Ob+s<: is an extension of [Liq97b], it
clearly follows that it also permit the building of classes and class instances.
However, other encoding of classes are possible, provided that we increase our
Ob+s<: with polymorphic types. By polymorphic types we are able to build
classes as a collection of parametric pre-methods1. A “pre-methods” is a poly-
morphic procedure that can be later used to construct a method parametric
in the type of self. As an example, let the following object mem

�
= [get =

ς(s)true, set = ς(s)λ(b)s.get:=ς(s′)b] of type Mem
�
= obj t.[get : bool, set :

1 If one want to play with Ob+s<:, one may add polymorphic types and type abstrac-
tion/application, following Section 4 of [AC95].

160 Luigi Liquori

bool→t], and consider the “class” memClass of [AC95] (for the sake of simplic-
ity, all type-decorations are omitted, and λ() stands for polymorphic type-
abstraction)

memClass
�
= [new = ς(s)[get = ς(s′)s.pre-get()(s′),

set = ς(s′)s.pre-set()(s′)],
pre-get = ς(s)λ()λ(s′)false
pre-set = ς(s)λ()λ(s′)λ(b)s′.get := ς(s′′)b],

of type Class(Mem) �= [new :Mem, pre-get:∀(u<:Mem)u→bool, pre-set:
∀(u<:Mem)u→bool→u]. The pre-get and pre-set methods of memClass are
parametric pre-methods that do not use the self of memClass; they are used
inside the bodies of get and set of the class instances generated by the new
method of memClass. An instance mem of memClass will be generated by sending
the message new to the class, i.e.: mem �= memClass.new :Mem. More generally, if
a class instance can be typed with Type

�
= obj t.[miυi : σi{t}
] i∈I

, then the type
of the class whose instances can be typed with Type is Class(Type) �= [new :
Type, pre-mi : ∀(u<:Type)u→σi{u}] i∈I

. As an interesting remark, we note that
the type of class instances is a diamond-type: as such, all class instances can be
dynamically extended by new methods (in pure prototype-based style).

Modelling Inheritance. Given an object-type Type′ (we consider a diamond-
type, but we can consider a saturated-type as well) of the shape obj t.[miυi :
τi{t}
] i∈I∪J

, and a class type Class(Type′) �= [new:Type′, pre-mi :
∀(u<:Type′)u→τi{u}] i∈I∪J

, we can say that forall i ∈ I, a pre-method pre-mi

is inheritable from Class(Type) to Class(Type′) if and only if u<:Type′ im-
plies σi{u}<:τi{u}. As in [AC95], the above condition hold for invariant and
contravariant components, but not necessarily for covariant components. We
overcome this restriction on covariant components using object extension. A
detailed treatment of inheritance can be found in [AC95].

5 Related Work

This section is devoted to a comparison between some interesting and related
works appeared in the literature in the last few years.
[Rém98] A calculus very close to Ob+s<: is the one of Didier Rémy. In this
calculus, objects have the shape ζ(χ, τ)[mi = ς(si)oi] i∈I , where ζ is a binder
for types, τ denotes the type of the whole object, i.e selftype, χ is a type-
variable that also denotes selftype (being that in the type rules si:χ), mi are
the methods contained in the object with relative bodies ς(si)oi.

Let o
�
= ζ(χ, τ)[mi = ς(si)oi] i∈I . Also in the calculus of Rémy, it is pos-

sible to extend objects with new methods; when we extend an object with a
method m (in our notation o.m := ς(s:u<: τ)o′) this reduces to
ζ(χ,τ←τ ′)[mi=ς(si)oi,m=ς(s)o] i∈I

, where τ ′ is the type of self in the body of m,

Bounded Polymorphism for Extensible Objects 161

and τ ← τ ’ is the new type of self obtained by suitable type reduction rules,
necessary to maintains programs both well-formed and well-typed (but the op-
erational semantics is still not type-driven). While there are similarities with our
proposal and the one of [Rém98] - notably the use of subtyping for dealing with
object extension - the two calculi have some fundamental differences:

– in [Rém98] after an object update, the type of self must be “recompiled”
using the ← function, since the type of self is factorised by all methods;
this is not the case in Ob+s<: because of a “redundancy” of type annotations
inside method bodies;

– the [Rém98] calculus have the, so called, virtualmethods (absent inOb+s<:);
– the Ob+s<: calculus have override of explicit annotations (absent in [Rém98]);
– variance annotations are the same in both calculi, but private-invariant an-
notation is absent in [Rém98].

– in Ob+s<: we distinguish between two shape of objects, namely extendible
objects, and “fixed-size” objects, while in [Rém98] all object are taken to be
extendible;

– in [Rém98], object-types are interpreted as total functions from method la-
bels to types, while in Ob+s<: we rely on the more conventional interpretation
of object-types as partial functions.

[RS98] The paper of Riecke and Stone describes a functional Object Calculus
à la Abadi and Cardelli that allows unrestricted object extension in presence of
object subsumption. The novelty of this paper is that we can forget a method
with type σ and later re-add it with a type τ incompatible with σ. This can be
done by distinguish “external” method names by “internal” ones. A proper “dic-
tionary” is attached to each object in order to“link” external labels to internal
labels. Private fields can be hidden from the outside by subsumption.

One of the novelty of this paper is the operational semantics that at each step
manipulates method dictionaries. This manipulation has a run-time cost that can
slowly the running of the program, although some optimization techniques are
proposed by the authors. Moreover the style of programming induced by adding
dictionaries has an impact on the style of programming, since after a while of
extensions and subsumptions steps one must reconstruct the correct behaviour
of some methods.
[AC95] This paper is the “father” of the present paper; many of the ideas present
in this paper have stimulated our development. The Imperative Object Calculus
is to our knowledge the first object calculus with an imperative semantics, a
sound type system with selftypes, subtyping and variance annotations.

References

Aba94. M. Abadi. Baby Modula–3 and a Theory of Objects. Journal of Functional
Programming, 4(2):249–283, 1994. 149

AC95. M. Abadi and L. Cardelli. An Imperative Object Calculus. In Proc. of TAP-
SOFT/FASE, Lecture Notes in Computer Science, pages 471–485. Springer-
Verlag, 1995. Also in Theory and Practice of Object Systems 1(3):151-166,
1995. 151, 155, 159, 160, 161

162 Luigi Liquori

AC96a. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996. 149,
152, 153, 154, 155

AC96b. M. Abadi and L. Cardelli. A Theory of Primitive Objects: Untyped and
First Order Systems. Information and Computation, 125(2):78–102, 1996.
150

BBDL97. V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping
Constraint for Incomplete Objects. In Proc. of TAPSOFT/CAAP, volume
1214 of Lecture Notes in Computer Science, pages 465–477. Springer-Verlag,
1997. 150

BCC+96. K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens,
and B. Pierce. On Binary Methods. Theory and Practice of Object Systems,
1(3), 1996. 153

BL95. V. Bono and L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell
Lambda Calculus of Objects. In Proc. of CSL, volume 933 of Lecture Notes
in Computer Science, pages 16–30. Springer-Verlag, 1995. 150

BSvG95. K.B. Bruce, A. Shuett, and R. van Gent. Polytoil: a Type-safe Polymorphic
Object Oriented Language. In Proc. of ECOOP, volume 952 of Lecture
Notes in Computer Science, pages 16–30. Springer-Verlag, 1995. 150

Cas95. G. Castagna. Covariance and contravariance: conflict without a cause. ACM
Transactions on Programming Languages and Systems, 17(3):431–447, 1995.
153

Cas96. G. Castagna. Object-Oriented Programming: A Unified Foundation.
Progress in Theoretical Computer Science. Birkäuser, Boston, 1996. 153

CU89. C. Chambers and D. Ungar. Customization: Optimizing Compiler Technol-
ogy for Self, a Dinamically-typed Object-Oriented Programming Language.
In SIGPLAN-89 Conference on Programming Language Design and Imple-
mentation, pages 146–160, 1989. 149

FHM94. K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects
and Method Specialization. Nordic Journal of Computing, 1(1):3–37, 1994.
149

FM94. K. Fisher and J. C. Michell. Notes on Typed Object-Oriented Programming.
In Proc. of TACS, volume 789 of Lecture Notes in Computer Science, pages
844–885. Springer-Verlag, 1994. 149, 154

FM95. K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with
Subtyping. In Proc. of FCT, volume 965 of Lecture Notes in Computer
Science, pages 42–61. Springer-Verlag, 1995. 150

GR83. A. Goldberg and D. Robson. Smalltalk-80: the Language and its Implemen-
tation. Addison-Wesley, 1983. 149

Liq97a. L. Liquori. Bounded Polymorphism for Extensible Objects. Technical Re-
port CS-24-96, Computer Science Department, University of Turin, Italy,
1997. 151

Liq97b. L. Liquori. An Extended Theory of Primitive Objects: First Order System.
In Proc. of ECOOP, volume 1241 of Lecture Notes in Computer Science,
pages 146–169. Springer-Verlag, 1997. 150, 154, 155, 159

Liq98. L. Liquori. On Object Extension. In Proc. of ECOOP, volume 1445 of
Lecture Notes in Computer Science, pages 498–552. Springer-Verlag, 1998.
153

Liq99. L. Liquori. Bounded Polymorphism for Extensible Objects. Technical Re-
port RR 1999-16, École Normale Supérieure de Lyon, France, 1999. 151,
153

Bounded Polymorphism for Extensible Objects 163

Mey92. B. Meyer. Eiffel:The language. Prentice Hall, 1992. 150
Mic90. J. C. Michell. Toward a Typed Foundation for Method Specialization and

Inheritance. In Proceedings of POPL, pages 109–124. The ACM Press, 1990.
149

Rém95. D. Rémy. Refined Subtyping and Row Variables for Record Types. Draft,
1995. 150

Rém98. D. Rémy. From Classes to Objects via Subtyping. In Proc. of ESOP, volume
1381 of Lecture Notes in Computer Science, pages 200–220. Springer-Verlag,
1998. 150, 151, 160, 161

RS98. J.G. Riecke and C. Stone. Privacy via Subsumption. In Electronic proceed-
ings of FOOL-98, 1998. 150, 151, 161

US87. D. Ungar and B. Smith, R. Self: The Power of Simplicity. In Proc. of
OOPSLA, pages 227–241. The ACM Press, 1987. 149

164 Luigi Liquori

A The Extended Object Calculus

Well-formed Contexts

ε � ok
(C−ε)

Γ � σ s �∈ dom(Γ)

Γ, s : σ � ok
(C−s)

Γ � σ t �∈ dom(Γ)

Γ, t<:σ � ok
(C−t)

Well-formed Types

Γ, t<:ω � σi{t+} ∀ i ∈ I I ∩ J = ∅
Γ, t<:ω � σj{t+} ∀j ∈ J υj ∈ {◦,− }

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J

(T−�)
Γ, t<:σ, Γ ′ � ok

Γ, t<:σ, Γ ′ � t
(T−V ar)

Γ, t<:ω � σi{t+} ∀ i ∈ I

Γ � obj t.[miυi : σi{t}] i∈I
(T−Sat) Γ � ok

Γ � ω
(T−Ω)

Subtyping Judgments with Variance Annotations

Γ � σ <:σ′ υ ∈ {◦,+ }

Γ � υσ<:+σ′
(S−Cova)

Γ � σ′<:σ υ ∈ {◦,− }

Γ � υσ<:−σ′
(S−Contra)

Γ � σ υ ∈ {◦,• }
Γ � υσ<: υσ

(S−Inv1)
Γ � σ υ ∈ {+,− }

Γ � υσ<: •σ
(S−Inv2)

Standard Subtyping Judgments

Γ � σ

Γ � σ <:σ
(S−Refl)

Γ � σ<: τ Γ � τ <: ρ

Γ � σ<: ρ
(S−Trans) Γ � σ

Γ � σ<:ω
(S−Ω)

Subtyping Judgments for Object-Types

(S−V ar)
Γ, u<: obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I

j∈J � υkσk{u}<: υ′
kσ

′
k{u} ∀ k∈I∪J

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J <: obj t.[miυ

′
i : σ

′
i{t} � mjυ

′
j : σ

′
j{t}] i∈I

j∈J

Γ, u<: obj t.[miυi : σi{t}] i∈I � υkσk{u}<: υ′
kσ

′
k{u} ∀k∈I

Γ � obj t.[miυi : σi{t}] i∈I <: obj t.[miυ
′
i : σ

′
i{t}] i∈I

(S−V ar)

(S−Shift)
Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I∪K

j∈J υk∈{◦,− } ∀k∈K

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I∪K
j∈J <: obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I

j∈J∪K

(S−Ext)
Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I

j∈J∪K υk∈{◦,− } ∀k∈K

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J <: obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I

j∈J∪K

Bounded Polymorphism for Extensible Objects 165

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J <: obj t.[miυi : σi{t}] i∈I

(S−Sat)

Γ � obj t.[miυi : σi{t}] i∈I∪J

Γ � obj t.[miυi : σi{t}] i∈I∪J <: obj t.[miυi : σi{t}] i∈I
(S−Width)

Type Rules for Objects

Γ, s : σ, Γ ′ � ok

Γ, s : σ, Γ ′ � s : σ
(V−Proj) Γ � o : σ Γ � σ <: τ

Γ � o : τ
(V−Sub)

Γ � o : τ Γ � τ <: obj t.[mkυk : σk{t}] υk ∈ {◦,+ }
Γ � o.mk : σk{τ}

(V−Sel)

(Let τi
�
= obj t.[mhυh : σh{t}]h∈Hi∪{i}).

Γ, si : u<: τi � oi : σi{u} Hi ⊆ I Υi : υi ∀i ∈ I

Γ � [miΥi = ς(si:u<: τi)oi]
i∈I : obj t.[miυi : σi �] i∈I

(V−Obj)

Γ � o : τ Γ � τ <: obj t.[miυi : σi{t}] i∈I k ∈ I

Γ, sk : u<: obj t.[miυi : σi{t}] i∈I � o′ : σk{u} υk ∈ {◦,− }

Γ � o.mk := ς(sk:u<: obj t.[miυi : σi{t}] i∈I)o′ : τ
(V−Over)

Γ � o : obj t.[miυi : σi{t}] i∈I

Γ � obj t.[miυi : σi{t}] i∈I <: obj t.[mkυ : σk{t}] Υ : υ

Γ � o.mk := Υ : obj t.[miυi : σi{t}, mkυ : σk{t}]i∈I\{k}
(V−Ann1)

Γ � o : obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J

Γ � obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J <: obj t.[mkυ : σk{t}] Υ : υ

Γ � o.mk := Υ : obj t.[miυi : σi{t}, mkυ : σk{t} � mjυj : σj{t}]i∈I\{k}
j∈J

(V−Ann2)

(Let τk
�
= obj t.[mhυh : σh{t}]h∈H∪{k}).

Γ � o : obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I
j∈J k ∈ J

Γ, sk : u<: τk � o′ : σk{u} Υ : υk H ⊆ I

Γ � o.mk := Υ ς(sk:u<: τk)o
′ : obj t.[miυi : σi{t} � mjυj : σj{t}] i∈I∪{k}

j∈J\{k}

(V−Ext)

About Effective Quotients

in Constructive Type Theory�

Maria Emilia Maietti

School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, United Kingdom

mem@cs.bham.ac.uk

Abstract. We extend Martin-Löf’s constructive set theory with effec-
tive quotient sets and the rule of uniqueness of propositional equality
proofs. We prove that in the presence of at least two universes U0 and U1

the principle of excluded middle holds for small sets. The key point is
the combination of uniqueness of propositional equality proofs with the
effectiveness condition that allows us to recover information on the equiv-
alence relation from the equality on the quotient set.

1 Introduction

Within the framework of Martin-Löf’s Intuitionistic Type
Theory [Mar84,NPS90], in order to generate some formal topologies [Sam87], the
quotient sets are also desirable [NV97]. But some care is necessary in extending
Martin-Löf’s set theory with quotient sets if we want to keep constructivity.

Here, we consider the extension of intensional Martin-Löf’s set
theory (MLTT) with quotient sets as formulated in [Hof95] and we want to
explore the possibility to make quotients effective. Intuitively, effectiveness for
quotient sets means that if two elements of a set are in the same “equivalence
class” as represented by an element of the quotient set, then the two elements
satisfy the equivalence relation. A property with this name can be found in cat-
egory theory as referred to an equivalence relation (see e.g. [MR77]). The usual
constructions of quotients in classical set theory, in categorical universes like
toposes and in the setoids made out of type theory enjoy this property.

In this paper we give an answer to the question of extending MLTT with
effective quotients, if we also add the rule of uniqueness of equality proofs [Hof95].
Indeed, even if the rule of uniqueness of equality proofs is not provable in the
intensional version of Martin-Löf’s set theory as proved by M. Hofmann and T.
Streicher [HS95], however it is definable by pattern-matching [Coq92], which is
a very useful tool for implementations of type theory.

To formulate effectiveness we need to pass to the extension of Martin-Löf’s
type theory, here called iTT, augmented with the true judge-
ment A true (see [Mar84,Val95]). According to the paradigm in [Val95], the
� This work has been done at the Department of Mathematics, University of Padova,
Italy

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 164–178, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

About Effective Quotients in Constructive Type Theory 165

rules of iTT about true judgements, called admissible, are exactly those ob-
tained from MLTT such that we can prove at the level of the metalanguage the
following preservation property: the judgement “A true” is derivable in iTT iff
there is a proof-term “a” such that “a ∈ A” is derivable in MLTT.
We call iTTQ the extension with true judgements corresponding to MLTTQ,
that isMLTT augmented with intensional quotients and the uniqueness of equal-
ity proofs. Now, in iTTQ we express the effectiveness condition in terms of true
judgements as follows

a ∈ A b ∈ A Id(A/R, [a], [b]) true
R(a, b) true

and we call iTTEQ the extension of iTTQ with this condition. We add effective-
ness as a condition on true judgements, because we are not able to think of a
constructive type theory with only the four kinds of judgements

A set A = B a ∈ A a = b ∈ A
that extends MLTTQ and whose extension with true judgements makes the
effectiveness condition admissible. Indeed, in order to admit the effectiveness
condition in the corresponding extension with true judgements, this claimed
type theory should allow to derive the following rule

eff
a ∈ A b ∈ A p ∈ Id(A/R, [a], [b])

?(a, b, p) ∈ R(a, b)
for some proof-term ?(a, b, p).

MLTT �� preservative �� iTT

MLTT Q �� preservative �� iTT Q

MLTT Q+ eff(?) �� preservative �� iTT EQ+ eff(?)

Actually, we will show here that we can not have such a theory where eff can
be derived, since even in the extension iTTEQ the principle of excluded middle
holds for small sets. Indeed, in the presence of quotient sets with the effective-
ness condition, the rule of uniqueness of propositional equality proofs and at
least two universes U0 and U1, to which the codes of quotient sets are added,
we can reproduce for small sets the proof of Diaconescu [Dia75] made within
topos theory that the axiom of choice implies the principle of excluded middle.
Therefore, to be clearer, if a constructed type theory including MLTTQ + eff
existed, then its preservative extension with true judgements would admit the
effectiveness condition. Hence, as shown here, we would be able to prove the
principle of excluded middle for small sets at the level of true judgements and as
a consequence of the preservation property in the pure type theory itself against
its claimed constructivity.

166 Maria Emilia Maietti

In the framework of set theory the proof reproduced here shows the incom-
patibility, from the intuitionistic point of view, between the extensionality axiom
and the axiom of choice. In the framework of topos theory it makes use of ex-
tensional powersets. Here, we will see that to reproduce extensionality in the
context of intensional type theory, where the axiom of choice holds because of
the presence of a strong existential quantifier, it is sufficient to have general ef-
fective quotients to be used on the first two universes and the rule of uniqueness
of equality proofs at the propositional level. In fact, in the proof we mimic pow-
ersets by quotienting the first two universes under the relation of equiprovability.
Then, we need the effectiveness condition to decode the extensional equality re-
lated to the quotients on the universes into the equiprovability relation. Finally,
the rule of uniqueness of equality proofs seems crucial to identify the values of
the choice function applied to two suitable extensionally equal subsets.

Of course, an analogous proof can be reproduced in the extensional version
of Martin-Löf’s set theory with the quotient sets as given in Nuprl [Con86] and
only with the addition of the effectiveness condition.

We know that the effectiveness condition is surely derivable for decidable
equivalence relations. But in general effectiveness is problematic, because it re-
stores information that has been forgotten in the introduction rule for the equal-
ity of equivalence classes. This is confirmed by the proof given here.

The interest in the effectiveness condition arises from the mathematical prac-
tice of quotient sets. In order to keep effectiveness for quotient sets in the presence
of uniqueness of equality proofs, an alternative strategy could be to let quotient
sets based only on a proof-irrelevant equivalence relation, as it is in the type
theory of Heyting pretoposes [Mai97].

2 The Idea of the Proof: Axiom of Choice versus
Extensionality

We describe the idea behind the proof that in the extension of Martin-Löf set
theory with effective quotient sets and the uniqueness of equality proofs the ax-
iom of choice yields classical logic on small sets. We think that this proof can go
through any other possible extension with analogous extensional constructors.
The idea of the proof originally due to Diaconescu [Dia75] can be clearly un-
derstood in the framework of an intuitionistic set theory with basic axioms, as
the empty axiom, the pair axiom and the comprehension axiom, also only for
restricted formulas as in CZF [Acz78] (see e.g. [GM78,Bel97]). In this framework
we can see how the axiom of choice is incompatible with the extensionality axiom
from the constructive point of view, as we show in the following.
Let us consider a set A and the following subsets of the set {0, 1}, where 0 ≡ ∅
and 1 ≡ {∅}:

V0 ≡ {x ∈ {0, 1} : x = 0 ∨ ∃y y ∈ A} V1 ≡ {x ∈ {0, 1} : x = 1 ∨ ∃y y ∈ A}

About Effective Quotients in Constructive Type Theory 167

Now, if we apply the axiom of choice to the system of sets {V0, V1} we get that
the following proposition is true:

∀z ∈ {V0, V1} ∃y ∈ {0, 1} y ∈ z −→

∃f ∈ {V0, V1} → {0, 1} ∀z ∈ {V0, V1} f(z) ∈ z
Then we know that the premise of this implication is true by substituting y
with 0 in the case of V0 and with 1 in the case of V1. Therefore we derive by
modus ponens

∃f ∈ {V0, V1} → {0, 1} ∀z ∈ {V0, V1} f(z) ∈ z

Then, applying the elimination of the existential quantifier, we can derive

(f(V0) = 0 ∨ ∃y y ∈ A) ∧ (f(V1) = 1 ∨ ∃y y ∈ A)

from which by distributivity we get

(f(V0) = 0 ∧ f(V1) = 1) ∨ ∃y y ∈ A

Now we are going to prove by ∨-elimination from the above proposition the
principle of excluded middle for A. So, at first we assume f(V0) = 0 ∧ f(V1) = 1.
Then note that if we also assume ∃y y ∈ A, from this by extensionality we get
that V0 = V1, which combined with our first assumption yields 0 = 1, which is
falsum and lets us conclude ¬∃y y ∈ A and also ∃y y ∈ A ∨ ¬∃y y ∈ A. Since
by assuming the second disjunct ∃y y ∈ A we also get ∃y y ∈ A ∨ ¬∃y y ∈ A,
by ∨-elimination applied on (f(V0) = 0 ∧ f(V1) = 1) ∨ ∃y y ∈ A the principle
of excluded middle for any set A

∃y y ∈ A ∨ ¬∃y y ∈ A

is now derived. We can adapt the outline of this proof to the extension of Martin-
Löf’s set theory with effective quotient sets and the uniqueness of equality proofs,
as we will show in the next sections. The uniqueness of equality proof seems cru-
cial to reproduce the proof together with the extensionality captured by effective
quotient sets.

3 Extension of iTT with Quotient Sets

In order to investigate the possibility of an extension with effective quotient
sets, firstly we extend the intensional version of Martin-Löf’s Intuitionistic Type
Theory [NPS90], here calledMLTT, with quotient sets and the rule of uniqueness
of proofs for the intensional propositional equality as in [Hof95] (page 111) and we
call this extension MLTTQ. Then we consider its preservative extension iTTQ

with true judgements. Lastly we extend iTTQ with the effectiveness condition
and we call this extension iTTEQ. As said in the introduction the meaning of a

168 Maria Emilia Maietti

true judgement is the following: A true holds if and only if there exists a proof-
element a such that a ∈ A holds (for an account of this see [Mar84,Val95]). This
is meaningful, since we identify propositions and sets. We call iTT the extension
ofMLTT with true judgements. The rules of iTT (iTTQ) about true judgements
are precisely those admissible by the rules of MLTT (MLTTQ) according to the
explained semantics, to which we add the following introduction rule

(True Introduction)
a ∈ A
A true

such that iTT (iTTQ) turns out to be a preservative extension
of MLTT (MLTTQ) in the sense stated in [Val95] and recalled in the intro-
duction. For instance, among the admissible rules of iTT, we recall the case of
the set of intensional propositional equality Id. The propositional equality is the
internalization of the definitional equality between elements of a set at the level of
propositions, considering two objects definitionally equal if they evaluate to the
same normal form. Actually, there are two kinds of propositional equality char-
acterizing intensional and extensional type theories: Id, which is intensional (see
the rules below), and Eq, which is extensional (see [NPS90] and the section 5).
Intensional propositional equality is entailed by definitional equality, that is two
objects are propositionally equal if they are definitionally equal, but the other
way around does not hold. On the contrary, extensional propositional equality
is equivalent to definitional equality. The main difference is that in the presence
of intensional propositional equality, definitional equality and type checking are
decidable, but this is no longer true in the presence of extensional propositional
equality.

The formation, introduction, elimination and conversion rules for the set Id
are the following
Intensional equality set

A set a ∈ A b ∈ A
Id(A, a, b) set

I-Id
a ∈ A

id(a) ∈ Id(A, a, a)
E- Id

d ∈ Id(A, a, b) c(x) ∈ C(x, x, id(x))) [x : A]
idpeel(d, c) ∈ C(a, b, d)

C-Id
a ∈ A c(x) ∈ C(x, x, id(x)) [x : A]

idpeel(id(a), c) = c(a) ∈ C(a, a, id(a))
In particular, the admissible rules corresponding to the elimination rule are the
following:

d ∈ Id(A, a, b)

[x : A]
|

C(x, x, id(x)) true
C(a, b, d) true

Id(A, a, b) true

[x : A]
|

C(x, x) true
C(a, b) true

About Effective Quotients in Constructive Type Theory 169

Now, we extend iTT with quotient sets as formulated in [Hof95]1:
Intensional Quotient set

R(x, y) set [x ∈ A, y ∈ A]
c1 ∈ R(x, x)[x ∈ A], c2 ∈ R(y, x)[x ∈ A, y ∈ A, z ∈ R(x, y)]
c3 ∈ R(x, z)[x ∈ A, y ∈ A, z ∈ A,w ∈ R(x, y), w′ ∈ R(y, z)]

A/R set

I-int.quotient
a ∈ A A/R set

[a] ∈ A/R
eq-int.quotient

a ∈ A b ∈ A d ∈ R(a, b)
Qax(d) ∈ Id(A/R, [a], [b])

E-int.quotient

s ∈ A/R l(x) ∈ L([x])[x ∈ A]
h ∈ Id(L([y]), sub(Qax(d), l(x)), l(y)) [x ∈ A, y ∈ A, d ∈ R(x, y)]

Q(l, h, s) ∈ L(s)
where the term sub(c, d) ≡ idpeel(c, (x)λy.y)(d) for c ∈ Id(A, a, b) and d ∈ L(a)
(see also [NPS90] page 64) expresses substitution with equal elements;
C-int.quotient

a ∈ A l(x) ∈ L([x])[x ∈ A]
h ∈ Id(L([y]), sub(Qax(d), l(x)), l(y)) [x ∈ A, y ∈ A, d ∈ R(x, y)]

Q(l, h, [a]) = l(a) ∈ L([a])
We also want to make quotients effective and we require:
Effectiveness condition

a ∈ A b ∈ A Id(A/R, [a], [b]) true
R(a, b) true

Effectiveness expresses the fact that, as usual, every equivalence relation on a
set A is the kernel of the function which maps an element ofA into its equivalence
class.

Note that effectiveness is expressed only as a condition in terms of true
judgements, since we are not able to exhibit type-theoretical rules that make
this effectiveness condition admissible, like for the rules of iTTQ on true judge-
ments, where by a type-theoretical rule we mean a rule expressed using judge-
ments only of the following four kinds: A set A = B a ∈ A a = b ∈ A.
Indeed, in iTTEQ we will prove a non-constructive principle, that is the prin-
ciple of excluded middle on small sets, which lets us conclude that there are
1 But we restrict the formation rule to quotient sets based on equivalence relations. In

A/R we should record the proof terms c1, c2, c3 and then the corresponding equality
rule should say that varying c1, c2, c3, the set A/R is the same.

170 Maria Emilia Maietti

no type-theoretical rules that make the effectiveness condition on quotient sets
admissible and that in the same time follow the Heyting constructive semantics
of connectives.

Finally, we add the rule of uniqueness of propositional equality proofs:
Id-Uni I

a ∈ A p ∈ Id(A, a, a)
iduni(a, p) ∈ Id(Id(A, a, a), p, id(a))

The corresponding conversion rule is the following:
Id-Uni conv

a ∈ A
iduni(a, id(a)) = id(id(a)) ∈ Id(Id(A, a, a), id(a), id(a))

By using Id-Uni and the elimination rule of the propositional equality on the
proposition

Πw∈Id(A,x,y)Id(Id(A, x, y), w, z) [x ∈ A, y ∈ A, z ∈ Id(A, x, y)]

Streicher proved that (see [Hof95] page 81) the set

Id(Id(A, x, y), w, z) [x ∈ A, y ∈ A, z ∈ Id(A, x, y), w ∈ Id(A, x, y)]

is inhabited by the proof-term

idpeel(z, (x)λw′ ∈ Id(A, x, x).iduni(x,w′))(w)

Hence, the uniqueness of proofs of propositional equality set, called UIP, holds.

Remark 1. As we said in the introduction, the uniqueness of proofs of the propo-
sitional equality set is definable by pattern-matching [Coq92], but it is not deriv-
able in the intensional version of Martin-Löf’s set theory, as showed by M. Hof-
mann and T. Streicher (see [HS95]), who built a model where UIP is not valid.

Finally, we consider the first universe U0, whose elements are called small
sets [NPS90], and the second universe U1, whose elements are called large sets
and where U0 is also coded (see [Mar84] and [Dyb97], but note that we do not give
a new code to terms of the first universe into the second one to make formulas
more readable in the following). We have also to add the following introduction
rules for the codes of the quotient sets into the universes for i = 0, 1
UQ-I

a ∈ Ui r(x, y) ∈ Ui [x ∈ Ti(a), y ∈ Ti(a)]
c1 ∈ Ti(r(x, x)) [x ∈ Ti(a)], c2 ∈ Ti(r(y, x)) [x ∈ Ti(a), y ∈ Ti(a), z ∈ Ti(r(x, y))]
c3 ∈ Ti(r(x, z)) [x ∈ Ti(a), y ∈ Ti(a), z ∈ Ti(a), w ∈ Ti(r(x, y)), w′ ∈ Ti(r(y, z))]

a/̂r ∈ Ui

with the corresponding conversion rules

Ti(a/̂r) = Ti(a)/(x, y)Ti(r(x, y))

About Effective Quotients in Constructive Type Theory 171

This extension of iTT , called iTTEQ, is consistent because there is an interpre-
tation of iTTEQ into classical set theory (ZFC) with two strongly inaccessible
cardinals. Indeed, we interpret the quotient sets in classical quotient sets and
the first two universes respectively in the set of small sets and in the set of large
sets, proved to be actual sets by the presence of the two strongly inaccessible
cardinals.

4 Small Sets Are Classical

We are going to prove that for small sets in iTTEQ the principle of excluded
middle holds, i.e. for any element a of the first universe U0, the judgement
T0(a) ∨ ¬T0(a) true holds. This is a consequence of a particular application of
the axiom of choice (AC). In topos theory the fact that AC implies the princi-
ple of excluded middle was first proved by Diaconescu [Dia75]. The same result
is obtained in [MV99] within an extension of iTT with a powerset constructor
by adapting the logical proof of [Bel88] about Diaconescu’s theorem. Also Hof-
mann in [Hof95] claimed that the same result can be obtained in the Calculus of
Constructions by adding proof-irrelevance at the level of propositions, equiprov-
ability as equality between propositions and extensionality as equality between
dependent propositions.

Here, we show that we can recover this proof in a predicative setting with
effective quotient sets instead of an impredicative one like a topos. The key
point is to simulate the powerset, by quotienting the first two universes under
the relation of equiprovability among their elements.
Also in iTTEQ, the so called intuitionistic axiom of choice

((∀x ∈ A)(∃y ∈ B) C(x, y))→ ((∃f ∈ A→ B)(∀x ∈ A) C(x, f(x))) true

is proved by disjoint union sets, exactly as in [Mar84], concluding by true intro-
duction.

We are going to use the axiom of choice on the quotients made out of the
first two universes under the equivalence relation of equiprovability, i.e.

T0(x)↔ T0(y) set [x ∈ U0, y ∈ U0] T1(x)↔ T1(y) set [x ∈ U1, y ∈ U1]

Let us put the following abbreviations for i = 0, 1

Ωi ≡ Ui/ (x, y)Ti(x)↔ Ti(y)

Since there is a code for U0 in U1, i.e. Û0 ∈ U1, then there is inside U1 the
code Ω̂0 for Ωo such that

T1(Ω̂0) = Ω0

The reason to use the two universes is due to the possibility of deriving

Îd(Ω̂o, z, [�̂]) ∈ U1 [z ∈ Ω0]

172 Maria Emilia Maietti

where � is the singleton set (see [NPS90]). We use the abbreviation a =A b for
Id(A, a, b), when it is not coded in a universe.
Moreover, if A is a set, we will often write A to mean the judgement A true.

We also recall (see [NPS90]) that, in the presence of U0, we can derive

¬(true =Bool false)

Now, we go on to show the claimed proof of the principle of excluded middle on
small sets. As in [MV99], one of the key points is to internalize the truth of sets
within the quotients on the universes, simulating the powersets. This is expressed
by the following lemma, which is provable by the introduction equality rule on
the quotient set in terms of true judgements and by the effectiveness condition.

Lemma 1. For i = 1, 2 and any set a ∈ Ui, [a] =Ωi [�̂] iff Ti(a) true.

Proof. From [a] =Ωi [�̂] true by effectiveness of quotient sets we get
Ti(a) ↔ Ti(�̂) true, but Ti(�̂) = � so Ti(a) true. On the other hand,
from Ti(a) true, we get Ti(a) ↔ Ti(�̂) and by the true version of the equality
rule on the quotient set we conclude [a] =Ωi [�̂].

Now, we consider the following abbreviations: for z ∈ Ω0

E(z) ≡ Id(Ω0, z, [�̂])
Hence, we prove:

Proposition 1. In iTTEQ the following proposition

(∀z∈Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [̂�])
(∃x∈Bool) (x =Bool true → E(π1(π1(z)))) ∧ (x =Bool false → E(π2(π1(z))))

is true.

Proof. Suppose z ∈ Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]. Then π1(z) ∈
Ω0 × Ω0 and π2(z) is a proof of [̂E(π1(π1(z)))∨̂ ̂E(π2(π1(z)))] =Ω1 [�̂]. Thus,
by lemma 1 and by the conversion rules for U1, E(π1(π1(z))) ∨ E(π2(π1(z))).
The result can now be proved by ∨-elimination, by putting for example x = true
in the case E(π1(π1(z))) true.

Thus, we can use the intuitionistic axiom of choice to obtain:

Proposition 2. In iTTEQ the following proposition

(∃f ∈ Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]→ Bool)
(∀z ∈ Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂])
(f(z) =Bool true → E(π1(π1(z)))) ∧ (f(z) =Bool false → E(π2(π1(z))))

is true.

About Effective Quotients in Constructive Type Theory 173

Suppose, now, that a ∈ U0 is the code of a small set; then

〈〈[a], [�̂]〉,Qax(〈λy.%, λy′.inr(id([�̂]))〉)〉

is an element of the set

Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

where % ∈ � is the only element of the singleton set. In fact, 〈[a], [�̂]〉 ∈ Ω0 ×Ω0

and
〈λy.%, λy′.inr(id([�̂]))〉 ∈ Id(Ω0, [a], [�̂]) ∨ Id(Ω0, [�̂], [�̂])↔ �

from which, since

Id(Ω0, [a], [�̂]) ∨ Id(Ω0, [�̂], [�̂])↔ � = T1(Ê([a])∨̂ ̂
E([�̂]))↔ T1(�̂)

by the equality rule on the quotient set we get

Qax(〈λy.%, λy′.inr(id([�̂]))〉) ∈ [Ê([a])∨̂ ̂
E([�̂])] =Ω1 [�̂]

Analogously,
〈〈[�̂], [a]〉,Qax(〈λy.%, λy′.inl(id([�̂]))〉)〉

is an element of the set

Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

Let us put for w ∈ Ω0

q1(w) ≡ 〈〈w, [�̂]〉,Qax(〈λy.%, λy′.inr(id([�̂]))〉)〉

and
q2(w) ≡ 〈〈[�̂], w〉,Qax(〈λy.%, λy′.inl(id([�̂]))〉)〉

Now, let f be the choice function obtained by ∃-elimination rule on the judge-
ment in the proposition 2; then f(q1([a])) =Bool true → E([a]). But

(f(q1([a])) =Bool true) ∨ (f(q1([a])) =Bool false)

since the set Bool is decidable (for a proof see [NPS90], page 177), and hence,
by ∨-elimination, lemma 1 and a little intuitionistic logic, one gets that

(1) T0(a) ∨ (f(q1([a])) =Bool false)

and in an analogous way

(2) T0(a) ∨ (f(q2([a])) =Bool true)

Thus, by using distributivity on the conjunction of (1) and (2), one finally obtains

174 Maria Emilia Maietti

Proposition 3. For any small set a ∈ U0 in iTTEQ the following proposition

(∃f ∈ Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]→ Bool)
T0(a) ∨ (f(q1([a])) =Bool false) ∧ f(q2([a])) =Bool true)

is true.

Now, we proceed by ∃-elimination assuming for some proof-term f

T0(a) ∨ (f(q1([a])) =Bool false) ∧ f(q2([a])) =Bool true)

on which we are going to apply ∨-elimination to prove the principle of excluded
middle for T0(a).
But, first of all, note that if we assume T0(a) true then [a] =Ω0 [�̂] true by
lemma 1 and hence

q1([a]) =Σ(Ω0×Ω0,...) q1([�̂])
by the elimination rule of the intensional propositional equality with respect to
the proposition

q1(x) =Σ(Ω0×Ω0,...) q1(y) [x ∈ Ω0, y ∈ Ω0]

Thus, f(q1([a])) =Bool f(q1([�̂])) and in a similar way from the same assumption
we can also prove

f(q2([a])) =Bool f(q2([�̂]))
Hence, since by the uniqueness of propositional equality proofs UIP we get a
proof-term of

π2(q1([�̂])) =
[

̂
E([b�])∨̂ ̂

E([b�])]=Ω1 [b�]
π2(q2([�̂]))

as π1(q1([�̂])) = 〈[�̂], [�̂]〉 = π1(q2([�̂])), we conclude by the elimination rule of
the propositional equality that

q1([�̂])〉 =Σ(Ω0×Ω0,...) q2([�̂])

and therefore by transitivity

f(q1([a])) =Bool f(q2([a]))

Then if we also assume

(f(q1([a])) =Bool false) ∧ (f(q2([a])) =Bool true) true

we conclude true =Bool false true. But we know that we can derive an element of
¬(true =Bool false). Hence, under the assumption

(f(q1([a])) =Bool false) ∧ (f(q2([a])) =Bool true),

About Effective Quotients in Constructive Type Theory 175

the judgement ¬T0(a) true holds. So, from proposition 3, by ∃-elimination and
by ∨-elimination applying ∨-introduction when the first disjunct is assumed and
using the above argument when the latter disjunct is assumed, we can conclude
(T0(a) ∨ ¬T0(a)) true and

Πa∈U0 T0(a) ∨ ¬T0(a) true

To sum up the key points to reproduce the proof of the principle of excluded
middle on small sets are the following:

– we use the axiom of choice, by quantifying on

Σw∈Ω0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

instead of Σw∈Ω0×Ω0 E(π1(w))∨ E(π2(w)) in order to forget the proof-term
of the disjunction and hence we need the second universe to encode

E(z) ≡ Id(Ω̂o, z, [�̂]) [z ∈ Ω0]

and to express at the propositional level when it is true;
– we exhibit a proof-term q1 by means of the equality rule on the quotient set
such that for a ∈ U0

q1([a]) ∈ ΣΩ0×Ω0 [̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

in order to prove under the assumption [a] =Ω0 [�̂] true

q1([a]) =Σw∈Ω0×Ω0 ... q1([�̂]) true and q2([a]) =Σw∈Ω0×Ω0 ... q2([�̂]) true

– we use the uniqueness of propositional equality proofs in order to prove

q1([�̂]) =Σw∈Ω0×Ω0 ... q2([�̂])

In conclusion, if we had type-theoretical rules that make all the rules of iTTEQ

admissible such that we can prove that C true holds in iTTEQ if and only if
there exists a proof element for the proposition C, then we would have a proof
element for the proposition Πa∈U0T0(a) ∨ ¬T0(a), which is expected to fail for
small sets, according to an intuitionistic explanation of connectives.

5 Extensional Quotient Sets in Extensional Set Theory

The proof that effectiveness of quotient sets yields classical logic for small sets
can also be done within the extensional version of Martin-Löf’s Intuitionistic
Type Theory with true judgements, called eTT , extended with the rules for
quotient sets, as in Nuprl [Con86], to which we add the effectiveness condition
and the introduction and conversion rules of the codes for quotient sets into the
first two universes.

176 Maria Emilia Maietti

About the rules of true judgements, we only recall the case of the set of the
extensional propositional equality Eq (see [NPS90]). The formation, introduc-
tion, elimination and conversion rules are the following:
Extensional Equality set

Eq)
C set c ∈ C d ∈ C

Eq(C, c, d) set
I-Eq)

c ∈ C
eqC(c) ∈ Eq(C, c, c)

E-Eq)
p ∈ Eq(C, c, d)
c = d ∈ C C-Eq)

p ∈ Eq(C, c, d)
p = eqC(c) ∈ Eq(C, c, d)

In particular the elimination rule yields the admissibility of the following rule
on true judgements:

Eq(A, a, b) true
a = b ∈ A

We extend eTT with the rules of extensional quotient sets:
Quotient set

R(x, y) set [x ∈ A, y ∈ A]
c1 ∈ R(x, x)[x ∈ A], c2 ∈ R(y, x)[x ∈ A, y ∈ A, z ∈ R(x, y)]
c3 ∈ R(x, z)[x ∈ A, y ∈ A, z ∈ A,w ∈ R(x, y), w′ ∈ R(y, z)]

A/R set

I-quotient
a ∈ A A/R set

[a] ∈ A/R
eq-quotient

a ∈ A b ∈ A d ∈ R(a, b)
[a] = [b] ∈ A/R

E-quotient

s ∈ A/R l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]
Q(l, s) ∈ L(s)

C-quotient

a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]
Q(l, [a]) = l(a) ∈ L([a])

Then we make extensional quotients effective through the following condition in
terms of true judgements:
Effectiveness condition

a ∈ A b ∈ A [a] = [b] ∈ A/R
R(a, b) true

We also add the codes of quotient sets in the introduction rules of the first two
universes and their corresponding conversion rules, as in section 3. Note that,

About Effective Quotients in Constructive Type Theory 177

like for the intensional propositional equality set, the introduction of equality on
quotient sets yields the admissibility of the following rule:

a ∈ A b ∈ A R(a, b) true
[a] = [b] ∈ A/R

This extension of eTT , called eTTEQ, is consistent, because there exists an inter-
pretation in classical set theory (ZFC) with two strongly inaccessible cardinals.
In the presence of the extensional propositional equality set, the rules for inten-
sional quotient sets become equivalent to those of extensional quotient sets and
the same holds with respect to the effectiveness condition. So, we can reproduce
in eTTEQ the proof of the previous section to derive

Πa∈U0T0(a) ∨ ¬T0(a)) true

which is expected to fail for small sets.
Note that this proof can not be recovered in the extensional version of set

theory with effective quotient sets restricted to mono equivalence relations, that
is equivalence relations inhabited by at most one proof. This kind of quotients is
operating in the extensional type theory of Heyting pretoposes [Mai97] and also
of toposes [Mai98], where even effectiveness can be type-theoretically expressed.

I would like to thank Silvio Valentini, Peter Aczel and Giovanni Sambin for
helpful discussions that stimulated the investigation on this topic, Peter Dybier
for his comments on a preliminary version of this paper and lastly the referees
for their valuable suggestions.

References

Acz78. P. Aczel. The type theoretic interpretation of constructive set theory. In
L. Paris MacIntyre, A. Pacholski, editor, Logic Colloquium ’77. North Holland,
Amsterdam, 1978. 166

Bel88. J.L. Bell. Toposes and Local Set Theories: an introduction. Claredon Press,
Oxford, 1988. 171

Bel97. J.L. Bell. Zorn’s lemma and complete boolean algebras in intuitionistic type
theories. The Journal of Symbolic Logic., 62:1265–1279, 1997. 166

Con86. R. Constable et al. Implementing mathematics with the Nuprl Development
System. Prentice Hall, 1986. 166, 175

Coq92. T. Coquand. Pattern matching with dependent types. In Workshop on logical
frameworks, Baastad, 1992. Preliminary Proceedings. 164, 170

Dia75. R. Diaconescu. Axiom of choice and complementation. Proc. Amer. Math.
Soc., 51:176–178, 1975. 165, 166, 171

Dyb97. P. Dybier. A general formulation of simultaneous inductive-recursive defini-
tions in type theory. 1997. To appear in Journal of Symbolic Logic. 170

GM78. N. Goodman and J. Myhill. Choice implies excluded middle. Z. Math. Logik
Grundlag. Math., 24:461, 1978. 166

Hof95. M. Hofmann. Extensional concept in intensional type theory. PhD thesis,
University of Edinburgh, July 1995. 164, 167, 169, 170, 171

178 Maria Emilia Maietti

HS95. M. Hofmann and T. Streicher. The groupoid interpretation of type theory. In
J. Smith G. Sambin, editor, Twenty Five Years of Constructive Type Theory,
pages 83–111. Oxford Science Publications, Venice, 1995. 164, 170

Mai97. M.E. Maietti. The internal type theory of an Heyting Pretopos. In E. Gimenez
and C.Paulin-Mohring, editors, Proceedings of Types ’96, LNCS, 1997. 166,
177

Mai98. M.E. Maietti. The type theory of categorical universes. PhD thesis, University
of Padova, February 1998. 177

Mar84. P. Martin-Löf. Intuitionistic Type Theory, notes by G. Sambin of a series of
lectures given in Padua, June 1980. Bibliopolis, Naples, 1984. 164, 168, 170,
171

MR77. M. Makkai and G. Reyes. First order categorical logic., volume 611 of Lecture
Notes in Mathematics. Springer Verlag, 1977. 164

MV99. M.E. Maietti and S. Valentini. Can you add power-sets to Martin-Löf intu-
itionistic type theory? 1999. To appear inMathematical Logic Quarterly. 171,
172

NPS90. B. Nordström, K. Peterson, and J. Smith. Programming in Martin Löf ’s Type
Theory. Clarendon Press, Oxford, 1990. 164, 167, 168, 169, 170, 172, 173,
176

NV97. S. Negri and S. Valentini. Tychonoff’s theorem in the framework of formal
topologies. Journal of Symbolic Logic, 62:1315–1332, 1997. 164

Sam87. G. Sambin. Intuitionistic formal spaces - a first communication. Mathematical
logic and its applications, pages 187–204, 1987. 164

Val95. S. Valentini. The forget-restore principle: a paradigmatic example. In J. Smith
G. Sambin, editor, Twenty Five Years of Constructive Type Theory, pages 275–
283. Oxford Science Publications, Venice, 1995. 164, 168

Algorithms for Equality and Unification in the

Presence of Notational Definitions

Frank Pfenning and Carsten Schürmann�

Carnegie Mellon University, School of Computer Science
{fp,carsten}@cs.cmu.edu

1 Introduction

Notational definitions are pervasive in mathematical practice and are therefore
supported in most automated theorem proving systems such as Coq [B+98],
PVS [ORS92], Lego [LP92], or Isabelle [Pau94]. Semantically, notational defi-
nitions are transparent, that is, one obtains the meaning of an expression by
interpreting the result of expanding all definitions. Pragmatically, however, ex-
panding all definitions as they are encountered is unsatisfactory, since it can be
computationally expensive and complicate the user interface.

In this paper we investigate the interaction of notational definitions with
algorithms for testing equality and unification. We propose a syntactic crite-
rion on definitions which avoids their expansion in many cases without losing
soundness or completeness with respect to βδ-conversion. Our setting is the de-
pendently typed λ-calculus [HHP93], but, with minor modifications, our results
should apply to richer type theories and logics.

The question when definitions need to be expanded is surprisingly subtle and
of great practical importance. Most algorithms for equality and unification rely
on decomposing a problem

cM1 . . .Mn
.= cN1 . . .Nn

into
M1

.= N1, . . . ,Mn
.= Nn.

However, if c is defined this is not necessarily complete. For example, if k = λx. c′

then
kM

.= k N

for every M and N . Always expanding definitions is computationally expensive,
especially when they duplicate their arguments. Expanding them only when the
equality between the arguments fails, often performs much redundant computa-
tion, and, moreover, is incomplete in the presence of meta-variables. For example,
with the same definition for k,

kX
.= k c′

� This work was supported by NSF Grant CCR-9619584

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 179–193, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

180 Frank Pfenning and Carsten Schürmann

would succeed without expanding k with the substitution X = c′, even though
the most general unifier leaves X uninstantiated.

We identify a class of definitions (called strict) for which decomposition
is complete. It also solves a related problem with the completeness of the so-
called occurs-check during unification by generalizing Huet’s rigid path crite-
rion [Hue75]. Fortunately, most notational definitions are strict in the sense we
define. We do not deal with recursive definitions, for example, which require dif-
ferent considerations and have been treated in the literature on functional logic
programming [Han94]. Other aspects of notational definitions in mathematical
practice have been studied by Griffin [Gri88].

We have implemented a strictness checker and unification algorithm in
Twelf [PS98], an implementation of the logical framework LF which supports
type reconstruction, logic programming, and theorem proving. It has been ap-
plied to a variety of examples from the area of logics and programming languages.
The Twelf system is freely available from the Twelf homepage
http://www.cs.cmu.edu/~twelf.

This paper is organized as follows. In Section 2 we describe a spine formula-
tion of LF with definitions, and in Section 3 a small logic as running example.
In Section 4 we describe the strictness criterion and show its correctness. We
generalize our results from conversion to unification in Section 5 and conclude
and describe future work in Section 6.

2 Language

The type theory underlying the logical framework LF [HHP93] is divided into
three levels: objects, types, and kinds. We deviate from standard formulations
by adopting a spine notation for application [CP97] and by adding definitions.
In spine notation, we write c ·M1; ...;Mn; nil for a term c M1 ... Mn to make its
head explicit. It contributes significantly to the concise presentation of the theory
in Section 4 and corresponds closely to the implementation in Twelf. We use a
for constant type families, x for object-level variables, and c for constructors
(that is, declared constants without a definition) and d for defined constants.
For simplicity, we only allow definitions at the level of objects, but the results
also apply to definitions at the level of types.

Kinds: K ::= type | Πx :A.K
Types: A ::= a · S | Πx :A1. A2

Objects: M ::= H · S | λx :A.M |M · S
Heads: H ::= x | c | d
Spines: S ::= nil |M ;S

Signature: Σ ::= · | Σ, a : K | Σ, c : A | Σ, d : A =M
Contexts: Γ ::= · | Γ, x : A

a ·S and H ·S are our notation for the application of a variable or constant to
arguments given as a spine. Such terms are in weak head-normal form unless the

Algorithms for Equality and Unification 181

constant at the head is defined. For the sake of readability, we omit the trailing
nil from spines, and if the spine is empty, we also omit the “·”. Πx :A1. A2 is a
function type, which we may write as A1 → A2 if x does not occur free in A2.
In the examples we sometimes omit types and write definitions as d =M .

As in [CP97] we assume throughout that all objects are in η-long form. Note
that η-long forms are preserved under βδ-conversion. Working only with η-long
forms simplifies the presentation of the formal judgments and proofs, but is not
essential. Our results still hold if we drop this assumption, both with and without
η-conversion. The notion of definitional equality is then based on βδ-conversion
where δ-reduction expands definitions.

M · nil −→β M
(λx :A.M) · (N ;S) −→β ([N/x]M) · S

d · S −→δ M · S where d : A =M ∈ Σ

A β-redex has the form M · S, a δ-redex the form d · S.
We assume that constants and variables are declared at most once in a sig-

nature and context, respectively. As usual we apply tacit renaming of bound
variables to maintain this assumption and to guarantee capture-avoiding substi-
tution.

The LF type theory is defined by a number of mutually dependent judgments
which define valid objects, types, kinds, contexts, and signatures, and, in our
case, also heads and spines. We will not reiterate the rules here
(see [HHP93,CP97]). The main typing judgments are of the form Γ �

Σ
M : A

— expressing that objectM has type A in context Γ — and Γ �
Σ
S : A > A′ —

expressing that the spine S acts as a vector of well-typed arguments to a head
of type A returning a result of type A′. A definition d : A = M is well-formed
in a signature Σ if · �

Σ
M : A.

We generally assume that signature Σ is valid and fixed and therefore omit
it from the typing and other related judgments introduced below. We take βδ-
conversion as our notion of definitional equality which guarantees that every
well-typed object has an equivalent normal form. Since we also assume that
every object is in η-long form these normal forms are long ηβδ-normal forms. We
write M whr−→M ′ for weak head reduction which applies local β- or δ-reductions.

We write Γ � M1 ≡ M2 to express that two well-typed objects M1 and M2

are equivalent modulo βδ-conversion. Similarly, for spines, we write Γ � S1 ≡ S2.

Since all validity judgments are decidable with well-understood algorithms,
we tacitly assume that all objects, types, kinds, spines, heads, contexts, and
signatures are valid and, for equalities, that both sides have the same type or
kind.

Our proofs exploit the following standard properties of definitional equality
based on βδ-conversion.

182 Frank Pfenning and Carsten Schürmann

Property 1 (Equivalence).

1. Γ �M ≡M .
2. For all H1, H2 of the form x or c,
Γ � H1 · S1 ≡ H2 · S2 iff H1 = H2 and Γ � S1 ≡ S2

3. Γ � a1 · S1 ≡ a2 · S2 iff a1 = a2 and Γ � S1 ≡ S2

4. Γ � λy :A1.M1 ≡ λy :A2.M2 iff Γ � A1 ≡ A2 and Γ, y : A1 �M1 ≡M2

5. Γ � Πy :A1. B1 ≡ Πy :A2. B2 iff Γ � A1 ≡ A2 and Γ, y : A1 � B1 ≡ B2

6. For all M1, M2 in which y does not occur free,
Γ, y : A �M1 · y ≡M2 · y iff Γ �M1 ≡M2

7. Γ �M1;S1 ≡M2;S2 iff Γ �M1 ≡M2 and Γ � S1 ≡ S2

8. If M1
whr−→M ′

1 and M2
whr−→M ′

2 then Γ �M1 ≡M2 iff Γ �M ′
1 ≡M ′

2

For a well-typed definition d : A = M the head-normal form of M must al-
ways exist and have the shapeM = λx1 :A1. . . . λxn :An. H ·S. We call x1, . . . , xn

argument parameters, and all other parameters in the body H · S local parame-
ters.

3 Example

To illustrate our algorithms we use the encoding of a small fragment of propo-
sitional intuitionistic logic in LF [HHP93].

Formulas: F ::= � |⊥| F1 ⊃ F2

Formulas are represented as a type and each connective as a constant.

o : type
��� = true true : o
�⊥� = false false : o
�F1 ⊃ F2� = imp · (�F1�; �F2�) imp : o → o → o

This simple logic can now be extended by negation in the usual way, by
defining ¬F def= F ⊃⊥, which leads to a definition of the constant not in terms
of the other constants.

not : o → o = λF :o. imp · (F ; false)

We write � F to express that the formula F has a natural deduction, using the
following four rules:

�I� �
�⊥ ⊥ E� F

u
� F
...

� G
⊃Iu

� F ⊃ G
� F ⊃ G � F ⊃E� G

Algorithms for Equality and Unification 183

As shown in [HHP93], there is an adequate encoding of this calculus in LF.
The judgment � F is represented as a dependent type family, and the four rules
as object constants.

nd : o → type
truei : nd · true
falsee : ΠF :o. nd · false → nd · F
impi : ΠF :o. ΠG :o. (nd · F → nd ·G) → nd · (imp · (F ;G))
impe : ΠF :o. ΠG :o. nd · (imp · (F ;G)) → nd · F → nd ·G

The usual introduction and elimination rules of ¬F can then be formulated as
derived rules of inference.

u
� F
...

�⊥
¬Iu

� ¬F
� ¬F � F ¬E�⊥

Clearly, ¬Iu is a restriction of ⊃Iu and ¬E is a restriction of ⊃E. We repre-
sent these rules as defined constants in LF. This is an example of a notational
definition at the level of derivations.

noti : ΠF :o. (nd · F → nd · false) → nd · (not · F)
= λF :o. λu : (nd · F → nd · false). impi · (F ; false;u)

note : ΠF :o. nd · (not · F) → nd · F → nd · false
= λF :o. λu1 :nd · (not · F). λu2 :nd · F . impe · (F ; false;u1;u2)

4 Definitions and Algorithms for Equality

In this paper we study only notational definitions. We do not explicitly treat
other forms of definitions, such as recursive definitions, but our techniques are
applicable in more general circumstances. For example, in MLF [HP98] — an
implementation of LF extended with a module system — definitions are used to
express logical interpretations.

Semantically, definitions are transparent, that is, the meaning of any term
can be determined by expanding all definitions. But from a pragmatic point of
view expanding all definitions is unsatisfactory for several reasons. First of all,
even if the definitions are simple, their expansion is likely to be required fre-
quently, in the core of an implementation. Secondly, definitions can duplicate
their arguments, leading to a potential explosion size unless special implemen-
tation techniques are employed. Thirdly, expanding all definitions means that
error messages and other output are often rendered illegible.

In this section we characterize a class of definitions whose expansion can
frequently be avoided when comparing terms for equality. Based on these results,
we show in the next section that the same criterion can be used to even greater
benefit in unification.

184 Frank Pfenning and Carsten Schürmann

4.1 Injectivity

Most algorithms for equality and unification rely on decomposing a problem

H · S1 ≡ H · S2 (1)

into
S1 ≡ S2 (2)

but if H = d and d : A =M is a notational definition, then (1) stands for

M · S1 ≡M · S2. (3)

Since ≡ is a congruence, it follows trivially that (2) always implies (3). But
the reverse does not necessarily hold, for example, if M ignores an argument.
We call those terms M for which (3) implies (2) injective. For definitions which
are injective, decomposition is complete. Recall that we assume all signatures,
context, objects, equations, etc. to be valid.

Definition 1 (Injectivity). A definition d : A = M is injective iff for all
contexts ∆ and spines S1 and S2,

∆ �M · S1 ≡M · S2 implies ∆ � S1 ≡ S2.

4.2 Strictness

Many algorithms for equality avoid expanding definitions in equations of the
form d ·S1 ≡ d ·S2 until the equality of the arguments S1 ≡ S2 fails. If that hap-
pens, definitions are expanded, and the algorithm continues with the expanded
terms, probably redoing much previous computation. Without further improve-
ments such an algorithm could be exponential for first-order terms and worse at
higher types. In contrast, if we know that d is injective, the algorithm can fail
immediately.

Since injectivity is a semantic criterion, we have developed a syntactic cri-
terion called strictness which guarantees injectivity and which can be easily
checked. Informally, a notational definition is said to be strict, if each argu-
ment parameter occurs at least once in a rigid position [Hue75], applied only to
pairwise distinct local parameters. If there are no defined constants, the rigid
positions in a β-normal form are those resulting from erasing the spines following
argument parameters. If there are defined constants we distinguish (inductively)
between strict and non-strict ones: the former are treated like constructors, the
latter are expanded. We also do not consider the head of a definition to be a
rigid position (see Example 2). Our notion of strictness is a crude approximation
of the notion of strictness found in functional programming.

The definition of not, for example, is strict, because F appears in a rigid
position. noti is also strict, because its argument parameters F and u occur in
rigid positions. The same holds for note, because F , u1, and u2 occur in rigid
positions.

In the following we analyze some counterexamples to illustrate strictness and
its relation to injectivity.

Algorithms for Equality and Unification 185

Example 1 (Universal quantification). The logic presented in Section 3 can be
extended to first order by introducing terms T and a universal quantifier

F ::= ... | ∀x.F

In LF, terms are represented by objects of a new type i, and the universal
quantifier by a new constructor

forall : (i → o) → o.

The (true) formula (∀x.F (x)) ⊃ F (t) can be defined as

allinst = λF : i → o. λT : i. imp · (forall · F ;F · T)

allinst is not strict because T does not occur in a rigid position, even though F
does. Indeed, if F (x) does not actually depend on x, then t is not uniquely
determined and

allinst · (F ;T) ≡ allinst · (F ;T ′)

holds even if T and T ′ are different.

Example 2 (Identity). The definition of the identity at function type, id = λF :
o → o. λG : o. F · G, is not strict for two reasons: the only occurrence of F is at
the head of the definition, and the only occurrence of G is as an argument to F .
It is also not injective, because

id · (λF :o. true; false) ≡ id · (λF :o. true; true)

can be reduced to
true ≡ true.

Example 3 (Identity at base type). The definition id′ = λF : o. F is not strict
since F occurs at the head of the definition. However, the identity at base type
is injective. We must rule it out for different reasons (see the discussion of the
occurs-check in unification in Section 5).

Example 4 (Application to constant). Consider at = λF : o → o. not · (F · true).
Note, that the argument to F is not a local parameter but a constant. The
definition is hence not strict. The equality problem

at · (λF :o. F) ≡ at · (λF :o. true)

can be expanded to

(λF :o → o. not · (F · true)) · (λF :o. F)
≡ (λF :o → o. not · (F · true)) · (λF :o. true)

which holds because not · true ≡ not · true. Hence, the definition is not injective.

186 Frank Pfenning and Carsten Schürmann

The first part in the definition of strictness formalizes the requirement that
arguments to rigid occurrences of argument parameters must be pairwise distinct
local parameters. This is exactly the requirement imposed on higher-order pat-
terns [Mil91]. In the judgments below we generally use Γ for a context consisting
of argument parameters to a definition, and ∆ consisting of local parameters.

Definition 2 (Pattern spine). Let ∆ be a context, S be a spine. S is a pattern
spine iff ∆ � S pat holds which is defined by the following rules:

ps nil
∆ � nil pat

∆1, ∆2 � S pat
ps cons

∆1, x : A,∆2 � x;S pat

The formal system for strictness is defined by four mutually dependent judg-
ments. The central judgment of local strictness, Γ ;∆ �x M , enforces that the
argument parameter x occurs in a rigid position in M where it is applied to a
pattern spine. Every argument parameter must be locally strict, which is en-
forced by global strictness, Γ �� M . As an auxiliary judgment we use relative
strictness, Γ ��x M where the leading abstractions in M are treated as argu-
ment parameters. β-redices and δ-redices involving non-strict defined constants
are reduced by M −→M ′.

Definition 3 (Strictness). Let Γ be a context of argument parameters, and ∆
a context of local parameters. We define

M −→M ′ M weak head-reduces to M ′

Γ ;∆ �x M x is locally strict in M
Γ ��x M x is strict in M
Γ ��M M is strict

by the rules in Figure 1. We say that the definition d : A =M is strict if · ��M
holds.

The main technical contribution of this paper is that strict definitions are
injective. The proof is non-trivial and requires a sequence of properties sketched
below.

Lemma 1 (Pattern spines). Let S be a spine s.t. ∆ � S pat and M1 and M2

be objects valid in Γ disjoint from ∆.

If Γ,∆ �M1 · S ≡M2 · S then Γ �M1 ≡M2

Proof. By induction over the derivation of ∆ � S pat.

Using inductions over local, relative, and global strictness, we can then show
the completeness direction of our claim for strict d : A =M :

Γ �M · S1 ≡M · S2 implies Γ � S1 ≡ S2.

We cannot prove this directly by induction, but must generalize to the follow-
ing lemma which requires substitutions σ. We use standard notation for sub-
stitutions, which must always be the identity on local parameters (usually de-
clared in ∆). Because of possible dependencies, a substitution which maps vari-
ables in Γ to objects with variables in Γ ′ will map a parameter context ∆ to

Algorithms for Equality and Unification 187

d : A = M ∈ Σ · ��� M
nr delta

d · S −→ M · S
M · S −→β M ′

nr beta
M · S −→ M ′

. .
Γ ;∆ �x A

ls ld
Γ ;∆ �x λy :A.M

Γ ;∆, y : A �x M
ls lb

Γ ;∆ �x λy :A. M

Γ ;∆ �x A1
ls pd

Γ ;∆ �x Πy :A1. A2

Γ ;∆, y : A1 �x A2
ls pb

Γ ;∆ �x Πy :A1. A2

M −→ M ′ Γ ;∆ �x M ′

ls red
Γ ;∆ �x M

d : A = M ∈ Σ · �� M Γ ;∆ �x S
ls d

Γ ;∆ �x d · S
Γ ;∆ �x S

ls c
Γ ;∆ �x c · S

Γ ;∆ �x S
ls a

Γ ;∆ �x a · S
∆ � S pat

ls pat
Γ ;∆ �x x · S

y : A ∈ ∆ Γ ;∆ �x S
ls var

Γ ;∆ �x y · S
no rule for Γ ;∆ �x y · S
for x �= y, y : A ∈ Γ

Γ ;∆ �x M
ls hd

Γ ;∆ �x M ;S

Γ ;∆ �x S
ls sp

Γ ;∆ �x M ;S
. .

M −→ M ′ Γ ��x M ′
rs red

Γ ��x M

d : A = M ∈ Σ · �� M Γ ; · �x d · S
rs d

Γ ��x d · S
Γ ; · �x c · S

rs c
Γ ��x c · S

Γ, y : A ��x M
rs lam

Γ ��x λy :A. M
. .

M −→ M ′ Γ �� M ′
gs red

Γ �� M

d : A = M ∈ Σ Γ �� M · S
gs d

Γ �� d · S

gs c
Γ �� c · S

Γ, x : A ��x M Γ, x : A �� M
gs lam

Γ �� λx :A.M

Fig. 1. A formal system for strictness

a context ∆′ where each declaration y : A in ∆ is mapped to y : A[σ]. We
write Γ ′;∆′ � σ : Γ ;∆ for valid substitutions.

Lemma 2 (Completeness). Let σ1, σ2 by substitutions which satisfy Γ ′;∆′ �
σ1 : Γ ;∆ and Γ ′;∆′ � σ2 : Γ ;∆, respectively.

1. If Γ ;∆ �x M and Γ ′, ∆′ �M [σ1] ≡M [σ2] then Γ ′ � σ1(x) ≡ σ2(x).
2. If Γ ;∆ �x S and Γ ′, ∆′ � S[σ1] ≡ S[σ2] then Γ ′ � σ1(x) ≡ σ2(x).
3. If Γ ��x M and Γ ′ �M [σ1] · S ≡M [σ2] · S then Γ ′ � σ1(x) ≡ σ2(x).
4. If Γ ��M and Γ ′ �M [σ1] · S1 ≡M [σ2] · S2 then Γ ′ � S1 ≡ S2.

188 Frank Pfenning and Carsten Schürmann

Proof. The four parts are proven by simultaneous induction over the given strict-
ness derivations, using Lemma 1 and Property 1.

As an immediate corollary, strictness is a sufficient criteria for injectivity.

Theorem 1 (Injectivity). If d : A = M is strict, that is, · �� M , then
d : A =M is injective.

Proof. Using Lemma 2, part 4, for σ1 = σ2 = id

The rules of strictness implicitly define an algorithm to decide if a defini-
tion is strict or not. The algorithm traverses the structure of a term visiting all
rigid positions. If it finds at least one occurrence of every argument parameter
of the definition applied to a pattern spine (ls pat), it stops and signals success.
If the algorithm comes to a defined and strict constant, it applies ls d or rs d,
otherwise it expands the definition using ls red or rs red, respectively. The algo-
rithm terminates for ls red and rs red, because definitions cannot be recursive.
In an implementation of this algorithm, one would annotate each definition with
strictness information, and hence no redundant computation is necessary for ls d,
rs d, and nr delta. A minor variant of this algorithm has been implemented in
the Twelf system [PS98].

It is easy to verify that all definitions from Section 3 satisfy the strictness
condition. Definitions at base type are always strict. Definitions in normal form
whose argument parameters are of base type are strict if each argument param-
eters occurs and it is not the identity. Most notational definitions of these two
forms are thus accepted by our criterion.

At higher types, one more frequently encounters definitions which are not
injective. Consequently, they cannot be strict according to our definition. A more
accurate extension would have to analyze the structure of functional arguments
to higher-order definitions, as in the case of strictness analysis for functional
programming languages (see, for example, [HM94]). However, we suspect one
quickly reaches the point of diminishing returns for this kind of complex analysis.

5 Results for Unification

So far we have shown how algorithms for testing equality (that is, βδ-converti-
bility) can be improved by using strictness. In the presence of meta-variables
these observations can be generalized to unification. We write Ψ ;∆ �M1 ≈M2

for a unification problem, whereM1,M2 are well-typed objects of the same type
which can contain meta-variables declared in Ψ . All other parameters which are
not subject to instantiation are declared in ∆. So this corresponds to a ∃∀ prefix
of a unification problem.

Deciding when to expand definitions is in this setting more subtle than for
plain equality algorithms. Expanding them only in the case of failure may return
a unifier which is not most general and hence renders the algorithm incomplete.
Not expanding them may cause an unnecessary occurs-check failure, yet another
source of incompleteness. The following two examples show these situations.

Algorithms for Equality and Unification 189

Example 5 (Most-general unifier). Let tr : o → o = λF : o. true a definition,
and X a meta variable. The unification problem X : o; · � tr · false ≈ tr ·X has
as solution Θ = false/X if tr is not expanded. Obviously, this solution is not
most general, since the most general solution leaves X uninstantiated.

Example 6 (Occurs-check). Let tr be the same definition as above, andX a meta
variable. The unification problem X : o; · � X ≈ tr · X has no solution if tr is
not expanded, because X occurs on its left-hand side and as an argument to tr.
But obviously the problem has a solution, Θ = true/X .

Most unification algorithms decompose a unification problem of the form

Ψ ;∆ � H · S1 ≈ H · S2 (4)

into
Ψ ;∆ � S1 ≈ S2 (5)

where H is not a defined constant, otherwise they expand the definition. The
unification algorithm for the higher-order pattern fragment [DHKP96] which is
employed in Twelf follows the same technique. But strict definitions do not need
to be be expanded since, because of injectivity, every unifier Θ of (4) is also a
unifier of (5) and vice versa. This is expressed in the following theorem.

Theorem 2 (Most general unifiers). Let d : A = M be a strict definition.
Then the unification problems

Ψ ;∆ � d · S1 ≈ d · S2

and
Ψ ;∆ � S1 ≈ S2

have the same set of solutions.

Proof. Let Θ be a unifier, satisfying Ψ ′;∆′ � Θ : Ψ ;∆.

Ψ ′, ∆′ � (d · S1)[Θ] ≡ (d · S2)[Θ]

iff Ψ ′, ∆′ � d · (S1[Θ]) ≡ d · (S2[Θ])

iff Ψ ′, ∆′ � S1[Θ] ≡ S2[Θ]

This guarantees that the unifier determined by the unification algorithm
which does not expand strict definitions unless the two heads differ, is most
general.

In addition, we can extend this algorithm to also treat the occurs-check
problem correctly: We say that Ψ ;∆ � X y1 .. yk ≈ M , where X is defined
in Ψ and y1, .., yk are parameters in ∆, fails the occurs-check if X has a strict
occurrence in M (not to be confused with a locally strict one). This is a gener-
alization of Huet’s original rigid path criterion for non-unifiability by allowing
some arguments to X . Note also that this definition of occurs-check does not

190 Frank Pfenning and Carsten Schürmann

need to expand strict definitions. We show that unification problems which fail
the occurs-check do not have a unifier.

Informally, one assumes a solution Θ for X and then counts the number of
constructor and parameter occurrences in the normal form of (X y1 .. yk)[Θ] and
M [Θ] to arrive at a contradiction, a similar argument as in [Pfe91]. In addition,
we make use of two further properties. First, rigid positions in the arguments
are preserved under normalization, and second, meta-variables can never occur
in the head position of these normal forms.

The proof of the first property is rather difficult because definitions can be
nested. In our proof we resolve this problem by first showing the admissibility
of eliminating definitions and then inductively normalize each defined constant
starting from the inside out. We write nf (M) for the normal form of an ob-
ject M , based on βδ-conversion.

Lemma 3 (Admissibility of eliminating definitions). Let σ be substitution
satisfying Γ ′;∆′ � σ : Γ ;∆. Furthermore, let x be in Γ , y in Γ ′, and M,S, σ in
normal form.

1. If Γ ;∆ �x M , and Γ ′;∆′ �y σ(x) then Γ ′;∆′ �y nf (M [σ]).
2. If Γ ;∆ �x S and Γ ′;∆′ �y σ(x) then Γ ′;∆′ �y nf (S [σ]).
3. If Γ ��x M and Γ ′;∆′ �y σ(x) then Γ ′;∆′ �y nf (M [σ] · S).
4. If Γ ��M and Γ ′;∆′ �y S then Γ ′;∆′ �y nf (M [σ] · S).
Proof. The four parts are proven by simultaneous induction over the given strict-
ness derivations.

A direct consequence of the admissibility of eliminating definitions is that the
property of being strict is preserved under normalization.

Lemma 4 (Eliminating definitions).

1. If Γ ;∆ �x M then Γ ;∆ �x nf (M).
2. If Γ ;∆ �x S then Γ ;∆ �x nf (S) .
3. If Γ ��x M then Γ ��x nf (M).
4. If Γ ��M then Γ �� nf (M).

Proof. The proof proceeds by simultaneous induction over the given strictness
derivations, using Lemma 3.

To arrive at the contradiction described above, we must ensure that the head
of a definition is never a meta-variable (the head of a λ-term is defined as the
head of its body). We call such objects rigid.

Definition 4 (Rigid objects). An object M defined in Ψ,∆, where parameters
in ∆ are not subject to instantiation, is called a rigid object iff head(nf (M)) is
either a constant or a parameter defined in ∆.

The head of a definition, no matter to which arguments it is applied, cannot
be a meta-variable.

Algorithms for Equality and Unification 191

Lemma 5 (Head). If d : A = M is a strict definition (Γ �� M), and σ a
substitution with domain Γ , then M [σ] · S is a rigid object.

Proof. By induction over the strictness derivation of Γ ��M .

The other part of the argument involves counting the number of parameter
and constructor occurrences in a term M which we write as |M |. It can be
easily shown that this measure satisfies the following property on the unification
problem in question.

Lemma 6 (Size). Let Ψ ;∆ � X y1 .. yk ≈ M be a unification problem,
where M is strict in X (Ψ ;∆ �X M), and Θ be a unifier. Then

|nf ((X y1 .. yk)[Θ])| ≤ |nf (M [Θ])|

Proof. By induction over the strictness derivation Ψ ;∆ �X M , using Lemma 4.

The third technical result of our paper can now be stated and proven: If a
unification problem fails the occurs-check, it cannot have any unifiers.

Theorem 3 (Occurs-check). Let M be a rigid object, and Ψ a context of
free variables. Furthermore, let X occur strictly in M (Ψ ;∆ �X M). Then the
unification problem

Ψ,∆ � X y1 .. yk ≈M
has no unifiers.

Proof. Assume the unification problem fails the occurs-check and has the uni-
fier Θ. By Lemma 6, it follows that

|nf ((X y1 .. yk)[Θ])| ≤ |nf (M [Θ])|

but because of Lemma 5 we can show, that

|nf ((X y1 .. yk)[Θ])| < |nf (M [Θ])|

contradicting the assumption that Θ is a unifier.

Hence, a unification problem which fails the occurs-check does not have any
unifiers. The occurs-check is also the reason why identity functions are not con-
sidered strict. An equation X ≡ id′ · X would fail the occurs-check but have a
solution (where X is uninstantiated).

Therefore, strict definitions can be treated mostly as constructors in a unifi-
cation algorithm. They must be expanded only in the case of a constant clash at
the head during decomposition of so-called rigid-rigid equations. The unification
algorithm remains sound and complete. Note that this observation is indepen-
dent of whether one uses an algorithm based on Miller’s higher-order patterns
or Huet’s original algorithm for higher-order unification.

192 Frank Pfenning and Carsten Schürmann

6 Conclusion

We have identified a class of strict notational definitions and analyzed the way
they interact with algorithms for equality and unification. Notational definitions
must be expanded only in the case of constant clash. This property can be
exploited to make many implementations of these algorithms more efficient, while
preserving completeness and soundness with respect to βδ-conversion. We also
presented an algorithm to efficiently check definitions for strictness.

Many theorem provers rely on an ad hoc treatment of definitions. We believe
that these systems can benefit from the results in this paper in terms of efficiency
and robustness.

In future work we plan to evaluate the concept of strictness empirically in
our implementation. If warranted by the results, we may investigate partially
strict definitions, that is, definitions, where some of the argument parameters
are locally strict and others are not. In such a situation definitions may only
need to be “partially expanded”, comparing the strict and reducing the non-
strict argument positions.

References

B+98. Bruno Barras et al. The Coq Proof Assistant, Reference Manual, Version
6.2. INRIA, CNRS, France, 1998. 179

CP97. Iliano Cervesato and Frank Pfenning. A linear spine calculus. Technical
Report CMU-CS-97-125, CMU, 1997. 180, 181

DHKP96. Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unifi-
cation via explicit substitutions: The case of higher-order patterns. In Joint
International Conference and Symposium on Logic Programming (JIC-
SLP’96), Bonn, Germany, 1996. 189

Gri88. Timothy G. Griffin. Notational definition — a formal account. In Third
Annual Symposium on Logic in Computer Science, Edinburgh, Scotland,
pages 372–383. IEEE, July 1988. 180

Han94. M. Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19&20:583–628, 1994. 180

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143–
184, January 1993. 179, 180, 181, 182, 183

HM94. Chris Hankin and Daniel Le Métayer. Deriving algorithms from type in-
ference systems: Application to strictness analysis. In Proceedings of the
Twenty-First Annual ACM Symposium on Principles of Programming Lan-
guages, Portland, pages 202–212. ACM, January 1994. 188

HP98. Robert Harper and Frank Pfenning. A module system for a programming
language based on the LF logical framework. Journal of Logic and Com-
putation, 8(1):5–31, 1998. A preliminary version is available as Technical
Report CMU-CS-92-191, September 1992. 183

Hue75. Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1:27–57, 1975. 180, 184

Algorithms for Equality and Unification 193

LP92. Zhaohui Luo and Robert Pollack. The LEGO proof development system:
A user’s manual. Technical Report ECS-LFCS-92-211, University of Edin-
burgh, May 1992. 179

Mil91. Dale Miller. A logic programming language with lambda-abstraction, func-
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497–536, 1991. 186

ORS92. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, June 1992. Springer-Verlag. 179

Pau94. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag
LNCS 828, 1994. 179

Pfe91. Frank Pfenning. Unification and anti-unification in the Calculus of Con-
structions. In Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 74–85, Amsterdam, The Netherlands, July 1991. 190

PS98. Frank Pfenning and Carsten Schürmann. Twelf User’s Guide, 1.2 edition,
September 1998. Available as Technical Report CMU-CS-98-173, Carnegie
Mellon University. 180, 188

A Preview of the Basic Picture: A New

Perspective on Formal Topology

Giovanni Sambin and Silvia Gebellato

Dipartimento di Matematica Pura ed Applicata
Università di Padova

via Belzoni, 7 - 35131 Padova
sambin,silvia@math.unipd.it

Abstract. If the classical definition of topological space is analysed at
the light of an intuitionistic and predicative foundation as Martin-Löf’s
type theory, one is lead to the notion of basic pair: a pair of sets, con-
crete points and observables (or formal neighbourhoods), linked by a
binary relation called forcing. The new discovery is that this is enough
to introduce the topological notions of open and closed subsets, both in
the concrete (pointwise) and in the formal (pointfree) sense. Actually, a
new rich structure arises, consisting of a symmetry between concrete and
formal and of a logical duality between open and closed. Closed subsets
are defined primitively, as universal-existential images of subsets along
the forcing relation, while open subsets are existential-universal images.
So, in the same way as logic gives a theory of subsets as the extension
of unary propositional functions over a given set, now logic is seen to
produce topology if we pass to two sets linked by a relation, that is a
propositional function with two arguments.
Usual topological spaces are obtained by adding the condition that the
extensions of observables form a base for a topology, which is seen to
be equivalent to distributivity. Formal topologies are then obtained by
axiomatizing the structure induced on observables, with some improve-
ments on previous definitions. A morphism between basic pairs is essen-
tially a pair of relations producing a commutative square: this is thus the
essence of continuity. Usual continuous functions become a special case.
This new perspective, which is here called basic picture, starts a new
phase in constructive topology, where logic and topology are deeply con-
nected and where the pointwise and the pointfree approach to topology
can live together. It also brings to the development of topology in a more
general, nondistributive sense.

1 Introduction

If the aim is to develop mathematics within a constructive set theory, topology
seems to be a good test since it is a field in which foundational problems are
particularly evident. This is a fortiori true if constructivity is meant in a stricter
sense to include predicativity, like in Martin-Löf’s constructive type theory [6].
In fact, the usual definition of topological space involves a kind of quantification

T. Altenkirch et al. (Eds.): TYPES’98, LNCS 1657, pp. 194–208, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Preview of the Basic Picture: A New Perspective on Formal Topology 195

over subsets, which has to be justified predicatively. Moreover, in many well
known topological spaces the definition of points requires an infinite amount of
information (one example is given by real numbers) and thus it is not a priori
granted that the collection of points form a set.

Such problems are solved in formal topology (see [9] and [11]), which is
strictly constructive since it is developed fully within Martin-Löf’s type theory
(henceforth simply type theory). To support intuition, type theory is equipped
with a notation for subsets (as introduced and justified in [13]); in particular,
for any set S, U ⊆ S means that U is a propositional function over S and a ε U
means that a ∈ S and U(a) is true.

For our present purposes, the definition of formal topology can be motivated
as follows. Assume that a topology ΩX on a set of points X is given by means
of a base. This is expressed in type theory as a family of subsets of X indexed
on a set S, that is a function ext : S → PX ; and this is the same (cf. [13]) as
a binary relation x � a which, for x ∈ X and a ∈ S, says that a is a formal
neighbourhood of x. The main idea is then to transfer the structure of ΩX onto
the set S, and to this aim S is equipped with some new primitives. A natural
choice is to add a binary operation · satisfying x � a · b iff x � a and x � b
and thus called formal intersection, a distinguished element 1 ∈ S satisfying
x � 1 for any x ∈ X , and an infinitary relation a ✁ U for a ∈ S and U ⊆ S,
satisfying a ✁ U iff (∀x ∈ X)(x � a → (∃b ε U)(x � b)) and thus called formal
cover. A unary predicate Pos(a) prop (a ∈ S) is also added, satisfying Pos(a) iff
(∃x ∈ X)(x � a) and called the positivity predicate.

The definition of formal topology is then obtained by expressing the above
situation in pointfree terms, that is by requiring the structureA = (S, ·, 1, ✁, Pos)
to satisfy all the properties of the new primitives ·, 1, ✁, Pos which can be for-
mulated without any mention of points of X . This leads to (cf. [9] and [10]):

A = (S, ·, 1, ✁, Pos) is a formal topology if:

(S, ·, 1) is a commutative monoid;

✁ satisfies

reflexivity
a ε U

a ✁ U
transitivity

a ✁ U (∀b ε U)(b ✁ V)
a ✁ V

· - left a ✁ U

a · b ✁ U
· - right a ✁ U a ✁ V

a ✁ {b · c : b ε U, c ε V }
Pos satisfies

monotonicity
Pos(a) a ✁ U

(∃b ε U)Pos(b)
positivity

Pos(a)→ a ✁ U

a ✁ U

(for an analytic explanation of such conditions see [11]).
Any infinitary relation ✁ is equivalently presented as an operator on subsets

AU ≡ {a ∈ S : a ✁ U}; then it can be shown that ✁ is a cover if and only

196 Giovanni Sambin and Silvia Gebellato

if A is a closure operator which moreover satisfies distributivity in the form
A(U · V) = A(U) ∩ A(V) (where U · V ≡ {b · c : b ε U, c ε V }). Then a formal
open can be defined as a subset U of S such that U = AU.

The presence of the positivity predicate Pos (which does not appear explicitly
in the usual theory of locales, or pointless topology, see e.g. [4]) has sometimes
been felt as a redundancy; from the above considerations, we see that Pos(a) is
the only primitive corresponding to an existential quantification over points, and
it thus becomes a positive pointfree way to express that ext (a) is inhabited. Its
presence was due (apart from the convenience in the definition of formal points
and in the treatment of Scott domains [14]) to the expectation of obtaining
a good definition of formal closed subsets. As we will see here, to obtain this
not only Pos must be kept, but the way it expresses existential quantification
over points must be strengthened, thus reaching a binary predicate which is as
relevant as the formal cover and dual to it, in a sense to be specified below.

What is the point of the move to pointfree terms? An ideological rejection
of points altogether is not a far reaching motivation in our opinion; on the
contrary, we believe that when points form a set, this information should by
no means be thrown away (two examples: rational numbers and all finite sets).
The trouble is that in the most interesting examples there is no simple way
to generate inductively all the points one would like to have. In the case of
real numbers, this problem was overcome by Dedekind with the introduction of
Dedekind cuts and by Brouwer with choice sequences. Formal topology allows to
solve the same problem in more general terms by introducing the abstract notion
of formal point. Like formal topologies are defined axiomatically by requiring all
the properties which can be expressed in the pointfree language with ·, 1, ✁ and
Pos, now formal points of a formal topology are defined to be those subsets
of S which cannot be distinguished, in such language, from subsets of the form
αx ≡ {a ∈ S : x � a}. Note that this idea is exactly the same which led
Dedekind from rational numbers to cuts, and to the definition of real numbers
as cuts (cf. [2]). Using the notation adopted above, in a topological space a
point x satisfies the conditions:

x � 1 x � a · b iff x � a and x � b

x � a a ✁ U

(∃b ε U)(x � b)
x � a

Pos(a)

So, a subset α of S is said to be a formal point if, after writing α � a in place
of α ε a (that is a ε α), all the above conditions are satisfied with α replacing x;
we reach in this way the same definition as that given in [9].

The collection of formal points over a formal topologyA is denoted by Pt(A).
The structure (Pt(A), ε,A) is called a formal space. It is type theory which gives
a precise foundational meaning to the distinction between topological spaces and
formal spaces, since it refrains from considering Pt(A) a set like any other, and
in this sense it has favoured the emergence of formal topology itself.

In a similar way, we now see how a new quite rich structure emerges after
rejection of the identification of closed subsets with complements of open subsets

A Preview of the Basic Picture: A New Perspective on Formal Topology 197

(which, as we shall see, is an example of the identification of ∃¬ with ¬∀). To this
aim, we have to go back to the simple structure (X, �, S) we met above and take
it as our main object of study. It will be rewarding, mainly from a conceptual
point of view: it leads to a new perspective on formal topology, which we have
called basic picture and of which this paper gives a preview.

The discovery (by Sambin) of binary Pos and hence much of the basic pic-
ture in December ’95 was indirectly stimulated by discussions with Per Martin-
Löf on the notion of formal closed subset; morphisms and a correct apprecia-
tion of symmetry came later (and are due to both authors). The basic picture
has been presented in several occasions, mainly at Types ’96, Aussois, Decem-
ber 1996, at the First Workshop on Formal Topology, Padova, October 1997 and
at WoLLIC ’98, Sao Paulo, July 1998.

It is a pleasure for us to thank Per Martin-Löf, both for his interest in formal
closed subsets, which is almost as old as formal topology itself, and for more
recent discussions, in particular on some of the topics in the last paragraph
here. We also thank Bernhard Reus for his questions during his visit to Padova
in Autumn ’98, which helped us to improve exposition.

2 Basic Pairs

A structure X ≡ (X, �, S), where X and S are arbitrary sets and � is an
arbitrary binary relation between them, is here called a basic pair. To help the
intuition, we may (as in the introduction above) think of X as a set of concrete
points and S as a set of basic formal opens (or observables); x � a can be
read as “a is a formal neighborhood of x” or more neutrally as “x forces a”
and then the relation � itself is called forcing. This way of reading introduces
a distinction between the left side, which is called concrete side, and the right
one, which is called formal side. The relation � is the way to pass from the
concrete to the formal side, and conversely. For any a ∈ S, the extension of a is
the subset of X of all concrete points forcing a, that is ext a ≡ {x ∈ X : x � a}.
In topological terms, the family of subsets (ext a)a∈S is of course a sub-base
for a topology on X, like any family of subsets of X. In general it is not a
base for a topology, since we do not require that it covers all the set X , that
is (∀x)(∃a)(x � a), and that the intersection of its members is open, that is
(∀x)(∀a, b)(x � a& x � b → (∃c)(x � c& ext c ⊆ ext a ∩ ext b)) (cf. [3], p. 26).

In the other direction, any element x ∈ X on the concrete side determines
a subset ✸x ≡ {a ∈ S : x � a} on the formal side, which is called the system
of neighborhoods (or approximations) of x. The picture we have in mind is
something like:

The definition of ✸ is immediately extended to any subset A ⊆ X by defin-
ing as usual ✸A ≡ ⋃

xεA ✸x. Spelling out the definition of union of subsets
(see [13]), we see that ✸A is just the image of A along � through an existential
quantification:

✸A ≡ {a ∈ S : (∃x ∈ X)(x � a& x ε A)}.

198 Giovanni Sambin and Silvia Gebellato

ext a

xx

a

X S

approximationspoints

Because of the option for intuitionism, the image of A obtained through a uni-
versal quantification is not definable in terms of ✸ and we thus are lead to put

✷ A ≡ {a ∈ S : (∀x ∈ X)(x � a → x ε A)}.
So both ✸ and ✷ are operators on subsets, that is functions from P(X) to P(S).
The fact that they are given by an existential and universal quantification respec-
tively is immediately visible by adopting a notation for quantification relativized
to subsets (as justified in [13]):

✸A ≡ {a ∈ S : (∃x ε ext a)(x ε A)}
✷ A ≡ {a ∈ S : (∀x ε ext a)(x ε A)}

Also the intuition of ✸A and ✷A is now clear: in fact a ε ✸A means that ext a
meets the subset A, while a ε ✷A means that ext a ⊆ A. In the other direction,
also ext is extended to any subset U ⊆ S by putting extU ≡ ⋃

aεU ext a; extU
is the existential image of U along the inverse of �, and is called the extension
of U . As above, also the universal image restU has to be considered, and is called
the restriction of U . Using quantifiers relativized to ✸x, the formal definitions
are:

extU = {x ∈ X : (∃a ε ✸x)(a ε U)}
restU = {x ∈ X : (∀a ε ✸x)(a ε U)}

A glance at the definitions shows that the definition of the operators ext and
rest could be obtained from that of ✸ and ✷, respectively, just by switching the
role of the sets X and S. In fact, writing as usual �− for the inverse of the
relation �, we see that X− ≡ (S, �−, X) is still a basic pair, perfectly as good
as X ≡ (X, �, S); we call X− the symmetric of X . So the operators ext and rest
in X are just the same thing as ✸ and ✷ , respectively, but in its symmetric X−.

In purely mathematical terms, ✸A and ✷ A give what is sometimes called
the weak and strong image, respectively, of the subset A along a relation, which
in this case is � . For a relation denoted by r, the notation rA and r−∗

A,
respectively, is sometimes used. Symmetrically, extU and restU are just the

A Preview of the Basic Picture: A New Perspective on Formal Topology 199

weak and strong anti-image, respectively, of U along � . They are denoted
by r−U and r∗U, respectively, if the relation is r. Notice that r−U and r∗U
are the same thing as weak and strong image along the relation r−. Even if the
mathematical content is exactly the same, to help the intuition we here have
preferred to adopt a specific terminology and notation, namely ✸, ✷, ext, rest,
for weak and strong (anti-)images along the forcing relation �, which according
to a uniform notation should have been called �, �−∗

, �−, �∗ respectively.
Beside the geometrical symmetry between the left sideX and the right side S,

there is also a logical duality clearly present: the definition of ✸ and ✷ are
obtained one from the other by interchanging the roles of ∀ with ∃ and →
with &. The same of course holds for ext and rest . So a picture could be:

dual du
al

E

symmetric

symmetric

A

ext

rest

What is the use of all this structure? We begin by seeing that the topological
notions of interior and closure are immediately obtained by combinations of the
four operators ✸, ✷, ext , rest . The symmetry of the picture will then produce
also their pointfree, or formal, versions.

3 Interior and Closure

The interior of a subset A of X is usually defined as the set of points of X
with a neighborhood all contained in A (see for instance [5], pp. 42, 44). In our
notation, this definition becomes

intA ≡ {x ∈ X : (∃a ε ✸x)(∀y ∈ X)(y � a → y ε A)},
and then it is clear that such combination of quantifiers is just the composition
of ext after ✷, that is intA ≡ ext✷ A. To our knowledge, this simple and basic
fact had not been noticed before.

200 Giovanni Sambin and Silvia Gebellato

As usual we say that A is open if A = int A; but, of course, we cannot
expect int so defined to be a topological interior operator, since nowhere it has
been assumed anything telling that the intersection of two open subsets is open.
However, it can be proved that int is an interior operator, that is

i. int A ⊆ A,
ii. if A ⊆ B then int A ⊆ intB,
iii. int A ⊆ int int A,

for any A, B ⊆ X. Condition i. follows immediately from the adjunction

extU ⊆ A iff U ⊆ ✷ A, for any U ⊆ S and A ⊆ X (1)

by taking U to be ✷ A, condition ii. follows from the fact that the operators ext
and ✷ preserve inclusion of subsets and iii. is a consequence of

✷ ext✷ A = ✷ A, for any A ⊆ X

which follows easily from (1) above.
Quite similarly, the usual definition of the closure clA of a subset A of X

says that x ε cl A if any neighborhood of x intersects A. In our notation,

clA ≡ {x ∈ X : (∀a ε ✸x)(∃y ε ext a)(y ε A)}
that is cl A ≡ rest✸A. It can be proved that cl is a closure operator, that is

i. A ⊆ clA,
ii. if A ⊆ B then clA ⊆ cl B,
iii. cl cl A ⊆ clA,

for any A, B ⊆ X. Like above, the proof is based on the adjunction

✸A ⊆ U iff A ⊆ restU, for any A ⊆ X and U ⊆ S (2)

and the fact that ✸ and rest preserve inclusion.
Like we did above with open subsets, we say that A is closed if A = cl A,

even if cl is not a closure operator in the sense of topology (since the union of
two closed subsets is not necessarily closed).

4 Formal Open and Formal Closed Subsets

Because of the symmetry between the left and the right side of a basic pair
X

�−→S, the above definitions of int ≡ ext✷ and cl ≡ rest✸ also have symmetric
definitions, obtained by replacing each operator with its symmetric: C ≡ ✸rest
and A ≡ ✷ ext . By symmetry, it is immediate that C is an interior operator and
A is a closure operator. We now see that actually A is something already known,
while C is in a sense what we were looking for. In fact, spelling out the definition
of A, we see that

a ε AU ≡ (∀x ∈ X)(x � a → (∃b ε U)(x � b))

A Preview of the Basic Picture: A New Perspective on Formal Topology 201

that is, a ε AU if all concrete points forcing a also force U, which is the relation
between a and U which was meant to be expressed by the formal cover a ✁ U.
So, as in formal topology, we say that U is formal open if U = AU , even if in
the wider generality of basic pairs the closure operator A does not necessarily
satisfy distributivity since X is not equipped with a topology in the traditional
sense. Such generality, however, allows us to see that A is symmetric to cl , which
means that the notion of “a being covered by U”, that is a ε AU , is just the
symmetric of x ε clA, that is “x is an adherence point of A”; that is, the formula
defining one notion can be obtained from the other by interchanging points and
opens. Also this simple fact was, apparently, not noticed before.

More interesting is the second operator C, which is the novelty emerged, by
symmetry with int or equivalently by duality with A, from the general study of
basic pairs. Spelling out its definition, we have

a ε CF ≡ (∃x ∈ X)(x � a&(∀b ∈ S)(x � b → b ε F))

which we can now recognize as a strengthening of the intuitive pointwise inter-
pretation of the positivity predicate. In fact, since (∀b ∈ S)(x � b → b ε F)
is just ✸x ⊆ F , we see that a ε CF means not only that a is inhabited by a
concrete point x, but also that ✸x ⊆ F, that is all neighborhoods of such point x
are elements of F. As we write a ✁ U for a ε AU, we also will write Pos(a, F) for
a ε CF , for any a ∈ S and F ⊆ S, and call Pos a binary positivity predicate. The
previous unary positivity predicate is now obtained as a special case, by putting
Pos(a) ≡ Pos(a, S).

The relevance of binary Pos is that it allows to define by symmetry the
notion of formal closed: we say that a subset F of S is formal closed if F = CF,
or equivalently a ε F iff Pos(a, F).

In this way we see that the notions of concrete and formal, open and closed
subsets are all defined by means of a couple of relativized quantifiers of the
form ∃∀ or ∀∃ (see the picture below). The logical structure is so evident that
one could even reverse the perspective and conceive of such topological notions
as conceptual tools to treat combinations of quantifiers in an intuitive way.

5 The Isomorphism Theorem

By definition of int , any concrete open subset A is of the form extU for some
U ⊆ S. Conversely, any subset of X of the form extU, for any U ⊆ S, is concrete
open, because extU = ext✷ extU = int extU. Therefore:

A ⊆ X is concrete open iff A = extU for some U ⊆ S

Quite similarly, one can prove that:

A ⊆ X is concrete closed iff A = restU for some U ⊆ S
U ⊆ S is formal open iff U = ✷ A for some A ⊆ X
F ⊆ S is formal closed iff F = ✸A for some A ⊆ X.

202 Giovanni Sambin and Silvia Gebellato

It is then easy to see that, when restricted to open subsets (either concrete or
formal), the operators ext and ✷ are bijective, and one inverse of the other.
Similarly for closed subsets, with rest and ✸.

It follows from the fact that int is an interior operator that an arbitrary
union of concrete open subsets is concrete open. Symmetrically, an arbitrary
union of formal closed subsets is formal closed. Dually, an arbitrary intersection
of concrete closed (formal open) subsets is concrete closed (formal open). We can
as usual define the meet of an arbitrary family of concrete open subsets int Ai

as the interior of the intersection, that is
∧

i∈I int Ai ≡ int (
⋂

i∈I intAi); dually,
the join of an arbitrary family of formal open subsets is defined by

∨
i∈I AUi ≡

A(⋃i∈I AUi). So concrete and formal open subsets form two complete lattices.
Quite similarly for closed subsets. Then one can prove that:

Theorem. The operator ext is an isomorphism between the lattice of formal
open and that of concrete open subsets. Dually, the operator rest is an isomor-
phism between the lattices of formal closed and of concrete closed subsets.

This theorem gives further evidence of the correctness of our definitions. In
particular, it shows that a binary positivity predicate Pos(a, F), or equivalently
an interior operator C, is necessary to obtain a predicative notion of formal closed
subset which corresponds well, as in the case of open subsets, to that of concrete
closed subset.

The following picture summarizes most of the information about open and
closed subsets:

concrete closed formal open
cl ∀∃ symmetric A

isomorphic

iso
mor

ph
ic

dual du
al

int ∃∀ symmetric C
concrete open formal closed

Of course, the vertical line at the right refers to the formal side, and at the left
to the concrete side. Also, the top horizontal line refers to closure operators, and
the bottom one to interior operators. One diagonal refers to open subsets, the
other to closed subsets.

6 Continuity

What we have seen so far could be summarized by saying that topology begins
with basic pairs. They are the simplest extension of the notion of set, that is

A Preview of the Basic Picture: A New Perspective on Formal Topology 203

two sets linked in the weakest possible way, namely by a relation. We are now
going to see that continuity begins with the weakest possible way to link two
basic pairs, namely a pair of relations giving rise to a commutative square.

Given two basic pairs X ≡ X
�−→S and Y ≡ Y

�′−→T, we say that a pair of
relations r : X → Y and s : S → T is a morphism, or a relation-pair, from X
to Y if the diagram

X
�−→ S

�r

�s

Y
�′−→ T

is commutative. Here we assume that composition of relations is defined as usual;
then, writing rx for r{x}, commutativity of the above diagram is expressed by
the equation

✸rx = s✸x for any x ∈ X. (3)

Several motivations lead to consider relations rather than functions and then
to adopt the above definition of morphisms between basic pairs. First of all,
relations are more general than functions and they allow to grasp better the
essence of continuity. Secondly, on one hand we obtain the usual definition of
continuity for functions as a particular case, but on the other hand we will also
be able to give a natural constructive definition of topological Kripke structures.
A third good reason for considering relations is that the inherent symmetry of
basic pairs is somehow preserved: if (r, s) : X → Y is a morphism, also the inverse
(s−, r−) is a morphism, from Y− into X−. This statement would be impossible
with functions.

Given a relation r : X → Y, a simple minded extension of the usual definition
of continuity for functions is to require that r− is open. Since any open subset
of Y is of the form extU for some U ⊆ T, this amounts to

r−(ext U) = int (r−extU) for any U ⊆ T .

Since ext distributes arbitrary unions, it is enough to require that

r−(ext b) = int (r−ext b) for any b ∈ T . (4)

One can see that, putting asb ≡ ext a ⊆ r−(ext b), such requirement is equivalent
to (3) above. So, (3) is satisfied when r− is open, for a suitable choice of s. On
the other hand, it can easily be proved that if (r, s) is a morphism, then r− is
open and s is essentially uniquely determined by r; in fact, if (r, s′) is any other
morphism, then s and s′ coincide “topologically”, that is A(s′−b) = A(s−b) for
any b ∈ T. In this sense (3) is equivalent to r− being open; we prefer the former
for aesthetic reasons.

An equivalent characterization is reached through a different path. Assume
we express the fact that r− is open as:

for any U ⊆ T, there is V ⊆ S such that r−(extU) = extV .

204 Giovanni Sambin and Silvia Gebellato

More constructively, this can be expressed by requiring the existence of a family
of subsets Vb ⊆ S for b ∈ T such that

r−(ext b) = extVb for any b ∈ T. (5)

But as we have seen already, the family of subsets (Vb)b∈T is equivalently repre-
sented as a relation asb ≡ a ε Vb, and then (5) becomes

r−(ext b) = ext (s−b) for any b ∈ T. (6)

It is a matter of fact that (6) is equivalent to (3). Actually, one can prove that
also

r∗ (restF) = rest (s∗F) for any F ⊆ T,
✷ (r−∗

A) = s−∗(✷ A) for any A ⊆ X

are equivalent formulations of morphisms.

7 The Category of Basic Pairs and Related Notions

Basic pairs and relation-pairs form a category, which we call BP. BP is closely
related to the category Rel2, that is the category whose objects are arrows in
Rel, the category of sets and relations, and morphisms are indeed defined as
commutative squares. So, objects of Rel2 are what we called basic pairs, and
morphisms what we called relation-pairs. However, the notion of equality of
arrows is not the same, since two arrows in BP are defined to be equal when
they behave in the same way “topologically”. So we say that two relation-pairs
(r, s) and (r′, s′) are equal when

s✸x = s′✸x for any x ∈ X
r−ext b = r′−ext b for any b ∈ T

It can be proved that (r, s) is equal to (r′, s′) exactly when weak and strong
anti-images along r and r′ behave equally on open and on closed subsets of Y ,
respectively (that is, r−extU = r′−ext U and r∗restU = r′∗rest U for any
U ⊆ T) and s and s′ behave equally on open and on closed subsets of S (that is,
s✸A = s′✸A and s−∗

✷A = s′−∗
✷A for any A ⊆ X). One can show that such

equality is indeed an equivalence relation and that it is respected by composi-
tion; in other terms, one can think of BP as a quotient of Rel2. So, the usual
nice tricks with diagrams are possible in BP as they were in Rel2. For instance,
the commutative square of the definition of a morphism (r, s) can be read also
as a morphism (�, �′) from the basic pair X

r−→Y into the basic pair S
s−→T.

A basic pair is technically also the same thing as a boolean Chu space (see [8]);
we have chosen to adopt the new name of basic pair to recall that topology is
now involved and that the underlying set theory is constructive type theory.
The category BP strictly generalizes the category of boolean Chu spaces, be-
cause morphisms of Chu spaces are defined as pairs of functions, and in opposite

A Preview of the Basic Picture: A New Perspective on Formal Topology 205

directions. It also provides it with a new topological taste. One can therefore
expect from BP an even wider range of applications than those developed and
foreseen by V. Pratt for Chu spaces (see his www page [7]).

The notion of continuity for relations (sometimes euphemistically called
“many-valued functions”) has been considered by various authors, particularly
in the past; a textbook is [1]. Two more recent references are [16], especially sec-
tion 4.4 where some bibliographic references can also be found, and [17], which
generalizes1 the notion of continuous relation as introduced in [12].

WhenX and Y are topological spaces, a relation r : X → Y is said to be lower
semi-continuous if r∗ is closed, that is r∗ A is closed in X whenever A is closed
in Y, and upper semi-continuous if r∗ is open (see [16]). Lower semi-continuity
is classically equivalent to r− open, and hence to our (4), which does not need
any free variable on subsets, while the free variable on subsets which is used to
express upper semi-continuity is not eliminable. This is why we have adopted the
former as our definition (while continuous relations of [1] are required to satisfy
both).

Note that our definition is still sufficient to give the usual definition of con-
tinuity for functions as a special case when the relation r is actually a function.

8 Topological Kripke Structures

In textbooks on modal logic, a Kripke structure is usually defined as a set X
together with a relation r : X → X . Clearly, it is a special case of basic pair (in
which S = X). We are more interested however in the fact that basic pairs allow
to introduce a constructive definition of topological Kripke structure in a natural
way. In fact, we say that (X , r) is a topological Kripke structure if X

�−→S is
a basic pair, so that X is topologized by S through �, and r : X → X is a
relation whose inverse r− is open. In other terms, a topological Kripke structure
is essentially nothing but a morphism from a basic pair into itself. Then also
the notion of p-morphism (called contraction in [12]) can now be generalized,
and described simply as a commutative cube, of which one face is (X , r) and the
opposite face is (Y, s).

9 Extending Formal Topology

To conclude this preview, we can repeat the process described in the introduction
as a motivation for the definition of formal topology, but now starting from a
more general situation, given by a basic pair (X, �, S). The unfolding of the
basic picture in the previous pages has shown that to describe in the best possible
way the concrete topological structure of X by means only of the formal side, we
have to adopt two primitive relations ✁ and Pos or equivalently two operators A
and C, which will be assumed to be a closure operator and an interior operator
1 Note that the generalization of [12] given by M. B. Smyth in [17] is in the opposite

direction of that presented here.

206 Giovanni Sambin and Silvia Gebellato

respectively. When A and C are defined by means of the relation � in a basic
pair, the link between them is automatically given by the fact that A ≡ ✷ ext
and C ≡ ✸ rest with respect to the same forcing relation. We now have to add a
condition expressing this with no mention of X , and hence of �. We thus arrive
at

compatibility
a ε AU a ε CV

(∃b ε U)(b ε CV)
which is easily seen to hold in any basic pair. We thus reach the following defi-
nition, which we express in the perfectly equivalent notation with ✁ and Pos to
underline the relation with the previous definition of formal topology:

Definition of basic (formal) topology. A triple S ≡ (S, ✁, Pos) is called a basic
formal topology if S is a set, ✁ and Pos are infinitary relations satisfying:

reflexivity
a ε U

a ✁ U
transitivity

a ✁ U (∀b ε U)(b ✁ V)
a ✁ V

antirefl.
Pos(a, F)

a ε F
trans.

Pos(a, F) (∀b ∈ S)(Pos(b, F)→ b ε G)
Pos(a, G)

compatibility
a ✁ U Pos(a, F)
(∃b ε U)(Pos(b, F))

Due to the complete symmetry of a basic pair, if we transfer the structure of a
basic pair onto its left-concrete side, rather than conversely as we did above, we
reach a definition which differs from the above only in notation and terminology.
That is, we say that (X, cl , int) is a basic concrete topology if X is a set, cl is
a closure operator and int an interior operator, linked by the condition

x ε cl A x ε int B
(∃y ε A)(y ε intB)

which now has an immediate intuitive content since it characterizes the closure
of a subset when opens are given by an interior operator. This is a quite simple
but rich structure, which never came to life before because it was hidden under
the equalities of classical logic.

The notion of basic formal topology strictly generalizes the previous definition
of formal topology in two ways. Since no condition expressing that (ext a)a∈S is
a base is present in a basic pair, basic topologies have no condition guaranteeing
that formal opens form a frame. Since they do form a complete lattice in any case,
the difference is distributivity. This was previously expressed by the requirement
A(U · V) = AU ∩ AV, or equivalently · - left and · - right. Taking up an idea
in [15], distributivity can be expressed, even in absence of the primitive operation
· of formal intersection, by adding the requirement that A(U↓V) = AU ∩ AV
where U↓V ≡ {a ∈ S : (∃b ε U)(a ✁ {b})& (∃c ε V)(a ✁ {c})}. In the equivalent
notation with ✁, A(U↓V) = AU ∩ AV is expressed by

↓-right a ✁ U a ✁ V

a ✁ U↓V

A Preview of the Basic Picture: A New Perspective on Formal Topology 207

which is sufficent to prove that formal opens form a frame. This offers a sim-
pler formulation of formal topologies, obtained from the definition given in the
introduction by suppressing · and 1 and by replacing · - left and · - right with
↓-right. A considerable advantage of this new formulation is that it includes in
an easier way those examples where a preorder rather than a binary operation
is immediately available (two examples: the power of a set and trees).

However, we are more interested at the moment in the presence of a binary,
rather than unary, positivity predicate Pos, and this is the second generalization.
In fact, it can be proved that a unary Pos is essentially (apart from the condition
of positivity, which can be added at will) the same thing as a trivial binary Pos;
Pos is said to be trivial if Pos(a, F) → (∀b)(Pos(b, S) → b ε F) holds, which is
a constructive way to express that ∅ and CS are the only formal closed subsets.
Thus the new version of formal topology, with a binary Pos, includes the previous
one as a special case. It also includes the theory of locales, simply as the special
case with an improper Pos, that is one for which Pos(a, F) is always false.

In our opinion, what we have presented here is sufficient to conclude that
the basic picture is indeed the basic perspective for a very general approach to
constructive topology. The control of distributivity (that is, the fact that it can
be added on top, in the form of ↓-right) opens the way to the development of
nondistributive topology, in which the formal and the concrete approach seem to
be mathematically equivalent. The presence of binary Pos permits a predicative
treatment of formal closed subsets, which now have a primitive definition parallel
to that of formal open subsets, just as the combination of quantifiers ∃∀ is parallel
to ∀∃. Of course, much work is still to be done to reach a solid development (we
have so far extended to the general case, that is nondistributive and with binary
Pos, a portion of previous formal topology; as an example, arrows between basic
topologies can be obtained by taking as defining conditions exactly the properties
of the second component in a relation-pair). Given the novelty of the underlying
ideas, however, we would not be very surprised if it will lead to some unexpected
new applications.

References

1. C. Bergè, Espace topologiques - functions multivoques, Dunod, Paris, 1959. 205

2. R. Dedekind, Stetigkeit und irrationale Zahlen, Vieweg, 1872. also in Gesammelte
mathematische Werke, vol III, Vieveg 1932. 196

3. R. Engelking, Outline of general topology, North-Holland, Amsterdam, 1968. 197

4. P. T. Johnstone, Stone Spaces, Cambridge studies in advanced mathematics 3,
Cambridge University Press, 1982. 196

5. J. L. Kelley, General topology, Van Nostrand, Toronto, New York, London, 1955.
199

6. P. Martin-Löf, “Intuitionistic type theory”, notes by Giovanni Sambin of a series
of lectures given in Padua, June 1980, Bibliopolis, Naples, 1984. 194

7. V. Pratt, A guide to Chu spaces. page of the World Wide Web with address:
http://boole.stanford.edu/chuguide.html. 205

208 Giovanni Sambin and Silvia Gebellato

8. , Chu spaces and their interpretation as concurrent objects, in Computer
Science Today: Recent Trends and Developments, J. van Leeuwen, ed., Springer
Lecture Notes in Computer Science 1000, 1995, pp. 392–405. 204

9. G. Sambin, Intuitionistic formal spaces - a first communication, in Mathematical
Logic and its Applications, D. Skordev, ed., Plenum, New York - London, 1987,
pp. 187–204. 195, 196

10. , Intuitionistic formal spaces vs. Scott domains, in Atti del Congresso “Temi
e prospettive della logica e della filosofia della scienza contemporanee”, Cesena,
January 7-10 1987, C. Cellucci and G. Sambin, eds., vol. 1, Bologna, 1988, CLUEB,
pp. 159–163. 195

11. , Formal topology - state of the art. in preparation. 195
12. G. Sambin and V. Vaccaro, Topology and duality in modal logic, Annals of Pure

and Applied Logic, 37 (1988), pp. 249–296. 205
13. G. Sambin and S. Valentini, Building up a toolbox for Martin-Löf ’s type theory:

subset theory, in Twenty-five Years of Constructive Type Theory, Proceedings of
the Congress held in Venice, October, 1995, G. Sambin and J. Smith, eds., Oxford
Logic Guides 36, Oxford U. P., 1998, pp. 221–244. 195, 197, 198

14. G. Sambin, S. Valentini, and P. Virgili, Constructive domain theory as a
branch of intuitionistic pointfree topology, Theoretical Computer Science, 159
(1996), pp. 319–341. 196

15. I. Sigstam, Formal spaces and their effective presentations, Archive for Mathe-
matical Logic, 34 (1995), pp. 211–246. 206

16. M. B. Smyth, Topology, in Handbook of Logic in Computer Science, S. Abramsky,
D. Gabbay, and T. Maibaum, eds., Oxford U. P., 1992. 205

17. , Semi-metrics, closure spaces and digital topology, Theoretical computer sci-
ence, 151 (1995), pp. 257–276. 205

	Front matter
	Types for Proofs and Programs
	Preface
	List of Referees
	Table of Contents

	Chapter 1
	On Relating Type Theories and Set Theories
	The General Form of the Syntax and Set Theoretical Semantics of Our Type Theories
	Syntax
	The Pseudoterms.
	The Pseudojudgements and Formal Judgements of a Type Theory.
	General Rules

	Types-as-Sets
	The Interpretation Functions.

	The Theory MLWext
	Some Defined Forms of Pseudoterm
	Special Rules for MLW
	Extending to MLWext
	The TS Interpretation of MLWext in ZFC
	Proof of the Theorem in ZFC.

	Adding Excluded Middle
	Reduction to a Constructive Set Theory

	Adding Type Universes
	Adding a Single Reflecting Type Universe, U
	Adding an Infinite Hierarchy, U0,U1,…, of Reflecting Type Universes
	Adding an Impredicatively -closed Type Universe P

	Interpreting Set Theories in Type Theories

	Chapter 2
	Communication Modelling and Context-Dependent Interpretation: An Integrated Approach
	Introduction
	Formalising Knowledge States
	Knowledge
	Knowledge States as Contexts
	Growth of Knowledge
	Common versus Private Knowledge

	Communicable Content
	Concepts and the Common Language
	Messages
	Example

	Polarity and Information Flow
	Communication
	Providing Information
	Obtaining Information

	Conclusions

	Chapter 3
	Gröbner Bases in Type Theory
	Introduction
	Gröbner Bases for Fields
	Construction of Gröbner Bases
	A Constructive Proof of Dickson's Lemma

	Hilbert's Basis Theorem
	A Constructive Proof of Hilbert's Basis Theorem

	Conclusions
	Classical Proofs
	A Classical Proof of Dickson's Lemma
	A Classical Proof of Hilbert's Basis Theorem

	Formal Proofs in Agda
	Dickson's Lemma in Agda
	Abstract Existence Proof of Gröbner Bases

	Chapter 4
	A Modal Lambda Calculus with Iteration and Case Constructs
	Introduction
	The System
	Higher-Order Abstract Syntax
	Syntax
	Typing Rules for Case and It on a Simple Example
	Examples
	Typing Rules
	Basic Properties
	Reduction Rules for Case and It on a Simple Example
	Reduction Rules

	Metatheoretical Results
	First Results
	Strong Normalization
	Reducibility Candidates
	Interpretation of types and contexts
	Soundness of Typing

	Confluence and Conservative Extension

	Related Works
	Conclusion and Future Work

	Chapter 5
	Proof Normalization Modulo
	Introduction
	Motivations
	Systems Modulo
	About this Work

	Deduction Modulo
	Natural Deduction Modulo
	Equivalence
	Rewriting
	Examples

	Reduction and Cut-Elimination
	Proof-Terms
	Proof Reduction Rules
	Counter-Examples to Termination

	Proving Normalization
	Reducibility Techniques
	Pre-model
	The Normalization Theorem
	Pre-model Construction

	Conclusion

	Chapter 6
	Proof of Imperative Programs in Type Theory
	Effects and Functional Translation
	Effects
	Functional Translation

	Program Correctness
	Implementation
	Discussion and Future Work

	Chapter 7
	An Interpretation of the Fan Theorem in Type Theory
	Introduction
	Bar Induction and the Fan Theorem
	Preliminaries
	Bar Induction
	Fan Theorem
	Other Formulations of the Fan Theorem

	Inductive Bars
	Fan Theorem in Type Theory
	Concluding Remarks

	Chapter 8
	Conjunctive Types and SKInT
	Introduction
	SKInT and the lambda-Calculus
	Conjunctive Types
	Conclusion

	Chapter 9
	Modular Structures as Dependent Types in Isabelle
	Introduction
	Algebraic Structures
	Simple and Higher Order Structures
	Example: Groups and Homomorphisms

	Dependent Types as Structure Representation
	Isabelle Representation
	Set Representation
	Implementation in Isabelle

	Algebraic Formalization with Pi and Sigma
	Use of Sigma
	Use of Pi

	Application Examples
	Definitions
	Proof Examples
	Group of Bijections
	Group of Ring Automorphisms
	Factorization of a Group
	Direct Product of Groups
	Full Tarski

	Discussion

	Chapter 10
	Metatheory of Verification Calculi in LEGO
	Introduction
	Deep versus Shallow Embedding.
	Related Work.

	To What Extent Does Syntax Matter?
	Overview
	The State Space
	Expressions
	Assertions
	Imperative Programs
	Semantics and Derivability of Hoare Logic
	Total Correctness
	Auxiliary Variables
	Soundness
	A Shallow Embedding of Hoare Logic.

	Completeness

	Extensional Equality and Local Variables
	Conclusions

	Chapter 11
	Bounded Polymorphism for Extensible Objects
	Introduction
	Acknowledgement
	The Extended Primitive Object Calculus
	Small-Step Operational Semantics

	The Type System
	Types and Judgments
	Subtyping
	Type Rules
	Applications
	Method Specialization.
	Subtyping.
	Method Annotations for Encapsulation.
	Classes as Collection of Pre-methods.

	Modelling Inheritance.

	Related Work

	Chapter 12
	About Effective Quotients in Constructive Type Theory
	Introduction
	The Idea of the Proof: Axiom of Choice versus Extensionality
	Extension of iTT with Quotient Sets
	Small Sets Are Classical
	Extensional Quotient Sets in Extensional Set Theory

	Chapter 13
	Algorithms for Equality and Unification in the Presence of Notational Definitions
	Introduction
	Language
	Example
	Definitions and Algorithms for Equality
	Injectivity
	Strictness

	Results for Unification
	Conclusion

	Chapter 14
	A Preview of the Basic Picture: A New Perspective on Formal Topology
	Introduction
	Basic Pairs
	Interior and Closure
	Formal Open and Formal Closed Subsets
	The Isomorphism Theorem
	Continuity
	The Category of Basic Pairs and Related Notions
	Topological Kripke Structures
	Extending Formal Topology

